
Foundations o f  Physics, Vol. 24, No. 8, 1994 

The Screen Problem 

Bogdan Mielnik I 

Received February 7, 1994 

The statistical interpretation o f  the quantum mechanical wave packet contains a 
gap. The author outlines the problem without offering a solution. 

1. INTRODUCTION 

It is generally believed that quantum mechanics is backed by firmly estab- 
lished statistical facts which exhaust the probabilistic sense of the "state 
vectors." This context is most transparent for the Schr6dinger's wave 
packet r = {~b(x)}, and not less visible for Dirac waves and spin states. 
Yet, an essential element is missing in the commonly accepted statistical 
scheme. 

The contents of this note correspond to an accidental discussion 
between Constantin Piron, G6ran Lindbladt, and the present author in the 
Department de Fisique Theorique in Geneve in the summer 1978. 

2. THE TEXTBOOK STORY 

What I intend to discuss is a dark spot in the perfection of quantum 
scheme. Whether this spot is cosmetic or profound is up to the reader to 
decide. Let us recall that the modem (statistical) theory arose to replace 
the "substantial interpretation" of Schr6dinger (of ~b as a physical field). 
Since then, the wave functions ~k = {~b(x)} have lost any material sense. 
They became "probability waves," i.e., mathematical code symbols com- 
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prising our knowledge about the system. The most traditional information 
to be read from ~ are the localization probabilities: 

p(t, g2) = f I~(x, t)l 2 d3x (2.1) 
a o  

meaning the chance that the check of particle position at the time t will 
find the particle in a space domain s _ ~3. More general rules of decoding 
the statistical contents tS~ of ~b are a direct consequence of (2.1): they are 
supposed to provide the complete probabilistic information about the 
particle. 

The rules of "reading ~" would be inconsistent without the axiom 
about the instantaneous (timeless) reduction of the wave packet. The 
hypothesis was stated by Dirac, who speaks about the state jumps~8~; other 
authors seem to accept tlie idea more or less explicitly (see, e.g., J. von 
Neumanntg~). As the matter of fact, if the particle detection were not 
associated with an instantaneous reduction, there would be no mechanism 
preventing a single microparticle from appearing simultaneously on two 
different screens. In turn, the timeless character of the reduction in the EPR 
experiments is needed to explain the correlation on two extremes of the 
EPR arrangement/~~ As a result, the concepts of "timeless measure- 
ment" and "instantaneous reduction" have become fundamental bricks of 
quantum theory. 

The resulting scheme has some virtues of economy (no empty talk, no 
conceptual models beyond the operationally verified facts, etc.). It is there- 
fore easy to forget that it, too, faces some challenges, at least as serious as 
the material doctrine of Schr6dinger. They include the paradox of the 
Schr6dinger's cat, tl~ the relativistic paradox of Aharonov-Albert, c2-4~ and 
the effect of Zeno. t5-7) Curiously, while the difficulties of the "substantial 
interpretation" were constantly stressed, the paradoxes of the statistical 
approach were as constantly overlooked. Generations of physicists have 
grown accustomed to keep them somewhere in the back of their minds, in 
a shadowy area of no thoughts (or at least no reportable thoughts!). It 
might thus be worth noticing that the scheme is not so operational as it 
looks. To the contrary, it balances on the threshold of fiction. 

3. PHENOMENOLOGY OF UNPERFORMED EXPERIMENTS 

The experimentalists perform a lot of measurements, but none resem- 
bling an "instantaneous check of particle position." Trying to design such 
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an experiment, one must come to a rather unreal picture of a sudden 
particle search (similar to a police race) carried out at a given instant of 
time, all over a certain simultaneity hyperplane in Galileo (or Minkowski) 
space-time. The physical models are obscure. Should it be a preprogrammed 
action of an infinity of detectors, switched on at a given instant of time all 
over the space? 

A method to organize such a search might be to keep the particle in a 
pot filled with a physical medium (such as, e.g., a Wilson camera, a bubble 
chamber, etc.) which in a given instant undergoes a phase transition, 
becoming sensitive to the particle presence. This "phase of awareness" 
should awake simultaneously all over a certain 3-dimensional space 
domain, producing a visible spot at the point where the particle is detected. 
Such a process is basically possible in the nonrelativistic theory, but it 
would fail in the relativistic case. Indeed, in Minkowski space-time, the 
internal transformations of a physical medium (caused, e.g., by cooling or 
heating the pot, etc.), propagate with finite velocity. The particle trapped 
into the "phase of awareness" will therefore be detected on a characteristic 
surface marking the progress of the phase transition. Now, except for 
special situations, (~3) the characteristic surfaces are contained inside of the 
light cones or, at best, can be null (isotropic) surfaces. This might mean 
that the correct statistical interpretation of the relativistic quantum 
mechanics should be formulated not for the space-like but rather for 
isotropic or piecewise isotropic surfaces. ~4) Indeed, hints pointing to this 
direction can be seen in the structure of the relativistic wave equa- 
tions ( ~5-~7 ) 

Our critique does not mean that the quantities (2.1) have no physical 
sense. They can certainly express themselves through some remote statisti- 
cal effects [for instance, if two space-separated parts of a wave packet lead 
to two excluding physical phenomena far away, the quantities (2.1) then 
become the respective probabilities]. Yet it is a fact that they are not 
measured in the known localization experiments. What is measured is 
something entirely different. 

4. THE WAITING SCREEN 

The typical measuring apparatus consists of the particle source, some 
obstacles or fields, and a screen (detector). The particle in an initial state 
~b evolves under the influence of the fields (or diffracts on material bodies) 
and then hits the screen (falls into the detector). The whole scenario 
(repeated in almost all quantum experiments) has rather little to do with 
an "instantaneous position check." The main difference is that the screen 
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(detector) does not act suddenly, at the experimenter's wish. Instead, 
it is just waiting. It is the microparticle, and not the experimenter, which 
triggers the apparatus to act (and so, in a sense, the wave packet produces 
its own collapse!) 

If one skips all more profound differences, this corresponds to a new 
space-time scenario, as it seems, carefully avoided in the orthodox descrip- 
tions of quantum measurements. Suppose, for simplicity, that the detector 
is just a flat screen placed at z = b = const. Its 4-dimensional image then is 
not a "horizontal" spacelike hyperplane t = const in Galileo or Minkowski 
space-time, but a "vertical" hyperplane labeled by two space and one time 
coordinates x, y, t. The particle is thus localized on such a vertical plane. 
Suppose, now, that an ensemble of particles in a pure state ~ has been 
prepared on one side of the screen (i.e., ~(x, 0 ) =  0 for z < b). They 
propagate in z < b till each of them will (or will not) mark  a little spark of 
absorption. What  is the probabili ty density p(x, y, t) that the particle 
prepared in the pure state ~(x, 0) will hit the screen at (x, y, b, t)? See 
Fig. 1. 

Curiously, while investing so much care into the formulation of the 
measurement axioms for a ficticious "instantaneous experiment," quantum 
mechanics tells nothing about  the real measurement of Fig. 1. The only 
exception is Born's formula for a stationary beam; however, this is precisely 
the uninteresting part  of the story. What  picture shall we see in Fig. 1 in the 
nontrivial case, i.e., for an arbitrary, normalized but nonstat ionary ~,? 

S 

~'(r) 

z -b  

Fig. 1. The missing element of the statistical inter- 
pretation: for a normalized wave packet ~,(x, 0) one 
ignores the probability of absorption on the surface of 
a waiting screen. The time coordinate of the event of 
absorption is not even statistically defined. 
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5. INADEQUACY OF CURRENT FORMULA 

A suggestive idea is to extend the current expression of Born to a 
nonstationary case. At first sight this might seen fairly easy due to the 
vanishing of the 4-divergence 

ap/at + v j=o (5.1) 

where p = ~ § ~b is the probability density and j the corresponding current 
for the Schr6dinger (or Dirac) wave function. Considering the initial 
packet if(x, 0) with a compact support f 2 < z  (left of the screen) and 
denoting by Z(t) (t~ ~) the family of horizontal 1/2-hyperplanes Z(t)= 
{(x, t ) :x ,  y~ff~, z<b, t=cons t}  and by S(t) the section of the vertical 
plane : = b between Z'(0) and _r(t), one has 

Is ~(x,t) +~b(x,t) d3x+fs indxdydt=Ix ~k(x,O) +~(x,O)=l (5.2) 
(t) (t) (0) 

i.e., what is lost of the probability on g'(t) ( =  the probability that the par- 
ticle escaped detection till the time moment t) is recovered by integrating 
the current on the vertical section S(t). This might motivate a guess which 
seems to reflect a widespread subconscious belief: 

Hypothesis 1. Let ~ (x )= f f (x ,  0) be a Schr6dinger's (or Dirac's) 
wave packet localized left of the screen (i.e., ~k(x, y, :, 0) = 0 for :/> b). Let 
then ~k(x, t) be the result of the free propagation of ~k(x, 0), i.e., 

~b(x, t) = e-in~ O) (5.3) 

where H 0 is the free Hamiltonian of Schr6dinger (or Dirac). Then I~b(x, t)[ 2 
(for - < b )  gives the probability density for the particle localization left of 
the screen at the time t, and, simultaneously, the probability current j :  of 
the wave (5.3) for - = b  defines the probability density for the particle 
absorption on the vertical plane. 

Since the traditional expression (2.1) enjoys some universality (i.e., 
holds not only in vacuum but also for wave packets propagating in the 
presence of any fields or obstacles), one might also venture to formulate the 
more general: 

Hypothesis II. To determine the detection probability for a micro- 
particle on the surface of a waiting screen of any form and in the presence 
of any external fields, one has to determine the wave function ~b(x, t) 
propagating under the influence of these fields; the corresponding current 

825/24/8-2 
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j(x, t) then determines the probability density for the particle detection on 
the 3-dimensional screen surface S in either Galileo or Minkowski space- 
time. 

Unfortunately, Hypothesis II turns out to be wrong! This is imme- 
diately seen if the screen is not fiat. Suppose, for example, the screen is 
cylindrical (Fig. 2). Then, for a freely propagating wave packet, the 
currents j(x, t), in general, penetrate the cylinder in both the in and the out 
directions. The normal component nj is negative on some parts of the sur- 
face (Fig. 2), and so it cannot define the probability. Hypothesis II simply 
neglects the fact that the microparticle, if initially outside, never penetrates 
into the cylinder. Thus, the returning (negative) current j(x, t) of freely 
propagating ~,(x, t) is unphysical. However, it would not help to take just 
the positive part of nj, as this would destroy the probability conservation. 

The same difficulty arises if there is a field (or an obstacle) behind the 
screen. The wave packet (5.3) calculated ignoring the screen must then 
contain an unphysical part refracted by the obstacle and returning from 
behind the screen with negative nj. The difficulty again is impossible to 
eliminate by any ad hoc assumption, such as for example, taking only the 
positive part of nj. 

One might hope that the difficulty vanishes for flat and concave 
screens (which permit no "self-screening" of the screen surface). Unfor- 
tunately, the trouble persists even for fiat screens and even in the absence 
of fields. This fact was first noticed by Kijowski. Ils~ His observation con- 
cerns the Fourier components, but can be easily reformulated to describe 
the configuration of Fig. 1. One has: 

](x,t) ~ . , ~  Screen 

Fig. 2. The currents of a freely propagating wave packet cannot 
determine the probability of absorption on the cylindrical screen. 
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Lemma. For any open, bounded domain O c { x ~ l ~ 3 : z < b } ,  
situated "to the left" of the hyperplane S =  {x: z = b }  and for any r > 0  
there exists a free Schr6dinger's wave packet if(x, t) with the initial support 
in f2 (i.e., ~b(x, 0 ) = 0  for x:~t-2) which at t = r  produces the probability 
currents j crossing S in the negative z-direction [i.e., with jz(x, y, b, r) < 0]. 

Proof. Let F be a surrounding on the x, y-plane and (fl,,fl2) an 
open interval, f l i < f l 2 < b ,  such that F |  Consider a 
Schr6dinger's wave packet if(x, t ) = K ( x ,  y, t) ~(z ,  t), where (1) K(x,  y, O) 
has a compact support in F and K(x,  y, t) obeys the free evolution equa- 
tion in L2(~2); (2) ~(z, 0) has a compact support in (ill, f12) and ~U(z, t) 
obeys the free evolution equation in L2(R). We shall show that ~(z, t) can 
generate a Jz < 0 at z = b > f12 > fl~ and t = r. Without lose of generality, we 
may put r = 1. The integral form of the Schr6dinger's evolution operator in 
1 dimension implies 

~(_-, 1) = f~ ~ 

where 

and 

~J(fl, O) e": _p,2/2 dfl = eiZ212f(z) (5.4) 

I•: ~(/~) f ( z )  = e-'P-" dfl (5.5) 

O(fl) = t~(fl, O) e -ip2/2 (5.6) 

where we have taken m = h = 1. Since ~(z, 0) is an arbitrary function with 
a support in (fl~,fl2), so is ~(z) in (5.5)-(5.6). Let now 

f ( z )  = R(z)  e i~l'-) (5.7) 

where R(z)>>,O and ~(z)e ~. The current component orthogonal to the 
screen is 

j..(b, 1 ) = ( 1/2i)[-~ *(O/Oz) ~k - ~(O/Oz) ~k * ] 

= IK(x, y, 1)1 z R(b)Z[~ ' (b )+b]  (5.8) 

and its sign depends on cr + b, where ~'(z) = d~/dz measures the "velocity 
of phase variations" of (3.5)-(3.7). Now, putting r g(fl)exp(iflb) with 
g(fl) real, one has 

f ( z ) =  , g(fl) e- 'alz-b) dfl (5.9) 
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and therefore 

cx'(b ) = (1 /2 i ) [ f ' (b ) / f (b )  - f ' ( b  )*/f(b )* ] 

= _ d p  / 5 . 1 o )  
~" g(fl) dfl 

The numerator and denominator of(5.10) are two independent mathemati- 
cal moments ofg(f l )  in (fl~,fl2). Choosing now a sign changing g(fl) with 
a small, positive integral (denominator) but finite positive first moment 
(nominator), one gets 0~'(b) negative, of arbitrarily great absolute value, 
giving 0t'(b) + b  < 0 =~ j_.(x, y, 1) <0.  [] 

The above lemma means that there must be an error in Hypothesis I. 
For a nonstationary r t) the currents j(x, t) do not provide the proba- 
bilities of detection even on the fiat screens! Worse, this simultaneously 
means that the integral 

_ I~k(x, t)l 2 d3x 
. < b  

is not a decreasing function of t, and so it cannot provide the probability 
that the particle remains undetected somewhere left of the screen till the 
time moment t > 0. 

6. BLIND ALLEY OF THE ZENO PARADOX 

The trouble indicates that the measurement of Fig. 1 is not reducible 
to the simple reading of probability currents. The screen does something 
else. As the packet approaches, its "free evolution cues" (which should 
penetrate to the other side of the screen), most evidently, are canceled, and 
cannot contribute to the returning (negative) currents. When trying to 
formalize the idea, one is tempted to divide the evolution interval [0, t] 
into a sequence of subintervals [kt/n,  (k + 1) tin], (k = I ..... n), and then 
postulate a stepwise process consisting in free propagation incidents 
and reduction acts. Thus, at the beginning of each time interval 
[kiln, ( k +  1)t /n]  the wave packet (localized left of the screen) starts to 
propagate freely, always producing a little cue to the right of the screen. 
However, the screen is infinitely sensitive: the absence of a visible spot on 
its surface means the certainty that the particle is still to the left. In agree- 
ment with the doctrine that the state can be reduced "without touching the 
object," by the simple absence of a visible effect (see, e.g., Dickel'9~; more 
radically Elitzur and Vaidmant2~ this certainty reduces the cue of the 
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packet to nonexistence at t = (k + 1) r. An analogous process is repeated in 
the next time intervals [ t /k + l,  t /k + 2], etc., causing a slow decrease of 
the packet norm, until the particle is finally absorbed. As a result of that 
process, the norm squared of the gradually absorbed packet gives the prob- 
ability that the particle still escaped detection, while the reduced "free 
propagation cues" define the absorption probabilities in the subsequent 
time intervals t / k +  l, t/k + 2, etc. (see Fig. 3). The model is promising, but 
deceptive. 

If the screen is infinitely sensitive, it "watches" the particle (or particle 
absence) all the time, thus performing the reduction permanently and not 
only in selected time moments. To describe the phenomenon properly, one 
should take the limit n ~ + oo. Then, however, one faces the mechanism of 
the Zeno paradox ~5-7~ (also "watched pot effect"): when n--, +c~, the 
norms squared of the "lost cues" tend to zero as quickly as o( 1/n 2) and the 
total probability of the particle absorption in [0, t] vanishes as o(1/n). 
The process, in the limit, is described by the unitary operator 

e -mH~ (6.1) 

(where P is the projector onto the 1/2-space : <b) ,  generating a norm- 
conserving evolution of the packet inside of the space domain = <b.  
One is thus led to a surrealistic conclusion that the particle can never be 
absorbed by the screen! 

By contemplating the argument, we could find in it a singular kind of 
beauty. In reality, there are no infinitely sensitive and dense screens! Each 

S 

y , ( x , t )  

3 tin ~ . . . . . .  

2 tin . . . . .  ~ _  ,-=.--_-=. _ 

t-O 
Z 

Fig. 3. A frustrated attempt at representing the 
particle detection (absorption) on the screen as a 
gradual collapse of the wave packet. 
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screen has a certain finite depth, density, and "awareness": it leaves some 
small but nonvanishing probability that the particle, instead of being 
detected, may penetrate into it or even sneak out through it, due to the 
mechanism of the tunnel effect. Could it be precisely due to this imperfec- 
tion that the screen can act at all? Perhaps, a perfect screen, if it existed, 
could not work: its unlimited sensitivity would cause the total wave packet 
reflection instead of the detection. 

The argument seems profound, but is deceptive again. In fact, if there 
is a link between the screen sensitivity and the (undesired) ability to refract 
particles, this link should manifest itself in the most conventional scattering 
experiments, where Born's approximation holds. It should affect the pic- 
tures on too sensitive screens (e.g., preventing too good photographic 
plates to catch pictures!). Northing like that happens: as far as we know, 
there is no screen sensitivity parameter which would play this kind of 
destructive role. It is also worth noticing that the certainty of the detection 
(i.e., the "perfection" of the screen) depends not only on the quality of the 
screen itself, but also on the type of the microobject. It must increase 
together with the object mass and charge. (While the neutrinos quite easily 
penetrate the best screens, the heavy ions or molecules have no such 
chance). Thus, if the certainty of the detection is what enforces the "Zeno 
effect" for an electron, the same mechanism should be much more efficient 
for heavier molecules, or semimacroscopic bodies, preventing them from 
hitting screens. If such a mechanism existed, in the classical limit it should 
also prevent the cannon balls from hitting the walls, which is unfortunately 
not the case. See Fig. 4 

S 

f 
f 

z - b  

Fig. 4. Extreme consequence of the Zeno effect: the macro-  
scopic particle is unable to hit an infinitely sensitive screen. 
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Our last argument is visibly unfair. One might answer that for sharply 
localized wave packets of heavy particles, when they approach the screens, 
the Zeno time tS) is too short to generate the Zeno effect. Yet, the trouble 
might be deeper than that. There is something evidently unreal in the 
whole reduction axiom, including its supposed instantaneity, as well as the 
Dicke doctrine of reduction in absence" (reduction without interaction). 
As a matter of fact, one feels that the activity (or rather inactivity) of 
the screen has very little to do with a "dense sequence of instantaneous 
measurements" necessary to produce the Zeno effect (see Perest2~)). What 
happens looks rather as if the microobject and not the apparatus caused the 
measurement. Before this happens, the screen does nothing, knows nothing, 
and has no responsability for the mental processes of the theoretical 
physicist who invented the reduction axiom to find peace of mind without 
solving the problem. All this might be fortunate for the existence of pictures 
on photografic plates and monitor screens, but still gives no hint about the 
most elementary monitor picture of Fig. 1. 

7. ALGORITHM OF KIJOWSKI AND PIRON'S 
WAVE MECHANICS 

The unique numerical guess as to the probability density on the flat 
screen (Fig. 1) was stated in 1978 by Kijowski. t18) His hypothesis was 
motivated by some general axioms [but indeed is a free inspiration of the 
current formula; cf. (5.8)]. Put m =  1. For the screen placed at z=b, 
Kijowski considers a free packet ~k(x, t) composed of plane waves 
"propagating to the right" (i.e., in the positive p:direction): 

~(x, t)= f p:>o c(p) eitpx-zt) da p (7.1) 

where E =  E(p)= p2/2 are energies of the Fourier components. A wave of 
that form belongs to the positive spectral domain ofp~, in which ~ z  is 
a real, positive operator. Now, if one skips axiomatics, the Kijowski 
prescription reduces to defining a new (freely propagating) wave packet: 

$(x, t )=  ~ $(x, t)=Ip:>o ~/p-~ c(p)e"P"-Z')d3p (7.2) 

One can show that the norm of ~b is conserved on the "vertical planes" 
-=const .  Moreover, the screen integral of tjz(x,t) (with jz(x,t) of 
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indefinite sign!) coincides with the t-average calculated for the positive 
function I~bl2: 

f_ tj~(x, t) dzx dt = i t Iq~(x, t)[ 2 d2x dt (7.3) 
. = b  : = b  

Kijowski infers that I~b(x, t)[ 2 is the probability density for the particle 
detection on the "vertical planes." The hypothesis posesses some elegance; 
one might thus be tempted to solve similarly the problem for the curved 
screens (i.e., by substituting ~ in (7.2) by x / ~ ,  where ~ = const defines 
the screen surface and PC is the corresponding canonical momentum). 
However, the idea backfires. 

Indeed, suppose the hypothesis is correct. The integral 

is [~b(x, t)12dxdydt (7.4) 
(r) 

(i.e., the probability of the particle detection on the screen for t ~< r) is (and 
should be) a monotonic, nondecreasing function of r. Henceforth, the 
complementing probability that for t = r the particle is still undetected 
(left of the screen) must be monotonic, nonincreasing. Unfortunately, the 
negative j , (x ,  t) means that the integral 

f:~b I~k(x, r)[ 2 d3x (7.5) 

is not a monotonic (decreasing) function of r, and henceforth it cannot 
represent the probability of the particle survival (nonabsorption) until 
t = r. It seems like a specific sarcasm of the scheme: now, when we have 
almost found the vertical probability, we have lost the horizontal one! 

The trouble does not end here. Indeed, if the integral (7.5) is not the 
detection probability on Z(r),  then ~(x, r) is not the correct particle state 
at t = r (it cannot, since it has no correct statistical interpretation! ). If so, 
then why in the first place should it be taken as a starting point to deter- 
mine the vertical amplitude ~b(x, t)? 

Our critique is methodological and does not yet prove that the 
formula (7.2) is wrong. However, some other attributes make it rather 
unlikely. In the first place, the construction seems handicapped by "thinking 
in terms" of Fourier transforms, inconvenient in the configuration space. 
Note that the wave packet composed only of the positive p~ part has no 
compact support; in general, it extends on both sides of the screen. Hence, 
it is rather arbitrary to insist that it "propagates toward the screen" (and 
not, for example, that it "escapes from the screen" toward the positive z's!). 
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The physically interesting, continuous packet ~O(x) with a compact support 
f2 < b is never "propagating forward." Its Fourier transform 

c(p) = ~ ~O(x) e-ipx d3 x 

( -- iP-')" IQ 
,=o n! ~b(x,y,z) z"dxdydz  (7.6) 

is an analytic function of p:  with an infinite radius of convergence. Hence- 
forth, c(p) cannot vanish just for p~ negative, except if c(p)=0.  Applied 
"to the letter," the Kijowski construction thus gives no hint about the 
experiment of Fig. 1 (i.e., for the initial packet localized on one side of the 
screen). To overcome the difficulty, one might try to decompose an 
arbitrary ~,(x, t) into the positive and negative p.. parts: 

~b I -+ )(x) = I~3 8( + p:) c(p) e iPx d 3 p (7.7) 

where 8(~)=(1  +sgn~)/2 ,  and extend the algorithm, using ~,~+)(x) to 
define the "vertical amplitude"(8): 

~b(x, t) = ~ ~1+ ~(x, t) (7.8) 

Then, however, ~b(x, 0) does not share the compact support of ~,(x, 0). In 
particular, taking 

~b(x) = f (x ,  y) g(z) (7.9) 

with g(z) - 0 for z ~> b, one has 

~b(x, y, z, 0) =f(x ,  y) G(:) (7.10) 

where 

G ( z ) = ~ . _ g ' + ) ( z ) = - - ~  .v/p~,(p) eiPZdp (7.11) 

If now 

g(z) = g(--z) = g(z)* ~ g(p) = g(--p)  = ~(p)* =~ G ( - z )  = G(z)* (7.12) 

then G(z) must be nonzero for sequencies of--values tending to both + ~ .  
Choosing now a point ( x , y , z = b , t = O )  with G(b)~O, sufficiently far 
away from the support f2 of ~, one arrives at a strange conclusion that the 
initial wave packet ~(x, 0) localized in s < b  has a nonzero probability 
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density to be captured on an (arbitrarily distant) screen z = b. This occurs 
at the very moment t = 0  when I~ [~k(x, 0)12 dx= 1, i.e., when the particle 
is certainly and totally in f2! The conclusion is questionable even in 
Schr6dinger's quantum mechanics (the localized probability with an 
instantaneous capacity to appear on arbitrarily distant screens!). Its analog 
for the relativistic particle (indeed attempted in Ref. 18) would imply a 
manifest causality violation (the packet detectable with a nonzero proba- 
bility outside of the future light cone determined by its support at t = 0; see 
Fig. 5). 

It thus seems that the problem is still open. As a matter of fact, this 
concerns not only the "vertical" probability: for a microparticle propagat- 
ing in the presence of an absorbing screen, both vertical and horizontal 
probabilities are missing. A similar problem exists but is approached 
differently in an alternative solution proposed by Piton. 

7.1. Piron's Quantization 

In 1978 Constantin Piron proposed a "vertical variant" of Schr6dinger's 
wave mechanics describing a generalized optical bench. 1221 The "states" of 
a particle are defined on a family of vertical planes (given by z = const) and 
are described by a wave function q~(x, t) normalized to unity: 

fR ~ ]t~(X, t)[ 2 dx dy dt = 1 (7.13) 

S 

/ 
/ 

\ / 
\ / 

/ 
/ 

, /  
/ 

ty 

Fig. 5. The algorithm of Kijowski leads to a nonzero detection probability on 
arbitrarily distant screens. Note the causality problem in the relativistic case. 
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The concept of the "evolution" now refers to the wave packet changes from 
one vertical plane to another (so, it might be called the "z-evolution" 
instead of the "time evolution"). Piron assumes additionally that the wave 
packet ~(x, t) is composed of the Broglie waves propagating in the positive 
:-direction and postulates the evolution equation 

- i a ~ / O z  = o,~b ( 7 . 1 4 )  

with the "vertical Hamiltonian": 

o,~ = [ 2miO/at - a2/Ox z - OZ/Oy 2 ] 1/2 (7.15) 

The evolution (7.14) conserves the "vertical normalization" (7.13); 
moreover, ~b fulfills the traditional Schr6dinger's equation. It is Piron's 
guess that its square I~b(x, t)l 2 defines the probability density for the 
particle localization on the family of waiting screens z = const. Although 
Eq. (7.14) was already known, ctS) the very idea emanates a "spirit of 
rebellion." Piron desists to specify the interrelation between ~b(x, t) and the 
traditional wave packet ~b(x, t), and he offers a justification of some 
philosophical elegance. In the traditional (instantaneous) measurements, 
says Piron, the t ime of the measurement is strictly controlled; henceforth, 
it becomes a superselected variable (parameter). If, however, the particle is 
to be absorbed on a waiting screen, the time t of the event is uncertain, 
whereas z is strictly controlled (superselected). The familiar scheme of 
quantum mechanics for such a particle fails, and the quantization proce- 
dure must be carried out from the very beginning: z is now an "evolution 
parameter," while t and ia/ot  are the genuine quantum mechanical observ- 
ables. Both pictures, according to Piron, are incompatible. Piron's theory 
permits one therefore to construct the probability amplitude for the screen 
at z = b if one knows the similar probability amplitude on another vertical 
screen (e.g., on z = 0), but gives no hint how to determine ~(x, y, b, t) in 
terms of ~,(x, y, z, 0). As a structural proposal, Piron's doctrine is close to 
atypical quantum schemes 123~ and/or theories where the superselection 
rules assume an unconventional form (anticipating the Aharonov-Albert 
idea of quantization on a family of monitoring hyperplanes. 12~ Comparable 
also with Sudarshan's systems, t24) where z is an observable while - i a / a z  is 
not). Should the quantum theory take further steps in this direction, 
Piron's Nouveau principe d'kvolution C22~ might mark one of its turning points. 

However, what about our original problem of Fig. 4? Despite all 
efforts, the solution, apparently, is not yet at hand. 

In some interpretational schools one hears that quantum mechamcs, 
for some fundamental reasons, is inadequate to answer certain questions, 
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as, for example, involving the time duration and time control of quantum 
measurements. One even derives some sort of "austere satisfaction" from 
the fact that some answers are denied (for a number of reasons, e.g., the 
questions cannot be well stated, the experiments properly programmed, or 
else, the underlying thoughts are no thoughts, etc.). It seems, however, that 
quantum theory is too constrained by a variety of "don't think principles" 
(from the diplomacies of the Copenhagen school to "Hawking's gun ''c25~ 
reducing to nonexistence wide classes of problems. Moreover, this time at 
least, the method fails. The question is quite well stated: the microparticle 
can exist in the presence of an absorbing screen in a similar way as it can 
exist in the presence of an external potential. The experiment can be easily 
designed, and the collision times of the pure ensemble particles (for an 
arbitrary initial wave function) can be registered. They will certainly show 
some statistical pattern. One of the crucial statements of quantum 
mechanics is that the state vector contains complete noncontradictory 
information about the system. Cs~ So, where is the information about the 
results of the experiment represented in Fig. 1 ? 

NOTE A D D E D  IN PROOF 

The argument of Sect. 6 illustrated by Fig. 3 has been very nicely 
discussed by L. E. Ballentine [Found. Phys. 20, 1329 (1990)]. 
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