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A SURVEY OF ALGORITHMIC ME T HODS FOR PARTIALLY OBSERVED 
MARKOV DECISION PROCESSES 

William S. LOVE JOY 

Graduate School of Business, Stanford University, Stanfora~ CA 94305-5015, USA 

A partially observed Markov decision process (POMDP) is a generalization of a Markov 
decision process that allows for incomplete information regarding the state of the system. The 
significant applied potential for such processes remains largely unrealized, due to an histori- 
cal lack of tractable solution methodologies. This paper reviews some of the current 
algorithmic alternatives for solving discrete-time, finite POMDPs over both finite and infinite 
horizons. The major impediment to exact solution is that, even with a finite set of internal 
system states, the set of possible information states is uncountably infinite. Finite algorithms 
are theoretically available for exact solution of the finite horizon problem, but these are 
computationally intractable for even modest-sized problems. Several approximation method- 
oiogies are reviewed that have the potential to generate computationally feasible, high 
precision solutions. 

I. Introduction 

A partially observed Markov decision process (POMDP) is a generalization of 
a Markov decision process (MDP) that allows for incomplete information regard- 
ing the state o f  the system. At each decision epoch, the decision maker must 
choose an action based only on the incomplete information at hand. Typically, 
one of the possible actions is to expend resources to gather additional informa- 
tion about the system. Thus, POMDPs are appropriate models in those contexts 
where actions can perform the dual role of biasing the system trajectory in some 
desired fashion and obtaining information that can aid in future decisions. This 
scenario obtains in a range of practical applications, including quality control, 
maintenance scheduling, military encounters, searches, data communications, 
statistics, health care, education, artificial intelligence and expert systems, natural 
resource economics, and finance. See Monahan [18] for an overview of POMDPs 
and some of these potential applications. There is at present a significant 
discrepancy between this potential and actual applied results. This is at least 
partially explained by the fact that, while the theoretical foundation is largely in 
place, analytical or algorithmic solutions for realistically sized problems are rare. 
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A significant body of research has been dedicated to improving our ability to 
solve POMDPs. One research direction is to seek problems that will have optimal 
value functions or policies that inherit some identifiable structure, and then 
exploiting that structure to accelerate the search for these optima. Some mono- 
tonicity results are available (cf. White [34,35] and Lovejoy [15]) and policy 
structure has been proved in some specific sequential hypothesis testing (cf. Wald 
[33] and DeGroot [7]) and machine maintenance (cf. Ross [26] and Rosenfield 
[25]) contexts, but such results are not common for POMDPs. One contributing 
reason is the relatively complex manner in which the state and information 
processes interact. Another contributing factor is a paucity of problems with 
known solutions, even algorithmically derived, so that an experience base that 
might spawn theoretical insights is largely absent. 

The evolution of tractable algorithms for POMDPs is inhibited by the same 
dimensionality problems one faces in solving completely observed Markov deci- 
sion processes. Taking cues from the relatively more advanced work for MDPs, 
one can expect that general algorithms will not be the means by which large 
POMDPs are solved. Rather, algorithmic research will make (at least) two 
important contributions to the general field: providing a means to numerically 
check hypotheses and heuristics, and suggesting what types of structural results 
one should look for. To emphasize this latter point, algorithmic research can 
suggest what specific types of structures would aid computation, and these might 
be different from the kinds of results one might seek in the absence of algorithmic 
needs. Further, the presence of tractable algorithms would give practitioners the 
confidence to embark upon POMDP modelling exercises with the knowledge that 
some solution will be forthcoming, and this in turn would encourage data 
collection exercises appropriate for more applications. 

This paper reviews some of the currently available algorithms for the general, 
discrete-time, finite POMDP with the optimality criterion of maximizing the 
expected net present value of the induced time stream of rewards. The solution 
techniques are largely based on dynamic programming algorithms, and inherit 
their computational difficulties. Exact solution techniques are only applicable to 
the smallest models, but sufficiently precise approximate methods are available 
for some realistically sized problems. 

The next section defines the finite POMDP model and reviews some known 
results. Section 3 reviews the methods available for solving the POMDP exactly, 
and section 4 reviews approximate solution methods. Concluding remarks appear 
in section 5. 

2. Model definition 

The model considered here is a discrete-time, finite partially observed Markov 
decision process (POMDP) with stationary cost data as in Smallwood and Sondik 
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[29]. In these, a decision maker  chooses 
at tempt to control the trajectory of an 
process. The decision maker  is unable to 
but must choose h i s /he r  actions based 
system evolves through time. 

actions at discrete time intervals in an 
imperfectly observed Markovian state 

observe the state of the system directly, 
upon information that accrues as the 

Let X = {1, 2 . . . . .  n } and {9 = {1, 2 , . . . ,  m } denote  finite state and message 
sets, respectively, and let A denote a finite action set. Let 1-I(X) = ( rr ~ R": rr > O, 
Y.7=lcri = 1}, i.e., the set of probability distributions on X. Probabilistically, 
rr ~ / 7 ( X )  represents a probability distribution on X. Geometrically, ~r is a point 
in the ( n - 1)-dimensional unit simplex 17(X) c R ". These interpretations will be 
used interchangeably below. The process is initiated with a known probability 
distribution over the state space X, ~r 1 ~ / 7 ( X ) .  Let H t =  {r a 1, 01 , a 2, 
02 . . . .  , a,_ 1, Or_a} denote this initial distribution appended with the history of 
actions and messages received up to time t. At the beginning of time period t, H t 
contains all the information that the decision maker  can use to assess the state of 
the system. If, based on this information, the decision maker  chooses action at, 
the following sequence of events is initiated: 

(1) A real-valued reward g ( x , ,  a,) is received if the state of the system is x,.  
(2) The system transits to another  state, x,+ 1, in accordance with the known 

transition probabilities p~. = Pr{ x,+ 1 = j :  x t = i, a, = a }. 
(3) A message 0, ~ {9 is received in accordance with the known probabilities 

w  s t + l =  j ,  a t = a } .  
(4) Time increments by one, H , + a = H ,  tO{a, ,  0,}, the decision maker  must 

choose action a,+ 1, and the process repeats. 

Note that the reward received is not included in H t. This does not mean that 
the reward is necessarily unobserved by the decision maker, since the amount  
received can be included implicitly in the message 0 t. The system evolves in the 
manner  outlined above through T <  oo time periods. If T < oo an additional 
salvage value a( i )  is received at the beginning of time T +  1 if Xr+ 1 = i. A policy 
is a sequence of measurable functions 3,: H,--+A for t = 1, 2 . . . . .  T, and the 
decision maker seeks a policy that maximizes the expected net present value of 
the time stream of rewards accrued during the process 

E ~_, f l ' - ' g ( x , ,  3 , (H , ) )  + f l ra (Xr+ , )  �9 (1) 
t = l  

/3 > 0 is an economic discount factor; if T = oo we require/3 < 1 and interpret 
/3r= O. For a given %, the maximum in (1) over all policies is called the optimal 
value for rq, and a policy that attains the optimal value for all ~r 1 ~ / - / ( X )  is 
called an optimal policy. 

It is well-known (cf. Aoki [1], Astrom [2], Bertsekas [4]) that the useful 
information in H, can be encapsulated in a vector ~-, ~ I I ( X ) ,  and that the 
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partially observed process can be recast as an equivalent  fully observed process 
with state space 17(X). Specifically, let p a  denote  the n x n t ransi t ion matr ix 
with componen ts  PTj, let R~ denote  the n • n diagonal  matr ix with element  
( j ,  j )  equal to rj~. Let e i denote  the i th  unit  vector in R", and  e an n-vector with 
a 1 in each component .  Consider ing all e lements  of  R" as co lumn vectors, define 
for all 0 ~ O, a ~ A, and ~r ~ 17(X) 

o(0 ;  ~r, a)=vr'P"RO(O)e, T(~r, a,  0 ) =  o (0 ;  ,r, a ) '  

where ,r' denotes ~r transposed. Then  o(0; ,r, a)  is the probabil i ty of observing 0 
given distribution ,r and action a, and by Bayes' rule T(Tr, a, O) ~ 17(X) is the 
posterior probabil i ty vector given prior  probabil i ty vector re, act ion a, and  
message 0. The P O M D P  is equivalent, in the sense that  it gives the same costs, to 
a sequential decision problem with "s ta te  space" /7(X) and dynamics  ~rt+ 1 = 
T(~r,, a,, 0t). This problem can be solved as a dynamic  program.  Let g"  denote  
the n-vector with components  ga(i, a) and a the n-vector with componen t s  a(i). 
Define B(17(X)) to be the set of all bounded ,  real-valued funct ions on 1-I(X), 
and define the mapp ing  h: / - / (X) x A  x B(/7(X)) ---, R by h(vr, a, V) = ~r'g a + 
BF.0eoo(0; ~r, a)V(T(Tr, a, 0)). For  T <  oo (cf. As t rom [2], Bertsekas [4]) the 
search for an optimal  policy can be restricted to Markov  policies St: / 7 ( X )  ---, A 
without  loss of optimality,  and the problem can theoretically be solved via the 
dynamic  p rogramming  recursion 

vr , ( ) = , r e  1 7 ( x ) ,  

V~*(,r)=max(h(~r,a, Vt*a):a~A } ~r~/7(X),t=l,2,... ,T. (2) 
VI* maps ~r ~ / 7 ( X )  into the optimal  value for the problem init iated with 
distribution 7q = ~r. Any sequence 6t*: H ( X )  ~ A that  for each t maps  ~r ~ / 7 ( X )  
into a maximizing argument  in (2) will be an opt imal  policy. For  t = 2, 3 . . . . .  T, 
V,* has the interpretat ion of the opt imal  value funct ion for the analogous 
problem with horizon T -  t + 1. 

For T = ~ (cf. Blackwell [5]) policies can be restricted to s tat ionary Markov  
policies 8: /7( X)---, A. For  any V and W in B(/7(X)), define o(V, W ) =  
sup{ I V ( r r ) -  W(rr) l:  ~ r ~ / 7 ( X ) } .  B(/7(X)) is a complete  metr ic  space with 
the metric O, and starting with any V0* ~ B(II(X)) the recursion (2) will generate 
a sequence of value functions { V~* } c B(/7(X)) that  will converge (in 0) as 
t ---, - oo to V* ~ B(I-I(X)), the opt imal  value funct ion for the infini te-horizon 
problem. Any ~*: 17(X) ---, A that maps  ~r ~ / 7 ( X )  into a maximizing action in 
h ( ,r, a, V * ) will be an opt imal  stationary policy for the infinite-horizon problem. 

These theoretical results do  not  directly translate into practical solut ion meth-  
odologies. The fundamenta l  problem is that  at each i teration of the dynamic  
programming recursion, V~ * must  be evaluated at each ~r ~ / 7 ( X ) ,  an uncounta-  
bly infinite set. All feasible numerical  methods  implicitly or explicitly involve 
reducing the number  of distr ibutions rr considered in each i terat ion to a finite 
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number. It is shown by Sondik [30] and Smallwood and Sondik [29] that for any 
finite horizon T <  oo one can define the optimal value function (and hence 
policy) exactly on all of /7(X) by considering only a finite number of points in 
/7(X).  Unfortunately, the number of points one must entertain can grow explo- 
sively in T, and the computational overhead necessary to find the "right" points 
can be prohibitive. As a consequence, several approximate algorithms are availa- 
ble, each of which explicitly bounds the calculational burden at each iteration. 

3. Exact methods for finite-horizon problems 

3.1. ALGORITHMS 

The first exact algorithm for POMDPs was derived by E.J. Sondik in his 1971 
Ph.D. dissertation [30] under the guidance of Prof. R.D. Smallwood at Stanford 
University. Sondik proves that for any finite t, Vt*(~r) is piecewise linear and 
convex o n / 7 ( X )  (See Sawaki [28] for a generalization to piecewise linear Markov 
decision processes). Hence, V,* has a representation as the maximum of a finite 
number of linear functions, that is, Vt*(rr)= max{3"rr: 3' ~ Ft} for some finite 
set F, of n-vectors. Elements of F, will be called "gradient vectors," because any 
3' ~ F t such that V t *(~r) = ~"3' is a subgradient (cf. RockafeUar [24]) of the convex 
function V t * at the point rr. Let the vectors 3' ~ F t be indexed by integers, that is 
F, = (3'z, 3'2 . . . .  ,3 ' '} if # F  t = v,, where # F  denotes the cardinality of the set F. It 
is apparent that Fr+ 1 = ( a}, and Sondik shows that given Ft+x, the expression (2) 
for V~* reduces to 

where l(~r, a, 0) is the index of the maximizing 3' vector in max { ~r'PaR~(O)3" : 3" 
~ Ft+l), and the maximizing a ~ A  will be an optimal action from ~r in time t. 
From this it is apparent that a candidate for inclusion in r,  is the vector 
[ga + E~=lPaRa(o)3't(,r.a.e)]. Sondik presents an algorithm for finding the minimal 
set of candidate 3' vectors necessary to represent ~ ,  and hence Vt*. Simulta- 
neously, Sondik's algorithm partitions 17(X) into regions wherein a single identi- 
fied action is optimal, and regions over which each 3' vector is operative, that is, 
V,*(~r) = ~r'3' for a specified 3'. Because these tasks are accomplished with a 
single pass over the simplex /7(X), the algorithm is commonly referred to as 
Sondik's "one-pass" algorithm. 

The one-pass algorithm is initiated with ~+1 and any.specific % ~ H(X) .  Let 
3"6~= [ga + E~_leaRa(O)3"t(,,o.O.o)], and let 3'0 = 3'~* satisfy %'3'0 = max{ %3'6 : '  ~ a ~  
A}. Then 3'0 is an initial entry into ~ ,  since Vt*(%)=  %'3'0- Sondik generates a 
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series of linear inequalities that  define the region in H ( X )  over which ~'0 is the 
operative gradient vector for V,*, i.e., Vt*(% ) = %'3'0- First, he notes that  for any 
fixed a, as r moves away from % the gradient  vector ),~ will change if for any 8, 
T(cr, a, /9) crosses a linear segment boundary  in the representat ion of V,+1, 
manifested by l(r a , /9)  changing from l (%,  a, /9). If this is prevented  for any 
a, it must  be prevented for the opt imal  a*.  Hence, a conservative set of 
constraints that  ensure l(~r, a , /9)  = l (%,  a, 19) for all a on  the region is 

all 0, (4) 

all i =  1 to vt_l, i s  1(%, a * ,  9) ;  

all a :# a *, all 8, (5) 

all i = 1  to vt_l, i q : / ( % ,  a ,  0) .  

Another  way that the operative gradient can change as ,r moves away from % is 
for the optimal  action to change. Note  that  this can occur even if (4) and (5) are 
satisfied. Addit ional  constraints are added  to the system to account  for this 
possibility, as well as to constrain ~r to be in /7( X):  

~r'(y0~ - y0) _< 0 all a•a*, (6) 

~r > 0, ~r'e = 1. (7) 

The  system of inequalities (4)-(7) defines a region conta ined (perhaps properly) 
in the region for which V~*(,r)= ~'Yo- Several of these constraints  might  be 
superfluous. To reduce the set to the minimal  n u m b e r  of constraints  necessary to 
define the region Sondik suggests that  each constraint  in (4) th rough (6) be used 
in turn as the objective function in a maximizat ion linear p rogram subject to 
(4)-(7). If the constraint  forming the objective funct ion is b inding at optimali ty,  
then that constraint  forms a boundary  of the region. In this case, the opt imal  ~r 
vector will lie on the boundary  between two regions, so that  the gradient  vector 
appropriate  for the adjacent region can be constructed from this opt imal  ~r. If the 
optimal  value in the linear program is less than zero, the constraint  in the 
objective function is never b inding on the region and can be discarded. 

Sondik's algorithm starts with any % in H ( X )  and via the above procedure  
calculates "r0 and the boundaries  of the region defined by constraints  (4)-(7). 
Each binding constraint  produces another  ~r vector to be investigated. These are 
added to a search table, and when the process is complete  for % another  ~r vector 
is withdrawn from the search table and investigated in a like manner .  If a region 
duplicates one already investigated, it is ignored. When  the search table is empty,  
/ 7 ( X )  has been covered and the i teration is complete.  ~ ,  hence Vt* , is then 
completely specified, and the next i teration can begin to construct  F t_ 1 and V,_* 1- 

Each point  in / 7 (X)  has associated with it a ~, ~ r t, sufficient to define the 
optimal  value at that point,  and an opt imal  action a *. Sondik proves that  # ~  is 
finite when t is finite, so that evaluation of the operative gradient  at only a finite 
number  of points  in H ( X )  is sufficient to discover all of the gradients necessary 
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to define V,*. Sondik's  a lgori thm is designed to find a sufficient finite set of ~r's 
to investigate. 

It is c o m m o n  in the li terature to reference Sondik 's  dissertation in parallel with 
Smallwood and Sondik [29]. This latter paper  presents an algori thm similar to 
that above, except constraint  set (5) is omit ted.  The  logic is that  as long as the 
opt imal  action does not  change, enforced by (6), one need only check for index 
/(~r, a, 0) changes at a = a* .  This logic is in error, as poin ted  out  by Mukherjee  
et al. [20]. Constra int  (6) only ensures that  the opt imal  act ion does not  change as 
long as the indices l(~r, a, 0) = l (%,  a, 0) for all actions a, condi t ions  that  are 
ensured with (4) and (5) present,  but  not  with (4) alone. Consequent ly,  the 
algori thm in Smallwood and Sondik will not  work as intended.  For  example, 
consider the 3-state, 4-action, 2-message machine  main tenance  prob lem in Small- 
wood and Sondik, with Ft+ a = {(3.9269, 2.0887, 0.75), (1.3415, 1.3415, 1.3415)} 
and % = (1, 0, 0). Here a*  = 1, T0 = (4.467, 2.43, 1.0), and Vt* (~r0) = ~rffT0 = 4.467. 
Constra int  sets (4) and (6) will be 

~ r ' ( - 2 . 2 2 ,  - 0.613, 0.592) < 0, 

'(0, 0, 0) _< 0, 

~ r ' ( - 0 . 2 5 ,  - 0.25, - 0.25) < 0, 

rr' ( - 1.04, - 0.003, 0.427) < 0, 

~ " ( - 2 . 5 4 ,  - 0.503, 0.927) < 0. 

(4a) 

(6a) 

These inequalities, plus the constraints  (7) that  ~r is in the unit  simplex, are not  
sufficient to define the region over which Vt*(~r ) = ~"T0. The  vector Ir = (0.3, 0, 
0.7) is interior to the region defined by (4a) and (6a), yet for this ~r we have 
a*  = 2 ,  l(~r, a* ,  1 ) = 1 ,  l(~r, a* ,  2 ) = 2 ,  and Vt*(qr) = 2.08 > ~r'(4.467, 2.43, 1.0) 
= 2.04. The  problem is that  l(~r, 2, 2) ~ I (%,  2, 2), a change that  is prevented by 
including the constraints (5). 

Note  that any constraint  of the form ~r'y < 0, where y ~ R n has nonposi t ive 
components ,  will never be violated for any ~r ~ / 7 ( X )  and can be el iminated 
without  loss of precision (cf. Eagle [8]). For  example, the second and third 
constraints in the set (4a), (6a) above can be eliminated. 

The  full set of constraints (4)-(7) are conservative in that  they may  define a 
region contained properly within the operative region for a given To vector. This 
means that  Sondik's  one-pass algori thm can generate more  boundar ies  than  
necessary to define V t*. The  relaxation effected by omit t ing (5) risks generat ing 
too large a region, in that  some operative boundaries  might  be missed. Cheng  [6] 
proposes some algorithms based on alternative relaxations of (4)-(7) wherein 
each vertex of each relaxed region is investigated in turn for new gradient  vectors 
and new relaxed regions. The  correct part i t ion of / - / (X)  is const ructed by 
systematic ref inement  of these relaxed regions, resulting in fewer boundar ies  than 
the one-pass algorithm, and a t tendant  computa t iona l  savings. Cheng's  alternative 
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algori thms differ primarily in the specific relaxation of (4)-(7) used. One of these, 
the " l inear  suppor t  algori thm," will be reviewed here because it can easily be 
modified to produce  approximate  solutions with error bounds ,  a desirable feature 
for the computa t ional ly  complex POMDP.  

Fr+ 1 = ( a}  always. Cheng's  linear suppor t  a lgor i thm starts with Ft+i, calcu- 
lates the operative gradients at the extreme points  of / 7 (X) ,  and  puts  these in a 
set G t, which approximates  F t. For  each 3'o ~ Gt the convex region R(~0) = ( ~r 
/7 (X) :  , r 'Y0>er '  3, all 7 ~ G t }  is constructed.  If o , ( , t ) = m a x ( ~ r ' T ' Y E G t )  is 
used to approximate  Vt*(,r ), the error incurred at any ,r ~ R(V0) will be Vt*(~r ) - 
~r'~, 0. This latter expression, being convex in ,r, will at tain its m a x i m u m  over 
R(3'0) at an extreme point  of R(~,0). Hence,  one need only check the error at all 
extreme points  of each region to find the maximal  error over a l l / 7 ( X )  for using 
o, instead of V,*. If this maximal  error is zero, then G, = Ft and  the i terat ion is 
complete.  If the maximal  error is positive, then the vertex that  at tains the 
maximal  error will have an associated gradient  vector not  already inc luded in G t. 
This new gradient  is added to G t and the process of generat ing and checking 
extreme points  is repeated. Since Ft is finite, the process mus t  terminate  in finite 
t ime with the appropriate  F t set. 

Cheng builds up  the F t set by expanding an approximate  set  G t until the error 
is zero. Monahan  [18] starts with a ~t set that  is quite large (a l though the error is 
already zero), and pares it down to the appropr ia te  Ft set. Start ing with Ft+~, 
Monahan  suggests that  one start by const ruct ing all possible candidates  for F t, 
that is, all vectors of the form a9 = (gO + y, oEoP,,RQ(O).to), where a ~ A  and for 
each 0, 70 is an element of Ft+l- Denote  this set by ~t- V~*(rr) = max(  ,r'~9" ~9 E 

A " ~t } so that  ~ could be used as Ft. However,  Wt has ( # ) ( v  t+ 1) elements,  and  
many  of these might  be superfluous in defining Vt*. A specific a90 ~ ~t is 
"domina ted" ,  and  unnecessary in defining Vt* if for all r  ,r'19o< 
max{ rr'~" t~ ~ ~, }, or equivalently if ,r'v~0 < z for all z > ,r't~ for all ~r ~ / 7 ( X )  
and t~ ~ ~,. This can be detected by the following linear program:  

min z - ~r '~9 0 

subject to z > ~r qg, ~9 ~ ~t, 

r > O, r = l. 

(8) 

If the opt imal  objective funct ion value is positive, then ~0 is domina ted  and can 
be discarded. Monahan  suggests that  each ~9 ~ ~t be tested in turn, discarded if 
dominated,  and Ft is defined as the resulting reduced set of vectors. One can then 
proceed directly to the next  iteration, construct ing ~t-1 and reducing this via a 
series of linear programs to Ft-1, etc. The  opt imal  policies and value funct ions  
need not  be calculated el1 route, bu t  if at any po in t  in t ime the op t imal  act ion and 
value for a specific ,r is sought, it can be easily calculated f rom (3). 

Eagle [8] presents a modif icat ion of Monahan ' s  method ,  wherein the n u m b e r  of 
constraints  in the linear program (8) is reduced by one. Eagle suggests the test for 
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dominated vectors be performed by 

r a i n  z - ~r '~o  

subject to z > ~r'~, ~ ~ ~t, ~ ~ v%, (9) 

~r > O, ~r'e = l ,  

in which case ~0 is dominated if the optimal objective function value is non_nega- 
tive. Eagle also makes the observation that if any ~ ~ ~t, ~ ~ v% satisfies ~ > ~0 
(using the componentwise partial order) then ~0 is obviously dominated and one 
need not construct the linear program to test this. Hence, each vector in turn is 
checked against the remaining set and discarded if it is majorized componentwise 
by any other vector. Eagle observes that this reduced the computation time in his 
problems, and further suggests that for small problems one might rely on the 
simple test for majorized vectors alone in defining F t. This would probably result 
in a larger than necessary Ft set, but avoids linear programs altogether. 

3.2. DISCUSSION 

Two dimensions along which one might wish to compare competing algorithms 
are (a) computational efficiency, and (b) transparency. This latter attribute refers 
to the ease with which a researcher skilled in the basic techniques of Operations 
Research can understand and implement the algorithm. This naturally contains 
some subjective assessments. Computational efficiency measures, likewise, can 
depend on the particular machine, code and compiler used (this is particularly 
true when one considers the potential for optimized object codes a n d / o r  parallel 
processing). Subject to these caveats, however, one can say that Monahan's (and 
Eagle's extension) algorithm is the most transparent. This attribute can translate 
into more efficient code development and debugging, and higher confidence in 
the results. However, to generate ~ this algorithm requires that on the order of 
(#A) (v t+D"  constraints be constructed, and a linear program be solved for each 
constraint. This can become prohibitive if vt+ 1 is large. Typically only a small 
subset of the (#A)(v ,+D m candidates for ~ will actually belong to the set, so that 
efficiency will be enhanced if one can build up to F t instead of paring down to it. 
Sondik's and Cheng's algorithms are designed to do this. Of these, Cheng 
constructs fewer regions, which should result in more efficient execution. 

This intuition is supported by some numerical trials conducted by Cheng. 
Fortran implementations of these algorithms were compared on the basis of cpu 
time on an Amdahl 5860 at the University of British Columbia. Cheng found that 
Monahan/Eagle  consistently outperformed Sondik, and Cheng in general outper- 
formed Monahan/Eagle.  Exceptions to this latter result were when vt+ ~ was 
small. T = 20 for all test problems, and the largest problem for which meaningful 
comparisons could be drawn had four core states (n = 4). Larger problems 
resulted in numerical errors, for reasons explained below. 
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It is reasonable to expect that none of these algorithms will find routine use in 
practice, depending as they do on a complete specification each time period of 
the set of gradients necessary to define the optimal value function. This set is 
finite for any finite time horizon, but its cardinality can grow exponentially in 
time. The optimal value function will converge as time goes to infinity to some 
convex, but not necessarily piecewise linear, function. Geometrically, one can 
visualize the number of linear segments necessary to represent the function going 
to infinity as time progresses. Unfortunately, an intractable number  of gradients 
can be generated after only a few iterations in applied problems. 

To compound these difficulties, the linear programs designed to identify the 
boundaries of regions or to reduce the set of candidate vectors rely essentially 
upon differences of the form rr'~0 - ~r'v ~ for candidate vectors ~0 and ~. As these 
two candidates get closer to each other, this difference becomes increasingly 
difficult to distinguish from zero, resulting in precision problems in practical 
implementations of the algorithms on finite-precision computers. The operative 
gradients will get increasingly close to each other, without being equal, on any 
portion of /7(X)  on which the value functions V,* are converging to a smooth 
but nonlinear limit. Precision problems will arise long before any such limit is 
reached (this convergence of gradients may be avoided if the optimal policy is 
"finitely transient", see next section). 

The dimensionality and precision problems are sufficiently severe to render 
most realistic POMDPs intractable by these exact methods. 

4. Approximate algorithms for finite- and infinite-horizon problems 

Results that occur in the limit as t goes to infinity are not generally realizable 
from a practical perspective. For this reason, one most often accepts as a solution 
to an infinite-horizon problem a value function (and associated policy) that is 
arbitrarily close to the optimal value. Each of the finite-horizon methods reviewed 
in the previous section can be included in the list of possible approximate 
algorithms for infinite-horizon models, where fl < 1 is assumed. Specifically, it 
can be shown (cf. Heyman and Sobel [12]) that in the infinite-horizon case if 
p(V~*I, V~*) < e then the policy found in the process of calculating V~* l (that is, 
in the maximization of h(rr, a, V~*)) will attain a value within 2fie~(1- fl) of 
the optimal value. Hence, one can find policies with values arbitrarily close to 
optimal by continuing iterations until p (V,* 1, Vt*) -< e, for any chosen e. Since 
{Vt* } is a Cauchy sequence in B(H(X)), this approximation technique will 
terminate in finite time. This practical methodology is common in fully observed, 
infinite-horizon Markov decision processes. 

However, some techniques for POMDPs have been developed that exploit the 
fact that an infinite-horizon problem will have contraction properties and an 

o p t i m a l  stationary policy, characteristics not necessarily shared by their finite- 
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horizon counterparts. These techniques are specifically designed for infinite- 
horizon models. 

The fundamental problem remains the uncountable nature of El(X), since 
only a finite representation will admit tractable algorithms in the general case 
(that is, without exploiting special structure). White and Scherer [36] and Cheng 
present some acceleration procedures to speed up convergence in infinite-horizon 
models, but these depend on periodic exact updates that will inherit the cardinal- 
ity and precision problems mentioned above. An exact finite representation is 
theoretically available for the finite-horizon case, but as noted above, the cardi- 
nality of the representation can be sufficiently large to be considered "infinite" 
from the perspective of practical implementations. 

The approximation techniques for designing a tractable, finite representation 
for /7(X) fall into two main categories: finite-memory and finite-grid approxi- 
mations. In the former, only a finite sequence of past actions and messages is 
kept by the decision maker, an effective truncation of the cardinality of H,. Given 
any prior, a finite memory will induce at most a finite number of posterior points 
in H(X) .  In finite-grid approximations, H ( X )  is represented by a finite grid of 
points, directly restricting the number of ~r vectors considered to those points in 
the grid. This taxonomy is illustrative but not strict, as will be clear from the 
discussion. 

4.1. FINITE-MEMORY APPROXIMATIONS 

Sondik [31] describes an approximate method for infinite-horizon POMDPs 
based on Howard's [13] policy improvement algorithm. Let V n denote the value of 
a stationary policy 8 in the infinite-horizon POMDP. Howard shows that the 
actions determined at each rr in the maximization of h (~r, a, V 8), implemented in 
all time periods, define a stationary policy, call it 8', such that V 8, > V 8 if 
h(~r, 6'(rr), V~)> Vs(rr ) for any tr. The uncountable nature of H ( X )  is an 
impediment to this process, since V~ need not have the structure (piecewise-linear 
and convex) necessary to use the tractable update (3). Sondik introduces a class 
of stationary policies, called "finitely transient", for  which V 8 will be piecewise 
linear (also see Sawaki and Ichikawa [27]). If a finitely transient policy 8 happens 
to be optimal, then V * =  V 8 will be both piecewise linear and convex. Hence, 
Sondik provides sufficient conditions for a finite-memory representation to be 
exact. Unfortunately, optimal policies need not be finitely transient in general, 
and the conditions for finite transience are difficult to check a priori. Sondik 
suggests an approximate algorithm that will discover finite transience en route, if 
it is present. 

For an arbitrary stationary policy 8 and integer k < oo, V n can be approxi- 
mated by a piecewise linear function that, in general terms, mimics finitely 
transient behavior for the first k time periods. As k gets larger, the approxima- 
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tion gets better, but the number of linear pieces in the approximation gets larger 
as well. Let ~j denote the gradient vector associated with the j th linear piece in a 
k-step approximation to Vs. Sondik defines Vs'(~r):=max(~r'O/:all j}  as a 
secondary approximate function that is both piecewise linear and convex, and 
hence allows the update (2) to reduce to expressions of the form (3). This is used 
to construct a new stationary policy, and the process is repeated. Bounds on the 
approximation error are calculated dynamically, and if they exceed a prescribed 
limit the process is repeated with an increased k. Sondik presents some examples 
in this paper and his dissertation [30], but the author is unaware of any further 
computational experience with this algorithm. 

Platzrnan [21] suggests an approximate algorithm in which decisions are based 
upon a finite string of the most recent actions and observations, but notes that 
reasonable results may require intractably long memories. This is discussed 
further below. Platzman [23] generalizes the finite-memory idea by allowing for a 
finite number of "memory states", which will typically be some subset of the 
space of possible histories, e.g. a memory state might be a particular sequence of 
recent messages and actions, or might be an aggregation of such possibilities. 
Memory state transitions occur as a result of taking actions and getting messages, 
as do internal state transitions. Platzman presents techniques for evaluating a 
policy in this finite approximate system, bounding its performance relative to the 
optimal value, and for constructing new finite approximations. He allows for 
randomized policies, which are not theoretically necessary to attain optimality, 
observing that randomization can improve performance over nonrandomized 
policies when memory is truncated. The idea is that the random component 
represents that portion of history unknown to the decision maker. Some numeri- 
cal examples drawn from Sondik's dissertation and Smallwood and Sondik [29] 
demonstrate the technique. The author is unaware of any further computational 
experience with this algorithm. 

White and Scherer [37] further explore the approximation technique of truncat- 
ing memory at the w most recent actions and observations. Since there are 
(m x #A)  ~' possible truncated memory vectors, it is possible to rewrite the 
finite-memory approximations as a dynamic program with (m • #A)  '~ states. If 
the distribution ~',_~, is known, then that plus the w actions and observations 
since would exactly determine the posterior ~r,. However, rrt_~, depends upon the 
entire past history, Ht_,~, which is not known to the decision maker basing 
decisions only on events in the w most recent time periods. White and Scherer 
calculate worst case bounds over all possible ~rt_,~ (that is, the max and rain over 
all unit probability vectors e;, i -- 1 to n) to generate upper and lower bounds on 
the optimal value function. Implementation of this technique is as easy as 
implementing the conventional recursion (2) with a finite state space. Action 
elimination procedures due to MacQueen [17] can unambiguously determine an 
optimal action, even in this approximate setting, if the value function bounds are 
sufficiently tight. 



W.S. Lovejoy / Survey of algorithmic methods 59 

Preliminary numerical trials appear to corroborate Platzrnan's observation that 
intractably long memories will be required to generate reasonable solutions for 
some problems. However, excellent results can be obtained in those cases where 
past information diminishes rapidly in importance relative to recent events. As an 
extreme example, rank 1 transition matrices with p~--p~' for all a, i, and j will 
generate posterior probability vectors ~r with components ~-j = &a, depending only 
on the most recent action taken. Hence, likely candidates for this approximation 
techniques are those problems for which some measure of the distance between 
the posterior vectors deriving from two different priors rapidly approaches zero 
as time periods progress. 

White and Scherer identify such problems using a metric o n / 7 ( X )  introduced 
by Platzman [22]; 

d(~r, v )=max{d l (~ r ,  v), dl(u, ~')}, ~r and vEH(X) ,  

} where d 1 (~r, u) = 1 - min ~ ~'i > 0, i = 1 to n . 

White and Scherer define an ergodic coefficient for Bayesian transitions as the 
maximum possible distance d between posterior vectors rr, given the to most 
recent actions and messages and arbitrary 7rt_,~. Bounds on the approximation 
error using truncated histories are proportional to this coefficient. This result 
provides a means for identifying those problems for which the finite history 
approximation will be efficacious. 

4.2. FINITE-GRID APPROXIMATIONS 

Discrete approximations to uncountable state spaces are a natural and often- 
used approximation technique for dynamic programs (cf. Bertsekas [4]). Applied 
to POMDPs, this class of approximation generates a sequence of approximate 
value functions by recursive application of (2) at a finite grid of points ~r ~ / 7 ( X ) ,  
thereby finessing the fundamental algorithmic problem of an uncountably infinite 
state space. Sondik showed that for finite horizons and any piecewise linear 
convex value function Vt+ ~, there will exist a finite set of points in /7(X) 
sufficient to completely specify V r Unfortunately, finding these points is equiv- 
alent to performing a full exact update, with the attendant problems mentioned 
above. Finite-grid approximation techniques use a more easily generated grid of 
points to gain tractability, but generate approximate value functions as a result. 
This class of approximation methods divides roughly into two subclasses: fixed- 
grid and variable-grid methods. In the former, the grid is set up once at the 
beginning of the calculations and is not revised subsequently. In the latter, 
information garnered in previous iterations is used to revise the grid used in 
current calculations. This increases the computational overhead as the grid is 
revised each iteration, but promises reduced errors if the revisions are done 
appropriately. These methods will be reviewed in turn. 
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4.2.1. Fixed-grid methods 

Setting up a fixed grid of points to represent an uncountably infinite state 
space is a common approximation technique among dynamic programming 
practitioners, and is one of the earliest approximation methods considered for 
POMDPs. Kakalik [14] and Eckles [10] use an approximate value function based 
upon a linear interpolation between fixed, discrete points in H ( X )  in their 
numerical work, but do not explore the quality of this approximation. Sondik [30] 
develops a bound for the approximation error using Eckles' discrete approxima- 
tion. 

Lovejoy [16] uses a discrete grid to generate both upper and lower bounds for 
the optimal value function. Lower value function bounds can be generated from 
any finite set of points P c / 7 ( X ) .  The algorithm uses sets of gradient vectors FL, 
to specify value functions VLt('n') -- max{ ,r 'y: 3' ~ FL~ ) as in the exact methods. 
However, FL r is generated from FLt+ 1 using (3) at points in P only. The 
algorithm is initiated with FLr+ 1 = Fr+ 1 = ( a ) .  By generating gradients at points 
P c / 7 ( X )  only, one generates a subset of all possible gradients, and the maxi- 
mum number of gradients generated is #P .  The maximum over a subset is 
guaranteed to be less than or equal to the maximum over a larger set, i.e., 
VL, < Vt* for all t. Calculating V L  t is no more difficult than iterating on a 
conventional dynamic program with state space P. Approximate policies can be 
generated using VL~ instead of V~* in (3). 

To generate upper value function bounds, Lovejoy uses a specific grid P 
designed to partition I I ( X )  into sub-simplices as in Eaves [9]. Again, the 
dynamic programming update is applied at points in P only, and a unique, 
continuous piecewise-linear function, call it VU, in time period t, can be defined 
by interpolating between points in P. Jensen's inequality and the known convex- 
ity of V~* guarantee that VUt >_ Vt* for all t, Lovejoy uses VL, and VU t to 
generate bounds on the value loss relative to the optimal value for using the 
policies generated by VL t in (3) for both finite- and infinite-horizon models. 
Again, action eliminations can unambiguously identify optimal actions if VL t 
and VU, are sufficiently close to each other. 

The cardinality of Lovejoy's grid P is [(M + n - 1 ) ! ] / [M!(n  - 1)!], where M is 
the number of subintervals that each edge of the unit simplex is divided up into 
by the discretization procedure. # P  explodes for high values of n and M, so the 
technique can handle only sparse meshes when n is high. The algorithm is too 
recent to judge its eventual acceptance as a solution methodology. 

4.2.2. Variable-grid methods 

Variable-grid methods allow the grid of points in /7(X) used in the approxi- 
mate algorithm to vary from one iteration to the next. If problem-specific 
information is used in revising the grid, these methods should generate more 
accurate approximations than fixed-grid methods. 
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Sondik and Mendelssohn [32] suggest a policy improvement procedure that 
investigates only those points in H(X) that can be reached by following a 
specified policy. This grid is meant to approximate the value of the policy under 
investigation, so that the grid changes as the policy changes from one iteration to 
the next. The author is unaware of any further work with this algorithm. 

Cheng notes that his linear support algorithm can be stopped short of zero 
error, or can be stopped when the number of gradient vectors generated hits some 
upper limit. In either case, error bounds between the truncated process and an 
exact procedure are in hand. His linear support algorithm adds gradient vectors 
based on the vertices of the generated regions that introduce the most error into 
the calculations. Hence, he is essentially choosing a finite number of points in 
H(X) to investigate based upon dynamic error bound calculations. If the 
maximal error is stored each iteration, it is an easy matter to calculate a bound on 
the total error between the generated value function and the optimal value 
function when the algorithm terminates. Like Lovejoy's fixed-grid method, 
Cheng's variable-grid method is too recent to judge its eventual impact. 

4.3. DISCUSSION 

Tractable approximation techniques for general POMDPs depend on finite 
representations of infinite sets. In general terms, as the cardinality of the finite 
representation increases, the quality of the approximation and the calculational 
burden both increase. The burden, however, increases at most linearly, rather 
than exponentially in T, so that approximate methods can analyze problems with 
time horizons significantly greater than those that would be tractable with exact 
methods. The choice for the analyst is what type of finite representation to adopt. 

The finite-memory technique of White and Scherer generates bounds from 
worst case priors a finite number of time periods in the past, and so will be 
ill-suited to problems where distant history still impacts the present. However, 
they will likely generate good results for problems in which distant history is 
largely irrelevant to current status. Recognizing which problems are good candi- 
dates for these methods is an obvious area for research. There is a close 
relationship between this finite approximation to POMDPs and research into 
contraction rates and forecast horizons in fully observed Markov decision 
processes (cf. Morton and Wecker [19], Federgruen et al. [11], and Bean and 
Smith [3]). 

Finite-grid methods are natural approximation techniques, readily adopted by 
practitioners when approximating infinite spaces. Most often, the quality of the 
approximation is assumed rather than calculated because worst-case bounds are 
too loose to be informative. Folklore in the industry is that such techniques 
(including aggregation and discretization) perform well, much better than rigor- 
ously calculated worst-case bounds would suggest. This optimism rests upon an 
assumption that the value function is sufficiently well-behaved to lend itself to a 
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sparse representation. Fully observed problems now have sufficient history to 
render such an assumption plausible. For POMDPs, however, the set of problems 
solved to high precision is too spare to accept conventional wisdom without 
further study. 

In numerical trials with Lovejoy's discrete grid, the simple heuristic of gener- 
ating policies from (3) using VL, to approximate V t* has worked well with even 
sparse grids in a series of test problems drawn from the literature. In his test 
problems, Cheng found that his approximate method worked better than the 
worst-case bounds would indicate. However, both authors used test problems that 
may not be representative of the spectrum of problems faced by practitioners. As 
with finite-memory approximations, an obvious area for research is to associate 
problem data with properties that lend themselves to the approximation tech- 
nique. 

Because discrete approximations are common for fully observed MDPs, the 
finite-grid methods are among the most transparent of the approximate method- 
ologies. Fixed-grid methods are the easiest to implement, since the grid is 
constructed only once. Variable-grid methods increase the computational over- 
head by adjusting the grid each time step. However, increased accuracy should 
result from the informed choice of grid points. No numerical tests are yet 
available to compare the relative efficiency of these techniques. 

5. Concluding remarks 

Currently, exact algorithms for general POMDPs are intractable for all but the 
smallest problems, so that algorithmic solution will rely heavily on precise 
approximation. One of the basic trade-offs made in each of the approximate 
algorithms reviewed is what percentage of computational effort will be expended 
in designing the appropriate approximation, and what percentage to actual 
calculation of values and policies. The more effort one allocates to design, the 
more accurate the approximation should be, but less residual machine time will 
be available to compute the solution. A competing philosophy is to simplify the 
design and allocate more of the scarce machine time to actual calculation. In 
general terms, the Sondik and Platzman approximate algorithms are design 
intensive and involve a significant investment of time to understand and imple- 
ment correctly, whereas the White and Scherer, and Lovejoy algorithms simplify 
the design and are more straightforward to implement (Cheng's methods lie 
somewhere in the middle). While this does not speak to the issue of relative 
accuracy, it might help explain why the earlier methods have not been embraced 
and why the more recent methods may escape the same fate. This is not at all 
certain, however, as these later algorithms are still too new to judge their eventual 
impact. One further advantage accruing to simplified algorithms is that they may 
be better able to exploit parallel processing capabilities. 



W.S. Lovejoy / Survey of algorithmic methods 63 

Although some of the algorithms reviewed here expand the class of problems 
amenable to algorithmic solution, none are capable of solving truly large prob- 
lems (an attribute inherited from, and shared with, algorithms for fully observed 
MDPs). Let us define a "problem of size n"  as a POMDP with n partially 
observed states, n actions, n messages, and a finite horizon of T =  100 time 
steps. Typically a discounted infinite-horizon problem will generate high-accuracy 
approximate value functions within 100 time steps, so these are not excluded. A 
"high-accuracy" solution is a value function and policy with tight, rigorous 
bounds on the error relative to the optimal value. Calculations are presumed to 
proceed on a mainframe computer, and no special structure is assumed or 
exploited. Cpu times measured in minutes are assumed perfectly acceptable, and 
cpu times beyond several days unacceptable. Precise statements are difficult 
(depending as they do on specific problem, code, and machine characteristics) but 
one can expect exact methods to fail for numerical reasons on small problems 
(n = 3, for example) well before the 100 time step horizon is reached. Approxi- 
mate methods will not fail numerically, so that feasibility is limited by the cpu 
time one is willing to invest. Competitive approximate methods should be readily 
capable of generating high-accuracy solutions for problems of size 10. Beyond 
this the difficulty increases exponentially. The margin of feasibility will be found 
at problem sizes in the 20 to 30 range, and problems of size 50 are currently 
infeasible. These assessments may be challenged by future research, as numerical 
experience with these techniques is largely absent. It is apparent, however, that 
heuristics and/or  exploiting special structure will be the key to solving large 
problems. The generic algorithms surveyed here will aid in this effort by making 
available high-accuracy solutions to non-trivial problems, enabling numerical 
tests on a robust problem set. 

It would be helpful to have transportable codes for some of these algorithms 
for use by prospective researchers. The author is currently unaware of any 
generally available code, but the specific authors referenced here can be contacted 
directly for their own versions. 

This review suggests several possible directions for future algorithmic research. 
First, the fundamental advantage of approximate methods is their parsimonious 
representation of the value function. There may be a simple parametric represen- 
tation for convex functions (curvature, skew, etc.) that allows the value function 
to be represented with just a few numbers. If an efficient update for such a 
representation could be derived, the class of feasible problems may be signifi- 
cantly expanded. 

Second, specific algorithms appropriate for problems with special structure are 
likely to perform significantly better than generic methods. It would be a 
significant contribution to the current literature to survey the potential applied 
contexts of POMDPs and develop a taxonomy of specific problem classes 
characterized by some definable structure. Solution methods that exploit the 
special structure in a specific problem class may be quite efficient. 
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Third,  it is impor t an t  to ident i fy  specific p rob lem classes tha t  are amenab le  to 
heuristics. As suggested above, aggregat ion and  discret izat ion me t h o d s  in fully 
observed M D P s  of ten ou tper fo rm the available theoret ical  bounds .  Is the same 
true for P O M D P s ?  Only  numerical  experience will develop a convent iona l  
wisdom as to what  heuristics are effective. 

As suggested in the in t roduct ion ,  c o m p u t a t i o n  remains  an  essential  c o m p o n e n t  
of  the spectrum of  research in part ial ly observed systems. This  paper  is in tended  
to inform potent ia l  and  pract icing par t ic ipants  of  some of  the available computa -  
t ional  options.  
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