
Foundations of Physics Vol. 24, No. 4, 1994 

Evaluating the Validity of Parametrized 
Relativistic Wave Equations 

John R. FanchP 

Received January 6, 1993 

We wish to determine the correct partial differential equation(s) for describing a 
relativistic particle. A physical foundation is presented for using a parametrized 
wave equation with the general form 

i ~-~- = K~b 

where s is the invariant evolution parameter. Several forms have been proposed for 
the generator K of  evolution parameter translations. Of  the proposed generators, 
only the generator K 2 which is proportional to the inner product P~P~' of four- 
momentum operators can be derived from first principles, notably a probabilistic 
basis. Although experimental tests must be made to establish the validity of K 2, 
we conclude that K 2 is the leading theoretical candidate for the form of a 
generator of evolution parameter translations. 

1. I N T R O D U C T I O N  

Several of Professor Rohrlich's publications tl 3~ have been concerned with 
determining the correct Hamiltonian form of a relativistic quantum theory. 
One aspect of this effort must invariably focus on determining the correct 
partial differential equation(s) for describing a relativistic particle. This 
paper assesses the validity of including an invariant evolution parameter in 
either a Dirac-like equation or a Schr6dinger-like equation. Much of the 
necessary information for choosing between alternative wave equations was 
brought to light in a recent review, t4~ 
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quantum theories in Sec. 2 and obtain a parametrized wave equation with 
the general form 

i-~s =K~b 

where s is the invariant evolution parameter, and natural units (h = c = 1) 
are adopted. Section 3 contains several forms that have been proposed for 
the generator K of evolution parameter translations. The relative merits of 
the proposed generators are discussed in Secs. 3 and 4. Of the proposed 
generators, only the generator K2 which is proportional to the inner 
product P~P~' of four-momentum operators can be derived from first 
principles, notably the probabilistic basis outlined in Sec. 4. Although 
experimental tests must be made to establish the validity of K2, we 
conclude that K2 is the leading theoretical candidate for the form of a 
generator of evolution parameter translations. The role of the Dirac 
equation is discussed in Sec. 5. 

2. SYMMETRY PRINCIPLES 

Scientific theories consist of a mathematical formalism with a set of rules 
for relating mathematical quantities and operations to physical quantities 
and measurements. Relationships between data measurements are described 
by equations. One approach to constructing the mathematical formalism 
is to specify how physical variables should behave when observed from 
different reference frames. We adopt the fundamental physical assumption 
--the principle of relativity--that says relationships between physically 
significant quantities should remain invariant with respect to transforma- 
tions between different reference frames. 

One expression of the principle of relativity is to assert that two 
references frames are equivalent only if they are at rest with respect to each 
other. Such transformations include three-dimensional rotations and trans- 
lations in Euclidean space and are described by the Euclidean group. The 
Euclidean group requires that the equations of physics be the same for two 
observers at rest with respect to each other, but the equations may change 
if the observers are moving relative to one another. If we want the equa- 
tions of physics to be valid whether we are standing on land, traveling in 
sea, or moving through space, then the Euclidean group is too restrictive. 

We extend the principle of relativity by requiring that the equations of 
physics be invariant for observers in relative motion. Suppose reference 
frame F2 is moving relative to frame F1. If we are at rest in frame FI, we 
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can measure the motion of frame F2 as the change in the spatial location 
of its origin divided by the change in a monotonically increasing evolution 
parameter. We require that the evolution parameter increase at the same 
rate in both reference frames, i.e., it is independent of the frame in which 
it is measured. We say the two reference frames are in uniform motion 
relative to one another, and we obtain the Galilei group associated with 
Newtonian mechanics. The evolution parameter is just the absolute time of 
Galileo and Newton. 

The equations of Newtonian mechanics are invariant with respect to 
transformations associated with the Galilei group, but Maxwell's equations 
are not. The Michelson-Morley experiment showed that the invariance 
of Maxwelrs equations should be preserved, even at the expense of 
Newtonian symmetry. New transformation requirements were needed. 
They were provided by Einstein's special relativity. 

Special relativity requires that inertial (nonaccelerating) observers in 
equivalent reference frames measure the same speed for the propagation 
of light in vacuum. The invariant evolution parameter of Newtonian 
mechanics is replaced by an additional coordinate on a four-dimensional 
Minkowski space. The symmetry requirements of special relativity are 
embodied in the inhomogeneous Lorentz group, which is also known as 
the Poincar6 group. 

The Poincar6 group presumes that the mass of a particle is a constant 
parameter. Mass is not calculated by the theory, but is put into the theory. 
One of the outstanding experimental findings of the past half century is the 
proliferation of particles of varying mass. The concepts of mass state 
and transitions between mass states are precluded by the assumption of 
Poincar6 invariance. If we hope to improve our understanding of mass 
states, our invariance requirements must go beyond the transformations 
associated with the Poincar6 group. 

2.1. Lie Algebra 

We can quantify our discussion of invariance requirements by 
recognizing that invariance requirements may be represented mathemati- 
cally as transformations between coordinate systems. Coordinate trans- 
formations are represented by continuous symmetry groups, notably Lie 
groups. An r-parameter Lie group is a set of transformations with the 
properties of a group and labeled by r continuously varying parameters. 
Infinitesimal transformations must exist arbitrarily close to the identity 
element of the group. Infinitesimal generators may be constructed from the 
infinitesimal transformations to linearize the law of group multiplication. 
The generators form a vector space called the Lie algebra. 

825/24/4-7 
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The Lie algebra of parametrized relativistic quantum theory (PRQT) 
is constructed by assuming that relationships between physically significant 
quantities are invariant with respect to linear transformations of the form 

v X '  u = A~,x,, + a u + b~,s (2.1) 

where {A' u } represent a homogeneous Lorentz transformation, {a,,} repre- 
sent translations along the {x,} axes, and the four-velocity transformation 
("relativistic Galilean boost" of Aghassi et al. ~s~) is characterized by the 
four parameters {b,}. In the parametrized theory with an independent 
variable s, the theory is assumed to be invariant with respect to the linear 
transformation 

s' = s + As (2.2) 

where zts represents translations along the s axis. Except for Greenberger, c6~ 
all parametrized theories assume that the s translation is independent of 
space-time coordinates. We refer to the set of transformations represented 
by Eqs. (2.1) and (2.2) as the JARS transformation. The acronym comes 
from the names of the people who first studied the properties of the set, i.e., 
Johnson c71 and Aghassi, Roman, and Santilli. c~l 

The JARS transformation may be denoted by {a, b, A, As},  which is 
the group element of a 15-parameter continuous group. The identity 
element is {0, 0, 1, 0} and the inverse element is { - A - 1 ( a - - h A s ) ,  - A - t b ,  
A-1, _ As }. The composition law of two-group elements is 

{a2, b2, A2, Zs2} {,,,, b,, A,, Zs, } 

= { a z + L l , _ a l + ( A s l ) b 2 ,  b 2 + A z b l , A 2 A t , A s l + ~ s 2 }  (2.3) 

which expresses the product of two transformations. We call the group 
associated with the JARS transformation the JARS group. 

Johnson c71 and Aghassi et aL ~5~ presented an algebraic structure with 
15 generators. For an infinitesimal transformation the set {a~,, b~,, A~, As} 

v v ~, becomes {epu, ~xv, gu + eu, e}, where (ep~, ex~,, ~ ,  e) are first-order infini- 
tesimals. The infinitesimal generator for dynamical development of the 
system is 

U = 1 + iF (2.4) 

where 

F = ! v,,'~2 ~ ~,,. + P~'(~p),, + X"(e.,.),, + Ke (2.5) 

Ten generators are the six independent elements of the antisymmetric 
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angular momentum tensor J ~  and the four elements of the energy- 
momentum four-vector P". The generators of the Poincar6 group satisfy 
the 45 usual commutation relations 

[Pu, P"] = 0 (2.6) 

[J,,~, Pz] = i(P~ g,,;. - P~ g,.).) (2.7) 

[Ju,', J;.~] = i(gu~J~';. + gu~ J,'~ +g,'~J~;. + g;., 'J~) (2.8) 

The generator K generates infinitesimal translations along s. Ten 
commutators are evaluated by taking the commutator of the generator K 
with each of the ten generators of the Poincar6 group. The generator K 
commutes with all of the generators of the Poincar6 group: 

[J~,,, K] = 0 (2.9) 

[Pv, K] = 0  (2.10) 

The additional four generators are the space-time position operators that 
satisfy the commutators 

[ X  ~, x v ] = 0 

[pu, X"] = ig ~'' 

[ju", X~-] = i[gZvXU __ g~.~'X ~ ] 

(2.11) 

(2.12) 

(2.13) 

In the classical theory, the commutator [pu, X~,] vanishes. 
The choice of the form of the generator K of s translations is not 

unique. Several forms have been proposed c4) in the context of a wave equa- 
tion. We show that the combination of symmetry principles and canonical 
transformations leads to a wave equation. We begin by reviewing the 
concept of canonical transformation and show that the JARS transforma- 
tion is a canonical transformation. Commutation relations for the 
operators associated with the JARS transformation are then used to derive 
a parametrized wave equation. 

2.2. Canonical  Transformations 

The canonical transformation of a field ~h(x, s) to ~'(x, s) by a unitary 
operator U is defined by 

~h'(x, s ) =  U~,(x, s) U -1 (2.14) 
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Since U is unitary, its adjoint (conjugate transpose) U + satisfies the 
relation 

U + = U  - l  (2.15) 

so that 

U U  § = U + U =  1 (2.16) 

All physical properties of the system described by the original field ~k(x, s) 
are unchanged in the new system described by the transformed field 
~'(x, s). 

An infinitesimal canonical transformation can be obtained by writing 
U as 

U = 1 + iF (2.17) 

where F is a first-order infinitesimal. If we apply the condition for unitarity 
in Eq. (2.16) to Eq. (2.17) and neglect second-order infinitesimals, we find 

U + U =  ( 1 - i F  +)(1 + i F ) ~  1 - i ( F  + - F )  (2.18) 

The right-hand side of Eq. (2.18) must equal 1 by Eq. (2.16). This is 
satisfied for all F only if F is Hermitian; thus, 

F § = F  (2.19) 

The operator F is the generator of the infinitesimal canonical trans- 
formation U. 

Substituting Eq. (2.17) into (2.14) gives 

or, to first order, 

~,'(x, s) = (1 + iF)  ~k(x, s)(1 - iF)  (2.20) 

~ b ' ( x , s ) = ~ b ( x , s ) + i [ F ,  ~b(x, s)]  (2.21) 

If the total variation or change of the field ~k(x, s) by an infinitesimal 
canonical transformation is defined by 

6o~b(x, s) = ~'(x ,  s) - ~b(x, s) (2.22) 

then substituting Eq. (2.22) into (2.21) expresses the variation of the field 
in terms of the commutator  of F with O(x, s); thus 

6off(x,  s ) =  iEF, if(x, s)]  (2.23) 
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An infinitesimal JARS transformation can be written as 

A •  
~ v v g~+8,u 

Q/t ~ 8,xll 

b p ~ ~p~ 
(2.24) 

v where (e, epu, exu, e u) are first-order infinitesimals. The infinitesimal gener- 
ator for dynamical development of the system has the unitary operator 
representation of Eq. (2.4) with F given by Eq. (2.5). Since U is unitary, the 
JARS transformation is a canonical transformation. 

A set of commutation relations of the operators J~", P~, X u, and K 
with the field ~, is obtained by developing each side of Eq. (2.23) separately 

v in terms of the infinitesimals (e, ep., ex. ,  e .) .  The coefficients of the linear 
terms on both sides are then equated. 

The term 6or may be expressed in an alternate form by introducing 
the local variation 

6~, = ~,'(x', s') - ~,(x, s) (2.25) 

where x , s  and x', s' refer to the same physical point as viewed from canoni- 
cally transformed reference frames. Performing a Taylor series expansion of 
ff'(x', s') and keeping only first-order terms gives 

6~ = ~ ' (x ,  s) + Ou~O'(x, s) 6xv + O~.tp'(x, s) 6s - ~,(x, s) (2.26) 

where O,-O/Os. Rearranging and using Eq. (2.22) yields 

6o ~, = 6~0 - O~O fix,. - O ~.qJ 6s (2.27) 

The increments 6~,  fix,,, 6s are specified ifi terms of the infinitesimal JARS 
transformation: 

fix,. = ev, x u + ex,. + 8,pv (2.28) 

6s = 8, (2.29) 

6~, = ~ X ~ ( x ,  s)8,~. (2.30) 

where X TM are the infinitesimal operators of the proper homogeneous 
Lorentz group. 

Combining Eqs. (2.27)-(2.30) gives 

6o~, = �89 [(_rv.r  + (x"O"-x"a")qJ]%, 
- (O~q , ) e~ , , -  (O"~)8,.,,s- (O.,.ff)8, (2 .31 )  
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where the ~,., terms has been rewritten in the form 

(~"q/ )e,.~,x" = �89 [ (x"O~- x"O")~b ]e,.~ (2.32) 

and the antisymmetry relation e,,, = -Eu,. has been used. The commutator  
i [F,  ~k] is obtained by substituting Eq. (2.5) into Eq. (2.23); thus 

iEF, r  = �89 [j,,u, r  8v,, + iEP", r 

+iE  Xv, ~k]~xv + iEK, ~b]t (2.33) 

Comparing Eqs. (2.31) with (2.33) yields the commutation relations 

i [J~'~', ~k] = X~'~'~b + (x~'c3 " - x " O  ~') • (2.34) 

i[P~', ~b] = -0"~b (2.35) 

i [X v, ~,] = -s(O"~O) (2.36) 

and 

iEK, ~ ]  = - O ~  (2.37) 

Equations (2.34)-(2.37) can be considered the defining relations for the 
operators 3"", P", X", K. 

2.3. Wave Equation 

We derive a wave equation from the results presented above by 
rearranging Eq. (2.37) so that it appears as an operator acting on an 
arbitrary field ~b: 

{ , (0 ,~, ) -  IK. ~,] }~ = 0  (2.38) 

Expanding the commutator  bracket gives 

[K, 0 ] ~ =  [ K ~ - ~ K ] ~  

= ~O(K~b) + (K~b)~b - $(K~b) 

= (K~b)~b (2.39) 

Combining Eq. (2.39) with Eq. (2.38) yields 

{ i(0~.~b) - (K~b) } ~b = 0 (2.40) 
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A wave equation is obtained by observing that Eq. (2.40) is satisfied for 
any field ~b when the bracketed term vanishes; thus, 

i ~ = K~ (2.41) 

3. G E N E R A T O R  O F  E V O L U T I O N  PARAMETER TRANSLATIONS 

The choice of the form of the generator K of s translations is not 
unique. Several forms have been proposed. The most common forms are 
the Dirac-like form 

K l = ocly~P u (3.1) 

where y, are Dirac gamma matrices, and the Schr6dinger-like form 

K2 = c%P,P" (3.2) 

A third form was suggested by JohnsontT): 

K 3 = 0~ 3 x / P ~ P  u (3.3) 

Each generator applies to the dynamics of a free particle. The quantities c 9 
are constants with respect to the operators. For  example, Johnson ~7) 
defined 0q = i/m and c~ 3 = 1; Aghassi et al. 15~ chose ct2= 1, while Pearle Csl 
and Johnson 17~ considered ~2 = 1/2m, where m is the mass of the particle. 

Our focus is on the order of the P" operators relative to the order 
of s. We would like to know which form is the correct form to use. Each 
of the forms can be constructed from more basic principles, but in every 
formulation except one the order of P~ relative to the order of s is deter- 
mined by a model of the system--such as an assumed Lagrangian--rather  
than fundamental assumptions such as probability conservation. Only the 
probabilistic formulation results in a relationship between the order of P" 
and the order of s that is established from first principles. Before discussing 
the probabilistic formulation, we review alternative constructions of 
parametrized wave equations. This review should be viewed as repre- 
sentative of the constructions that have been made in the past. A more 
comprehensive review is given in Fanchi. ~4~ 

3.1. Evaluation of  K s 

Johnson argued that Eq. (3.3) could be used to eliminate certain 
unphysical representations by requiring that the Hamiltonian be Hermitian 
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and positive-definite. These "unphysical" representations correspond to 
spacelike (tachyonic) states that may be physical, but their existence has 
not been established, c9~ although experimentalists have measured spacelike 
masses for neutrinos, t~~ ~'~ By presenting a physical rationale for eliminat- 
ing these mathematically admissible states, Johnson had to explain why 
exact localization was not possible for a physical state. Furthermore, the 
positive-definite requirement applied to the Hamiltonian conflicts with the 
allowed existence of negative energy states in the rest frame of a particle. 

Johnson interpreted Eq. (3.3) as applying to massive, free particles. 
Johnson's attempts to describe massive, spin-l/2 particles led to an 
ambiquity in the definition of the Hamiltonian. In particular, he found that 
Eq. (3.1) has the same commutator as Eq. (3.3) when taken with the 
Poincar~ group operators J~" and P~'. He argued that Eq. (3.3) worked 
better with other physical observables such as position and spin than did 
Eq. (3.1), but he was unable to directly connect Eq. (3.3) with the Dirac 
theory of spin-l/2 particles. 

Another problem with Eq. (3.3) arises when interactions are 
considered. Johnson and Chang "2J used a transformation like the Foldy- 
Wouthuysen transformation to solve the problem of a Dirac particle in an 
external electromagnetic field for a Hamiitonian with the form of Eq. (3.1). 
They noted that Eq. (3.3) was difficult to transform because of the asym- 
metrical treatment of its zeroth component. These problems discourage us 
from considering Eq. (3.3) any further. 

3.2. Parametrized Hamilton-Jacobi Theory 

Fock (13) defined a classical action as an integral of a Lagrangian 
function with respect to proper time: 

AFoc = f LFoc ds (3.4) 

Proper time was treated as an independent invariant parameter. The 
classical Lagrangian for an electron interacting with an electgromagnetic 
field is given by 

where 

m 
L F o c  = - - m - f  ,,Sc ~' - -  - ~  - -  eSc r " (3.5) 

d:c~, (3.6) 
"~'= d s  
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The Hamilton-Jacobi equation corresponding to Fock's Lagrangian is 

OAvoc 1 V VA - A 2 
~ss + ~ m L  ( v ~ 1 7 6  }+m2=O (3.7) 

Given a classical basis, Fock presented the quantum analog of the 
Hamilton-Jacobi Eq. (3.7): 

i OF-~s=~mlI(iO'' -- eA, ')(iO,.-eA,,)-mZ-2y,,y, ,Fm']F (3.8) 

where Fu"= Or'A " -  O"A ~' is the field strength tensor. The function F satisfies 
a partial differential equation that is second order in space-time and first 
order in proper time. Solutions of Eq. (3.8) had to be stationary states with 
zero eigenvalues in Fock's formulation. 

3.3. Parametrized Path Integrals 

Feynman ~4~ outlined a procedure to extend his path integral formula- 
tion of nonrelativistic quantum mechanics to quantum electrodynamics 
(QED) in 1950. Morette "5~ succinctly presented the relativistic path 
integral formalism by writing the probability amplitude K for a particle to 
go from space-time point x A to space-time point x B as 

K(x a, x A ) ~ -  f exp(iS [x] ) d(paths) (3.9) 

The integral is over all paths x(s) from X A to x B. The action functional 
S[x] is given by 

~ s 

S[x]= L{x(s),~(s)}as (3.10) 

where L is the Lagrangian. 
Like the Hamilton-Jacobi and variational approaches, the key to the 

form of the wave equation was the postulated Lagrangian used in the 
action. For example, following a suggestion made by Feynman, ~t6~ 
Morette ~sl applied Feyman's path integral approach to a Dirac particle in 
a constant, external electromagnetic field. She used a Lagrangian of the 
form 

Z m e v) Mor = ~ "~,, 2~/~ "q" ~ (~/aX/~)(~v A (3.1 l ) 
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with the corresponding wave equation 

0 
2im -~s 0Mot(X, S) = {~,,[3 u -- ieA']  }2 0Mor(X ' s) (3.12) 

Feynman t t7~ used a path integral formulation to derive Fock's parametrized 
spin-l/2 wave equation. His Lagrangian had the form 

[1 e ] 
Lvv = - ~ 2,::u + e2~,A" - -~ au,,F"" (3.13) 

The interaction term is assumed as a result of"minimal  coupling." In every 
case, including more modern path intgegral formulations such as Barut and 
Duru, t18) a Lagrangian "model" determinies the form of the wave equation. 

3.4. Miscellaneous Extensions from a Classical Basis 

Pavsic presented a phase space form of an action with a Lagrange 
multiplier, t~9) He combined the action with a variational principle to derive 
parametrized equations of motion without the mass-shell constraint in 
classical mechanics, and both first and second quantized formulationsJ z~ 
Although initially Pavsic worked only with a Dirac-like equation, t21) he 
eventually included an equation with K2 in his variational formulation, t2~ 
The form of the resulting wave equation was dependent on the postulated 
form of the Lagrangian in the action. 

Horwitz and Piron ~zz) introduced a parametrized quantum theory 
with a generator like K2 as a quantum mechanical analog to a Hamiltonian 
formulation of relativistic classical mechanics. More recently, Evans t23~ has 
tried to justify K~, but his development was based on an extension of a 
classical Hamiltonian, and his choice of probability density is not positive 
definite. Parametrized wave equations developed as a quantum mechanical 
extension of relativistic classical physics invariably depend on an assumed 
Lagrangian or Hamiltonian model. We are loking for a formulation of a 
wave equation that does not depend on a particular physical model, but is 
the result of fundamental physical insight. It is possible to construct a 
formalism that has the attributes of quantum mechanics from fundamental 
concepts of probability theory, t4'z4"25~ This approach is outlined in Sec. 4. 

4. PROBABILISTIC BASIS 

The Born representation and conservation of probability are at the 
heart of the derivation of a field equation which satisfies the assumptions 
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of conventional probability theory. Construction of wave equations that 
are consistent with probability theory begins with the assumption that a 
conditional probability density p(y[s) exists. The symbol y denotes a set of 
4N coordinates with N being the number of particles in the hypervolume 
D N for which p(yls)  has nonzero values. The pth component of the 
position four-vector of particle a is written as y U, where # = 0 ,  1,2, 3. 
Indices 1, 2, 3 signify space components and 0 signifies the geometric time 
component. 

According to probability theory, p(yls)  must be positive definite and 
normalizable; thus, 

and 

p(yls)~O (4,1) 

Io,,.p(yl s )dy= 1 (4.2) 

where 
N 

dy = FI day~ , 
a = l  

Conservation of probability implies 

d4ya _ 0 - d),~ ay'o dy2 dy 3 (4.3) 

N 

~ss+ ~_,_ OpoyuoV~'=O (4.4) 

where Einstein's summation convention for Greek indices is assumed and 
the term p V~ represents the pth component of probability flux of particle a. 

Suppose p depends on L internal variables having discrete parameter 
values {/i} such that 

p(yps) dy= ~ ~ ... ~ p(y, l,, 12 ..... ILrs) dy (4.5) 
I1 12 IL 

where the ith sum extends over the entire range of allowed values of the ith 
parameter l,.. The term p(y, I t ..... IL Is)dy is the probability of observing a 
system having parameter values Ii ..... IL in the configuration y within an 
infinitesimal 4N-volume dy at the historical time s. 

Denote the allowed values of the ith discrete parameter It as Lr  Then 
the number of terms A in the L sums of Eq. (4.5) is just the product of L,, 
namely 

L 

A = H Li (4.6) 
i = 1  



556  Fanchi 

The L sums can be replaced by a single sum over the range 1 ~< 2 ~< A. This 
requires assigning a one-to-one correspondence between 2 and each term of 
the L sums. Doing so lets us write Eq. (4.5) as 

A 

p(y l s )dy= ~'. p:.(yls)dy 
:.= l (4.7) 

p:.(yls) =- p(y, 1~ ,..., Ii. Is) 

where the subscript 2 of p:.(y Is) represents a set of values of the discrete 
parameters {l i}. 

For p to be differentiable and non-negative, t24~ its derivative must 
satisfy Op/ds=O if p =0.  The positive-definite requirement for p;.(yls) is 
satisfied by writing pz(yls) in the Born representation: 

p:.(yls) = ~ ;.*(y, s) ~k :.(y, s) (4.8) 

The scalar eigenfunctions r are specified only to within a gauge 
transformation of the first kind. Consequently ~,:. can be written as 

d/:.(y, s)= [p:.(yls)] m exp[i~(y, s)] (4.9) 

where the real scalar function r s) is assumed independent of the discrete 
parameters. This restriction is realistic if the probability density of the 
physical system can be decomposed such that the parameters {1;} charac- 
terize mutually independent events. Systems characterized by an eigen- 
function with the product form @(space-time)|174 
fulfill the independence requirement. 

4.1. The Stiickelberg Equation 

A field equation is derived by expressing the four-velocity of the ath 
particle V, u as 

[ O~(y, s ) + ~ , , A U ( y  ' s)]  (4.10) V~(y,s)=e,  ~' Oy~u 

where e', e", and e, are real c-numbers whose values are not yet specified. 
We assume that Au~ and, consequently, V~ are independent of 2 and are 
real, scalar functions. Using these assumptions with the procedure in 
Fanchi and Wilson, ~26) we derive the field equation 

ie' --~-s = ~- =~=,,, q.t + V~v (4.11) 
a = l  
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where V is a A x A Hermitian matrix. The operators n ,  u and p U are defined 
by 

u =  ~, " u (4.12) I t . - - p a + e  A,, 

and 

e' 0 
p ~  (4.13) 

i Oy,,~, 

The single-particle form of Eq. (4.11 ) resembles an equation first studied by 
Stfickelberg. czT) For ease of reference, we refer to Eq.(4.11) as the 
Stiickelberg equation. 

Equation (4.11) may be written in the form 

i#--z-= K ~  (4.14) 
d S  

where 

N 

e, u I + V  (4.15) 
a = l  

The operator K is Hermitian since it is the sum of two Hermitian 
operators. In this formulation, the definition of the expectation value of an 
observable 12 is 

(1"2) - fD ~ ~+12qU dy (4.16) 

Field equations for a many-body system which explicitly exhibits the 
"minimal coupling" electromagnetic interaction are obtained by making the 
identifications 

e" = --e/c (4.17) 

e,, = l / m ,  

where m, is a c-number with mass units. We identify the four-vector A,  u as 
the external four-vector potential acting on the ath particle. Additional 
interactions may be incorporated via the presently unspecified Hermitian 
matrix V of Eq.(4.11). With these identifications, n~ becomes the 
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four-momentum operator with "minimal coupling" of the ath particle. 
Equation (4.11) may be written in the form 

ih -~s = KW (4.18) 

where K is the generator of s translations with the explicit form 

K -= k~m---Zm~ / I + V 
a = l  

(4.19) 

Equations (4.18) and (4.19) support the use of an operator of the form of 
K2 in the wave equation. 

Finally we note that Lopez and Perez tz8~ used some of the ideas 
presented above to derive a wave equation with the generator K~. They 
found that they could not introduce interactions without returning to a 
generator of the form of K2. 

5. DIRAC-LIKE 4 x 4 REPRESENTATION 

If Kz is the correct form of the generator of s translations, an obvious 
question arises: why has the Dirac equation been so successful? We begin 
to answer this question by considering the two-component Stiickelberg 
equation for a single particle: 

i 0  = Fn~'n~' 1 ~ u = K u  L 2m I + V  u (5.1) 

The matrices I, K, V are 2 x2 matrices and u is a 2 x 1 column vector. 
Equation (5.1) is the 2 x 2  representation of the spin-l/2 Stiickelberg 
equation. Conventional treatments of the spin-l/2 particle based on the 
Dirac equation use a 4 x 4 representation. Our interest here is to construct 
a 4 x 4 representation of the spin-l/2 Stfickelberg equation. 

5.1. 4 x 4 Representation of the Spin-l /2  Stiickeiberg Equation 

Equation (5.1) corresponds to two equations containing second-order 
space-time derivatives. Following a procedure first introduced by 
Davidon, ~29~ we write Eq. (5.1) as four equations containing first-order 
space-time derivatives: 

in,,A'u = v (5.2) 
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and 

O 
- i  n,. BVv -- 2mi-~s v (5.3) 

The 2 x 2  matrices {A ~', B "} are as yet unspecified, and v is defined by 
Eq. (5.2). Substituting Eq. (5.2) into (5.3) gives 

~,,n~, B"A~u = 2mi ~s u (5.4) 

Comparing Eq. (5.4) with (5.1) yields 

n,.n~ BVA ~ = 2m K = n~nUl + 2mV (5.5) 

Equation (5.5) expresses {A ~, B ~} in terms of the Hamiltonian K. 
Equations (5.2) and (5.3) can be combined to form the matrix 

equation 

in,  r , u /=  M q  .t (5.6) 

where the 4 x 4 matrices r ~, M are 

0 
I 2rni(O/Os)l] (5.8) M"=[0 

and the 4 x 1 column vector qu is 

Equation (5.6) is the 4 x 4  representation of the spin-l/2 Stiickelberg 
equation. 

5.2. Stationary States 

A stationary mass state equation may be derived from Eq. (5.6) by 
performing a nonunitary transformation. In this case qu is an eigenfunction 
of K such that 

Up(x, s) ,,. W(x ) e -i' '/2 (5.10) 
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M t p = I I  0 m210 ](/j (5.11) 

Using Davidon's transformation matrix 

,_ira: m0,:l 
we multiply Eq. (5.11) on the right by T* = T  and expand as 

(iT*n"r"T - T* M'I') T - l~u= 0 (5.13) 

In terms of the transformed variables 

r'. = T* r.T = r. 
(5.14) 

M ' = T * M T = m l  

and 

Fm- ~/2v] 
~u' =T-'V~= L ml/2u J (5.15) 

Equation (5.16) is a 4 x 4  representation of the stationary mass state 
equation. 

It is tempting to identify { r . } as the Dirac gamma matrices by writing 

A ~  = I - -  i l ,  o" x, o'y, or:]  

B ~ -  - r i l ,  o-.,., O.y, o- : ]  
(5.17) 

where {trj, j =  x, y, z} are the Pauli matrices. The resulting equation would 
be the Dirac equation. 

Davidon (29~ pointed out that defining {r ~'} by Eq. (5.17) is incon- 
sistent with the scalar product we have adopted, namely Eq. (4.16). 
Preferring to retain the Dirac equation in the form that made it so success- 
ful, Davidon introduced an inner product with an indefinite metric. The 
indefinite metric allows both positive and negative probabilities, which is 
the same difficulty suffered by conventional treatments based on the Dirac 
equation. 

Eq. (5.13) becomes 

( in"r-ml)~'  =0  (5.16) 
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We are at a dilemma. If we insist on preserving probabilistic concepts, 
we cannot accept the Dirac equation as part of PRQT. Is this a defect in 
PRQT, or is it a clue that the Dirac equation, even with its history of 
success, is not quite right? 

Mayants ~25~ and Wu and Hwang ~3~ have pointed out flaws in the 
Dirac equation. Mayants noted that the Dirac equation predicts that the 
expectation value of the velocity of any free, relativistic spin-l/2 particle is 
the speed of light. This is a well-known consequence of the Dirac theory. 
Mayants argues that this result contradicts both the principles of relativity 
theory and experimental data. He concludes that the Dirac equation must 
be incorrect. Wu and Hwang ~3~ note that it is very difficult to apply the 
single-particle Dirac equation to many particles. They further observe 
that the Dirac theory---even though it was originally intended to be a 
single-particle theory--could not be interpreted within the confines of a 
single-particle theory. Klein's paradox and the Stiickelberg-Feynman 
interpretation are related to this problem. ~3~) 

The difficulties of the Dirac equation suggest that a better approach 
may exist. We know from the above analysis that we can construct a 4 x 4 
representation of a new spin-l/2 field equation. Furthermore, we have 
consistently rejected formulations that require unconventional probabilistic 
concepts such as negative probabilities. Therefore, we must be prepared to 
follow PRQT to its logical conclusion. In the process we may obtain a new 
perspective that will help us better understand the standard paradigm. For 
these reasons we conclude that the usual form of the Dirac equation is 
inappropriate for PRQT. 

Does this mean that PRQT cannot calculate experimental results to 
the same degree of accuracy as the Dirac equation or its second-order 
counterpart? It does not. What  it does mean is that a new model of a 
spin-l/2 particle interacting with an electromagnetic field is needed. 

A model of the spin-l/2 particle interacting with a four-vector poten- 
tial has been proposed by Horwitz, Piron, and Reuse. ~32-34~ The validity of 
this model depends on its ability to match experimental results. Reuse t35~ 

and Grelland t36~ have shown that the model does a statisfactory job of 
reproducing experimental results for an electron bound by a Coulomb 
potential, but more applications are needed to further evaluate the model. 
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