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Abstract  

Fractal measurements of animal movement paths have been used to analyze how animals view habitats at dif- 
ferent spatial scales. One problem has been the absence of error estimates for fractal d estimators. To address 
this weakness, I present and test 4 new estimators for measuring fractal dimension at different spatial scales, 
along with estimates of their variation. The estimators are based on dividing the movement path into pairs of 
steps, forming V's, and then estimating various statistics from each V. 

I measured the performance of these estimators by comparing them to the traditional divider d method, 
using data generated by two different animal movement models. The estimator based on the net distance 
between the two steps and the cos turning angle was most accurate, giving estimates similar to those of the 
traditionally-used divider d method. Precision increased with longer and straighter paths. 

Strengths of this new estimator are that it can estimate fractal d at different spatial scales, give an estimate 
of variation, and combine data from many separate path segments which have been gathered at various spatial 
scales. 

1. Introduct ion 

Animals select habitats for many reasons: food, 
protection from predators, shelter, density of com- 
petitors, mating, etc. All of these processes act at 
different spatial scales, and act at different scales 
for different animals. For example, Least Flycatch- 
ers (Empidonax minimus) and American Redstarts 
(Setophaga ruticilla) select similar areas at large 
scales, but the two species of birds are not found 
together in small 4-ha plots (Sherry and Holmes 
1988). The response to scale also depends on the 
type of animal. For example, at lower spatial 
scales, specialist predatory mites aggregate, and at 
higher ones they distribute themselves randomly, 
but generalist mites do the opposite (Zhang and 
Sanderson 1993). Thus, we need to know at what 
spatial scales animals view their habitat in order to 
understand how and why they select habitats (Kot- 
liar and Wiens 1990). 

We can measure at what spatial scales animals 
view habitats by doing extensive or intensive stud- 
ies: extensively, by analyzing the spatial patterns of 
the locations of many individual animals at differ- 

ent spatial scales, and intensively, by measuring 
changes in tortuosity of movement paths of indi- 
vidual animals. Movement path tortuosity, or 
crookedness, has most commonly been assessed 
using fractal dimension (fi'actal d). Fractal d is the 
continuous analogue of discrete geometric dimen- 
sions (Mandelbrot 1967; Milne 1991); for example, 
lines have a geometric dimension of 1 and planes a 
dimension of 2. The fractal d for movement paths 
lies between 1 and 2 - i.e. d is 1 when the path is 
straight and a maximum of 2 when the path is so 
tortuous as to completely cover a plane. 

Typically, biologists estimate fractal d of animal 
paths by using the dividers method (Mandelbrot 
1967; Milne 1991). The length of the path is mea- 
sured by walking a pair of dividers of a certain size 
along the path. If this is done for larger and larger 
dividers, then the slope of the plot for log(path 
length) vs log(step size) is l-d,  yielding one over- 
all estimate for fractal d over a range of scales. 

At large scales this is slightly modified (With 
1994b) because estimates of path length vary de- 
pending at which of the data points the large steps 
were started. This variation is typically minimized 

IA computer program to estimate the VFractals and the divider d can be obtained from the author. 
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by walking the dividers over the path many times, 
each time beginning at different starting points and 
thereby finding a mean path length. 

In order to measure how animals use habitats at 
different scales it is important to measure not only 
overall fractal d but also to measure how fractal d 
changes with scale. For example,  Benhamou 
(1990) showed that at a smaller scale wood mice 
(Apodemus syh,aticus) travel in a directed path 
toward individual bushes, but at a larger scale they 
move from bush to bush randomly, At the smaller 
scale the directed path would show a constant d but 
at the larger scales the correlated random walk 
would show an increasing d. 

The traditional divider method can be adapted to 
measure d over different ranges of  scales by the 
following method (Krummer  et al. 1987: Sugihara 
and May 1990). First, choose a narrow range of 
step sizes and measure fractal d over that interval 
by estimating the slope of log(path length) vs 
log(step size) over that range. Then shift the range 
of step sizes along the x axis a bit and again esti- 
mate d. Repeating this will give estimates of  fractal 
d at different scales. However, although now you 
can see how fractal d changes with scale, you do 
not know which changes in d are real, because 
there are no confidence intervals around the d esti- 
mates. Thus a method is needed to statistically test 
for changes in d. 

One potential test for changes in d would be to 
test for change in slope in the log(path length) vs 
log(step size) relationship. However,  the statistical 
tests for nonlinearity usually employed in regres- 
sion analyses are not valid to test for a change in 
slope because it is not known whether the points on 
the graph are independent. For example, you could 
measure log(path length) with I0 step sizes sepa- 
rated by one unit (e.g. 1, 2, 3 . . . .  ), or do the same 
with 100 step sizes of  0.1 apart, or 1000 step sizes 
0.01 apart. Thus the number of  points on the graph 
is arbitrary and at some step spacing the log(path 
length) measurements are no longer independent 
from one step size to the next. Some other method 
is needed to statistically test for changes in d with 
scale. 

I present a new set of  estimators for fractal 
dimension, called VFractals, that solve this prob- 
lem. They estimate fractal d at different spatial 
scales, give a measure of  variance, and can corn- 
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Fig. 1. One individual V from an animal's path. The thick line 
is the path. The thick dotted lines represent steps of equal size S 
atong the path, and the two steps form the V. 0 represents one 
turn angle between two steps, and Net is the net distance from 
the start of one to the end of the second step. 

bine data from many separate path segments which 
have been gathered at various spatial scales. I test 
four versions of  these estimators with two different 
simulation models for movement  paths and com- 
pare the accuracy and precision of the VFractals to 
that of  the divider method. 

2. The VFractal estimators 

We need an estimate of  fractal d at different spatial 
scales. For each scale consider an animal 's  move-  
ment path to be a series of  turning angles. For each 



V formed by turning angle I will calculate various 
statistics, and then estimate fractal d from the mean 
of these statistics over the whole path. 

Start by considering the divider method for esti- 
mating fractal dimension. If the movement path is 
fractal, then for any size of divider (Mandelbrot 
1967), 

Gross Distance = k size~-d; 
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then combining (4), (5) and (6) we get that 

d = (7) 
(1) l+log_,(cos 0 +1) 

for some constant k, where d = fractal dimension. 
This relationship should apply at all path seg- 

ments and scales, including down to individual step 
sizes. I will apply this relationship to the individual 
V's delineated by any two consecutive steps of size 

s (Fig. 1): 
let Net = net distance from start of one step 

to the end of the second 
0 = the turning angle between the two 

steps 

First, use s for the divider size. Applying equation 
( 1 ) at the scale of s we get that 

(2) Gross Distance = 2 s = k s ~ .  

Next use a different scale - instead of s, use Net for 
the divider size. Now when we apply equation (1) 
we find that 

(3) Gross Distance = Net = k Net Ira. 

We cancel the k's by combining (2) and (3) and 
rearranging to get 

log(2) 
d - (4) 

This equation gives us an estimate of fractal d for 
the V formed by one pair of steps. This d is a func- 
tion of Net. We can also estimate d as a function of 
the angle (0) between the steps as follows. Based 
on the geometrical relationship between Net and 0 

(Fig. 1 ), 

S 

(5) 

Equations (4) and (7) give an estimate for fractal 
d of only this one V, at the scale of s to Net. How- 
ever, we need an estimate for the whole path. 
Based on these equations, I propose 4 different 
estimators for fiactal d of the whole path at the 
scale of s to Net: 

(i) Dmean: Estimate d for each V, and then find the 
mean d for the whole path. 
(ii) Net: Estimate the mean Net over the whole 
path, and then estimate overall fractal d by equa- 
tion (4), but with using Net instead of Net. 
(iii) Cos: Estimate the mean cos(0) over the whole 
path, and then estimate overall fractal d by equa- 
tion (8), but with using cos(0) instead of cos(0). 
(iv) NetCos: The mean of the estimates (ii) and 

(iii). 
One problem with the above estimates is the 

behavior of d at large turn angles (Fig. 2). Overall, 
fractal d should lie between 1 and 2, but equation 
(7) overestimates: for turn angles greater than 90 ~ , 
it lies outside of that range. To accommodate this 
problem for Dmean, instead of just using equation 
(7) for each V, d was truncated to: 

f O , O < 90 ~ d = 1 +log2(cos 0 + 1 ) 

2 " 0 _> 90 ~ 

(8) 

The Net and Cos estimates were also similarly 
truncated when estimating d from Net and cos(0). 

2.1. Error estimates 

Unlike the traditional divider d method, we can 
estimate confidence intervals for fractal d with 
these VFractal estimators. All of the estimators are 
based on means, and means are normally distrib- 
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Fig. 2. Fractal d estimated for one turn angle. Note that at turn 
angles > 90 ~ d is outside of [1,2]. Fractal dimension is unde- 
fined outside of that range. 

uted. Therefore even if the resulting estimator is 
not normally distributed, one can still calculate 
confidence intervals, as follows: 
(i) Dmean: Consecutive pairs of steps are indepen- 

�9 dent of each other, so this estimate is just a mean of 
n independent samples and is normally distributed. 
Thus, simply estimate the standard deviation of the 
mean d over all pairs of steps at each step size, and 
calculate a confidence interval from that. 

(ii)-(iv) All of these estimates are nonlinear 
functions of means, and thus are not normally dis- 
tributed. However, since the means are normally 
distributed, first estimate confidence intervals for 
the means (as done for Dmean). Then apply equa- 
tions (4) and (7) to the lower and upper bounds of 
the confidence intervals. 

There are, however, some problems with the 
error estimates calculated from the above equa- 
tions. First, because estimates (ii)-(iv) are not nor- 
mally distributed, they give asymmetrical confi- 
dence intervals and no estimate of variance to be 
used in further analyses. Second, they do not take 
into account the variation at large scales caused by 
initial starting position of the dividers. 

These problems can be solved by applying a 
bootstrapping procedure (Efron and Tibshirani 
1991). Bootstrapping allows one to calculate esti- 
mates that are normally distributed from any esti- 
mate of a sample of independent points. The fol- 

lowing example for NetCos shows how to apply it 
to these estimators. 

Suppose there are n turning angles in the path 
when it is viewed at a certain scale. Randomly 
select n of these angles, with replacement. Since 
these are being chosen with replacement, some no 
doubt will be duplicates. Then estimate NetCos 
from these n angles. Repeat this m times (each is 
called a bootstrapping replicate), each time select- 
ing n new angles and estimating NetCos from 
them. The series of m estimates for NetCos will be 
normally distributed with a mean of 

1 
NetCos = ]~ NetCosj; 

m 

j = the jth bootstrapping replicate (9) 

and an estimate of variance of the mean of 

1 
S2NetCos -- m - 1 2 ~ (  NetC~176 (10) 

Since it is normally distributed, estimate 95% con- 
fidence intervals by: 

95% c.i. = _ 1.96 SNetCos. ( l l )  

In order to minimize variation due to initial 
placement of the steps (With 1994b), I modified 
this procedure as follows. For each bootstrapping 
replicate I randomly chose a starting point within 
distance of one step from the beginning, then 
walked the steps to the end of the path. The data 
points for each replicate were from the successive 
V's along the path. 

The 4 resulting estimates (Dmean, Net, Cos, 
NetCos) are normally distributed (because of the 
bootstrapping; Efron and Tibshirani 1991 ), the con- 
fidence intervals are symmetrical, and error due to 
initial placement of steps is both minimized and 
included in the estimate. 

3. T e s t i n g  the  e s t i m a t o r s  

3.1. Methods 

I tested the 4 estimators with simulated animal 
movement paths. To ensure that choice of the opti- 



mum estimator was not dependent on the move- 
ment model, I used 2 different models. The first 
was the correlated random walk, in which an ani- 
mal walks in discrete steps. Each step the animal 
turns in a random direction that is circularly nor- 
mally distributed and centered in the direction the 
animal is heading. The second was the fractal walk, 
in which an animal walks towards a fixed point in a 
fractal environment. For the correlated random 
walk the fractal d increases with scale while for the 
fractal walk the fractal d is constant. 

For each model I used a range of parameters to 
simulate path fractal d's ranging from 1.0 to 1.9 (1 
= a straight line, 1.9 = almost filling the plane). For 
each parameter combination I simulated 100 move- 
ment paths, and for each path I estimated all four 
estimators of fractal d, along with their error esti- 
mates, using 100 bootstrap replicates for each. 

The VFractal estimates estinaate fractal d over a 
narrow range of scales. I compared these estimates 
to the divider fractal d estimated over a narrow 
range of scales (Krummer et al. 1987; Sugihara and 
May 1990). For the divider d, in order to compen- 
sate for the random effect of placement of the first 
step for large step sizes (With 1994b), path length 
at each step size was averaged over 10 iterations. 
For each iteration the step was started at a random 
point along the path and the dividers were walked 
in both directions to each end of the path ~. 

3.2. Resuhs  

3.2.1. Accuracy 
To measure accuracy I calculated the difference 
between each VFractal estimate and the divider d 
estimate. For both movement path models, the 
most accurate is the NetCos estimator (Fig. 3), with 
the poorest being the Dmean estimator. The Dmean 
estimator strongly underestimates d at larger d val- 
ues (likely because of the truncation of the equa- 
tion estimating d at turn angles greater than 90~ 
although the other estimators use the same truncat- 
ed equations, the equations are applied to Net and 
cos(0), not Net and cos(0) of each turn angle). All 
the estimators have poor accuracy for fractal d > 
1.5, but again, NetCos is still the most accurate. 

t A computer program to estimate the VFractals and the divider 

d can be obtained from the author. 
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Fig. 3. Accuracy of the four VFractal estimators: mean differ- 

ence between the estimators and divider d. NetCos is most 

accurate, but all are most accurate at fractal d < 1.5. Dmean is 

least accurate, underestimating fractal d quite severely. 

Thus I chose NetCos as the VFractal estinaator and 
only considered that one in these further analyses. 

3.2.2. Precision 
Longer and straighter paths gave more precise esti- 
mates of fractal d (Fig. 4). For fractal d < 1.5, the 
variance decreased in proportion to the increase in 
path length - as would be expected from a normal- 
ly distributed statistic - whereas ~variance increas- 
ed in proportion to the increase in fractal d. These 
are likely general relationships that are not depen- 
dent on the type of movement path, since both sim- 
ulation models gave similar results. 
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Fig. 4. Precision of NetCos estimator versus fractaI d for two 
path lengths, for both types of movement path simulation mod- 
els. Precision is measured by 4var(NetCos). 

4. Discussion 

4.1. Accuracy 

The VFractal estimator is biased for more tortuous 
paths (d > 1.5; Fig. 3). Although this seems like a 
major limitation, since that is half of the [1.0-2.0] 
scale for fractal d, practically this will not create a 
large problem. First, d = 1.5 represents a very tor- 
tuous movement path that is rarely seen in nature - 
fractal d's of animal movement paths are much 
generally smaller (Table 1). Second, the bias is not 
hidden - we know over which range of d values to 
discard the VFractal estimator. 

Finally, the main purpose of the VFractal estima- 
tor is to see how animals use different spatial 
scales. This requires comparing fractal d's at differ- 
ent spatial scales for each animal, not fractal d's 
among different types of animals (for comparing 
different animals, the traditional divider method is 
more useful because it gives an overall measure of 
fractal d). Since the biases are much more constant 
within than among types of movement paths (e.g. 
for d > 1.5, the ratio of variance among:variance 
between, F39,2586 = 11.27; p < 0.001), they should 
only minimally affect comparisons at different spa- 
tial scales within the same movement paths. 

Table I. Fractal d measurements of animal movement paths. 
These are considerably within the [ 1,1.5] range of unbiased val- 
ues for the VFractal NetCos estimator, showing that in most 
cases the bias will not be a problem. 

Type of animal Fractal d 
(mean + s.d.) Source 

grasshoppers I. 15 _ .07 With 1994a 
( Opeia obscu ra) 
various acridid 1.10 +.  14 
grasshopper species 1.16 _+ .11 With 1994b 

1.09 _+ .05 
Wood turtles (Clemmys 1.06 _+ .06 McCurdy, D. 
i ,  sculpm)- adult males unpublished data 
Blandings turtles 1.13 _+ .04 Standing, K.L., Hurlburt, 
(Emydoidea blandingii) D., and Herman, T. 
day one hatchlings unpublished data 
marten 1.09 +_. 17 Bourgeois, M. 
(Martes americana) unpublished data 
coyotes 1.11 _+ .04 Brodie, H. 
( Canis latrans) unpublished data 
two-spotted spider mite I. l 0 _ .06 Dicke and Burrough 

1988 
Tetranvchus urticae 
Eleodes beetles 1.16 - .08 Crist et al. 1992 

4.2. Precision and sample size 

As spatial scale increases, precision of VFractal 
estimates decrease (e.g. Fig. 5), because precision 
decreases with both increasing fractal d and de- 
creasing sample size (Fig. 4). One way to increase 
precision at larger scales is to increase sample size 
by combining data from several path segments 
gathered at different spatial scales. This can be 
done since the VFractal estimator treats both indi- 
vidual turns and spatial scales independently. 

For example, if mice and voles are tracked by 
the very fine-scale method of fluorescent dusting 
(Lemen and Freeman 1985: Goodyear  1989), then 
one can get locations every 1 cm, but only for path 
lengths of 15-30 m long. This represents an N of 
1500-3000 at the scale of 1 cm, but only 15-50 at 
the scale of 1 m. For the larger scales one might 
use a coarser method of sampling, such as thread- 
ing (Boonstra and Craine 1986), to gather data at 
scales of 10 cm for path lengths of 100-150 m 
long, or radiotelemetry to gather data at scales of 1 
m for path lengths of several km long. All of these 
can be then combined into one analysis of fractal d 
vs scale. 

At each scale a different number and combina- 
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Fig. 5. Example of d (estimated with the VFractal estimator) vs 
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tion of path segments would be used. For example, 
to estimate fractal d at a scale of 20 cm, all the path 
segments tracked by fluorescent dusting and 
threading would be used, since their locations were 
gathered at less than 20 cm. First, one would find 
turn angles at a scale of 20 cm by running dividers 
of size 20 cm along all the path segments. Then, 
since the analysis treats all turn angles indepen- 
dently, all of  the turn angles would be grouped 
together, and samples for the bootstrapping esti- 
mate drawn from that group. This whole process 
would be repeated for each scale, to show overall 
changes in fractal d vs scale. 

4.3. Statistical sampling units 

When comparing movement paths of different 
species, the sampling unit should be an individual, 
not a movement path, with only one fractal d esti- 
mate at each scale for each individual (Wiens et al. 
1993). Thus the VFractal estimator can be used to 
combine all movement paths for one individual, 
but the error estimates should not be used in this 
case. The main purpose of  the error estimates is to 
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Fig. 6, (a) A movement  path from a male red-backed vole. (b) 
Plot of  log(Gross Distance) vs log(step size). 100 intervals of  

step size were used in the plot. 

allow one to decide whether fractal d is constant or 
varying for each individual animal. 

5. An example  

At what scale do red-backed voles (Clethrionomys 
gapperi) view habitats? To answer this I followed 
the movements of voles near Truro, Nova Scotia, 
Canada. These mouse-sized herbivorous mammals 
live in the boreal forest, with home ranges of about 
50 • 50 m 2. They live on the forest floor and in 
burrows just under the forest floor. 

The sample data comes from an adult male vole 
(25 grams) that was tracked by following a thread 
spool attached to its back (Boonstra and Craine 
1986). As the thread plays out, it snags in grass and 
other vegetation on the forest floor, thus retaining 
the shape of the movement path. The track was 50 
m long and data points were recorded with an accu- 
racy of_+ 5 cm (Fig. 6a). 

Overall, the fractal dimension is 1.11, indicating 
quite a straight path. Fractal d is calculated from 1 
minus the slope of the plot of log(Gross Distance) 
vs log(step size) (Fig. 6b). This slope seems to be 
linear, suggesting that fractal d is constant with 
scale. However, when we estimate d at different 
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spatial scales, we find some variation. I estimated 
fractal d using the divider method and three differ- 
ent interval ranges in step size: 0.2, 0.3 and 0.5 
(Fig. 7a-c).  For example, a range of 0.2 means that 
at each scale, the interval used to estimate fractal d 

scale 
was scale x (1-0.2) to - -  (a linear inter- 

1-0.2 

val in the log scale). The wider the interval range in 
step size, the smoother the plot of fractal d vs scale. 
However, it is difficult to know by looking at these 
plots which of the fluctuations in d are real and 
which are due to sampling variation. Thus we next 
use the VFractal estimator, which includes error 
estimates (Fig. 7d). The 95% confidence intervals 
of  the VFractal show that most of the fluctuations 
in d are not real. The real patterns are the gradual 
increase in d until 50 cm, then a decrease to a low 
d. 

To interpret these results biologically, consider 
first that the increase in d from 10 to 50 cm is what 
is seen in a correlated random walk. At scales larg- 
er than 50 cm, the d decreases and remains con- 
stant. The decreases means that the path is 
straighter. The constant d is what is seen in the 

fractal walk, which is a directed walk, where the 
animal walks to a certain point but has to avoid 
occasional obstacles that occur at all scales. Thus 
this vole is wandering about randomly in patches 
of  size < 50 cm, but on a larger scale is going in a 
certain direction. 

When we now look back to the map of the path 
(Fig. 6), we can see these results. At a large scale, 
the path is straight and direct. On a smaller scale, 
the path is more crooked, suggesting that the ani- 
mal is searching in patches of  about 50 cm in size. 

6. S u mmary  

The VFractal and the traditional divider d estimates 
each have different strengths. The divider d is best 
for one overall estimate of  d if the data come from 
one continuous movement  path. Both estimators 
can estimate fractal d at different spatial scales, but 
the VFractal also gives a measure of  error. Most 
importantly, the VFractal can combine data from 
many separate path segments which have been 
gathered at various spatial scales. 

With these tools we can analyze how animals 



view their environment at different spatial scales. 
This should allow us to examine what causes these 
differences, addressing such questions as, is the 
topology of the movement path determined by the 
topology of the habitat, or solely by the behavior of 
the animal? If by the topology of the habitat, then 
what habitat features are used by the animal? Do 
all individuals of a species view the habitat at simi- 
lar scales? 
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