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I, Ve prove that the general schenw .[or plowical theories that we have called 
semantic realism (SR) h~ some preriaus papers copes stw~'essJidlv with a number 
of EPR-like paradoxes when applied to quantum physi~w (QP). ht particuhtr, we 
conshler the ohl arguments b)' Furr.v and Bohm-Aharooor aml show that tho, are 
not valid u'ith#t a SR [i'amework. Moreover, we consider the Bell-Kochen- 
Specker aml the Bell theorems that shoahl prove that QP is inherently contextual 
and nonlocal, respectil:el),, aml show that th O" can be hwalidated ht the SR 
approach. This remot~es the seemhzg contradiction between the basic assttttWthms 
of SR aml QP, and proves that some problematic features that ore asuallv 
attributed to QP, as contextualit 3' atttl nonhwality, occur because o['the adoptiolt 
of a veriJh'ationist position, .]i'om one side, and.fi'om an blst(ff~cient adherence to 
the operational prhwiples that hare hlsph'ed QP itsel[] fi'om the other shle. 

1. I N T R O D U C T I O N  

It is well known that the EPR (Eins te in-Podolsk i -Rosen)  thought experi- 
ment was originally intended to prove the ontological  incompleteness of 
quantum physics (QP).  Indeed, EPR invented it in such a way that the 
posit ion and momentum of  one of  the two elementary particles that  appear  
in it could be reasonably classified as "elements of reality," and deduced the 
ontological  incompleteness from the fact that  posit ion and momentum can- 
not be simultaneously known in QP. 

EPR did not  use their argument  in order  to assert that  Q P  leads to 
paradoxes.  ~ But a number  of authors  worked out  and modified the EPR 
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argument, deducing paradoxes from it (EPR-like paradoxes in the fol- 
lowing; we include the Bell and the Bell-Kochen-Specker, or Bell-KS, 
theorems in the set of EPR-like paradoxes because of the puzzling conse- 
quences of these theorems). Moreover, it has been asserted that these 
paradoxes can be avoided only accepting one or some of the following 
disconcerting alternativesY ~ 

(i) Existence of superluminal connections 

(ii) Retroactions in time 

(iii) Variable detection probability 

(iv) Breakdown of the "ergodic hypothesis" 

(v) Negative probabilities 

Of course, the supporters of the orthodox interpretation of QP, or of 
some variant of it, have provided confutations of the reasonings that lead 
to paradoxes; yet, in our opinion these answers are unsatisfactory because 
of the adoption (sometimes implicit or incomplete) of a verificationist 
theory of truth and meaning. This point has been discussed by us in a 
previous paper t3J that will be briefly called GS.96 in the following. 

We would like to show in the present article that a more satisfactory 
way out from EPR-like paradoxes can be found by specializing to QP the 
general scheme for physical theories (semantic realism or, briefly, SR) that 
has been worked out in GS.96 and in some previous papersJ 4 8~ This result 
can be obtained since SR embodies some nonstandard features which allow 
us to look at the problem from an unusual viewpoint. Indeed, SR is based 
on an epistemological perspective which implies the adoption of a corre- 
spondence theory of truth for the language of physics, so that a sort of 
realism of properties is introduced; but SR also embodies some operational 
requirements that allow one to distinguish truth from epistemic accessibility 
(or testability) and produce a number of changes in the conventional 
conception of compound physical systems, consistency, compatibility, 
testability. In particular, SR propounds a new way (MGP) of character- 
izing the truth mode of empirical physical laws that takes into account the 
existence of nontrivial relations of pragmatic compatibility on the set of 
physical properties in some physical theories, as QP: indeed, MGP restricts 
the set of laboratories (space-time domains) in which an empirical law can 
be asserted to be true to all epistemically accessible laboratories (note that 
the law could be false, not meaningless, in a laboratory that does not 
belong to this set). Because of all these features, SR, which reproduces the 
standard viewpoint when applied to classical physics (CP), introduces 
some relevant modifications of the standard way of dealing with states, 
properties, measurements, physical laws, and completeness whenever it is 
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applied to QP (yet it preserves both the mathematical apparatus and the 
observative consequences of this theory). These changes constitute the 
background for working out the SR answers to EPR-like paradoxes that 
we provide in Sees. 3-7 after supplying in Sec. 2 a generalized treatment of 
the EPR experiment and of some paradoxes in the literature (a brief discus- 
sion on probability in a SR framework is also provided in Sec. 8). 

We note that our discussion of the paradoxes pointed out by Furry 
and by Bohm-Aharonov essentially rests on: (i) the semantic differences 
between states and properties; (ii) the difference between semantic and 
pragmatic compatibility of properties. However, it does not require MGP. 
On the contrary, our invalidation of the Bell and Bell-KS theorems 
requires full use of MGP. Indeed, these theorems assert that QP conflicts 
with some intuitive requirements regarding physical theories (see Sec. 2), 
and we show that in all proofs a classical way of characterizing the truth 
mode of empirical physical laws (MCP: physical laws are true in every 
laboratory) is implicitly used, while no inconsistency of QP with the 
aforesaid requirements occurs if MGP is substituted to MCP. 

The use of MGP for invalidating the Bell and the Bell-KS theorems 
is relevant, since these theorems are deep results that ought to show that 
nonlocality and contextuality are intrinsic features of QP, which do not 
depend on the philosophical choices that are made a priori in the standard 
(Copenhagen) interpretation, so that they should be unavoidable in QP. 
Our invalidation proves that this conclusion fails to be true whenever one 
accepts SR and, in particular, MGP. But this principle is more consistent 
than MCP with the operational philosophy of QP. Thus, surprisingly, we 
recover some features of CP in QP (as locality, noncontextuality, and com- 
patibility with some forms of realism) by applying more rigorously one of 
the basic epistemological choices of QP. 

We also observe that our treatment offers an alternative not only to 
the aforesaid explanations of EPR-like paradoxes in terms of superluminal 
connections, retroactions in time, etc., but also to the attempts of avoiding 
nonlocality by limiting the validity of counterfactual reasoning in Qp~9. ~01 
(we have already commented on this latter point in the Introduction to 
GS.96). Moreover, it suggests new constraints on hidden variables theories 
for QP that are not consistent with the assumptions that are usually 
retained to be plausible for this kind of theories. ~ 1. ~21 This might explain 
some difficulties in the existing approaches and opens the way to possibly 
local and noncontextual theories (see Remark 6.1). 

Finally, we notice explicitly that most references in this paper are 
provided as sample references. The literature on the subject treated here is 
indeed exceedingly wide, and any attempt of giving a complete account of 
it in the limited space of an article's bibliography is hopeless. 
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2. THE EPR-LIKE "PARADOXES" 

As we have anticipated in the Introduction, we supply in this section 
the description of a physical experiment in nonrelativistic QP which 
includes as particular cases the classical EPR ~3~ experiment (to be precise, 
this would actually require a furher generalization of our scheme to con- 
tinuous observables) and the Bohm ~4~ reformulation of it. 

Let us consider a physical system p that is made up of two subsystems, 
say 1 and 2 (we recall from GS.96, Sec. 2, that the term physical system is 
used here as a synonym of physical entity, and that individual samples of 
physical systems are called physical objects, or simply objects whenever no 
confusion is possible) and let us describe it in the framework of the 
standard Hilbert space quantum theory (HSQT), which will be considered 
here as a model of the abstract general theory developed in GS.96 (hence, 
in particular, the restriction of the standard relation of compatibility in 
HSQT to the set of testable properties is considered as an instance of the 
relation of pragmatic compatibility introduced in Sec. 6 of GS,96). Let i f ,  
J~,  ~ be the Hilbert spaces of the three systems, respectively, so that 

= ~ | J4.  Furthermore, let A, B, C be three observables of the whole 
system, and let A ~, B~, C~ be observables of 1, Az, B2, C,_ be observables of 
2, such that A = A~ + A~, B= Bt + B2, C= C~ + C 2 (for the sake of brevity, 
we identify here every physical observable with the operator that represents 
it in HSQT). Let us also assume that A~, B~, C~, A2, B,_, C2 have discrete 
nondegenerate spectrum. Then, trivially, the pairs {A,A~}, {A, A2}, 
{B,B,},  {B, B2}, {C, C,}, {C, C2} are complete sets of commuting 
observables in W. 

Now, we introduce the following assumptions: 

(i) [ A , , B , ] ~ O ~ [ A 2 ,  B2]; [ A , , C , ] ~ O ~ [ A 2 ,  C2]; [ B . , C , ] ~  
0 5 [ B 2 ,  Cz]; 

(ii) three eigenvalues a, b, c exist of A, B, C, respectively, that share 
a common eigenvector, say ]K), which is nonfactorizable, so that it 
represents a second type pure state S in the standard sense in HSQT 
(hence in the sense specified in See. 3 of GS.96). 

By the way, we note that a straightforward generalization of the EPR 
experiment would have suggested the introduction of two observables A, B 
only and the assumption [A, B] = 0. We shall also see that the observable 
A would be sufficient in order to reformulate the Furry paradox, the 
observables A and B would be sufficient in order to reformulate the 
Bohm-Aharonov paradox, and the three observables A, B, C, are needed in 
order to reformulate some proofs of the Bell theorem. 
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By using (it), we get 

IN) = E , I , ,  = E = E 
h I p 

In the above equations [tttjllO), lu_.k,,,,>. Iv,,,,.,). Iv.,,.,). [w,,,t,.t). 
Iwz~tm) are normalized eigenvectors corresponding to the eigenvalues alja, t 
of At, a._k~h~ of A2, bl,,,l/) ofB~, bz,,tt) of B2, clqtp ~ of CI, c2rlt,) of C2, respec- 
tively; the first sum ranges on all indices h such that a~i.,~ + a2k.,~ = a, the 
second on all indices l such that b,,,,, t +b.,,.~ = b, the third on all indices 
p such that Ctqtm+c2,.tp~=c; 2h,lt t ,  v e are complex nonzero coefficients 
such that 

1~.~,12 = Z I~,1: = Z  Ivpl: = I 
h / p 

For the sake of simplicity, we imply the dependence of j, k on h, of m, 
n on 1, of q, r, on p whenever possible in the following. Therefore, we 
denote by Sik, S ...... Sqr, the first type pure states represented by lUtjU2k), 
[Vt,,,V2,,), IW~qW2,.), respectively. Furthermore, we denote by Si j ,  $2.~., St  .... 
$2,,, St,~, $2,., the first type pure states represented by [utj), [u2k), [vt,,,), 
Ira,,), [wjq), [war), respectively, and by Ai.i, A2k, B I .... B2, ,, Ctq, C2r, 
respectively, their supports (see Sec. 3 of GS.96). Hence, these supports 
denote the following testable physical properties. 

A~i: "the observable At of subsystem 1 has value a tj"; 

A2/,.: "the observable ./12 o f  subsystem 2 has value a2k = a - - a t j " ;  

B,,,: "the observable Bt of subsystem 1 has value b,,,"; 

B2, ,: "the observable B 2 of subsystem 2 has value b,,, = b - b  t,,,"; 

Ctq: "the observable Ct of subsystem 1 has value Clq"; 

C2,.: "the observable C 2 of subsystem 2 has value c,_,.= c - c j q . "  

As in GS.96 (Sec. 3), we denote here by s N, U the lattice operations 
in the lattice (~,., < ) of all properties of p; hence, in particular, A ~i and A #k 
denote the testable properties "the observable A t of subsystem 1 has a 
value different from a li" and "the observable A,_ of subsystem 2 has a value 
different from a2~ = a - a u j , "  respectively. Analogous interpretations hold 
for the symbols B,~,,,, B2~,,, Ct• C~r. 

By considering the projections that describe At j, A2~., B~ .... B2,,, Ct,~, 
C2,. in HSQT, we see that each property referring to subsystem 1 is 
(pragmatically) compatible with each property referring to subsystem 2 
(see Remark 6.1 of GS.96). In addition, we assume from now on that 
art, b~ .... ctq can be chosen in such a way that a property is compatible with 
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another property referring to the same subsystem only if the former is the 
orthocomplement of the latter (this is generally possible since the observ- 
ables A~, Bt, Ct are not pairwise compatible). 

Finally, let us convene to consider only ideal measurements of the 
kind discussed in GS.96 (Sec. 10), hence measurements that obey the 
projection postulate. Then, let us consider an ensemble of samples of the 
physical system p in a laboratory i (the reference to which is usually under- 
stood in the following) and let us assume that all samples are in the second 
type pure state S: by using the symbols introduced in GS.96, Sec. 2, this 
ensemble will be denoted by pi(S). Whenever an ideal measurement of the 
aforesaid kind is made of A t on the physical object 1 in a given sample x, 
which yields the result a u (hence A u is true for x), we conclude that A2 
has value a 2 k = a - a u  (hence A2k is true for x); moreover, by using the 
projection postulate, we can say that the state of x after the measurement 
is Sjk (note that, standing on Remark 2.1 of GS.96, we associate here a 
state to every individual sample of the physical system: one could avoid 
this procedure by saying that S describes the set p~(S) in i and then con- 
sidering the subensemble of all samples in pi(S) that yield the result atj 
whenever A t is measured on 1~51). Analogous conclusions hold whenever 
ideal measurements of B~ or C~ on 1 are considered. 

We can now reformulate some arguments that ought to prove that 
paradoxes follow from the quantum treatment of the physical situation 
considered above. 

The Fun T Paradox. tt4" J6, ~7~ After the measurement of A~ that yields 
the result a u we know that the physical object 2 in the sample x is in the 
state $2~,.. This knowledge is attained without any interaction with 2, so 
that the state of this object should have been S,~ even before the measure- 
ment of At. Therefore, the initial state of x should have been Sjk, hence the 
ensemble pi(S) coincides with the extension in i of (equivalently, it should 
be described in i by) a mixture, say 7", of the states Sjk. This is a paradox. 
since S and T are empirically distinguishable from a statistical viewpoint ~8 
(when representing states by means of density matrices, T is represented by 
the trace class operator 

Z I),,I 2 lu,iu2*><uuu-,*l 
h 

which does not coincide with the projection Ix ) (x [  that represents S). 
Let us add some remarks regarding the above paradox. 
First, we observe that Furry's paradox relies on the assumption that 

the state of the object 2 in the sample should have been S2k even before the 
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measurement of A~. This assumption is made since it seems unacceptable 
that an abrupt change in the description of 2 can be induced by a measure- 
ment of At, performed on 1 without any interaction with 2. One may 
wonder about the underlying reasons of this unacceptance. It is then 
apparent that this change is considered a modification of the physical situa- 
tion at 2 (to be precise, a modification of the physical properties of 2), 
which is obviously counterintuitive (even if one gives up classical pre- 
judices) in the absence of any interaction with 2, and can be explained only 
resorting to one of the exotic conjectures quoted in the Introduction. 

Second, we observe that, according to the standard quantum theory of 
ideal measurements, the pure state S and the mixture T yield the same 
probability for every property of subsystem 2, hence they cannot be statisti- 
cally distinguished by an observer at 2. c ~5~ This canonical result avoids any 
further statistical paradox that might occur at 2 because of the fact that the 
ensemble is described by different states before and after a measurement 
that does not act on 2. 

The Bohm-Aharonov paradoxJ~9~ Let us consider again a sample x of 
the physical system p in the state S. Should a measurement of A~ be per- 
formed, it would yield a result, say a~i, and the state of the physical object 
2 in the sample x after the measurement would be $2~. Should a measure- 
ment of B~ be performed, it would yield a result, say b~ .... and the state of 
the physical object 2 in the sample x after the measurement would be Sz,,. 
Of course, $2~- and $2,, are different, hence the object 2 has different and 
noncompatible properties in the two cases. This entails that the properties 
of 2 are determined by the measurement that one decides to perform on 1, 
even if the measurements of A~ and B~ do not act directly on 2. Therefore 
we are compelled either to introduce subjectivity in physics (throught the 
arbitrary choices of the observer in 1) or, again, to introduce the exotic 
explanations quoted in the Introduction. 

The ContextualiO, and Nonlocality Paradoxes.12' i c 12. 2o-25~ We call 
Bell-KS theorem and Bell theorem the proofs that QP is a contextual 
theory and that contextuality also occurs whenever far apart physical 
systems are considered, respectively, and classify these results as paradoxes 
since they imply that QP violates some reasonable epistemological 
requirements regarding physical theories (this point has been recently 
stressed by Mermin; ct2~ see also GS.96, Introduction). In particular, QP 
should prohibit us to trust even in that minimal form of realism (called 
realism of properties in the Introduction) which consists in maintaining that 
all testable properties of a given physical system are prefixed, indepen- 
dently of any act of measurement. 
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The original proofs of the Bell-KS theorem ~j'2~ were rather com- 
plicated but there are some recent proofs ~t2) that are quite simple and 
immediate. We mainly refer to these proofs in the following and limit our- 
selves here to noting that they do not make direct use of the EPR situation 
described in this section. The original proof of the Bell theorem c2~ is based, 
on the contrary, on an EPR situation, in which seemingly reasonable 
premises lead to an inequality that is violated in QP; furthermore, most 
generalizations and variants of the Bell theorem that have been successively 
proposed are proved following the same procedure (hence, it is usual to 
call Bell inequality, or briefly BI, every inequality appearing in a proof 
of this kind). More recently, Greenberger et al.  ~24) provided a proof that 
gives up with inequalities, taking into account four-particle situations and 
considering only perfect instead of statistical correlations. Similarly, 
Mermin ~ ~2~ obtained a proof that does not resort to inequalities by suitably 
modifying an eight-dimensional version of the Bell-KS theorem provided 
by himself. As in the case of the Bell-KS theorem, we refer to all these 
proofs in the following without giving their details here. 

From a historical viewpoint, the Bell theorem is probably more 
important than the Bell-KS theorem. From a conceptual viewpoint, 
physicists usually retain that the consequences of the Bell-KS theorem 
(mainly, contextuality of QP) are less paradoxical than the main conse- 
quence of the Bell theorem (nonlocality of QP). Therefore, let us dedicate 
to the latter theorem some further comments. 

We begin by observing that the reasonable premises whose conse- 
quences are shown to conflict with QP in the proofs of this theorem vary 
from proof to proof and are not always explicit. For instance, Wigner ~2-~ 
emphasizes that his inequality stands (i) on the hypothesis that hidden 
variables exist which determine the quantum properties of any physical 
system and (ii) on a locality assumption. Greenberger et al. ~24) a s s u m e  the 
canonical EPR premises of perfect correlation, locality, reality, and com- 
pleteness of QP. Selleri ~23~ reports a proof that shows that QP conflicts 
with the following premises: 

R (reality): the results of  all conceivable measurements are 
shnultaneously prefixed (even in the case of  incompatible observables); 

LOC (locality): whenever subsystems I and 2 are sufficiently far 
apart, a measurement on subsystem I (or 2) does not modify the pre-fixed 
vahtes of the observables of subsystem 2 (or 1 ). 

Finally, Mermin ~2~ explicitly states in his proof only a "straight- 
forward assumption of locality," so that locality is directly proved to be 
inconsistent with QP. 
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Because of the above differences in the assumptions, the existing inter- 
pretations of the Bell theorem are slightly different, but in any case a 
number of authors agree that this theorem proves the nonlocality of QP. 
In particular, the proof reported by Selleri shows that QP conflicts with R 
and/or LOC, while that provided by Mermin shows that QP directly con- 
flicts with LOC. The latter result is consistent with the former: indeed, 
following Redhead, ~-'5~ one can argue that, if QP is accepted and it conflicts 
with R, then it also conflicts with LOC. Hence, in order to accept QP, one 
must renounce directly LOC or, more generally, R, which, however, 
implies renouncing LOC. Therefore, let us comment briefly on these 
assumptions. 

Assumption R is retained by some authors to formalize an epis- 
temological position of ontological realism, while it essentially expresses 
realism of properties, which is formalized by SR, does not imply any 
ontological commitment, and it is compatible with some different 
epistemological positions (see GS.96, Introduction). Assumption LOC 
expresses the intuitive requirement that the properties of a physical system 
should not depend on observations performed at distance. Renouncing R 
implies accepting contextuality and some forms of subjectivism (for 
instance, embracing Heisenberg's viewpoint, c26~ according to which the 
observer's choice of performing a given measurement on an individual 
physical system x "actualizes" some properties of the system that were only 
"potential" before the measurement). Renouncing LOC implies renouncing 
the principle of separability for far apart systems in Qp~t5~ and/or 
accepting some of the alternatives listed in the Introduction, which raises 
serious epistemological problems. The contradiction between R and LOC, 
from one side, and QP, from the other side, can thus be considered a 
paradox in the sense specified in GS.96. 

3. THE FURRY PARADOX 

The answer to the classical argument by Furry and Bohm (Sec. 2) is 
immediate if our theoretical apparatus in GS.96 is accepted. Indeed, the 
assumption that, whenever the result a~i is obtained in the laboratory i, the 
state of the physical object 2 in the sample x of the physical system should 
have been Sx. even before the measurement of A i, is wrong in our context. 
For, result ajj allows us to affirm that the physical object 2 has the testable 
physical property A 2k, which is the support of S~. both before and after the 
measurement (see Sec. 10 of GS.96), but it does not imply that it is in the 
state S2k (or, equivalently, that the sample of the whole system to which 
the physical object 2 belongs is in the state Sj~.) when the measurement is 

~25 26 10-6 
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made, because of the difference between the extension of a state and the 
extension of its support (see in particular Remark 5.1 of GS.96). We can 
say that the physical object 2 is in the state S,A. only after the measurement, 
as a consequence of the state change from S to Sjk of the whole physical 
object. Thus, one cannot say that the ensemble p~(S) should be described 
by the mixed state T before the measurement in i, and the paradox con- 
sidered here is removed. 

The above solution requires some further comments. In fact, the 
attribution of the state S2k to the physical object 2 only after a measure- 
ment has been performed on the physical object 1 may still appear 
intuitively paradoxical (see our first remark after the description of the 
paradox in Sec. 2). In order to overcome this objection, let us prove that 
the aforesaid attribution does not imply a change of the testable physical 
properties of the physical object 2. To this end, let us call r (respectively, 
r the set of all properties of subsystem 2 that are certainly true (respec- 
tively, certainly false) in the state S, i.e., the set of all properties of sub- 
system 2 that are true (respectively, false) in every laboratory i for every 
sample of the whole system which is in the state S. Furthermore, let us 
briefly denote by r the certainly true domain of the state S2k, and let us 
recall that we have made the convention of implying the dependence of k 
on the index h in Sec. 2. Finally, let us note that every property E of 2 is 
represented in HSQT by the prolongation fie to 2/f of a suitable projection 
operator PE defined on ~ , .  Then, we get: 

EeGs iff (x[ Pe  Ix) = 1 iff Zh IA~,l 2 <u~.l Pe [U2k) = 1 iff for every 
index h, (u_,kl Pe lu2k) = 1 ifffor every index h, Eer 

Analogously, we get: 
Eeg~s iff for every index h, E e  ,~k.  

Thus, for every index h and k=k(h), &s~_&_k and O~s ~ o ~ . .  It 
follows that the change of state induced by an idealized measurement of A~ 
of the kind studied in Sec. l0 of GS.96, which yields the result a U, just 
enlarges the set of all properties that are known to be true (or false) for the 
physical object 2. This means that every physical property of the physical 
object 2 which is certainly true (or false) in S remains true (or false) with 
certainty after the measurement of A~, consistently with the absence of any 
interaction with this object during the measurement. Furthermore, the 
measurement itself shows that the property A~., hence all properties in 6~2k 
must be attributed to the physical object 2 immediately before the measure- 
ment (because of the outcome of the measurement) and immediately after 
it (since the state of this object is S_,k after the measurement). More 
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generally, by using arguments analogous to the ones offered in our discus- 
sion in Sec. 10 of GS.96, the sets g r_ and g~  of all true and false properties 
of the physical object 2, respectively, in the laboratory i, can be assumed 
to remain unaltered during the measurement of A~. Therefore, we conclude 
that no change in the physical properties attributed to the physical object 
2 must necessarily occur because of the change of state induced by the 
measurement of A~, consistently with the absence of any interaction of the 
measuring apparatus with the physical object 2, and the change of state can 
be interpreted as a change of the information (see Sec. 5 of GS.96) that is 
available on the physical objects 1 and 2 (we note that our analysis of ideal 

T O s176 of all true measurements in See. 10 of GS.96 shows that the sets 'gi.,- and i.,. 
and false properties, respectively of a sample x of the whole system in the 
laboratory i, may change after a measurement on the physical object 1, 
consistently with the existence of an interaction of the measuring apparatus 
with 1, hence with x; of course, also g,r_ and 8~ F may change when con- 
sidering different samples of system 2, though g2s and g2Zs remain 
unchanged). 

4. THE B O H M - A H A R O N O V  PARADOX 

Let us refer to the definitions and symbols introduced in Sec. 2. We 
preliminarily prove the following statement: 

<u,jlv,,,,> # 0  iff (U2k ] V2,,) 4:0 

Let us assume that (u~j[v~,,,)=0. Then we get, putting j '= j (h ' ) ,  
k' = k(h'), m' = m(l'), n' =n(l ' ) :  

(~/d2kUlm]K) ~ ~U2k ] E ,~ .h '~UIm]UI j ' )  ] Id2k , )  
h' 

= Y, ,~,,,<v,,,,lu w> 6,,,,,=0= (u2kl ~,,<v,,,,Iv,,, , ,> Iv,_,,,) 
h ' # h  I' 

= Y'./ae Or ( Uak I V2,,,) =/~/( tt_,k I V2,,) 
/, 

which shows that (uzk[ v2,,) = 0, since/~/# 0 (See. 2). Hence (U2k [ VZ,,) # 0 
implies (u ~j]v~,,,) v~ O. By reversing the roles of systems 1 and 2 we get that 
the converse implication also holds true. This completes our proof. 

By recalling our treatment of the consistency relation C in See. 5 of 
GS.96, the above statement can be reformulated and completed as follows: 

St jC  S~,,, iff Szk C $2,, iff S/k C S ..... iff A ~.iC Bh,, iff Azk C B2,, 
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Let us come now to the Bohm-Aharonov  paradox (Sec. 2). By using 
the above results we conclude that  two cases may occur. 

(i) Let Sjk C S ...... Then, A tj and Bt,,, (equivalently, all properties in 
the certainly true domains dt~- and r of S~j and St .... respectively) are 
consistent, which means that A tj and Bt,, can be conjointly true (see Sec. 5 
of GS.96) for the physical object 1 in a given sample of the physical system. 
Analogously, the properties A~  and B2,, (equivalently, all properties in the 
certainly true domains r and r of S2k and $2,,, respectively) can be con- 
jointly attributed to the corresponding physical object 2. This means that 
different choices of the measurement to be performed on the physical object 
1 do not lead to inconsistent information on the physical object 2, so that 
no paradox occurs. 

(ii) Let SjkCS,,,,,. Then, Ajs and B~,,, are not consistent, that is, they 
cannot be conjointly true for the physical object 1 (hence, if At is measured 
and yields the result a~.i, we can assert that a measurement of Bt could not 
have yielded the result bt,,, if performed on the same physical object 1). 
Correspondingly, A2k and B2,, cannot be conjointly attributed to the physical 
object 2. Again, no paradox occurs. 

In order to understand the underlying reasons of our solution, it is 
important  to note that in case (i) the properties At~ and B~ .... though 
semantically compatible (consistent), could be not pragmatically com- 
patible (conjointly testable) in the sense specified in Sec. 6 of  GS.96, that 
is, it could occur that At i 4 f B h , , .  This has no effect on our above 
arguments, but unveils the deep roots of  the Bohm-Aharonov  paradox, 
showing that they lie in the adoption of a verificationist theory of truth and 
meaning. Indeed, whenever such an adoption is made, A ~  and B~ .... being 
not conjointly testable, cannot  be conjointly true, hence they are mutually 
exclusive, which creates the paradox. Our  solution is based on the fact that 
A~j and Bt,,, can be consistent in our approach,  though they are not con- 
jointly testable. It is then true that a physical object 2 is in one of the states 
Szk after a measurement of At on 1, while it is in one of the states $2,, after 
a measurement of B~ on 1, even if none of these two measurements acts on 
2: but this can appear  paradoxical only if states are semantically identified 
with properties (or subsets of  properties), which is erroneous in the SR 
approach to QP  (see Sec. 5 of GS.96). If this identification is avoided, one 
easily deduces, by using our discussion on semantic compatibility and ideal 
measurements in GS.96 (Secs. 5 and 10), that a change of the state 
attributed to the physical object 2 may change the set of properties of 2 
that are known to be true, but it does not necessarily change the sets d r 
and gF of all properties of 2 that are true, or false (in the laboratory i 
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where either A~ or B t is measured), respectively. Thus, whenever the 
possible states after the measurements of A~ and B~ are consistent, these 
measurements provide different but not contradictory information about 
the physical object 2. Consequently, the opinion that the Bohm-Aharonov 
paradox exhibits some kind of inherent subjectivity in QP (alternatively, 
the nonlocality of QP and/or the existence of superluminal connections) is 
false in our context, which explains it as following from some implicit 
epistemological preconceptions (in particular, the requirement that states 
can be physically identifiable with properties in QP, as it occurs in CpI27 ) ) .  

Finally, let us observe that some physicists could still object to our 
previous argument that the properties in ~k could be "contradictory" with 
respect to the properties in g_,,,, regardless if S2k is consistent with S_,,, (such 
a contradiction could be claimed, for instance, in the Bohm version of the 
EPR experiment, whenever At is a spin measurement along the z axis and 
B~ a spin measurement along a direction which makes an angle ,9 with z, 
~9 being such that 0<~9 <n/2). The answer to this objection is rather 
obvious in our present framework. Indeed we have proved in Sec. 5 of 
GS.96 that no inconsistency occurs among the properties in N_,k and in o~_,,, 
whenever $2~. C $2,,. Seeming contradictions occur in most cases because of 
the implicit adoption of an unfaithful (usually semiclassical) model for the 
theory (for instance, a vector model for spin). 

5. THE CRITIQUE TO A SAMPLE PROOF OF THE 
BELL THEOREM 

We have seen in Sec. 2 that a number of variants and proofs of the 
Bell theorem exist. One of us has recently discussed in detail two different 
ways, both based on MGP, for invalidating a typical sample proof (i.e., the 
simple and lucid reformulation of Wigner's proof provided by Sakurai (-'8)) 
in which an inequality is obtained which is violated by Qp.(5 7) We intend 
to unify these treatments here, to generalize the physical situation that is 
taken into account and to adapt the arguments to our present context, also 
aiming to underline some characteristic features of the subject and to 
supply a pattern for our discussion in Sec. 6 of different cases that occur in 
the literature. 

In order to accomplish our task we must reformulate in our present 
terms and generalize the Sakurai proof. To this end we need some further 
definitions and symbols. 

Let X, 5 p, ~ be defined as in GS.96, let x ~ X, S ~  5 a, F, F~, F 2 ..... 

F,, ~.~,,., and let us put A ( x )  = F t ( x )  A Fz(x)  ^ . . .  ^ F(x) .  We denote by 
p ( F ( x ) / S ( x ) )  the conditional probability that a physical object x in the 
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state S has the property F. Furthermore, we recall (see Sec. 2 of GS.96) 
that, for every finite set F, n(F) denotes the number of elements in F, and 
for every laboratory i, we put: 

f,.(F(x)/S(x)) = n(p,(F) n p,(8))/17(p,(S)) 

f~(A(x)/S(x)) =n(p~(F,) n p,(Fz) n .. .  n p;(F,,) np,(S))/n(p,(S)) 

By referring to the definitions and interpretation introduced in Sec. 2 
of GS.96, one sees that f,.(F(x)/S(x)) and f,.(A(x)/S(x)) denote relative fre- 
quencies and coincide with the values of r that make the statements 
(~rx)(F(x)/S(x)) and (grx)(A(x)/S(x)], respectively, true in i. 

Let us add some comments on the functions p and f,., which are 
relevant for our treatment. 

The quantity p(F(x)/S(x)) can always be evaluated in QP  by means of 
the laws of the theory, and for every laboratory i ~ 1 one obviously has, in 
QP, p(F(x)/S(x))~-f~(F(x)/S(x)). This approximation can be formalized by 
using the probability-frequency correlation principle/27~ and it implies that 
f~(F(x)/S(x)) becomes independent of i whenever the number of elements 
in Di that must be taken into account for calculatingfi(F(x)/S(x)) is large, 
as it can occur in every i 6 / ' (see  Sec. 2(iv) of  GS.96). This is consistent with 
M G P  (see See. 8 of  GS.96), which states that every empirical physical law 
VF=(Irrx)(F(x)/g(x)) is true in every laboratory i where conjointly 
testable premises are given, the value of r being independent of i. 

A different situation occurs regarding f,.(A(x)/S(x)). Indeed, proposi- 
tion P 7.1 of GS.96 states that A(x) (hence (g,.x)(A(x)/S(x))) is testable 
whenever F~, F2 ...... F ,  are pairwise pragmatically compatible. In this case 
a property FA ~ ~ exists such that A(x) =- F..~(x), so that we get 

fg(A(x)/S(x)) = J)(FA(x)/S(x)) ~-p(FA(x)/S(x)) 

and the probability p(F..,(x)/S(x)), hence f~(A(x)/S(x)), can be evaluated 
by using the laws of QP. On the contrary, whenever F~, F_, ..... F,, are not 
pairwise pragmatically compatible, A(x) is not testable and no prediction 
nor test can be made in QP  of the frequency f,.(A(x)/S(x)) (one can also 
retain that f~(A(x)/S(x)) changes with i in this case, even if i e i, so that no 
probability value p(A(xJ/S(x)) is reliable if one accepts the aforesaid 
probability-frequency correlation principle). 

Let us come to the physical situation described in Sec. 2. We have 
already implicitly used in Sec. 3 and 4 the physical law V that rules this 
situation, for instance when stating that A2k must be true for a given physi- 
cal object whenever we discover, by means of a measurement of A~, that 
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A~j- is true for x (Sec. 3). Let L,., ~,, be defined as in GS.96, and let us write 
down V by means of Le. We get 

V= (Vx)(S(x) ~ Es(x)) 

where Es is the support of S, and Es ~ @~, since S is a second type state, 
hence V is a theoretical physical law. In HSQT the theoretical property Es 
is represented by the projection on p,'), which is one-dimensional. 

By taking into account the explicit expression of Ix), we get from 
HSQT: 

E s < E  , =(A u 0 A2k) U (A~y A A#k) 

E s < E , = ( " l , , ,  N "2,,) U ("~,, A B~,) 

E s < e c = ( C , , ,  N Czr) U (C~,, N C~.) 

Since A ti and A2k are pragmatically compatible, EA s ~ . ,  and 
analogously Es, Ec E ~J,,. It follows that the wffs 

U., = (Vx)( S(x) --* E ,,(x) ) 

UB = (Vx)(S(x) ~ E~(x)) 

Uc = (Vx)(S(x) ~ Ec(x))  

express empirical physical laws that can be deduced from V. A situation of 
this kind has been studied in See. 8 of GS.96, and it is interesting to note 
that, since EA, E~, Ec  are not pairwise pragmatically compatible, the 
results obtained there prohibit us to assert here that UA, Ua, Uc are 
conjointly true in a laboratory i. 

In order to find equivalent forms of U.4, Us, Uc, let us first prove that 
E.~(x)-Al.i(x)*-*Azk(X). Indeed, because of standard properties of the 
classical connective ~--,, the wffs A ~j(x)*--* A2k(x) and (A t j(x) ^ A2k(x)) v 
('-hA ~j(x) A -nA,_k(X)) are logically equivalent. Since A u and A2k are com- 
patible, we get (Remark 7.1 of GS.96) A u ( x ) * - , A 2 k ( x ) - - ( A u ( x ) N  
A,_t-(x)) U (A~i(x) 0 A~k(X))=(Au 0 A,_k) U (Ar 0 A~.)(x) which proves 
our statement. 

By means of analogous arguments, one can prove that Es = 
(Bt,,,(x) *-* B,,,(x)) and that Ec - (C,q(x) ~ C,,.(x)). Hence, we get, 
because of proposition P 4.1 of GS.96: 

U A--(Vx)(S(x)  -~ ((A ~/x)  ~ A2~.(x))) 

UB-~ (Vx)( S(x) --+ ( ( Bt,,,(x) *-~ B,.,,(x) ) ) 

U c -  (Vx)(S(x) ~ ( ( Gq(x) '--' C2~(x))) 
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We can now proceed with our program of generalizing the Sakurai 
proof to our present case and then invalidating it by using MGP. To this 
end, let us firstly accept the basic assumptions R and LOC (Sec. 2), and let 
us reformulate them referring to the language L defined in GS.96, as 
follows. 

R. For every laboratory i~ [ and ]br every #Tterpretation a~ of the 
( #Tdividual) variables, eveo, wff of the observative language L has a defined 
(though possibly unknown) truth vahte, independently of the act of 
observation. 

LOC. Whenever subsystems 1 and 2 are suJficiently far apart, Jot" 
eve O, laboratory i 6 [  and for every interpretation cr~ of the (individual) 
variables, the truth value of a wff of the observative language L regarding 
subsystem 1 (or 2) is not influenced by an), measurement carried out on 
subsystem 2 (or 1 ). 

It follows from R and LOC, in every laboratory i: 

f , ( ( A , j ( x )  ^ B~ , ( x ) } /S ( x ) )  

" " C , , , ( x ) ) /S (x ) )  = J ~ ( ( A u ( x )  ^ B, , , (x)  ^ 

+ f , ( ( A u ( x )  ^ B~,(x)  ^ C ~ , ( x ) ) / S ( x ) )  

(indeed, for every laboratory i, p~(C~,~)= D~\p~(C~q), hence the number of 
physical objects in the state S that have the properties A ij and B2~,, is equal 
to the number of objects in S that have the properties A I i, B2~,, and C~ u 
plus the number of objects in S that have the properties A ~j, B2Z,, and C~). 
Analogously, we get 

f,((A u(x) ^ C~,l(x))/S(x)) 

- - f ~ ( ( A  , j (x )  ^ B._,,(x) ^ C~, , (x) ) /S(x))  

+ f~((Ali(x) ^ B~,(x) ^ C~,,(x))/S(x)) 

and 

f,((B~,(x) ^ C,,I(x))/S(x)) 
3_ . -- f , ( ( A j j ( x )  ^ B_.,,(.x) ^ C . , ( x ) ) / S ( x ) )  

+ f~((A~-j(x) ^ B~,(x) ^ Cu,(x))/S(x)) 

By comparing these equations, we obtain the following inequality 

f~ ( (A~j (x )  ^ B ~ , ( x ) ) / S ( x ) )  

<~f~((A,~(x) ^ C(,,(x))/S(x))+ f~((B~,(x)^ C,q(x))/S(x)) (5.1) 
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Since A~j and B2~,, are pragmatically compatible, pg(A~i 0 " B=,,) = 
Pi( A l j) (~ • pi(B2,,). Hence, 

f,.((A ,i(x) ^ B~,(x))/S(x)) 

= f~((A, j 0 B~,)(x)/S(x)) ~-p((A, ~ ~ B~,)(x)/S(x)) 

Analogously 

.L.((B~,(x) ^ C,,~(x))/S(x)) 

= J;.((B2~,, 0 C,,,)(x)/S(x)) _~p((B~, (~ C,,,)(x)/S(x)} 

Furthermore,  let us considerf~((A ~j(x) A C~,~(x))/S(x)). By using Uc, 
it seems obvious to predict that 1 has the property C~,~ iff 2 has the 
property C_,,.. It follows: 

J~((A,j(x) ^ C~,(x))/S(x))= f~((A,i(x) ^ C~.(x))/S(x)) 15.2) 

Hence we get, being A~j and C2,. compatible, 

f~((A u(x) A C~(x))/S(x)) 

= J)((A ,i 0 C~.)(x))/S(x)) ~-p((A u ~ C~.(x)/S(x)) 

By substituting in inequality (5.1) we obtain the following Generalized 
Bell's inequality: 

GBI. p((A ,j 0 B~,(x)/S(x)) 

<~p((A ,.i 0 C~.)(x)/S(x)) + p((B~, 0 C,,,)(x)/S(x)) 

GBI obviously reduces to a standard BI whenever suitable specific 
systems are considered, together with specific observables (e.g., whenever 
one considers a system of two spin-l/2 particles in the singlet state, GBI 
reduces to the BI supplied by Sakurai(Zs)), and it is well known that the 
probability predicted by QP  may violate the BI in these cases, so that GBI 
is not consistent with QP  (it is also well known that a number  of empirical 
tests confirm the quantum predictions q-'9 3~)). Thus, one concludes that 
either R, or LOC, or both, are not consistent with QP (Bell's theorem). 

Let us come now to our criticism of this conclusion. Let us analyze the 
reasoning that leads to (5.2) in detail. First, one considers all samples of 
the system in any laboratory i such that subsystems 1 and 2 have the 
properties A u and C,~. (that are pragmatically compatible) respectively, 
and concludes that in each of them subsystem 1 also has the property C "  I q 

because of the empirical physical law Uc. Hence he gets the inequality: 

s ^ C~.(x))/S(x))<~Ji.((A,~(x) ^ C~,(x))/S(x)) (5.3) 
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Second, one considers all samples in i such that subsystem 1 has the 
properties A~i and C • (which can occur in our framework but cannot be 

I q 

verified since A~/and C • are not pragmatically compatible) and concludes 
. I q 

that in each of them subsystem 2 has the property " C_,,., again because of 
the physical law Uc. Hence he gets the further inequality: 

J)((n,/(x) ^ C(,,(x))/S(x))<~f~((A,i(x) ^ C•.(x))/S(x)) (5.4) 

Putting together (5.3) and (5.4), one deduces (5.2). 
It is apparent that the above reasoning rests on the assumption 

that Uc is true in i in every physical situation. But this is incorrect in our 
context, since we have seen in Sec. 8 of GS.96 that the truth of an empirical 
physical law can be asserted in a laboratory i only if the premises in 
i are conjointly testable (criterion MGP). Therefore, let us explore what 
happens whenever MGP is correctly applied. 

Obviously, the reasoning that leads to (5.3) holds unaltered, since A u 
and C~. are pragmatically compatible, hence A~/(x) and C~r(x) are con- 
jointly testable premises, and MGP assures that Uc must be true in i in 
this case. On the contrary, the reasoning that leads to (5.4) breaks down. 
Indeed, MGP does not assure that Uc remains true whenever A ii(X ) and 
C~,/(x) are assumed to be true, since A ~/ and C • ~u are not pragmatically 
compatible, hence A ~/(x) and C(,~(x) are not conjointly testable premises. 
Thus we cannot obtain equality (5.2), which is basic for deducing GBI, 
since it allows us to substitute the frequency f/((A~/(x)A C(q(x))/S(x)) 
with the probability p((A ~/0 C~.)(x)/S(x)). 

This result shows that we have reached our goal. Indeed, it leads us to 
invalidate GBI because of MGP, hence because of the possible breakdown 
of an empirical physical law under conditions in which it cannot be 
verified, without invalidating R and/or LOC. This implies that the viola- 
tion of GBI that occurs in QP can be explained without renouncing R 
and/or LOC, which are thus reconciled with QP. 

It is interesting to note that, whenever MGP is adopted, f / ( ( A i i ( X  ) A 
B~,(x))/S(x)) and fi((B~,(x)A Ciq(x))/S(x)) can still be replaced by 
p((A u [~ B~,)(x)/S(x)) and p((Bz~,, 0 C~,~)(x)/S(x)), respectively, as above. 
By substituting in (5.1) we obtain the following weakened Bell's inequali O, 
in place of GBI: 

WBI. p((A ~i 0 B~,)(x)/S(x)) 
<<. f , ( ( n  ,:(x) ^ c ~,,(x))/S(x) ) + p((B~, 0 C,,,)(x)/S(x)), 

which holds in every laboratory i. 
It is apparent that WBI, which is not an empirical law in the sense 

specified in Sec. 8 of GS.96, cannot conflict with the predictions of QP 
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(which regard probability values) nor can be contradicted by any 
experimental result, since A ~i and C-~q are not pragmatically compatible, 
and f,~((A~i(x)^ C~(x))/S(x)) (which might take different values in dif- 
ferent laboratories) cannot be measured. 

6. THE GENERAL CRITIQUE TO THE BELL THEOREM 

We have invalidated in Sec, 5 a sample proof of the Bell theorem. But 
we have seen in Sec. 2 that a number of proofs of this theorem exist. 
Without giving the details of each proof, we wilt discuss in this section how 
our arguments in the sample case can be adapted to some different relevant 
cases in the literature. 

We have divided in Sec. :2 the existing proofs of the Bell theorem into 
two classes: the class of all proofs that make resort to an inequality (BI) 
and the class of those that do not. Our sample case in Sec. 5 belongs to the 
tbrmer class, and our discussion constitutes a paradigm for invalidating all 
proofs of this class, even if our arguments must obviously be suitably 
modified case by case. Thus, for instance, in the Wigner ~22' proof of a BI, 
which is an ancestor of the Sakurai proof, MGP invalidates Wigner's 
statement that " (a t , a2 ,  a3; t~,t_,, r 3 ) = 0  unless r ~ = - a ~ ,  r , = - a , ,  
r3 = - a 3 . "  It must, however, be noted that in some cases M G P  does not 
lead to question a BI directly. This occurs, in particular, in the original 
treatment by Bell c2~ and, more generally, whenever the BI takes the form 
A < 2, where d is the sum of four "correlation functions. ''~2"-'3' Indeed, the 
proof of this BI does not require in these cases the use of physical laws, 
hence it is not questioned by M G P  (in this sense, A <~2 should be com- 
pared to the inequality (5.1), rather than to GBI). But in this subclass of 
proofs the quantum expressions of every correlation function that appears 
in d is obtained by using physical laws similar to UA, Us, Uc, and the 
conjoint attribution of all values of the correlation functions calculated in 
this way to a given ensemble p~(S) in a laboratory i is prohibited by MGP. 
Thus, the quantity zIQ obtained by substituting in A the quantum expres- 
sions of the correlation functions must be considered a mathematical quan- 
tity (the different terms in it being testable in different laboratories) that 
cannot be identified with A whenever M G P  is accepted (hence, no paradox 
occurs whenever one obtains that Z~Q ~> 2 in special cases). This invalidates 
the proofs in the subclass that we are considering, since they rest on the 
identification A Q = A. 

Our arguments in See. 5 can, however, be also adapted to provide a 
critique of those proofs of the Bell theorem that do not use inequalities. Let 
us consider for instance the proof supplied by Greenberger, Home, and 
Zeilinger (GHZ proof), as reported in 1990 in the paper by Greenberger 
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etaL (GHSZ paper ) /~  Limiting ourselves to a nonformatized and 
intuitive discussion, let us note that in this proof the following general 
theoretical law is stated: 

E'r(~,  t~2, 1~3, J~4)= -cos(~t  + ~b2 -q~3- ~b4) (6.1) 

[see Eq. (9) in the GHSZ paper]. Then, a set of empirical physical laws is 
deduced from Eq. (6.1) by assuming locality, reality, and completeness (but 
the last assumption does not seem strictly needed), as follows. 

A~(0) B;(0) C~(0) D;.(O) = -1  (6.2) 

A;.(~b) B~(0) C~.(~b) D~.(0) = - t  (6.3) 

A;(~b) B~.(0) C~.(O) D;.(q~)= -1  (6.4) 

A;.(2~b) B;J0) C;.(d?) D;.(~b)= -1  (6.5) 

and 
A~.(O + rc) B~.(O) Q(O) D;~(O) = 1 (6.6) 

[See Eqs. (12a), (12b), (12c), (12d), and (17), respectively, in the GHSZ 
paper]. Finally, a contradiction is proven to occur when simultaneously 
applying Eqs. (6.2)-(6.6): 

A~(~z) = A;,(0) 

A~(n) = -A~.(0) 

According to GHSZ, this contradiction should show that the quantum 
law (6,1) is inconsistent with locality, reality and completeness. More 
specifically, it proves the inconsistency of these assumptions with the 
perfect correlations between spin directions that occur because of Eq. (6.1) 
in special cases. But GHZ assume in their proof that perfect correlation 
simultaneously holds in different directions, that is, they implicitly assume 
the classical principle MCP (see GS,96) or, equivalently, the simultaneous 
unrestricted validity of all empirical laws deduced from the theoretical law 
(6.1). This is no longer correct if MGP is adopted, as it can easily be 
proved by using the results obtained in Sec. 8(i) of GS.96 (our argument 
can be summarized by saying that, whenever one of the empirical physical 
laws (6.2)-(6.6) is assumed to hold in a laboratory i, it constitutes some 
premises in i that are easily seen to be noncompatible with the premises 
that one introduces further in order to deduce predictions from another law 
of the set; thus, one cannot use all the aforesaid empirical laws conjointly 
in the laboratory i, which is sufficient to invalidate the GHZ proof, and no 
inconsistency occurs between QP, here represented by the theoretical law 
(6.1), and the assumptions of locality and reality). 
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Let us now compare the above intuitive invalidation of the G H Z  proof 
by means of MGP with the more formal invalidation of the Sakurai proof 
in Sec. 3. It is then apparent that the reality and locality assumptions here 
correspond to assumptions R and LOC, respectively, in Sec. 5, while the 
perfect correlation laws here correspond to the empirical laws U~,, Us, Uc 
in Sec. 5. In both cases, the standard viewpoint assumes implicitly the 
unrestricted validity of these laws in QP (hence MCP is implicitly 
adopted); it follows that the contradiction between the assumptions, from 
one side, and the consequences of the aforesaid laws, from the other side, 
is interpreted as a contradiction of the assumptions themselves with QP. 
This argument fails whenever MGP is accepted, since MGP restricts the 
validity of physical laws in QP, so that the aforesaid contradiction does not 
imply any more a conflict between the assumptions and QP. 

Finally, we recall that the G H Z  proof has been modified or gener- 
alized by several authors, ct2"32"33~ However, the arguments expounded 
above can be adapted in order to invalidate these new proofs whenever our 
SR viewpoint is accepted. In particular, our critique of the Mermin version 
of the GHZ proof provided in Mermin's 1993 paper ~2~ can be directly 
obtained from the critique of the Mermin proof of the Bell-KS theorem in 
the next section. 

Remark 6.1. It follows from our discussion on the contextuality and 
nonlocality paradoxes in Sec. 2 that the invalidation of the Bell theorem 
in the SR approach to QP prohibits one to assert that QP necessarily 
conflicts with LOC. But one may then wonder what would happen if he 
should perform a suitable test of a given Bell inequality. Would the 
inequality be violated or not? Our treatment allows us to provide a simple 
but not trivial answer (see also GS.96, Introduction). Indeed, according to 
the SR approach to QP, a Bell inequality either is incorrect (as the Wigner 
inequality and GBI in Sec. 5), or is a correct theoretical formula which is 
not epistemically accessible in QP (as the original Bell inequality and 
WBI in Sec. 5). In both cases, the inequalities that can be tested in QP 
cannot be identified with Bell inequalities, so that no contradiction can 
occur, and any devised physical experiment on Bell inequalities actually 
tests something else (correlations among properties of physical objects 
in accessible contexts). Thus, a Bell inequality does not provide a 
method for testing experimentally whether either QP or LOC is correct, 
contrary to the belief of many physicists concerned with the foundations 
of QP. 

However, any experimental confirmation of the quantum inequalities 
is not irrelevant from a SR viewpoint. Indeed, our discussion in this section 
and in Sec. 5 shows that the contradiction between the Bell inequalities and 
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the inequalities predicted by QP is removed only if the MCP principle fails 
to be true in the specific case that is considered. Thus, if quantum 
inequalities turn out to be satisfied, there must be empirical physical laws 
of QP (as the perfect correlation law quoted above) which fail to be true 
in physical contexts that are not directly accessible according to QP itself. 
This suggests, in particular, that a hidden variables theory for QP (see 
GS.96, Remark 8.2) should violate the Kochen and Specker constraints ct~' ~-'~ 
in laboratories where (pragmatically) noncompatible premises are assumed 
(of course, these constraints should be satisfied in every laboratory where 
the assumed premises are pairwise compatible). To the best of our 
knowledge, an attempt at constructing a hidden variables theory of this 
kind has never been done, and the above suggestion seems to us an inter- 
esting byproduct of the SR approach to QP, since it opens the way to 
possibly noncontextual and local theories. 

7. THE CRITIQUE TO THE BELL-KS THEOREM 

Both the formal invalidation of a particular proof of the Bell theorem 
in Sec. 5 and the informal arguments that we have provided in Sec. 6 in 
order to extend the invalidation to different proofs of this theorem can be 
modified and generalized so as to obtain formal or intuitive invalidations 
of the existing proofs of the Bell-KS theorem. For the sake of brevity, we 
will limit ourselves here to consider the informal arguments only and to 
apply them to the simple and immediate version of the Bell-KS theorem in 
four (or more) dimensions provided by Mermin. ~t2~ It is rather apparent 
that our arguments apply also to the other proofs in the literature, and we 
leave this exercise to the reader. 

By using Mermin's symbols and procedures, let us introduce a set of 
nine dichotomic observables (eigenvalues _ 1) for a physical system made 
up of two subsystems (labeled 1 and 2; the observables are represented in 
terms of the Pauli matrices for two independent spin-l/2 particles), 
arranged as in Table I. 

Table I 
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By multiplying the elements in each row and column in Table I and 
using the commutation rules of spin-like observables, we get 

(o-',.)(o-].)(o-.',. a].) = I (7.1) 

2 I I (a.,,)(o-.,.)(a.,. cry) = I (7.2) 

I 2 2 I I ") (a.,. a,.)(cr.,, a.,.)(a__ or_z) = I  (7.3) 

I 2 I '~ (a,.)(a.,.)(a.,. a~) = I (7.4) 

(a~.)(a.l.)(a2,. a l.) = I (7.5) 

I 2 I 2 I (or.,. a.,.)(cr r ar ) (a :  a__-) = - - I  (7.6) 

The above equalities express derived general theoretical laws. Indeed, 
each of them is obtained by defining a new observable (the product on the 
left side) and by deducing that it must be equal to the identity I because 
of primitive theoretical laws (the commutation rules of spin-like observ- 
ables; note that these laws hold for every possible state of the physical 
system, hence a formal expression of them by means of a general for- 
malized language, as the language L* mentioned in GS.96, Sec. 8, contains 
quantification on state variables: this means that they cannot be expressed 
by means of L,., which does not contain predicative variables). Each of 
them contains the product of three pairwise commuting observables (the 
observables in parentheses, which can be further expressed as products of 
spin-like observables), but the observables that appear in one of the 
products do not necessarily commute with the observables that appear in 
another product. Now, let us select one of the above theoretical laws and 
let us consider all the properties associated to the three observables in it 
(we recall that the standard procedure for associating a family of properties 
to a physical observable (2 consists in considering all pairs (D, zl), with zl 
a Borel subset of the real line, and interpreting (s ~) as the property "the 
value of the observable 12 lies in the Borel set zl"; of course, each property 
in the family is represented by a projection in HSQT). Since the three 
observables commute, we expect that all these properties are pragmatically 
compatible, and that all the empirical laws that can be deduced from the 
selected theoretical law (and that, roughly speaking, take the form of 
statements attributing a testable property with a certain specified proba- 
bility to all physical objects in a given state) are simultaneously true in a 
laboratory i e / '  ra situation of this kind occurs in the particular case dis- 
cussed in GS.96, Sec. 8(i)]. But let us consider the empirical laws deduced 
from two or more of the laws (7.1)-(7.6) such that the products on the left 
member contain noncommuting observables (as ~ " (a.,.a~.) in Eq. (7.1) and 
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(a+t, at)  in Eq. (7.3)). Then, we expect that there are properties associated 
to these observables that are not pragmatically compatible, so that, taking 
into account MGP, we cannot assert that all the aforesaid empirical laws 
can be simultaneously true in i: indeed, if two or more of these laws are 
true in i, and they lead to predicting properties that are not pragmatically 
compatible, this prohibits us from assuming that further empirical laws are 
true in i [even a situation of this kind may occur in the particular case dis- 
cussed in GS.96, Sec. 8(i)]. This result is sufficient to invalidate Mermin's 
proof of the Bell-KS theorem if an SR perspective is accepted. Indeed, it 
means that in every empirical situation the truth values of all statements 
regarding physical properties of a given physical object (which are defined 
independently of any observative context) are not bound to respect 
simultaneously all the conditions imposed by Eqs. (7.1)-(7.6). Thus, the 
impossibility that the observables appearing in Eqs. (7.1)-(7.6) take values 
that satisfy all these equations simultaneously does not imply that no value 
can be attributed to the observables independently of the set of observa- 
tions that one decides to perform (contextuality), but rather that the values 
of the observables are not bound to satisfy in every laboratory and in every 
state Eqs. (7.1)-(7.6) simultaneously (it must, however,be stressed that no 
direct test on a physical object can reveal whether this actually occurs). 

Remark 7.1. We have seen above that an adequate formalization of 
the theoretical laws (7.1)-(7.6) ought to be done by means of statements of 
the general theoretical language L*. We recall from GS.96, Sec. 8, that 
second-order statements of this kind may have no defined truth value, 
being considered as purely formal statements from which empirical laws 
expressed by means of L,. can be deduced, the truth mode of which is 
established and limited by the MGP principle. Thus, the possibility that 
Eqs. (7.1)-(7.6) are not simultaneously verified by the values of the observ- 
ables does not appear a blasphemous violation of some universal truth. On 
the other side, a violation of this kind cannot appear in any physical 
situation that is epistemically accessible, hence it does not imply any 
modification of the observative content of QP. 

We also observe that the expressions of the observables in parentheses 
in Eqs. (7.1)-(7.6) as products of spin-like observables is used only to 
obtain the commutators of the observables themselves. Should one con- 
sider the products in the left members of Eqs. (7.1)-(7.6) directly in terms 
of spin-like observables, together with all properties associated with these 
latter observables, it may occur that the empirical laws deduced from one 
of these laws cannot be asserted to be simultaneously true in a laboratory 
i~[. To be precise, this occurs in the case of Eqs. (7.3) and (7.6), where the 
products on the left contain noncommuting spin-like observables. 
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R e m a r k  7.2. The proof of the Bell-KS theorem considered here 
exhibits an instance of a physical situation characterized by a set of 
theoretical physical laws 

VI = f l ( R i t ,  RI2 ..... RI,,,,) 

V2 =f2(R21, R22 ..... R2m 2) 

V,, = f , ,(  R,,, , R,, z ..... R ...... ) 

and by the commutation rules 

[Rjk, Rj,k,] = 0  if 

[ Rjk ,  Rrk '  ] r 0 for some 

j~ j t  

k , k '  i f j v ~ j '  

Our negative conclusions on the simultaneous truth in a laboratory i 
of the empirical physical laws deduced from Eqs. (7.1)-(7.6) can then be 
easily extended to the general case. In addition, the conclusions in the 
second part of Remark 7.1 can be generalized by assuming that the observ- 
ables R/k in the above equations can be expressed as functions of further 
observables, 

Rjk = g/k( S jk ~ 2 . . . . . .  p,, , 

fixing j, k, and considering the cases: (i) for every / and 1', [ S / k  , S~  k] = 0; 
(ii) some l and 1' exist such that I S / k  , S~ k] v~O. 

R e m a r k  7.3. Our arguments in this section prove that contextuality 
is not an inherent feature of QP. But it must be noted that M G P  intro- 
duces a new kind of contextuality in QP, which refers to the validity of 
empirical physical laws, not to the assignability of truth values to ob- 
servative statements. We will call this kind of contextuality pragma t i c ,  

Table 1I 

Canonical 
viewpoint 

SR 
viewpoint 

Semantic 
contextuality 

Yes 
( Bell-KS theorem) 

No 
(SR + MGP) 

Semantic 
contextuality 
for separated 
systems 
(nonlocality) 

Yes 
( Bell theorem ) 

No 
(SR + MGP) 

Pragmatic 
contextuality 

No 

Yes 

825,26,10-7 
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differentiating it from the conventional kind of contextuality, which will be 
called semantic here. Then, Table II synthesizes the differences between the 
conventional approaches and the SR approach. 

8. SOME REMARKS ON PROBABILITY 

We have introduced in Sec. 5 a function f~ denoting a (relative) 
frequency, and a function p denoting a (conditional) probability. While the 
former has been defined by using statistical statements in the language L~. 
(see Sec. 4 of GS.96), an analogous procedure cannot be applied to the 
latter, since no reference to abstract probability is made in L,.. 

If one wants to formalize probabilistic statements, L,. must be suitably 
enlarged by means of a family of probability operators, 12v~ so as to obtain 
a broader language L,~ (the link between probabilistic and statistical 
statements in L~ can then be established by the probability-frequency 
correlation principle~27~). For the sake of brevity, we will consider here only 
operators of the form H,., with r e [0, 1 ]. Then, the statement "the prob- 
ability that the physical object x in the state S has the property E is r" can 
be formalized in L~ by the (open) wff Hr(E(x)/S(x)). It is important to 
note that the truth value of this wff in a laboratory i does not depend only 
on the interpretation at that is chosen in i, but rather on the whole family 
{o-/}j~z (where each a / i s  chosen i n j  so that a / (x)ep / (S) ) .  

A simple scheme for probabilistic physical laws is provided by the 
following wff: 

A,". = (Vx) 1-L(E(x)/S(x)) 

The assertion that A~ is true (which entails that A r~,, with r ' r  r, must 
be false) is equivalent to the assertion that Hr(E(x)/S(x)) is true whatever 
the family {o~/};~ may be. In this case, and only in this case, can 
p(E(x)/S(x)) be defined, and it coincides with r. Thus, the function p is 
defined by using a probabilistic statement in L~. 

Let us add some remarks. First, we observe that, whenever A~ is true, 
it associates a probability value r to the pair (S, E ) e S : x  ge. By using 
known techniques in logic, the language L~ can be further enlarged by 
introducing, for every r e  [0, 1 ], a second-order diadic predicate R whose 
domain is 5: x g,, and which is such that R(S, E) is true iff A 7 is true, so 
that R can be intensionally interpreted as a property of the pair (S, E). In 
this sense the assignement of a probability value can be regarded as the 
statement of a property; this property is not a physical property that can 
be attributed to a physical object x (this is syntactically evident, since the 
formula R(x, E) is not a wiT) but rather a second-order property, which can 
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be attributed to first-order predicates that are interpreted as states or 
physical properties. 

Second, let us note that, whenever A7 is true, in every laboratory an 
i nd iv idua l  probability r can be associated to every physical object x in the 
state S, which can be interpreted as the probability that x has the property 
E. It is then interesting to recall that individual probabilities have been 
considered by Selleri ~-'3~ in order to show that R and LOC imply the Bell 
theorem even if this kind of probabilities is introduced. However, it is 
apparent that our solution of the paradox applies also in this case. In addi- 
tion, we stress that the individual probability r can be associated to all 
physical objects in the state S only conventionally. Indeed, one expects that 
r may change for a prefixed physical object x whenever a change of the 
state S of x occurs (that is, of the information regarding x), even if it can 
happen that there is no change in the testable physical properties of x (see 
Secs, 9 and 10 of GS.96). This shows again from a different viewpoint that 
r cannot generally be treated as a physical property of x. 

The above conclusion does not hold in CP whenever a change in r 
occurs due to a shift from a pure state S to a pure state S';  indeed, 
r changes from 0 to 1, or conversely, in this case, hence a change in the 
attribution of the testable physical property E to the physical object x 
occurs, which is associated to the change of r. In this sense r can be con- 
sidered a physical property of x in CP (but nonpure states must be 
excluded). 
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