
Annals of Operations Research 28 (1991) 47-66 47

A SURVEY OF ALGORITHMIC ME T HODS FOR PARTIALLY OBSERVED
MARKOV DECISION PROCESSES

William S. LOVE JOY

Graduate School of Business, Stanford University, Stanfora~ CA 94305-5015, USA

A partially observed Markov decision process (POMDP) is a generalization of a Markov
decision process that allows for incomplete information regarding the state of the system. The
significant applied potential for such processes remains largely unrealized, due to an histori-
cal lack of tractable solution methodologies. This paper reviews some of the current
algorithmic alternatives for solving discrete-time, finite POMDPs over both finite and infinite
horizons. The major impediment to exact solution is that, even with a finite set of internal
system states, the set of possible information states is uncountably infinite. Finite algorithms
are theoretically available for exact solution of the finite horizon problem, but these are
computationally intractable for even modest-sized problems. Several approximation method-
oiogies are reviewed that have the potential to generate computationally feasible, high
precision solutions.

I. Introduction

A partially observed Markov decision process (POMDP) is a generalization of
a Markov decision process (MDP) that allows for incomplete information regard-
ing the state o f the system. At each decision epoch, the decision maker must
choose an action based only on the incomplete information at hand. Typically,
one of the possible actions is to expend resources to gather additional informa-
tion about the system. Thus, POMDPs are appropriate models in those contexts
where actions can perform the dual role of biasing the system trajectory in some
desired fashion and obtaining information that can aid in future decisions. This
scenario obtains in a range of practical applications, including quality control,
maintenance scheduling, military encounters, searches, data communications,
statistics, health care, education, artificial intelligence and expert systems, natural
resource economics, and finance. See Monahan [18] for an overview of POMDPs
and some of these potential applications. There is at present a significant
discrepancy between this potential and actual applied results. This is at least
partially explained by the fact that, while the theoretical foundation is largely in
place, analytical or algorithmic solutions for realistically sized problems are rare.

�9 J.C. Baltzer A.G. Scientific Publishing Company

48 W.S. Lovejoy / Survey of algorithmic methods

A significant body of research has been dedicated to improving our ability to
solve POMDPs. One research direction is to seek problems that will have optimal
value functions or policies that inherit some identifiable structure, and then
exploiting that structure to accelerate the search for these optima. Some mono-
tonicity results are available (cf. White [34,35] and Lovejoy [15]) and policy
structure has been proved in some specific sequential hypothesis testing (cf. Wald
[33] and DeGroot [7]) and machine maintenance (cf. Ross [26] and Rosenfield
[25]) contexts, but such results are not common for POMDPs. One contributing
reason is the relatively complex manner in which the state and information
processes interact. Another contributing factor is a paucity of problems with
known solutions, even algorithmically derived, so that an experience base that
might spawn theoretical insights is largely absent.

The evolution of tractable algorithms for POMDPs is inhibited by the same
dimensionality problems one faces in solving completely observed Markov deci-
sion processes. Taking cues from the relatively more advanced work for MDPs,
one can expect that general algorithms will not be the means by which large
POMDPs are solved. Rather, algorithmic research will make (at least) two
important contributions to the general field: providing a means to numerically
check hypotheses and heuristics, and suggesting what types of structural results
one should look for. To emphasize this latter point, algorithmic research can
suggest what specific types of structures would aid computation, and these might
be different from the kinds of results one might seek in the absence of algorithmic
needs. Further, the presence of tractable algorithms would give practitioners the
confidence to embark upon POMDP modelling exercises with the knowledge that
some solution will be forthcoming, and this in turn would encourage data
collection exercises appropriate for more applications.

This paper reviews some of the currently available algorithms for the general,
discrete-time, finite POMDP with the optimality criterion of maximizing the
expected net present value of the induced time stream of rewards. The solution
techniques are largely based on dynamic programming algorithms, and inherit
their computational difficulties. Exact solution techniques are only applicable to
the smallest models, but sufficiently precise approximate methods are available
for some realistically sized problems.

The next section defines the finite POMDP model and reviews some known
results. Section 3 reviews the methods available for solving the POMDP exactly,
and section 4 reviews approximate solution methods. Concluding remarks appear
in section 5.

2. Model definition

The model considered here is a discrete-time, finite partially observed Markov
decision process (POMDP) with stationary cost data as in Smallwood and Sondik

W.S. Lovejoy / Survey of algorithmic methods 49

[29]. In these, a decision maker chooses
at tempt to control the trajectory of an
process. The decision maker is unable to
but must choose h i s /he r actions based
system evolves through time.

actions at discrete time intervals in an
imperfectly observed Markovian state

observe the state of the system directly,
upon information that accrues as the

Let X = {1, 2 n } and {9 = {1, 2 , . . . , m } denote finite state and message
sets, respectively, and let A denote a finite action set. Let 1-I(X) = (rr ~ R": rr > O,
Y.7=lcri = 1}, i.e., the set of probability distributions on X. Probabilistically,
rr ~ / 7 (X) represents a probability distribution on X. Geometrically, ~r is a point
in the (n - 1)-dimensional unit simplex 17(X) c R ". These interpretations will be
used interchangeably below. The process is initiated with a known probability
distribution over the state space X, ~r 1 ~ / 7 (X) . Let H t = {r a 1, 01 , a 2,
02 , a,_ 1, Or_a} denote this initial distribution appended with the history of
actions and messages received up to time t. At the beginning of time period t, H t
contains all the information that the decision maker can use to assess the state of
the system. If, based on this information, the decision maker chooses action at,
the following sequence of events is initiated:

(1) A real-valued reward g (x , , a,) is received if the state of the system is x,.
(2) The system transits to another state, x,+ 1, in accordance with the known

transition probabilities p~. = Pr{ x,+ 1 = j : x t = i, a, = a }.
(3) A message 0, ~ {9 is received in accordance with the known probabilities

w s t + l = j , a t = a } .
(4) Time increments by one, H , + a = H , tO{a, , 0,}, the decision maker must

choose action a,+ 1, and the process repeats.

Note that the reward received is not included in H t. This does not mean that
the reward is necessarily unobserved by the decision maker, since the amount
received can be included implicitly in the message 0 t. The system evolves in the
manner outlined above through T < oo time periods. If T < oo an additional
salvage value a(i) is received at the beginning of time T + 1 if Xr+ 1 = i. A policy
is a sequence of measurable functions 3,: H,--+A for t = 1, 2 T, and the
decision maker seeks a policy that maximizes the expected net present value of
the time stream of rewards accrued during the process

E ~_, f l ' - ' g (x , , 3 , (H ,)) + f l ra (Xr+ ,) �9 (1)
t = l

/3 > 0 is an economic discount factor; if T = oo we require/3 < 1 and interpret
/3r= O. For a given %, the maximum in (1) over all policies is called the optimal
value for rq, and a policy that attains the optimal value for all ~r 1 ~ / - / (X) is
called an optimal policy.

It is well-known (cf. Aoki [1], Astrom [2], Bertsekas [4]) that the useful
information in H, can be encapsulated in a vector ~-, ~ I I (X) , and that the

50 W.S. Lovejoy / Survey of algorithmic methods

partially observed process can be recast as an equivalent fully observed process
with state space 17(X). Specifically, let p a denote the n x n t ransi t ion matr ix
with componen ts PTj, let R~ denote the n • n diagonal matr ix with element
(j , j) equal to rj~. Let e i denote the i th unit vector in R", and e an n-vector with
a 1 in each component . Consider ing all e lements of R" as co lumn vectors, define
for all 0 ~ O, a ~ A, and ~r ~ 17(X)

o(0 ; ~r, a)=vr'P"RO(O)e, T(~r, a, 0) = o (0 ; ,r, a) '

where ,r' denotes ~r transposed. Then o(0; ,r, a) is the probabil i ty of observing 0
given distribution ,r and action a, and by Bayes' rule T(Tr, a, O) ~ 17(X) is the
posterior probabil i ty vector given prior probabil i ty vector re, act ion a, and
message 0. The P O M D P is equivalent, in the sense that it gives the same costs, to
a sequential decision problem with "s ta te space" /7(X) and dynamics ~rt+ 1 =
T(~r,, a,, 0t). This problem can be solved as a dynamic program. Let g" denote
the n-vector with components ga(i, a) and a the n-vector with componen t s a(i).
Define B(17(X)) to be the set of all bounded , real-valued funct ions on 1-I(X),
and define the mapp ing h: / - / (X) x A x B(/7(X)) ---, R by h(vr, a, V) = ~r'g a +
BF.0eoo(0; ~r, a)V(T(Tr, a, 0)). For T < oo (cf. As t rom [2], Bertsekas [4]) the
search for an optimal policy can be restricted to Markov policies St: / 7 (X) ---, A
without loss of optimality, and the problem can theoretically be solved via the
dynamic p rogramming recursion

vr , () = , r e 1 7 (x) ,

V~*(,r)=max(h(~r,a, Vt*a):a~A } ~r~/7(X),t=l,2,... ,T. (2)
VI* maps ~r ~ / 7 (X) into the optimal value for the problem init iated with
distribution 7q = ~r. Any sequence 6t*: H (X) ~ A that for each t maps ~r ~ / 7 (X)
into a maximizing argument in (2) will be an opt imal policy. For t = 2, 3 T,
V,* has the interpretat ion of the opt imal value funct ion for the analogous
problem with horizon T - t + 1.

For T = ~ (cf. Blackwell [5]) policies can be restricted to s tat ionary Markov
policies 8: /7(X)---, A. For any V and W in B(/7(X)), define o(V, W) =
sup{ I V (r r) - W(rr) l: ~ r ~ / 7 (X) } . B(/7(X)) is a complete metr ic space with
the metric O, and starting with any V0* ~ B(II(X)) the recursion (2) will generate
a sequence of value functions { V~* } c B(/7(X)) that will converge (in 0) as
t ---, - oo to V* ~ B(I-I(X)), the opt imal value funct ion for the infini te-horizon
problem. Any ~*: 17(X) ---, A that maps ~r ~ / 7 (X) into a maximizing action in
h (,r, a, V *) will be an opt imal stationary policy for the infinite-horizon problem.

These theoretical results do not directly translate into practical solut ion meth-
odologies. The fundamenta l problem is that at each i teration of the dynamic
programming recursion, V~ * must be evaluated at each ~r ~ / 7 (X) , an uncounta-
bly infinite set. All feasible numerical methods implicitly or explicitly involve
reducing the number of distr ibutions rr considered in each i terat ion to a finite

W..S. Lovejoy / Survey of algorithmic methods 51

number. It is shown by Sondik [30] and Smallwood and Sondik [29] that for any
finite horizon T < oo one can define the optimal value function (and hence
policy) exactly on all of /7(X) by considering only a finite number of points in
/7(X). Unfortunately, the number of points one must entertain can grow explo-
sively in T, and the computational overhead necessary to find the "right" points
can be prohibitive. As a consequence, several approximate algorithms are availa-
ble, each of which explicitly bounds the calculational burden at each iteration.

3. Exact methods for finite-horizon problems

3.1. ALGORITHMS

The first exact algorithm for POMDPs was derived by E.J. Sondik in his 1971
Ph.D. dissertation [30] under the guidance of Prof. R.D. Smallwood at Stanford
University. Sondik proves that for any finite t, Vt*(~r) is piecewise linear and
convex o n / 7 (X) (See Sawaki [28] for a generalization to piecewise linear Markov
decision processes). Hence, V,* has a representation as the maximum of a finite
number of linear functions, that is, Vt*(rr)= max{3"rr: 3' ~ Ft} for some finite
set F, of n-vectors. Elements of F, will be called "gradient vectors," because any
3' ~ F t such that V t *(~r) = ~"3' is a subgradient (cf. RockafeUar [24]) of the convex
function V t * at the point rr. Let the vectors 3' ~ F t be indexed by integers, that is
F, = (3'z, 3'2 ,3 ' '} if # F t = v,, where # F denotes the cardinality of the set F. It
is apparent that Fr+ 1 = (a}, and Sondik shows that given Ft+x, the expression (2)
for V~* reduces to

where l(~r, a, 0) is the index of the maximizing 3' vector in max { ~r'PaR~(O)3" : 3"
~ Ft+l), and the maximizing a ~ A will be an optimal action from ~r in time t.
From this it is apparent that a candidate for inclusion in r, is the vector
[ga + E~=lPaRa(o)3't(,r.a.e)]. Sondik presents an algorithm for finding the minimal
set of candidate 3' vectors necessary to represent ~ , and hence Vt*. Simulta-
neously, Sondik's algorithm partitions 17(X) into regions wherein a single identi-
fied action is optimal, and regions over which each 3' vector is operative, that is,
V,*(~r) = ~r'3' for a specified 3'. Because these tasks are accomplished with a
single pass over the simplex /7(X), the algorithm is commonly referred to as
Sondik's "one-pass" algorithm.

The one-pass algorithm is initiated with ~+1 and any.specific % ~ H(X) . Let
3"6~= [ga + E~_leaRa(O)3"t(,,o.O.o)], and let 3'0 = 3'~* satisfy %'3'0 = max{ %3'6 : ' ~ a ~
A}. Then 3'0 is an initial entry into ~ , since Vt*(%)= %'3'0- Sondik generates a

52 W.S. Lovejoy / Survey of algorithmic methods

series of linear inequalities that define the region in H (X) over which ~'0 is the
operative gradient vector for V,*, i.e., Vt*(%) = %'3'0- First, he notes that for any
fixed a, as r moves away from % the gradient vector),~ will change if for any 8,
T(cr, a, /9) crosses a linear segment boundary in the representat ion of V,+1,
manifested by l(r a , /9) changing from l (%, a, /9). If this is prevented for any
a, it must be prevented for the opt imal a*. Hence, a conservative set of
constraints that ensure l(~r, a , /9) = l (%, a, 19) for all a on the region is

all 0, (4)

all i = 1 to vt_l, i s 1(%, a * , 9) ;

all a :# a *, all 8, (5)

all i = 1 to vt_l, i q : / (% , a , 0) .

Another way that the operative gradient can change as ,r moves away from % is
for the optimal action to change. Note that this can occur even if (4) and (5) are
satisfied. Addit ional constraints are added to the system to account for this
possibility, as well as to constrain ~r to be in /7(X):

~r'(y0~ - y0) _< 0 all a•a*, (6)

~r > 0, ~r'e = 1. (7)

The system of inequalities (4)-(7) defines a region conta ined (perhaps properly)
in the region for which V~*(,r)= ~'Yo- Several of these constraints might be
superfluous. To reduce the set to the minimal n u m b e r of constraints necessary to
define the region Sondik suggests that each constraint in (4) th rough (6) be used
in turn as the objective function in a maximizat ion linear p rogram subject to
(4)-(7). If the constraint forming the objective funct ion is b inding at optimali ty,
then that constraint forms a boundary of the region. In this case, the opt imal ~r
vector will lie on the boundary between two regions, so that the gradient vector
appropriate for the adjacent region can be constructed from this opt imal ~r. If the
optimal value in the linear program is less than zero, the constraint in the
objective function is never b inding on the region and can be discarded.

Sondik's algorithm starts with any % in H (X) and via the above procedure
calculates "r0 and the boundaries of the region defined by constraints (4)-(7).
Each binding constraint produces another ~r vector to be investigated. These are
added to a search table, and when the process is complete for % another ~r vector
is withdrawn from the search table and investigated in a like manner . If a region
duplicates one already investigated, it is ignored. When the search table is empty,
/ 7 (X) has been covered and the i teration is complete. ~ , hence Vt* , is then
completely specified, and the next i teration can begin to construct F t_ 1 and V,_* 1-

Each point in / 7 (X) has associated with it a ~, ~ r t, sufficient to define the
optimal value at that point, and an opt imal action a *. Sondik proves that # ~ is
finite when t is finite, so that evaluation of the operative gradient at only a finite
number of points in H (X) is sufficient to discover all of the gradients necessary

W.S. Lovejoy / Survey of algorithmic methods 53

to define V,*. Sondik's a lgori thm is designed to find a sufficient finite set of ~r's
to investigate.

It is c o m m o n in the li terature to reference Sondik 's dissertation in parallel with
Smallwood and Sondik [29]. This latter paper presents an algori thm similar to
that above, except constraint set (5) is omit ted. The logic is that as long as the
opt imal action does not change, enforced by (6), one need only check for index
/(~r, a, 0) changes at a = a* . This logic is in error, as poin ted out by Mukherjee
et al. [20]. Constra int (6) only ensures that the opt imal act ion does not change as
long as the indices l(~r, a, 0) = l (%, a, 0) for all actions a, condi t ions that are
ensured with (4) and (5) present, but not with (4) alone. Consequent ly, the
algori thm in Smallwood and Sondik will not work as intended. For example,
consider the 3-state, 4-action, 2-message machine main tenance prob lem in Small-
wood and Sondik, with Ft+ a = {(3.9269, 2.0887, 0.75), (1.3415, 1.3415, 1.3415)}
and % = (1, 0, 0). Here a* = 1, T0 = (4.467, 2.43, 1.0), and Vt* (~r0) = ~rffT0 = 4.467.
Constra int sets (4) and (6) will be

~ r ' (- 2 . 2 2 , - 0.613, 0.592) < 0,

'(0, 0, 0) _< 0,

~ r ' (- 0 . 2 5 , - 0.25, - 0.25) < 0,

rr' (- 1.04, - 0.003, 0.427) < 0,

~ " (- 2 . 5 4 , - 0.503, 0.927) < 0.

(4a)

(6a)

These inequalities, plus the constraints (7) that ~r is in the unit simplex, are not
sufficient to define the region over which Vt*(~r) = ~"T0. The vector Ir = (0.3, 0,
0.7) is interior to the region defined by (4a) and (6a), yet for this ~r we have
a* = 2 , l(~r, a* , 1) = 1 , l(~r, a* , 2) = 2 , and Vt*(qr) = 2.08 > ~r'(4.467, 2.43, 1.0)
= 2.04. The problem is that l(~r, 2, 2) ~ I (%, 2, 2), a change that is prevented by
including the constraints (5).

Note that any constraint of the form ~r'y < 0, where y ~ R n has nonposi t ive
components , will never be violated for any ~r ~ / 7 (X) and can be el iminated
without loss of precision (cf. Eagle [8]). For example, the second and third
constraints in the set (4a), (6a) above can be eliminated.

The full set of constraints (4)-(7) are conservative in that they may define a
region contained properly within the operative region for a given To vector. This
means that Sondik's one-pass algori thm can generate more boundar ies than
necessary to define V t*. The relaxation effected by omit t ing (5) risks generat ing
too large a region, in that some operative boundaries might be missed. Cheng [6]
proposes some algorithms based on alternative relaxations of (4)-(7) wherein
each vertex of each relaxed region is investigated in turn for new gradient vectors
and new relaxed regions. The correct part i t ion of / - / (X) is const ructed by
systematic ref inement of these relaxed regions, resulting in fewer boundar ies than
the one-pass algorithm, and a t tendant computa t iona l savings. Cheng's alternative

54 W.S. Looejoy / Suroey of algorithmic methods

algori thms differ primarily in the specific relaxation of (4)-(7) used. One of these,
the " l inear suppor t algori thm," will be reviewed here because it can easily be
modified to produce approximate solutions with error bounds , a desirable feature
for the computa t ional ly complex POMDP.

Fr+ 1 = (a} always. Cheng's linear suppor t a lgor i thm starts with Ft+i, calcu-
lates the operative gradients at the extreme points of / 7 (X) , and puts these in a
set G t, which approximates F t. For each 3'o ~ Gt the convex region R(~0) = (~r
/7 (X) : , r 'Y0>er ' 3, all 7 ~ G t } is constructed. If o , (, t) = m a x (~ r ' T ' Y E G t) is
used to approximate Vt*(,r), the error incurred at any ,r ~ R(V0) will be Vt*(~r) -
~r'~, 0. This latter expression, being convex in ,r, will at tain its m a x i m u m over
R(3'0) at an extreme point of R(~,0). Hence, one need only check the error at all
extreme points of each region to find the maximal error over a l l / 7 (X) for using
o, instead of V,*. If this maximal error is zero, then G, = Ft and the i terat ion is
complete. If the maximal error is positive, then the vertex that at tains the
maximal error will have an associated gradient vector not already inc luded in G t.
This new gradient is added to G t and the process of generat ing and checking
extreme points is repeated. Since Ft is finite, the process mus t terminate in finite
t ime with the appropriate F t set.

Cheng builds up the F t set by expanding an approximate set G t until the error
is zero. Monahan [18] starts with a ~t set that is quite large (a l though the error is
already zero), and pares it down to the appropr ia te Ft set. Start ing with Ft+~,
Monahan suggests that one start by const ruct ing all possible candidates for F t,
that is, all vectors of the form a9 = (gO + y, oEoP,,RQ(O).to), where a ~ A and for
each 0, 70 is an element of Ft+l- Denote this set by ~t- V~*(rr) = max(,r'~9" ~9 E

A " ~t } so that ~ could be used as Ft. However, Wt has (#) (v t+ 1) elements, and
many of these might be superfluous in defining Vt*. A specific a90 ~ ~t is
"domina ted" , and unnecessary in defining Vt* if for all r ,r'19o<
max{ rr'~" t~ ~ ~, }, or equivalently if ,r'v~0 < z for all z > ,r't~ for all ~r ~ / 7 (X)
and t~ ~ ~,. This can be detected by the following linear program:

min z - ~r '~9 0

subject to z > ~r qg, ~9 ~ ~t,

r > O, r = l.

(8)

If the opt imal objective funct ion value is positive, then ~0 is domina ted and can
be discarded. Monahan suggests that each ~9 ~ ~t be tested in turn, discarded if
dominated, and Ft is defined as the resulting reduced set of vectors. One can then
proceed directly to the next iteration, construct ing ~t-1 and reducing this via a
series of linear programs to Ft-1, etc. The opt imal policies and value funct ions
need not be calculated el1 route, bu t if at any po in t in t ime the op t imal act ion and
value for a specific ,r is sought, it can be easily calculated f rom (3).

Eagle [8] presents a modif icat ion of Monahan ' s method , wherein the n u m b e r of
constraints in the linear program (8) is reduced by one. Eagle suggests the test for

W.S. Love joy / Survey of algorithmic methods 55

dominated vectors be performed by

r a i n z - ~r '~o

subject to z > ~r'~, ~ ~ ~t, ~ ~ v%, (9)

~r > O, ~r'e = l ,

in which case ~0 is dominated if the optimal objective function value is non_nega-
tive. Eagle also makes the observation that if any ~ ~ ~t, ~ ~ v% satisfies ~ > ~0
(using the componentwise partial order) then ~0 is obviously dominated and one
need not construct the linear program to test this. Hence, each vector in turn is
checked against the remaining set and discarded if it is majorized componentwise
by any other vector. Eagle observes that this reduced the computation time in his
problems, and further suggests that for small problems one might rely on the
simple test for majorized vectors alone in defining F t. This would probably result
in a larger than necessary Ft set, but avoids linear programs altogether.

3.2. DISCUSSION

Two dimensions along which one might wish to compare competing algorithms
are (a) computational efficiency, and (b) transparency. This latter attribute refers
to the ease with which a researcher skilled in the basic techniques of Operations
Research can understand and implement the algorithm. This naturally contains
some subjective assessments. Computational efficiency measures, likewise, can
depend on the particular machine, code and compiler used (this is particularly
true when one considers the potential for optimized object codes a n d / o r parallel
processing). Subject to these caveats, however, one can say that Monahan's (and
Eagle's extension) algorithm is the most transparent. This attribute can translate
into more efficient code development and debugging, and higher confidence in
the results. However, to generate ~ this algorithm requires that on the order of
(#A) (v t+D" constraints be constructed, and a linear program be solved for each
constraint. This can become prohibitive if vt+ 1 is large. Typically only a small
subset of the (#A)(v ,+D m candidates for ~ will actually belong to the set, so that
efficiency will be enhanced if one can build up to F t instead of paring down to it.
Sondik's and Cheng's algorithms are designed to do this. Of these, Cheng
constructs fewer regions, which should result in more efficient execution.

This intuition is supported by some numerical trials conducted by Cheng.
Fortran implementations of these algorithms were compared on the basis of cpu
time on an Amdahl 5860 at the University of British Columbia. Cheng found that
Monahan/Eagle consistently outperformed Sondik, and Cheng in general outper-
formed Monahan/Eagle. Exceptions to this latter result were when vt+ ~ was
small. T = 20 for all test problems, and the largest problem for which meaningful
comparisons could be drawn had four core states (n = 4). Larger problems
resulted in numerical errors, for reasons explained below.

56 W.S. Lovejoy / Survey of algorithmic methods

It is reasonable to expect that none of these algorithms will find routine use in
practice, depending as they do on a complete specification each time period of
the set of gradients necessary to define the optimal value function. This set is
finite for any finite time horizon, but its cardinality can grow exponentially in
time. The optimal value function will converge as time goes to infinity to some
convex, but not necessarily piecewise linear, function. Geometrically, one can
visualize the number of linear segments necessary to represent the function going
to infinity as time progresses. Unfortunately, an intractable number of gradients
can be generated after only a few iterations in applied problems.

To compound these difficulties, the linear programs designed to identify the
boundaries of regions or to reduce the set of candidate vectors rely essentially
upon differences of the form rr'~0 - ~r'v ~ for candidate vectors ~0 and ~. As these
two candidates get closer to each other, this difference becomes increasingly
difficult to distinguish from zero, resulting in precision problems in practical
implementations of the algorithms on finite-precision computers. The operative
gradients will get increasingly close to each other, without being equal, on any
portion of /7(X) on which the value functions V,* are converging to a smooth
but nonlinear limit. Precision problems will arise long before any such limit is
reached (this convergence of gradients may be avoided if the optimal policy is
"finitely transient", see next section).

The dimensionality and precision problems are sufficiently severe to render
most realistic POMDPs intractable by these exact methods.

4. Approximate algorithms for finite- and infinite-horizon problems

Results that occur in the limit as t goes to infinity are not generally realizable
from a practical perspective. For this reason, one most often accepts as a solution
to an infinite-horizon problem a value function (and associated policy) that is
arbitrarily close to the optimal value. Each of the finite-horizon methods reviewed
in the previous section can be included in the list of possible approximate
algorithms for infinite-horizon models, where fl < 1 is assumed. Specifically, it
can be shown (cf. Heyman and Sobel [12]) that in the infinite-horizon case if
p(V~*I, V~*) < e then the policy found in the process of calculating V~* l (that is,
in the maximization of h(rr, a, V~*)) will attain a value within 2fie~(1- fl) of
the optimal value. Hence, one can find policies with values arbitrarily close to
optimal by continuing iterations until p (V,* 1, Vt*) -< e, for any chosen e. Since
{Vt* } is a Cauchy sequence in B(H(X)), this approximation technique will
terminate in finite time. This practical methodology is common in fully observed,
infinite-horizon Markov decision processes.

However, some techniques for POMDPs have been developed that exploit the
fact that an infinite-horizon problem will have contraction properties and an

o p t i m a l stationary policy, characteristics not necessarily shared by their finite-

W.S. Lovejoy / Survey of algorithmic methods 57

horizon counterparts. These techniques are specifically designed for infinite-
horizon models.

The fundamental problem remains the uncountable nature of El(X), since
only a finite representation will admit tractable algorithms in the general case
(that is, without exploiting special structure). White and Scherer [36] and Cheng
present some acceleration procedures to speed up convergence in infinite-horizon
models, but these depend on periodic exact updates that will inherit the cardinal-
ity and precision problems mentioned above. An exact finite representation is
theoretically available for the finite-horizon case, but as noted above, the cardi-
nality of the representation can be sufficiently large to be considered "infinite"
from the perspective of practical implementations.

The approximation techniques for designing a tractable, finite representation
for /7(X) fall into two main categories: finite-memory and finite-grid approxi-
mations. In the former, only a finite sequence of past actions and messages is
kept by the decision maker, an effective truncation of the cardinality of H,. Given
any prior, a finite memory will induce at most a finite number of posterior points
in H(X) . In finite-grid approximations, H (X) is represented by a finite grid of
points, directly restricting the number of ~r vectors considered to those points in
the grid. This taxonomy is illustrative but not strict, as will be clear from the
discussion.

4.1. FINITE-MEMORY APPROXIMATIONS

Sondik [31] describes an approximate method for infinite-horizon POMDPs
based on Howard's [13] policy improvement algorithm. Let V n denote the value of
a stationary policy 8 in the infinite-horizon POMDP. Howard shows that the
actions determined at each rr in the maximization of h (~r, a, V 8), implemented in
all time periods, define a stationary policy, call it 8', such that V 8, > V 8 if
h(~r, 6'(rr), V~)> Vs(rr) for any tr. The uncountable nature of H (X) is an
impediment to this process, since V~ need not have the structure (piecewise-linear
and convex) necessary to use the tractable update (3). Sondik introduces a class
of stationary policies, called "finitely transient", for which V 8 will be piecewise
linear (also see Sawaki and Ichikawa [27]). If a finitely transient policy 8 happens
to be optimal, then V * = V 8 will be both piecewise linear and convex. Hence,
Sondik provides sufficient conditions for a finite-memory representation to be
exact. Unfortunately, optimal policies need not be finitely transient in general,
and the conditions for finite transience are difficult to check a priori. Sondik
suggests an approximate algorithm that will discover finite transience en route, if
it is present.

For an arbitrary stationary policy 8 and integer k < oo, V n can be approxi-
mated by a piecewise linear function that, in general terms, mimics finitely
transient behavior for the first k time periods. As k gets larger, the approxima-

58 W.S. Lovejoy / Survey of algorithmic methods

tion gets better, but the number of linear pieces in the approximation gets larger
as well. Let ~j denote the gradient vector associated with the j th linear piece in a
k-step approximation to Vs. Sondik defines Vs'(~r):=max(~r'O/:all j} as a
secondary approximate function that is both piecewise linear and convex, and
hence allows the update (2) to reduce to expressions of the form (3). This is used
to construct a new stationary policy, and the process is repeated. Bounds on the
approximation error are calculated dynamically, and if they exceed a prescribed
limit the process is repeated with an increased k. Sondik presents some examples
in this paper and his dissertation [30], but the author is unaware of any further
computational experience with this algorithm.

Platzrnan [21] suggests an approximate algorithm in which decisions are based
upon a finite string of the most recent actions and observations, but notes that
reasonable results may require intractably long memories. This is discussed
further below. Platzman [23] generalizes the finite-memory idea by allowing for a
finite number of "memory states", which will typically be some subset of the
space of possible histories, e.g. a memory state might be a particular sequence of
recent messages and actions, or might be an aggregation of such possibilities.
Memory state transitions occur as a result of taking actions and getting messages,
as do internal state transitions. Platzman presents techniques for evaluating a
policy in this finite approximate system, bounding its performance relative to the
optimal value, and for constructing new finite approximations. He allows for
randomized policies, which are not theoretically necessary to attain optimality,
observing that randomization can improve performance over nonrandomized
policies when memory is truncated. The idea is that the random component
represents that portion of history unknown to the decision maker. Some numeri-
cal examples drawn from Sondik's dissertation and Smallwood and Sondik [29]
demonstrate the technique. The author is unaware of any further computational
experience with this algorithm.

White and Scherer [37] further explore the approximation technique of truncat-
ing memory at the w most recent actions and observations. Since there are
(m x #A) ~' possible truncated memory vectors, it is possible to rewrite the
finite-memory approximations as a dynamic program with (m • #A) '~ states. If
the distribution ~',_~, is known, then that plus the w actions and observations
since would exactly determine the posterior ~r,. However, rrt_~, depends upon the
entire past history, Ht_,~, which is not known to the decision maker basing
decisions only on events in the w most recent time periods. White and Scherer
calculate worst case bounds over all possible ~rt_,~ (that is, the max and rain over
all unit probability vectors e;, i -- 1 to n) to generate upper and lower bounds on
the optimal value function. Implementation of this technique is as easy as
implementing the conventional recursion (2) with a finite state space. Action
elimination procedures due to MacQueen [17] can unambiguously determine an
optimal action, even in this approximate setting, if the value function bounds are
sufficiently tight.

W.S. Lovejoy / Survey of algorithmic methods 59

Preliminary numerical trials appear to corroborate Platzrnan's observation that
intractably long memories will be required to generate reasonable solutions for
some problems. However, excellent results can be obtained in those cases where
past information diminishes rapidly in importance relative to recent events. As an
extreme example, rank 1 transition matrices with p~--p~' for all a, i, and j will
generate posterior probability vectors ~r with components ~-j = &a, depending only
on the most recent action taken. Hence, likely candidates for this approximation
techniques are those problems for which some measure of the distance between
the posterior vectors deriving from two different priors rapidly approaches zero
as time periods progress.

White and Scherer identify such problems using a metric o n / 7 (X) introduced
by Platzman [22];

d(~r, v)=max{d l (~ r , v), dl(u, ~')}, ~r and vEH(X) ,

} where d 1 (~r, u) = 1 - min ~ ~'i > 0, i = 1 to n .

White and Scherer define an ergodic coefficient for Bayesian transitions as the
maximum possible distance d between posterior vectors rr, given the to most
recent actions and messages and arbitrary 7rt_,~. Bounds on the approximation
error using truncated histories are proportional to this coefficient. This result
provides a means for identifying those problems for which the finite history
approximation will be efficacious.

4.2. FINITE-GRID APPROXIMATIONS

Discrete approximations to uncountable state spaces are a natural and often-
used approximation technique for dynamic programs (cf. Bertsekas [4]). Applied
to POMDPs, this class of approximation generates a sequence of approximate
value functions by recursive application of (2) at a finite grid of points ~r ~ / 7 (X) ,
thereby finessing the fundamental algorithmic problem of an uncountably infinite
state space. Sondik showed that for finite horizons and any piecewise linear
convex value function Vt+ ~, there will exist a finite set of points in /7(X)
sufficient to completely specify V r Unfortunately, finding these points is equiv-
alent to performing a full exact update, with the attendant problems mentioned
above. Finite-grid approximation techniques use a more easily generated grid of
points to gain tractability, but generate approximate value functions as a result.
This class of approximation methods divides roughly into two subclasses: fixed-
grid and variable-grid methods. In the former, the grid is set up once at the
beginning of the calculations and is not revised subsequently. In the latter,
information garnered in previous iterations is used to revise the grid used in
current calculations. This increases the computational overhead as the grid is
revised each iteration, but promises reduced errors if the revisions are done
appropriately. These methods will be reviewed in turn.

60 W.S. Lovejoy / Survey of algorithmic methods

4.2.1. Fixed-grid methods

Setting up a fixed grid of points to represent an uncountably infinite state
space is a common approximation technique among dynamic programming
practitioners, and is one of the earliest approximation methods considered for
POMDPs. Kakalik [14] and Eckles [10] use an approximate value function based
upon a linear interpolation between fixed, discrete points in H (X) in their
numerical work, but do not explore the quality of this approximation. Sondik [30]
develops a bound for the approximation error using Eckles' discrete approxima-
tion.

Lovejoy [16] uses a discrete grid to generate both upper and lower bounds for
the optimal value function. Lower value function bounds can be generated from
any finite set of points P c / 7 (X) . The algorithm uses sets of gradient vectors FL,
to specify value functions VLt('n') -- max{ ,r 'y: 3' ~ FL~) as in the exact methods.
However, FL r is generated from FLt+ 1 using (3) at points in P only. The
algorithm is initiated with FLr+ 1 = Fr+ 1 = (a) . By generating gradients at points
P c / 7 (X) only, one generates a subset of all possible gradients, and the maxi-
mum number of gradients generated is #P . The maximum over a subset is
guaranteed to be less than or equal to the maximum over a larger set, i.e.,
VL, < Vt* for all t. Calculating V L t is no more difficult than iterating on a
conventional dynamic program with state space P. Approximate policies can be
generated using VL~ instead of V~* in (3).

To generate upper value function bounds, Lovejoy uses a specific grid P
designed to partition I I (X) into sub-simplices as in Eaves [9]. Again, the
dynamic programming update is applied at points in P only, and a unique,
continuous piecewise-linear function, call it VU, in time period t, can be defined
by interpolating between points in P. Jensen's inequality and the known convex-
ity of V~* guarantee that VUt >_ Vt* for all t, Lovejoy uses VL, and VU t to
generate bounds on the value loss relative to the optimal value for using the
policies generated by VL t in (3) for both finite- and infinite-horizon models.
Again, action eliminations can unambiguously identify optimal actions if VL t
and VU, are sufficiently close to each other.

The cardinality of Lovejoy's grid P is [(M + n - 1) !] / [M!(n - 1)!], where M is
the number of subintervals that each edge of the unit simplex is divided up into
by the discretization procedure. # P explodes for high values of n and M, so the
technique can handle only sparse meshes when n is high. The algorithm is too
recent to judge its eventual acceptance as a solution methodology.

4.2.2. Variable-grid methods

Variable-grid methods allow the grid of points in /7(X) used in the approxi-
mate algorithm to vary from one iteration to the next. If problem-specific
information is used in revising the grid, these methods should generate more
accurate approximations than fixed-grid methods.

W.S. Lovejoy / Survey of algorithmic methods 61

Sondik and Mendelssohn [32] suggest a policy improvement procedure that
investigates only those points in H(X) that can be reached by following a
specified policy. This grid is meant to approximate the value of the policy under
investigation, so that the grid changes as the policy changes from one iteration to
the next. The author is unaware of any further work with this algorithm.

Cheng notes that his linear support algorithm can be stopped short of zero
error, or can be stopped when the number of gradient vectors generated hits some
upper limit. In either case, error bounds between the truncated process and an
exact procedure are in hand. His linear support algorithm adds gradient vectors
based on the vertices of the generated regions that introduce the most error into
the calculations. Hence, he is essentially choosing a finite number of points in
H(X) to investigate based upon dynamic error bound calculations. If the
maximal error is stored each iteration, it is an easy matter to calculate a bound on
the total error between the generated value function and the optimal value
function when the algorithm terminates. Like Lovejoy's fixed-grid method,
Cheng's variable-grid method is too recent to judge its eventual impact.

4.3. DISCUSSION

Tractable approximation techniques for general POMDPs depend on finite
representations of infinite sets. In general terms, as the cardinality of the finite
representation increases, the quality of the approximation and the calculational
burden both increase. The burden, however, increases at most linearly, rather
than exponentially in T, so that approximate methods can analyze problems with
time horizons significantly greater than those that would be tractable with exact
methods. The choice for the analyst is what type of finite representation to adopt.

The finite-memory technique of White and Scherer generates bounds from
worst case priors a finite number of time periods in the past, and so will be
ill-suited to problems where distant history still impacts the present. However,
they will likely generate good results for problems in which distant history is
largely irrelevant to current status. Recognizing which problems are good candi-
dates for these methods is an obvious area for research. There is a close
relationship between this finite approximation to POMDPs and research into
contraction rates and forecast horizons in fully observed Markov decision
processes (cf. Morton and Wecker [19], Federgruen et al. [11], and Bean and
Smith [3]).

Finite-grid methods are natural approximation techniques, readily adopted by
practitioners when approximating infinite spaces. Most often, the quality of the
approximation is assumed rather than calculated because worst-case bounds are
too loose to be informative. Folklore in the industry is that such techniques
(including aggregation and discretization) perform well, much better than rigor-
ously calculated worst-case bounds would suggest. This optimism rests upon an
assumption that the value function is sufficiently well-behaved to lend itself to a

62 W.S. Lovejoy / Survey of algorithmic methods

sparse representation. Fully observed problems now have sufficient history to
render such an assumption plausible. For POMDPs, however, the set of problems
solved to high precision is too spare to accept conventional wisdom without
further study.

In numerical trials with Lovejoy's discrete grid, the simple heuristic of gener-
ating policies from (3) using VL, to approximate V t* has worked well with even
sparse grids in a series of test problems drawn from the literature. In his test
problems, Cheng found that his approximate method worked better than the
worst-case bounds would indicate. However, both authors used test problems that
may not be representative of the spectrum of problems faced by practitioners. As
with finite-memory approximations, an obvious area for research is to associate
problem data with properties that lend themselves to the approximation tech-
nique.

Because discrete approximations are common for fully observed MDPs, the
finite-grid methods are among the most transparent of the approximate method-
ologies. Fixed-grid methods are the easiest to implement, since the grid is
constructed only once. Variable-grid methods increase the computational over-
head by adjusting the grid each time step. However, increased accuracy should
result from the informed choice of grid points. No numerical tests are yet
available to compare the relative efficiency of these techniques.

5. Concluding remarks

Currently, exact algorithms for general POMDPs are intractable for all but the
smallest problems, so that algorithmic solution will rely heavily on precise
approximation. One of the basic trade-offs made in each of the approximate
algorithms reviewed is what percentage of computational effort will be expended
in designing the appropriate approximation, and what percentage to actual
calculation of values and policies. The more effort one allocates to design, the
more accurate the approximation should be, but less residual machine time will
be available to compute the solution. A competing philosophy is to simplify the
design and allocate more of the scarce machine time to actual calculation. In
general terms, the Sondik and Platzman approximate algorithms are design
intensive and involve a significant investment of time to understand and imple-
ment correctly, whereas the White and Scherer, and Lovejoy algorithms simplify
the design and are more straightforward to implement (Cheng's methods lie
somewhere in the middle). While this does not speak to the issue of relative
accuracy, it might help explain why the earlier methods have not been embraced
and why the more recent methods may escape the same fate. This is not at all
certain, however, as these later algorithms are still too new to judge their eventual
impact. One further advantage accruing to simplified algorithms is that they may
be better able to exploit parallel processing capabilities.

W.S. Lovejoy / Survey of algorithmic methods 63

Although some of the algorithms reviewed here expand the class of problems
amenable to algorithmic solution, none are capable of solving truly large prob-
lems (an attribute inherited from, and shared with, algorithms for fully observed
MDPs). Let us define a "problem of size n" as a POMDP with n partially
observed states, n actions, n messages, and a finite horizon of T = 100 time
steps. Typically a discounted infinite-horizon problem will generate high-accuracy
approximate value functions within 100 time steps, so these are not excluded. A
"high-accuracy" solution is a value function and policy with tight, rigorous
bounds on the error relative to the optimal value. Calculations are presumed to
proceed on a mainframe computer, and no special structure is assumed or
exploited. Cpu times measured in minutes are assumed perfectly acceptable, and
cpu times beyond several days unacceptable. Precise statements are difficult
(depending as they do on specific problem, code, and machine characteristics) but
one can expect exact methods to fail for numerical reasons on small problems
(n = 3, for example) well before the 100 time step horizon is reached. Approxi-
mate methods will not fail numerically, so that feasibility is limited by the cpu
time one is willing to invest. Competitive approximate methods should be readily
capable of generating high-accuracy solutions for problems of size 10. Beyond
this the difficulty increases exponentially. The margin of feasibility will be found
at problem sizes in the 20 to 30 range, and problems of size 50 are currently
infeasible. These assessments may be challenged by future research, as numerical
experience with these techniques is largely absent. It is apparent, however, that
heuristics and/or exploiting special structure will be the key to solving large
problems. The generic algorithms surveyed here will aid in this effort by making
available high-accuracy solutions to non-trivial problems, enabling numerical
tests on a robust problem set.

It would be helpful to have transportable codes for some of these algorithms
for use by prospective researchers. The author is currently unaware of any
generally available code, but the specific authors referenced here can be contacted
directly for their own versions.

This review suggests several possible directions for future algorithmic research.
First, the fundamental advantage of approximate methods is their parsimonious
representation of the value function. There may be a simple parametric represen-
tation for convex functions (curvature, skew, etc.) that allows the value function
to be represented with just a few numbers. If an efficient update for such a
representation could be derived, the class of feasible problems may be signifi-
cantly expanded.

Second, specific algorithms appropriate for problems with special structure are
likely to perform significantly better than generic methods. It would be a
significant contribution to the current literature to survey the potential applied
contexts of POMDPs and develop a taxonomy of specific problem classes
characterized by some definable structure. Solution methods that exploit the
special structure in a specific problem class may be quite efficient.

64 W.S. Looejoy / Survey of algorithmic methods

Third, it is impor t an t to ident i fy specific p rob lem classes tha t are amenab le to
heuristics. As suggested above, aggregat ion and discret izat ion me t h o d s in fully
observed M D P s of ten ou tper fo rm the available theoret ical bounds . Is the same
true for P O M D P s ? Only numerical experience will develop a convent iona l
wisdom as to what heuristics are effective.

As suggested in the in t roduct ion , c o m p u t a t i o n remains an essential c o m p o n e n t
of the spectrum of research in part ial ly observed systems. This paper is in tended
to inform potent ia l and pract icing par t ic ipants of some of the available computa -
t ional options.

Acknowledgements

I would like to thank the a n o n y m o u s referees for their careful reading and
helpful suggestions, and Derek Ayers for his insights on relative compu ta t iona l
burdens.

References

[1] M. Aoki, Optimal control of partially observable Markovian systems, J. Frankl. I 280 (1965)
367-386.

[2] K.J. Astrom, Optimal control of Markov processes with incomplete state information, J. Math.
Anal. Appl. 10 (1965) 174-205.

[3] J. Bean and R. Smith, Conditions for the existence of planning horizons, Math. Oper. Res. 9
(1984) 391-401.

[4] D. Bertsekas, Dynamic Programming and Stochastic Control Academic Press, 1976).
[5] D. Blackwell, Discounted dynamic programming, Ann. Math. Stat. 36 (1965) 226-235.
[6] H. Cheng, Algorithms for partially observed Markov decision processes, Ph.D. dissertation,

Faculty of Commerce and Business Administration, University of British Columbia (1988).
[7] M. DeGroot, Optimal Statistical Decisions (McGraw-Hill, New York, 1970).
[8] J. Eagle, The optimal search for a moving target when the search path is constrained, Oper.

Res. 32 (1984) 1107-1115.
[9] B.C. Eaves, A Course in Triangulations for Soloing Equations with Deformations (Springer, New

York, 1984).
[10] J. Eckles, Optimum replacement of stochastically failing systems, Ph.D. thesis, Department of

Engineering-Economic Systems, Stanford University, Stanford CA (1966).
[11] A. Federgruen, P. Schweitzer and H. Tijms, Contraction mappings underlying undiscounted

Markov decsion processes, J. Math. Anal. Appl. 65 (1978) 711-730.
[12] D. Heyman and M. Sobel, Stochastic Models in Operations Research, vol. 2 (McGraw-Hill,

New York, 1984).
[13] R. Howard, Dynamic Probabilistic Systems (Wiley, New York, 1971).
[14] J. Kakalik, Optimum policies for partially observable Markov systems, Tech. report 18,

Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA (1965).
[15] W.S. Lovejoy, Some monotonicity results for partially observed Markov decision processes,

Oper. Res. 35 (1987) 736-743.

W.S. Lovejoy / Survey of algorithmic methods 65

[16] W.S. Lovejoy, Computationally feasible bounds for partially observed Markov decision
processes, Research paper 1024, Stanford University Graduate School of Business, Stanford,
CA (1989), to appear in Oper. Res.

[17] J. MacQueen, A test for suboptimal actions in Markov decision processes, Oper. Res. 15 (1967)
559-561.

[18] G. Monahan, A survey of partially observable Markov decision processes, Manag. Sci. 28
(1982) 1-16.

[19] T. Morton and W. Wecker, Discounting, crgodicity, and convergence for Markov decision
processes, Manag. Sci. 23 (1977) 890-900.

[20] S. Mukherjee, N. Shahabuddin and K. Seth, Optimal control policies for partially observable
Markov processes - A corrected and improved algorithm, unpublished manuscript, Indian
Institute of Technology, Delhi, India (1985).

[21] L.K. Platzman, Finite-memory estimation and control of finite probabilistic systems, Ph.D.
dissertation, Department of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, Cambridge, MA (1977).

[22] L.K. Platzman, Optimal infinite-horizon undiscounted control of finite probabilistic systems,
SIAM. J. Control Opt. 18 (1980) 362-380.

[23] L.K. Platzman, A feasible computational approach to infinite-horizon partially observed
Markov decision processes, Technical note J-81-2, Georgia Institute of Technology, Atlanta,
GA (1981).

[24] R.T. Rockafellar, Convex Analysis (Princeton University Press, Princeton, N J, 1970).
[25] D. Rosenfield, Markovian deterioration with uncertain information, Oper. Res. 24 (1976)

141-155.
[26] S. Ross, Quality control under Markovian deterioration, Manag. Sci. 17 (1971) 587-596.
[27] K. Sawaki and A. Ichikawa, Optimal control for partially observable Markov decision

processes over an infinite horizon, J. Oper. Res. Soc. Japan 21 (1978) 1-15.
[28] K. Sawaki, Piecewise linear Markov decision processes with an application to partially

observable models, in: Recent Developments in Markoo Decision Processes, R. Hartley et al.
(eds.) (Academic Press, New York, 1980).

[29] R.D. Smallwood and E.J. Sondik, Optimal control of partially observable processes over the
finite horizon, Oper. Res. 21 (1973) 1071-1088.

[30] E.J. Sondik, The optimal control of partially observable Markov processes, Ph.D. dissertation,
Department of Electrical Engineering, Stanford University, Stanford, CA (1971).

[31] E.J. Sondik, The optimal control of partially observable Markov processes over the infinite
horizon: discounted case, Oper. Res. 26 (1978) 282-304.

[32] E.J. Sondik and R. Mendelssohn, Information seeking in Markov decision processes, South-
west Fisheries Center Administrative Resport H-79-13, Southwest Fisheries Center, National
Marine Fisheries Service, NOAA, Honolulu, HI (1979).

[33] A. Wald, Sequential Analysis, (Wiley, London, 1947).
[34] C.C. White, Optimal control limit strategies for a partially observed replacement problem, Int.

J. Sys. Sci. 10 (1979) 321-331.
[35] C.C. White, Monotone control laws for noisy, countable-state Markov chains, Eur. J. Oper.

Res. 5 (1980) 124-132.
[36] C.C. White and W. Scherer, Solution procedures for partially observed Markov decision

processes, Oper. Res. 37 (1985) 791-797.
[37] C.C. White and W. Soberer, Finite memory suboptimal design for partially observed Markov

decision processes, Technical report, Department of Systems Engineering, University of
Virginia, Charlottesville, VA (1989), submitted to Oper. Res.

