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In the classical scheduling theory, it is widely assumed that a task can be processed 
by only one processor at a time. With the rapid development of technology, this assumption 
is no longer valid. In this work we present a problem of scheduling tasks, each of which 
requires for its processing a set of processors simultaneously and which can be executed 
on several alternative sets of processors. Scheduling algorithms based on dynamic and 
linear programming are presented that construct minimum length non-preemptive and 
preemptive schedules, respectively. Results of computational experiments are also reported. 

1. Introduction 

One of the commonly  imposed assumptions in the classical scheduling theory 
is that any task is processed by one processor at a time, see e.g. [2, 9, 12]. With the 
development of technology (parallel systems), this assumption is not so obvious. As 
examples, a fault tolerant system in which several processors test each other [17] or 
a testing system in which one processor simulates the tested object and the other 
processor is analyzing its output can be considered. Another range of applications appears 
in the field of new parallel algorithms and corresponding task systems [1,15, 22]. Thus, 
it seems reasonable to reconsider the assumptions and propose new models. 

In recent years, several papers dealt with the problem in which a task requires 
more than one processor simultaneously. Two groups of models have been distinguished 
[21]. In the first group of models, it is assumed that any task can be executed on any 
set of processors under the condition that a fixed number of processors is assigned 
to the task [7,8, 11,13,20]. There are three models in this group, namely, model  
"sizej" where a task requires a fixed number  of processor simultaneously [7, 8], 
model "cubej" where a task requires a number of processors which is a power of 2 
(e.g. either 1 or 2 or 4, etc. processors) [11, 12], and model "any" for which each task 
can be executed on any subset of processors but the execution speed depends on the 
number of processors processing the task [13,23]. 
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In the second group of models, it is assumed that the set of processors processing 
a task is important [4,6, 18]. This problem is similar to classical scheduling with 
additional resources [ 10] and can be expressed in terms of weighted graph coloring [18]. 
Two models in this group have been distinguished. These are: model "fixj" where a 
task can be executed by a fixed set of  processors [4, 6, 18], and model "seti" in which 
each task has a set of alternative sets of processors by which it can be processed. 

In this paper we will concentrate on model "setj", which is a generalization 
of model "fixj". Before presenting results, we will set up the problem more formally. 

Let us denote by T a set of n tasks and by 79 a set of  m dedicated processors. 
Each task requires for its processing some set D of processors simultaneously. Moreover, 
for each task there can be more than one such set, i.e. the task can be executed on 
alternative sets of  processors Dl ..... Dsj. Let us denote by Sj the family of sets of 
processors which can process task Tj (i.e. Sj = t_JI/s~l I {D l }). We will name each of such 
subsets Dt a processing mode or a processing configuration of task Tj. 

The processing time of a task depends on the set of  processors processing it. 
We assume that processing times of tasks are given in the matrix: 

X =  {t~" �9 tj ~ ~ R + is a processing time of task Tj in processing mode i 
requiring a set of  processors Oi; if Tj cannot be scheduled in this 
mode, then t~ +~}.  

Tasks are independent. We will analyze both preemptable and nonpreemptable task 
cases. In the case of preemptable tasks, any task can be interrupted at no cost and 
restarted later, probably in a different processing mode. In this case, we also assume 
that processing percentages of tasks processed in various processing modes are "additive" 
or, in other words, can be accumulated. For example, if some task has been processed 
1 second in processing mode A while the total processing time for this task in this 
mode is 10 seconds, then the task is processed in 10%. If next this task has been 
processed in additional 20% in some other processing mode, then it is processed in 
30%. After restarting in the processing mode A, this task will occupy processors 
appropriate in this mode in 7 additional seconds. This approach is similar to the case 
of scheduling on unrelated machines or scheduling under resource requirements [5] 
and differs in considering alternative processing modes for tasks. 

The optimality criterion is schedule length (Cm~x). 
In order to denote analyzed problems, we will use an extended version of the 

scheme proposed by Graham et al. [14] with later extensions [10, 21]. In this notation, 
a scheduling problem is described by three fields (separated by the symbol "1"). The 
first field describes the processor system. In this work it will be the letter P, optionally 
followed by a positive integer which denotes the number of processors. If there is 
no constant after P, then the number of processors is not fixed and is given in the 
current instance of the problem. The second field describes the task system. The word 
"pmtn" is used to denote that tasks are preemptable; if this word is absent, tasks are 



L. Bianco et al., Scheduling multiprocessor tasks 495 

nonpreemptable. The word "setj" denotes simultaneous requirement of multiple 
processors by tasks. Moreover, in general, any task can be processed by more than 
one such set of processors. The last field denotes the optimality criterion; here it is 

Cmax. 
In this paper, we will present a dynamic programming based procedure to 

solve optimally simple cases of the nonpreemptive version of the problem. This will 
result in pseudo-polynomial algorithms. For a general case of the nonpreemptive 
scheduling, a heuristic will be proposed and its worst case behavior will be analyzed. 
The preemptive version of the problem will be solved via linear programming. The 
organization of the paper is as follows. In section 2, the case of nonpreemptive 
scheduling is considered. In section 3, the preemptive version of the problem is 
analyzed. Section 4 summarizes results of computational experiments. 

2. Nonpreemptive scheduling 

The problem of nonpreemptive scheduling arises in many practical applications. 
It can be the case in manufacturing systems where the change-over costs are usually 
too high to allow for swapping partially processed tasks on the machines. In computer 
systems, two users cannot access a printer simultaneously or modify at the same 
moment of time the same record in a database. Hence, nonpreemptive schedules seem 
quite natural. 

Here, problem P I setjl C,,o~ is NP-hard in general. This can be easily shown by 
a reduction from the set partition problem to problem P2I setjl Cr~ax. For three processors 
and tasks requiring processors from only one set (i.e. when I ajl = 1 for j = 1 ..... n), 
the problem is NP-hard in the strong sense [6]. Thus, it is unlikely to propose an 
algorithm solving these problems in polynomial time. Moreover, for more than two 
processors, it is difficult to expect a pseudo-polynomial time algorithm in a general case. 

In this section, we will present pseudo-polynomial time algorithms for problems 
P21 setj I Cmax and a restricted version of the problem P3 [ setjl Cm=. Then, a simple 
heuristic for the problem P lsetjlCmax with the worst-case behavior bound equal to 
m will be presented. 

2.1. P2lsetjICmax 

Now, we will given an optimization pseudo-polynomial time algorithm based 
on a dynamic programming procedure. We assume that processing times of tasks are 
positive integers. This assumption does not cause significant loss of generality because 
any real number can be approximated by a rational number; what is more, computer 
representation of numbers has only limited precision. 

In order to find the optimal solution, let us calculate the function checking the 
existence of a feasible schedule of length i for the set of tasks Tl ..... Tj. This function 
can be defined more formally as follows: 
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f(i ,  j ,  x, y) = { 1 if and only if the set of tasks T I .... .  Tj can be feasibly 
executed starting at moment  0 and finishing exactly at 
moment  i while processors P1,/'2 are utilized x and y 
units of time, respectively; otherwise, f ( i , j ,  x, y ) =  0}, 

n 

j = l  . . . . .  n, i = 1 , . . . ,  ~ rain ( to ' ) ,  
k = l  / = 1  ..... ISkl 

n 

x , y = O  .. . . .  ~ min (tO'). 
k = l  1 = 1  . . . . .  Is~l 

Assuming that all the tasks are executed in their shortest processing time mode, 
sequential ly and in any order, we would have a feasible schedule  of  length 
~ = 1  min/=l ..... iskl(t D'). Thus, this value is an upper bound of the schedule length 
in the above definition. Note that the smallest i for which the function f(i ,  n, x, y) 
= 1 is also Cm~x, the optimal length of the schedule. 

Before giving formulae for calculatingf(i ,  j ,  x, y), let us first analyze the cases 
when it takes value 1. For j = 1, i.e. for the first task only, f(i, 1, x, y) takes value 1 
only for such i that execution of task TI can be feasibly finished in moment  i (starting 
at moment  0). This means that i must be equal to the processing time of T I in one 
of  its modes,  namely, i = t] or i = t 2 or i = t[ 2. 

Now, consider the case when j > 1. Suppose we have already calculated the 
function f ( i , j ' ,  x, y) for entries such that j ' =  1 .... , j - 1 .  For j > 1, the value of 
f ( i , j ,  x, y) is 1 when one of the following cases occurs: 

(1) task Tj is scheduled in the duo-processor mode and the schedule finishes at 
t ime i, 

(2) task Tj is scheduled on one of the processors in one of the two uni-processor 
modes while the schedule finishes at time i. 

In the latter case, we have to distinguish three further sub-cases: 

(a) The schedule finishes at moment  i, but task Tj does not change the length of 
the schedule imposed by tasks T1 .....  Tj_l (cf. figures l(a)). 

(b) The schedule finishes at moment  i, and i is also the moment  when the execu- 
tion of task Tj stops. For tasks 7"1 .. . . .  Tj_ l, however, the length of the schedule 
was imposed by a different processor than the one to which Tj is assigned 
(figure l(b)). 

(c) The schedule finishes at moment  i, and this is also the moment  when the 
execution of task Ty finishes, while for tasks Tl ..... Tj_l the length of the 
schedule was imposed by the processor to which Tj is assigned (figure l(c)). 

According to the above discussion, there are seven possible situations when 
f(i ,  j, x, y) = 1 (one for a duo-processor mode and six (3 x 2) for processing a task 
in the uni-processor mode on each of the two processors). The last thing to be 
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(a) 

x. t  1 
J 
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0 Y i-t] i 

(c) 

Figure 1. Three possible cases of scheduling 
uni-processor tasks on one of two processors. 

considered before presenting formulae are mutual dependencies between i, x and y. 
We will discuss them in the order of the previously enumerated cases. 

(1) Since it is impossible for a processor to work longer than i in the schedule o f  
length i, thus x < i and y < i. 
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(2a) Since the schedule finishes at moment  i on one processor, say P1 (Tj is scheduled 
on P2), and Tj is f inished before i, so y < i. Similarly, x < i when Tj is scheduled 
on P1 and the length of  the schedule i is imposed on P2. 

(2b) Suppose Tj is scheduled on PI. In this case, i - tJ < y < i because only for such 
values of  y adding Tj on PI will increase the length of  the schedule,  which for 
tasks T1,..., Tj_ l has been y. Analogously,  i - t 2 < x < i, when Tj is scheduled on 

P2.  

(2c) Suppose Tj is scheduled on PI- In this case, y < i -  t~ because only for y 
satisfying this inequality the length of  the schedule for tasks T1 ..... Tj_I was 
imposed on processor  PI. Similarly, x < i -  t 2 when Tj was scheduled on P2. 

Now, we can give exact formulae for the calculation o f f ( i ,  j ,  x, y). The function 
f ( i , j ,  x, y)  can be calculated iteratively using the fol lowing equations: 

For  j = 1" 

f ( i ,  1, i, 0) = 1 when i =  tl,  

f ( i ,  1, 0, i) = 1 when i = t 2, 

f ( i , l , i , i )  = 1  w h e n i = t l  2, 

in all other cases f ( i ,  1, x, y)  = O, 

n n 

min (t ~ ). i = 1 . . . . .  ~ l=minl ..... I&l ( t o ' ) '  x , y  = 0 . . . . .  ~ 1 = 1  . . . . .  [Ski 
k = l  k = l  

For j > 1, f ( i ,  j ,  x, y) = 1, if one of  the following cases occurs: 

f ( i - t J 2 , j - l , x - t J 2 , y - t J 2 ) = l  x < i , y < i ,  case 

f ( i ,  j - 1, x - t) ,  i) = 1 x < i, case 
1 1 <  < 1 f ( y ,  j - 1, i - t j ,  y)  = 1 i - tj _ y _ t j ,  case 

f ( i - t ) , j - l , i - t J , y ) = l  y < i - t ) ,  case 

f ( i , j - l , i , y - t  2 ) = 1 y < i, case 

2 < x _ <  2 f ( x , j - l , x , i - t  2)  = 1 i - t j  _ t j ,  case 
2 f ( i - t 2 , j - l , x , i - t ~ ) = l  x < i - t j ,  case 

i = l . . . .  , ~ mJn (tD' ), j 
k = l  t=l ..... I & l  

9 

2a, Tj is scheduled on Pl, 

2b, Tj is scheduled on P], 

2c, Tj is scheduled on P1, 

2a, Tj is scheduled on P2, 

2b, Tj is scheduled on P2, 

2c, Tj is scheduled on P2, 

= 2 , . . . , n ,  

in all other  case f ( i ,  j,  x, y)  = 0, 

n 

i = 1  . . . . .  ~ min ( tO') ,  j 
k = l  1=I ..... ISkl 

n 

= 2 . . . . .  n, x , y = O  .. . . .  ~., rr f in,~,(t~ 
1=1 k = l  ..... Iokl 
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The optimal length of the schedule, Cmax, is the minimal k such that 
f (k ,  n, x, y) = 1. 

The optimal schedule can be found by backtracking f romf(Cm~,  n, x, y) through 
the non-zero entries in the table of the function f ( i ,  j ,  x, y) until some non-zero entry 
fo r j  = 1. One backtracking step could look as follows. For some entry f ( i ,  j, x, y) ~ O, 
one of the above seven cases occurred for one of the processing modes requiring set 
Dt of processors. When Tj has f ( i ,  j, x, y) = 1 due to cases 2a, 2b, 2c, then we place 
Tj in uni-processor mode on an appropriate processor before the previously allocated 
uni-processor tasks�9 If there are no such tasks, we assume that Tj is the last task on 
the given processor. For case 1 (i.e. D l = {Pl, P2}), Tj can be processed in the beginning 
of the schedule. Next, we step back to the e n t r y f ( i ' , j  - 1, x ' ,  y ' )  = 1 which caused 
f ( i , j ,  x, y) to be 1. In this way, we can find iteratively the order of tasks and their 
processing modes. Finally, we shift all the tasks to the left (in the direction of 
moment 0) as far as possible�9 

Now, let us assess the complexity of this approach. Note that the most time- 
consuming activity is the calculation of all the values of the function f ( i ,  j ,  x, y). 

�9 n �9 t t O  I Since i takes all values in the range 1 . . . .  Y~k=lmmt=l ..... ISkl ( k ), J in the range 1 ..... n, 
n �9 D I  and x, y in the range 1 ..... Y.k=imlnl=l ..... Iskl ( tk) '  it is easy to observe that f ( i , j ,  x, y) 

can be calculated in pseudo-polynomial time O(n(Y~= lmint= 1 ..... IsA {tj~ �9 We conclude 
this section with an example. 

EXAMPLE 1 

We are given T =  (Ti, T2, T3}. Sl = {{PI), {P2)}, $2 = {{Pl, P2)}, $3 = ( {Pl}, 
{P2}}, t l = 5 ,  t~=6 ,  t~2 = 7, t~=5 ,  t~=9 .  

The values of f ( i , j ,  x, y) and the process of backtracking are depicted in 
table 1. Let us take a closer look at the backtracking process. We start with the entry 
i = 13, j = 3, x = 12, y = 13. It is non-zero because f(13,  2, 7, 13) = 1 and T3 can be 
scheduled according to case 2a. T3 will be executed as the last on Pi. We step back 
to the entry i =  13, j = 2, x = 7, y = 13; it is non-zero due to f (6 ,  1, 0, 6) and T2 
processed as the first duo-processor task on P1 and P2. Finally, 7"1 is processed on 
/'2 as the last uni-processor task. The optimal schedule is presented in figure 2. 

2.2. P31setj l Cmax 

The problem of nonpreemptive scheduling of tasks requiring a set of  processors 
simultaneously in the case of three dedicated processors is NP-hard in the strong 
sense [6]. However, if we relax the problem in the way that for all the tasks only 
two types of duo-processor processing modes are allowed, then a dynamic programming 
algorithm can be proposed. Assuming the above constraint, we will analyze the 
problem along the same lines as in the previous subsection. 

Without loss of generality, let us assume that the processing mode requiring 
processors { Pl, P3 } is not present (or is forbidden). Of course, this can be any other 
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aa 
0 7 13 

Figure 2. Example 1. The optimal schedule. 

T 1 2  
T 2 

T 2 3  

Figure 3. Typical form of the schedule for a 
restricted version of the problem P3lsetjlCmax. 

pair of processors if we take into account appropriate renumbering of processors. 
Without any additional loss of generality, we assume that all processing times are 
positive integers. In the problem limited in this way, any feasible schedule always 
has the same structure (cf. figure 3), or can be transformed to a schedule with such 
a structure without changing Cma x. Uni-processor tasks are scheduled in parallel, 
tasks requiring { PI, P2 } are scheduled before the uni-processor tasks (or after), tasks 
requiring {P2,/)3 } are scheduled after (or before) the uni-processor tasks, and finally, 
tasks requiring {PI, P2,/)3} are scheduled at the end (or at the beginning) of the 
schedule. The length of  the schedule is equal to the maximal time a single processor 
is used. 

In order to find the optimal solution, let us calculate the function checking the 
existence of a feasible schedule for tasks TI ..... Tj in i units of t ime (starting at 0). 
In other words, we are going to calculate the function: 

f ( i ,  j ,  x, y, z) = { 1 if and only if the set of tasks Tl .. . . .  Tj can be feasibly 
executed finishing exactly at moment  i while processors 
P1,/)2, P3 are used x, y, and z units of time, respectively; 
otherwise the value of the function is 0}; 

n n 
min (t ffl ). i = 1 ,  ~ min ( to ' ) ;  j = l  . . . .  ,n, x , y , z = O  . . . . .  ~ t=l ..... Is~l 

.. . .  t=l ..... Iskl k = l  k = l  
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As has been observed in the previous subsection, ~ = l  min/---I ..... iSkl(tf t ) is an 
upper bound of the schedule length. 

Before going into detailed description of how f ( i ,  j, x, y, z) can be calculated, 
let us first analyze when it takes value 1. Each of the tasks can be executed in one 
of the following ways. 

(1) A task is scheduled in the triple-processor mode (i.e. requires processors 
P1, P2, P3 simultaneously). 

(2) A task is scheduled in one of the two allowed duo-processor modes (i.e. 
requires simultaneously either processors PI, P2 or/ '2 , / '3) .  

(3) A task is scheduled in the uni-processor mode (i.e. this task requires only one 
of the three processors). 

The last two cases require further subdivision into three sub-cases. Suppose the 
task Tj is considered. 

(a) Tj is scheduled in such a way that the length of the schedule for the tasks 
T1,..., Tj is equal to the length of the schedule for the tasks TI ..... Tj_ i (cf. 
figure 4(a)). 

(b) Tj is scheduled in such a way that the length of the schedule for the tasks 
TI ... . .  Tj is greater than the length of the schedule for the tasks Tj ..... Tj_ i due 
to assigning Tj in a particular mode to some processor(s). Here, however, 
processor(s) which have been assigned to Tj were not the most loaded for tasks 
Tl .. . . .  Tj_l (cf. figure 4(b)). 

(c) The length of the schedule is imposed by the processor(s) processing Tj both 
for Tl .. . . .  Tj and for Tl ..... TI._ l (cf. figure 4(c)). 

T 1 T. I ~  

T12 T12 
T 2 

T2S 

o i 0 
(a) 

T 2 

T 3 

o (c) i 

T I Tj 

T 2 .~ 
z s T 

T S i!~ ~, 

i 
(b) 

Figure 4. Three possible cases of scheduling uni-processor tasks on one of  three processors. 
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Note that the above three cases apply to uni- and duo-processor  modes.  Next,  
we are going to discuss the dependencies  between i, x, y and z in each of  the cases. 

using 

For  j 

(1) Tj is scheduled in the tr iple-processor mode.  Since no processor can work 
longer than i in a schedule of  length i, it is enough to check  only x, y, z 
satisfying x < i, y < i, z < i. 

(2a) Suppose Tj is just  about to be scheduled on processors PI, P2. The length of  
the schedule is imposed by / ' 3  (the processor which is not used by Tj). Hence,  
x < i and y < i. When  Tj is scheduled on P2, P3, then y < i and z < i, analogously. 

(2b) Suppose Tj is to be scheduled on processors Pl, P2 so that the schedule finishes 
at i. Then i - t] 2 < z < i because only for such z may this case take place. Then,  
the length of  the schedule for tasks Tt .. . . .  Tj can be imposed by Pl or by P2- 
In the former  case, i = x, y < i, in the latter case i = y, x < i. By analogy, when 
Tj is to be scheduled on P2, P3, then i - 3 3 < x < i and either y = i, z < i or 
z = i , y < i .  

(2c) Consider  Tj in the processing mode  requiring Pl, P2. Then z < i -  t) 2 (it is a 
case of  type c). As in case 2b, P~ or P2 is the most  loaded processor. Then 
x = i, y < i or y = i, x < i, respectively. When Tj is to be scheduled in the processing 
mode  requiring P2, P3, then x < i - 3 3, and by analogy, either y = i, z --- i or 
z = i , y < i .  

(3a) Consider  Tj in the mode  requiring Pl. Since the length of  the schedule is not 
imposed by Pl,  thus x < i. Moreover,  the length of  the schedule is imposed on 
P2 or on/ '3 .  In the former  case i = y, z < i, in the latter z = i, y < i. By analogy, 
y < i and either i = x, z < i or i = z, x < i, when Tj is assigned to P2, and z < i 
and either i = x, y < i  or i =  y, x < i, when Tj is assigned to P3- 

(3b) Suppose Tj requires PI. For  the tasks Tl ..... Tj_ 1 the length of  the schedule was 
equal to the load of  P2 or P3. In the first case i - t] < y < i, z < y, in the second 
Case i - t! < z < i, y < z. For assigning Tj to P2 and P3 we have, respectively, 
(P2) i - t ~ 2 < x < i , z  < x  or i-t~- < z < i , x < z ,  and (P3) i - t 3 < x < i , Y  < x  or 

i - t 3 < y < i , x < y .  

(3c) Suppose Tj requires P1- Since for Tl .. . . .  Tj_ 1 the length of  the schedule was 
equal  to the load of  Pl, then y < i - t], z < i - t}. Analogously,  x < i - ty 2, 

z < i -  t~ when Tj requires P2 and x _< i -  tj 3, y < i -  t~ when Tj requires P3. 

Now, we are ready to present the formulae to calculate f ( i ,  j ,  x, y, z). 
The values of  the function f ( i ,  j,  x, y, z) can be easily calculated iteratively, 
the fol lowing formulae.  

= 1 :  

f ( i ,  1, i, 0, 0) = 1 when i = tl,  

f ( i ,  1, 0, i, 0) = 1 when i = t~, 
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f ( i ,  1, 0, 0, i) = 1 w h e n  i =  t~, 

f ( i ,  1, i, i, 0) = 1 w h e n  i = tl 2, 

f ( i ,  l ,  O, i, i) = 1  w h e n i = t  23, 

f ( i ,  1, i, i, i) = 1 w h e n  i = t~ 23, 

fo r  all o the r  cases  f ( i ,  I,  x, y, z) = 0; 

n 

i =  1 . . . . .  E min (t ~ 
k = l  l=1 ..... ISk[ 

F o r j  > 1 , f ( i , j , x , y ,  z) = 

n 

x , y , z = O  . . . . .  ~ ,  nfln (tD').  
k=i l=l ..... ISkl 

1 w h e n  one  o f  the f o l l o w i n g  cases  occurs :  

Tj is scheduled  on PI,  P2, P3 

.123,  j _ 1, X .123 .123 .123 f ( i - t j  - t j  , y - t j  , Z - t j  ) = 1  x , y , z < i ,  

Tj is scheduled  on P1, P2 

12 12 i) = 1 f ( i , j - l , x - t j  , y - t j  , 

f ( z , j  1, i 12 12 z ) = l  - - t j  , y - t j  , 

12 i 12, z) = 1 f ( z , j - l , x - t j  , - t j  

12 12 Z) = 1 f ( i - - t J 2 , j - - l , i - - t j  , y - - t j  , 

12 i 12 Z)----1 f ( i - - t )  2 , j - l , x - t j  , - - t j  , 

Tj is scheduled  on P2, P3 

23 23 f ( i , j - l , i , y - t j  , z - t j  ) = 1  

23 23 - - - t j  ) = 1  f ( x , j  1 , x , i  tj , z  

23 i - t 23 ) = 1 f ( x , j  - 1 , x , y  - tj , 
23 23 23 - - t j  ) = 1  f ( i - t j  , j  1, x , i - t j  , z  

23 23 i - t 23) f ( i - t j  , j - l , x , y - t j  , 

Tj is scheduled  on P1 

f ( i , j  - 1, x -  t J , i , z )  = 1 

f ( i , j  - 1, x - t),  y , i )  = 1 
I f ( y , j  - 1, i - t j ,  y , z )  = 1 
1 f ( z , j  - 1, i - t j ,  y , z )  = 1 

f ( i  1 �9 1 - t j , j  - 1, i - t j , y , z )  = 1 

x , y < i ,  

12 < z < i , y < i ,  i - t j  _ 

12 < z < i, x < i, i - t j  _ 

12 z < i - t j  , y < i ,  

12 z < i - t j  , x < i ,  

y , z < i ,  

23 < X < i , z  < i ,  i - tj _ 

23 < x < i , y < i ,  i - t j  _ 

x < i  23 --  t j  , z  < i, 

x < i  23 - t j  , y < i ,  

x < i , z < i ,  

x < i , y < i ,  

1 < < i ,  < i - t j  _ y _  z - y ,  

1 < z < i , y < z ,  i - t j  _ _ _ 

z, y < i - t~, 

case  1, 

case  2a, 

case  2b, 

case  2b, 

case  2c, 

case  2c, 

case  2a, 

case  2b, 

case  2b, 

case  2c, 

case  2c, 

case  3a, 

case  3a, 

case  3b, 

case  3b, 

case  3c, 
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Tj is scheduled on P2 

2 z ) = l  f ( i ,  j - 1, i, y - t j ,  

2 i ) = 1  f ( i , j -  1, x , y -  ty, 

f ( x , j  - 1, x , i  - t 2 , z )  = 1 

2 z ) = l  f ( z , j  - 1, x , i  - t j ,  

2 2 z ) = l  f ( i -  t j , j  - 1, x , i  - t j ,  

y < i, z < i, case 3a, 

y < i, x < i, case 3a, 

i - t j  2 _ < x < i, z _ < x ,  case 3b, 

i - t j  2 _ < z < i ,  x - < z, case 3b, 

2 x ,  z < i - t j  , case 3c, 

Tj is scheduled on P3 

3 f ( i , j  - 1, i , y , z  - t j )  = 1 

3 f ( i , j  - 1, x , i , z  - t j )  = 1 

3 f ( x , j  - 1, x , y , i  - t j )  = 1 

3 f ( y , j  - 1, x , y , i  - t j )  = 1 

3 - t 3 )  1 f ( i - t j , j - l , x , y , i  = 

z < i, y < i, case 3a, 

z < i, x < i, case 3a, 

i - t j  3 _ < x < i, y _ < x, case 3b, 

3 < < 3b, i - t j  _ y < i, x _ y ,  case 

3 x ,  y < i - t j ,  case 3c, 

n 

i = 1 , . . . , ~  min ( to ' ) ,  j = l  . . . . .  n. 
k=l  l = l  . . . . .  Isk] 

If none of the above 26 cases occurs, then f ( i ,  j ,  x, y, z) = 0 for 

n n 

., min (t D' ). i = 1 , . . . , ~  l=minl  ..... I,~l,_k, (tDt)' j = l , . ,  n, x , y , z = O , . . . ,  E l = l  . . . . .  ISkl 
k=l  k=l  

The optimal length of the schedule is equal to 

Cma x = m i n { i  �9 f ( i ,  n, x, y, z) = 1}. 
x ,y ,z  

The optimal schedule can be found by a similar backtracking procedure as in 
the dynamic programming algorithm for the problem P21setjl Cma~. T h e  only difference 
here is the fact that tasks processed on P1, P2 are executed first, then uni-processor 
tasks are executed, finally tasks assigned to P2, P3 follow. Tasks requiring Pl, P2, P3 
can be executed at the beginning or at the end of the schedule. 

Again, the complexity of the algorithm depends mainly on the complexity of 
calculation of all the values of the function f ( i ,  j ,  x ,  y ,  z) .  Since i takes all the values 
in the range 1 . . . . .  ~ - 1  mint=l iS, l(tk Dt ), j in the range 1 ..... n, and x, y, z in the 
range 0 . . . . .  ~ = 1  minT=l ..... iskl(t~; ), it is easy to observe that the complexity of  this 
procedure is O ( n ( ~ = l  mint= 1 ..... Iskl {tff t })4) time. We conclude this subsection with 
an example. 
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EXAMPLE 2 

Suppose we have 'T'= {T1, T2, 7"3}. $I = {{P1}, {P2}, {P3}}, $2 = {{P1}, {P2}, 
{Pl, P2} }, $3= {{P1}, {P], P2}, {P2, P3}}, t~ =5,  t~=3, t~ =3, t~=5, t~=4, t~2=3, 
t 1=5 ,  t~ 2 = 4 , t  23=2. 

The upper bound of the schedule length is equal to t 2 + ti E + t23= 8. The 
values off( i , j ,  y, z) and the process of backtracking are depicted in table 2. As can 
be seen, there are more than only one possible optimal schedules. All the optimal 
schedules are presented in figure 5. 

T2 / i  
T 3 

T 1 

(a) 

T 3 

T 2 

W 1 

(b) 

d/ 
T 2 T 2 

T a 

(c) (d) 

Figure 5. Example 2. The optimal schedules. 

T 3 

Let us comment on the two just presented dynamic programming algorithms. 
They are correct thanks to the fact that for P21 setilCm~x and the restricted version 
of P31 set 11Cmax the structure of the optimal schedule is fixed (known in advance) and 
the order of execution of tasks processed in a certain mode is not important. 

2.3. PlsetjlCm~x 
Here, the number of processors m is not fixed and is given as a parameter in 

the instance of the problem. The optimal solution in this case can be obtained by 
applying an exponential (in the worst case) branch and bound algorithm proposed 
in [4]. In this subsection, we will present a simple heuristic with the worst-case 
estimation. 



508 L. Bianco et al., Scheduling multiprocessor tasks 

A L G O R I T H M  H: 

Schedule tasks one by one in any order in their shortest processing time mode. 

Let Cmnax denote the length of the schedule obtained from the heuristic and 
Cma~ the length of the optimal schedule. 

T H E O R E M  1 

For the assumptions stated above 

CHax < m  

Cmax 
and this bound is tight. 

Proof 
Obviously, for any algorithm (also an optimization one) 

Cmax >_ 1 ~ m i n  {tDI}. 
m j = l  l=l ..... Isjl 

This follows from the fact that in the above formula tasks are treated as 
preemptive ones, and multiprocessor tasks requiring a set D of processors simultaneously 
are treated as I Ol tasks requiring one processor. On the other hand, 

n 

CmHax< Z min {t~}, 
j = l  /=1 ..... Isyl 

because, when the above relation holds with equality, all tasks have to be executed 
sequentially and no parallelism is achieved. Thus, 

CHn~x --<m. 

Now, we will show that this bound is tight. 
Consider the instance consisting of n tasks to be scheduled on m processors. 

Processing requirements of all tasks are identical and given by 

1 tj =a  
k tj = a + e  

t D = + ~  

for j = 1 . . . . .  n, 

for k={2}  . . . . .  {m} and j = l  . . . . .  n, 

for D~{1} . . . . .  {m} and j = l  .. . .  ,n, 

where a, e are some positive numbers and e < amln. 



L. Bianco et al., Scheduling multiprocessor tasks 509 

H The length of the schedule according to the heuristic is equal to Cmax = na, 
while the optimal schedule (of. figure 6) has length Cmax = (n/m((a + e))). 

o c 
(a) 

T n 

H 
~ a x  n a  

r l  I I - I  
. o .  

~ 1 7 6  

. ~  

�9 -- T n 

~ax= ~ Ca+c) 
(b) 

Figure 6. Heuristic H. The schedule built by heuristic H (a), and the optimal schedule (b). 

Thus ,  

lim Cmnax = lim m 
e ~ 0  Cma x e ~ 0  l + - e  a 

- m .  [] 

This performance bound suggests that further work on the design of better 
heuristics seems to be necessary. 

3. Preemptive scheduling 

In this section, we will analyze the problem P[ se~, pmtnlCmax, i.e. the problem 
when the tasks can be interrupted and then restarted without additional cost, probably 
on different processor(s). One has to deal with this kind of scheduling, for example, 
during scheduling file transfers on the set of buses [16]. In this case, transmission 
can be interrupted and then restarted using different bus(es). For a small number of 
processors, simple polynomial time algorithms are known [3]. In general (when the 
number of processors is unbounded), the problem in question is NP-hard in the 
strong sense [19]. For a limited number of processors, however, this problem can 
be solved in polynomial time using a linear programming procedure (i.e. for 
Pro[ setj, pmtn [ Cmax). 

Before presenting further details of the algorithm, let us introduce the notion 
of the processor feasible set of  tasks. The processor feasible set of tasks is a set of 
tasks which can be feasibly executed in parallel on a given set of processors. Let 
there be a set ~ of all feasible sets. Let Q~ji denote the set of indices of the processor 
feasible sets including task Tj processed in mode Di. Let us assign variable xi to each 
processor feasible set in Q. 

Now, our problem can be formulated in terms of linear programming: 
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minimize ~., x i 

subject to ~ ~ xl >-- 1 for j = 1 . . . . .  n. 
Oi~Sj l~Q Di tDi 

We see that the number of variables in the above LP is O(n m) and the number 
of constraints is O(n). Thus, for a fixed value of m, the number of variables is 
polynomially bounded. Since LP can be solved in polynomial time in the number of 
variables and constraints, we get that in the case of problem Pml setj, pmtn I Cmax, this 
approach can be implemented to run in time polynomial in the number of tasks. 

4. Results of computational experiments 

In this section, we will present the results of the computational experiments 
conducted over the algorithms presented in the preceding sections. First, for non- 
preemptive scheduling, we compare algorithms based on the dynamic programming 
against the heuristic algorithm using the shortest processing time mode of the task. 
Then, the results for preemptive scheduling and the algorithm based on linear program- 
ming are presented. 

4.1. NONPREEMPTIVE SCHEDULING 

All the results have been collected in a series of experiments executed on PC- 
386. The simulating software has been written in BORLAm) PASCAL version 7.0. Task 
parameters were generated in the following way. First, the number of processing 
modes in which a given task can be executed was generated with a uniform probability 
distribution. Then, particular processing modes for the task were chosen with uniform 
distribution of the probability. Finally, the execution time of the task for a given 
mode was generated, again with a uniform distribution of the probability. 

The results are presented in figures 7(a) through 9(b). The execution time of 
the algorithm versus the number of tasks and the upper bound of the schedule are 
depicted in figure 7(a) for P21 setjlCmax and in figure 7(b) for P31setj[Cmax. Memory 
consumption versus the number of tasks and the upper bound of the schedule length 
are presented in figure 8(a) for P21 setjlCmax and in figure 8(b) for P31 setjlCmax. In 
figures 9(a) and 9(b), the average distance between the schedule length obtained by 
heuristic H and the optimum is presented. Each of the lines is a result of more than 
a thousand experiments. We have executed over 8300 experiments all together. 

As can be seen in figures 7(a) and 7(b), the execution time grows faster than 
linearly (but slower than exponentially) and stays within 5 seconds for the two- 
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processor problem with 16 tasks and upper bound equal to 50, and within 4 - 5  
minutes for the three-processor problem with 8 tasks and upper bound equal to 50. 

Memory consumption is reasonably low, which is surprising when considering 
the fact that the table of the function f ( i , j ,  x, y) has four dimensions and five dimensions 
for the function f( i ,  j, x, y, z). Since such a table is rather sparse, it would be inefficient 
to maintain a large matrix full of zeros. Thus, a different approach has been adopted. 
In each cell of a two-dimensional table of variables i and j,  a list of non-zero entries 
o f f ( i , j ,  x, y) orf( i , j ,  x, y, z), respectively, has been stored. It can be seen in figure 8(b) 
that the memory consumption for 8 tasks decreases with the growth of the upper 
bound. This can be explained in the following way. Tasks with a larger upper bound 
of the schedule also have longer execution times. The result is that more feasible 
schedules have length greater than the upper bound and such schedules are not taken 
into consideration. 

The last diagram in this subsection shows the average distance from the optimum 
of the schedule built with the heuristic H. As can be seen in figures 9(a) and 9(b), 
the distance from the optimum is about 10% for two processors and 30-40% for 
three processors. It turns out that heuristic H produces quite good solutions compared 
with the worst-case performance, equal to 2 for two processors and 3 for three 
processors. What is more, in all experiments the execution time of the heuristic H 
has been below 60 milliseconds. On the other hand, solutions close to the theoretic 
performance bound were also observed. 

4.2. PREEMPTIVE SCHEDULING 

The method of data generation was the same for testing the preemptive scheduling 
algorithm as for testing the nonpreemptive ones except for the fact that the number 
of processing modes for a task was generated with uniform probability distribution 
from the range [1, 6]. The execution time of the algorithm, memory consumption and 
number of variables in the linear program versus the number of tasks and processors 
are presented in figures 10 through 12. Each line in these figures presents results 
collected in more than a thousand experiments. 

As can be seen in figures 10 and 11, execution time and memory consumption 
are growing very quickly with the number of processors, but much more slowly with 
the number of tasks (when m is fixed). 

In figure 12, the number of variables in the linear program versus the number 
of tasks and processors is presented. It can be found that due to the mutual exclusion 
in the access to the processors, the number of feasible sets of tasks is not growing 
as drastically as could be expected according to the worst-case estimation (O(nm)). 

We may conclude that the algorithms presented earlier in this work can be 
efficiently implemented both from the point of view of execution time and memory 
limits. 
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Figure 12. Preemptive scheduling algorithm based on linear 
programming. Number of  variables in the l inear program. 

5. Conclusions 

In this paper, we have presented a new model of scheduling tasks requiring more 
than one processor at a time. It was assumed that a task may be processed by some 
alternative sets of processors and that its processing time depends on the set of processors 
processing it. In this way, we have extended the model in which tasks can be processed 
by one set of processors simultaneously. For the case of nonpreemptive schedules, 
dynamic programming algorithms were presented for two processors and for a limited 
version of the three-processor problem. For the general case of nonpreemptive scheduling, 
a heuristic with a tight worst-case bound has been given. In the case of preemptive 
schedules and a limited number of processors, a linear programming approach has been 
proposed. All these algorithms have been experimentally tested and it appeared that the 
execution times and memory consumption remain within reasonable bounds. 

Further research in this area may include other optimality criteria (e.g. maximum 
lateness Lma x or mean flow time F ,  which are very important from the practical point 
of view), or designing heuristics with better performance guarantees for the nonpreemptive 
case of the problem. 
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