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The effects o f  the vacuum electromagnetic fhwtuations and the radiation reaction 
fields on the time development of  a simple microscopic system a r e  identified using 
a new mathematical method. This is done by studying a charged mechanical 
oscillator (frequem;v o~o) within the reahn of  stochastic electrodynamics, where the 
vacuum plays the role o f  an energy reservoir. According to our approach, which 
may be regarded as a simple mathematical e.vercise, we show how the oscillator 
Liouville equation is tramformed into a Sehrbdinger-like stochastic equation with 
a free parameter h' with dimensions o f  action. The role o f  the physical Planck's 
constant h is introduced only through the zero-po#1t vacuum electromagnetic 
fields. The perturbative and the exact solutions o f  the stochastic Schrbdinger-like 
equation are presented for h '> O. The exact solutions Jbr tvhich h' <h are called 
sub-Heisenberg states. These nonperturbative sohaions appear #, the form of  
Gaussian, non-Heisenberg states for which the initial classical uncertainty relation 
takes the ./brm ((z/x2))((zJp} 2) =(h'/2) 2, which includes the limit o f  zero 
indeterminacy (h--* 0). We show hotr the radiation reaction and the vacuum fields 
govern the evolution o f  these non-Heisenberg states in phase space, guaran- 
tee#zg their decay to the stational 3, state with average energy ho)o/2 and 
( (Ax)  2) ((zip) 2) = h2/4 at zero temperature. Environmental and thermal effects 
a r e  briefly discussed attd the connection with sbnilar works with#~ the realm of  
quantum electrodynamics is also presented. We suggest some other applications o f  
the classical non-Heisenberg states introduced in this paper and we also indicate 
exper#nents which might give concrete evidence o f  these states. 

1. I N T R O D U C T I O N  

Even in its ground state, a microscopic  system possesses f luctuations which 
are associated to the zero-point  (or zero temperature) energy which exists 
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in ordinary space. The most striking examples are the electric and magnetic 
vacuum fields which can be indirectly observed. ~j" "-~ The spectral distribu- 
tion po(cO) of these electromagnetic fields is well known and it is related to 
the correlation function of these fluctuating fields through the ensemble 
average 

27r f ~  
(EvF(t+r) EvF(t)) =-~ dfopo(O9) e iC~ (1) 

Here Ev~4t) is the x component of the vacuum electric field at time t and 
at the origin of the coordinate system. 

Within the realm of stochastic electrodynamics (SED) these EVF fields 
are classical random fields with zero mean. ~1" 2~ However, within quantum 
electrodynamics (QED) these electromagnetic fields are considered quan- 
tized, that is, they have a dual (wave-particle) nature. Nevertheless in both 
theories (SED and QED) the spectral distribution is such that ~1-3~ 

po(O)) = h Io)l 3/2n2c3 (2) 

where h is the Planck's constant and c the velocity of light. 
In this paper we shall study a charged oscillator by comparing some 

features of the QED and the SED approaches. Our motivations are 
inspired in the early attempts of Planck, r Einstein and Stern, ~4~ and 
Nernst r to clarify the role of the zero-point energy. Another motivation is 
the recent tendency to bring classical and quantum theories to a closer 
(and maybe nonconflicting) relation. r 6) 

Within the QED approach, the Heisenberg equation for the one- 
dimensional motion of a charged oscillator (charge e and mass m) is given 
by 

m.~.: = - V'(x) + e[EvF(t) + ERR(t)] (3) 

where V(x)= mOgoX'-/2 is the harmonic potential, COo is the oscillator fre- 
quency, x(t) is the position operator, and eERR(t)'" (2/3)(e2/c3):~ is the 
radiation reaction forceJ 7~ The total quantized electric field acting on the 
particle, that is, E,.(t)=EvF+ERR, is also an operator, and will be con- 
sidered only a function of time within the nonrelativistic approximation 
(the vector potential will be denoted A.,. = A VF+ ARR). An important point 
to notice is that the quantum equation (3) is identical to the corresponding 
classical equation of motion (see Milonni ~-'~ and the second article by 
Boyer in Ref. 1). Moreover, by Ehrenfest's theorem, the expectation values 
of any physical quantity that has linear Heisenberg equations of motion 
will be identical to the corresponding classical one and, therefore, quite 
easy to interpret. 
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Several authors ~-81 consider that the quantum fluctuations associated 
to the electromagnetic fields, namely EVF in (3), are the source of the quan- 
tum fluctuations on the position x of the oscillating charge because only Err  
depends on h. In fact, it is not difficult to derive the quantum commutation 
relation between the position and the canonical momentum of the 
oscillator. From the stationary solution of (3) one can show that <8~ 

E e  e2] X, 1772 -t- C V'F-- ~C3 = [ x, m2 ] 

8r~e'- ~ ropo(~O ) 
= i-~-~-m f ~ &oico2_COo)2+(2eZco3/3mc3)2=ih (4) 

follows from the commutation relations associated to the zero-point elec- 
tromagnetic fields. We observe that the last equality in (4) is valid only if  
the radiation reaction force is precisely 2e 2 ";?/3c 3. For a more detailed dis- 
cussion of these matters we refer to the papers quoted in Ref. 8. The 
validity of (4) within the nonstationary (or transient) regimen, and under 
special environmental conditions, will be discussed in Sec. 6. 

Therefore, we can easily recognize that, as far as the harmonic 
oscillator is concerned, the QED and the SED descriptions of this system 
are very similar. As a matter of fact, the Planck's constant h enters in both 
descriptions only through the zero-point fluctuations of the electromagnetic 
fields [see (2)]. This is the cornerstone of our paper. 

Keeping in mind these preliminary considerations, we will show in 
Sec. 2 how to connect the SED approach with the Schr6dinger picture. In 
order to achieve this goal we shall assume that a phase space probability 
distribution for the oscillator exists in both classical and quantum 
approaches. +~1 The Ehrenfest theorem, the correspondence principle, and 
the Heisenberg equation (3) give support to this working hypothesis. 
Moreover, the classical description is expected to be valid in the h ~ 0 
limit. 

According to the classical view, the probability distribution in phase 
space x and p - m 2  (kinetical momentum) will be denoted by W(x,p,  t), 
and will evolve in time according to the Liouville equation, namely, 

OW 0 . +~(xW)+ (jow) =0 (5) 

Since p/m = 2  is related to the stochastic "vacuum" field Evr(t) [see (3)], 
Eq. (5) can be transformed into a Fokker-Planck equation in a standard 
manner, cz~ Here, however, we want to transform the Liouville equation 
directly into a Schr6dinger-like stochastic equation. 
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We shall present the Schr6dinger-like equation in a new form through 
the introduction of a free parameter h' with the dimension of action. This 
is the main result of Sec. 2. It should be stressed, however, that we are not 
trying to introduce a different Planck's constant as has been conjectured 
recently. <91 We are explicitly assuming that h is introduced only through 
(2). 

In Sec. 3 we show how to apply the approximate methods of perturba- 
tion theory, in order to make simple calculations. As an example we 
calculate the rate of exchange of energy of an arbitrary excited state of the 
oscillator. 

Section 4 is devoted to the discussion of exact solutions of the 
stochastic Schr6dinger-like equation and to the introduction and inter- 
pretation of the non-Heisenberg states. The evolution of these states in 
phase space is given in Sec. 5. In the final section we discuss the limitations 
of our approach and we suggest some applications of the non-Heisenberg 
states in more complicated physical systems. We also indicate experiments 
which may give physical evidence of the non-Heisenberg states. 

2. LIOUVILLE EQUATION IN SCHRODINGER'S FORM 

The transformation of the classical equation (5) into another equation 
which looks like the Schr6dinger equation has been known since the work 
by WignerY ~0~ However, we shall present Wigner's ideas in a different form 
which will be convenient for our purpose, that is, to obtain Gaussian non- 
Heisenberg oscillator states and to discuss the effects of Err  and ERR on 
the time evolution of these states in phase space. 

Using a procedure similar to that introduced by Wigner, we shall 
define a function IT/(x, y, t) through the Fourier transform: t'~ 

(2;py) 
ffV(x, y, t) - ~_ dp W(x, p, t) exp /1' ] (6) 

where h' is a free parameter with dimension of action and y is an auxiliary 
coordinate. 

We shall keep h' r  (h is the true Planck's constant) in order to stress 
that h' has no dynamical mean#Tg. In other words, we shall see that h 
[introduced in (2)] has a dynamical meaning and determines the equi- 
librium state of the system, whereas h' [introduced in (6)] will be related 
to the intial shape of the non-Heisenberg states. 

Having defined W(x, y, t) through the Fourier transform (6) one can 
ask: What will be the equation obeyed by FV(x,y, t) if we impose that 
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W(x, p, t) obeys the Liouville equation (5)? The answer is very simple. The 
substitution of (6) into (5) leads to ~'~ 

OW+ (h')'- 02 
- -  ffV+ 2y[eE, . ( t ) -  V'(x)] I~=0  ih' Ot 2m Ox Oy (7) 

where we have used (3). It is easy to verify the correspondence among 
the three term of both Eqs. (5) and (7). The second term in (7), for 
instance, has its origin in the convective term of (5), namely, O(,~'W)/Ox. 

In order to put (7) into a form which looks more similar to the 
Schr6dinger equation, it is necessary to introduce an auxiliary complex 
function O(x, t) and an additional restrictive hypothesis. Let us, therefore, 
consider 01113, those functions l~(x, y, t) that can be written in the form 

l~(x, y, t) = ~9*(x +y,  t) ~(x --y, t) (8) 

The above assumption [and also the original equation (5) which 
requires that W(x,p,  t) be always positive] will impose some restrictions 
concerning the O(x, t) which are physically acceptable. We shall see, 
however, that this will lead us to ~b(x, t) functions which are in the form 
of displaced Gaussian states of the oscillator, namely, a kind of coherent 
state [see (30)]. Consequently, there is no loss of generality associated with 
this approach, because the coherent states form a complete set of states of 
the harmonic oscillator (see Refs. 11 and 17). Moreover, these displaced 
Gaussian states always generate positive phase-space distributions. There- 
fore, the hypothesis (8) is very attractive and reasonable from the classical 
point of view. 

Using (8) into (7) we obtain ~~ 

04 [ (h')20 -" 1 ] 
ih'T/= 2m ~x2+5 '''~176 ~ (9) 

Therefore, according to SED, (9) may be interpreted as c&ssical stochastic 
Schr6dinger-like equation for the function O(x, t) because EVF is the ran- 
dom electric field. Notice, however, that the equivalence between (5) and (9) 
is exact only for the harmonic oscillatorJ ~o) 

One relevant remark can be made at this point. Nowhere in the above 
derivation leading to the Schr6dinger-like equation (9) is any consideration 
given to the spectrum of the random force eEvr(t). Therefore, the result (9) 
holds for any spectrum, in particular for white noise for example. However, 
the results of Secs. 3, 4, and 5 will be presented considering only the spec- 
tral distribution given by (2). 
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Since EVF is the vacuum field, the solution of Eq. (9) will have 
properties that depend on the statistical properties of the electromagnetic 
vacuum fluctuations. We have denoted the total vector potential 
A.,.(t) = A re(t) + A RR(t), i.e., cE,. = -- A,.. If we introduce another auxiliary 
function ~U(x, t) such that 

[ ex ] 
~(x, t)-=exp -i~7, X.,.(t) 7t(x, t) (10) 

it is possible to show that the equation for ~(x, t) will be (12~ 

ih' 1 - ih '  a _eA,. + mCOo x2 ~(x, t) 
= s  e 

(11) 

which also has to be considered a stochastic Schr6dinger-like equation. 
Notice, however, that (11) and (9) are equivalent only in the dipole 
approximation [A,. = A,.(t)]. 

If we look for solutions of the SchrOdinger-like equations (9) or (11), 
we can use the fact that the Hermite functions, namely 

(mc~176 '/4 exp(-(m~176 x~-) ( m~~ 
(gn('~) = ~,, 7[.h' J (2nH!)l/2 H,, x ~] h' J (12) 

form an orthogonal and complete set, thus fulfilling the condition 

~, ~b,*(x) ~6,,(y)=6(x-y) (13) 

As a matter of fact, the functions ~ = ~b,,(x) exp( - ie , ,  t/l~') are solutions 
of (9) and (11) only if e = 0 .  Therefore, they cannot be considered 
natural states of the charged harmonic oscillator. Moreover, the set of 
"energies" e,,, 

e,,=h'coo(�89 (14) 

cannot be interpreted as the energy levels of the oscillator because h' is 
arbitrary. The true Planck's constant h only appears through the influence 
of the vacuum fields EvF(t). Another reason which forbids us to give a 
classical statistical interpretation to the "states" (~b,,(x), e,,) is that they do 
not lead to positive-definite probability distribution in phase space, < 13)with 
the exception of the "state" [~o(X),eo=h'coo/2]. However, even in this 
case, we cannot identify ~bo(x) with the true equilibrium state of the 
oscillator because h' is a free parameter. The meaning of/~' will be given 
later on. 
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Nevertheless, since the set of functions ~b,,(x) is complete, they are use- 
ful from the mathematical point of view. We can write the solution of the 
stochastic Schr6dinger-like equation (9) or ( 11 ) in the form 

~(x, t)= ~. a,,(t) ~b,,(x) e -i~"'/h' (15) 
tl~O 

and find the coefficients a,,(t) by substituting (15) into (9) or (11). We shall 
discuss exact and approximate solutions of (9) in what follows. Let us first 
consider the approximate method. 

3. P E R T U R B A T I V E  A N A L Y S I S  

Let us introduce the mathematical hypothesis that for t = 0 the ~O func- 
tion is such that 

~(x, 0) =~/ (x)  (16) 

where ~b~(x) is given by (12) and l is an arbitrary integer. A standard per- 
turbation calculation will give 

ie f o a,,(t) ~-fil,,+~x,a dr [EvF('C)+ERR(r)] e"~ ... (17) 

where h co,a = e , , -  e~ and the x,a are defined as 

f c,: Xnl x ,a-  dx xdp,*(x) fbl(x) ~- ----~ (18) 
- ~  o9 0 

We would like to make a few remarks at this point. Firstly, the 
Planck's constant h contributes to a,, only through Err .  Notice, however, 
that (EvF) = 0. Secondly, the approximate equality on the right-hand side 
of(18) is valid if the radiative forces in (3) may be considered less impor- 
tant than the harmonic force -mCOoX. 

The average rate of exchange of energy between the charge and the 
total radiation field is such that 

--or_ 

= ~R~ + &'~ 

dp W(x, p, t) e[ Enn(t) + EvF(t) ] P I 

(19) 

825/25/1 I-5 
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Here it is understood that W(x,p, t) will be calculated by using (6), (8), 
(15), (16), and (17). The ensemble average indicated by ( ) has exactly the 
same meaning as was indicated in ( 1 ). Within this approximate analysis we 
shall calculate ~(l) up to the order e z. 

The radiation reaction force will be approximated by 

2 e 2 2 e2~Oo . 
eERR(t) ~ .f'"~ --~ C3 .~.'~ -yp (20) 

where we have introduced the notation y = 2e2COo/3mc 3 for the damping 
constant. The approximation of the radiation reaction force by - y p  is con- 
sistent with (7), as we shall see more clearly with the nonperturbative 
calculation that will be presented in Sec. 4. 

Therefore, up to order e 2, 6~RR will be given by 

2 e 2 i *c 8R~- - ~ 0 ,  4 dxx'-I~b,(x)12 = - } , c ,  (21) 

where we have used a,, --- a,,/ [ see (17)] in the first approximation. Such a 
result, which is essentially the Larmor formula, means that if only the 
radiation reaction is present, all the oscillator states [see (12)] are 
unstable, 114) because the square of x (or .#/O9o) has a nonzero average value 
in such states. 

A convenient form to write this simple result is 

2e-  - . 
'~RR 3 c 3 ,,~o xt" x,,t . . . .  .: .': (22) 

where we have used (13) and (18). 
There is another way to derive this result directly from the Larmor 

formula, that is, avoiding the approximation (20) for the radiation reaction 
force. Equivalently to (19) we define '~RR by 

( . . . . .  [ 2e: 

= dx $*(x, t) [ - ~7- 5 (I~_ 2e2(.;t)2] t~(.x',t}} (22a) 

Now we must remember that we want to calculate '~aa only up to order 
e z. Considering (15), (16), and (17) we have q(x, t}-~ ~b/(x)+ O(e). Taking 
into account the completeness relation (13), it is straightforward to show 
that (22a) coincides with (22). Therefore, the use of (20) gives a consistent 
approximation valid up to order e 2. 
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In order to obtain a similar expression for ~ VF a few preliminary steps 
are necessary for clarity. According to (6) and (8) we can write 

. wtx, ,,t  ReE+./x.,,( t, ] 123, 

and therefore [ see (19) ] 

~r Re _ dxO* (x , t ) ( - i h 'O ) f f ( x , t ) )  (24) 

Considering that (EvE) = 0 and that the correlation function for the 
vacuum electromagnetic fields is given by (1 and (2), we obtain from (17) 
and (24) the result 

e- - -  d o )  - -  I~ol 3 eio,, (25) ~VF -~ 2 ~ Re w,,ix,,tx,a dr e . . . .  I~ 2n . . . . .  h 
n 0 3 --COma x 2 ~ 2 C  3 

where COma x is a cutoff frequency consistent with our nonrelativistic 
approximations (see also Dalibard et al. in Ref. 14). 

Assuming that tic,)- r I > >  1, we can make the replacement 

dr e i r ( ~ 1 7 6  ---* dr e z r ( ~ ~ 1 7 6  

i 
- - -  + n6(co - to,i) (26) 

0 9  - -  ( . 0 . t  

Therefore, we obtain for (25) the following expression: 

g V F = 2 e Z h [ ~ . # h , . # , , t - -  ~ 2/, 5?,,/J (27) 
3 C 3 h' ,,I >tl ,, < -/I 

provided approximation (18) is valid. 
An equivalent result was obtained previously by Dalibard et aL ~14J 

within the realm of quantum electrodynamics (QED). These authors, 
however, used Eq. (11) and h ' =  h. 

Combining Eqs. (22) and (27), we can cast Eq. (19) into the inter- 
esting form 

h 
d ' ( l )  - 3 c 3 L /i / , , ,  < , ,  ,,, > , ,  

which is the main new result of this section and deserves a few comments. 
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The first term in (28) represents downward transitions [to lower 
"energy states" e,<el=h'o)o(1/2+l)] while the second term represents 
upward transitions [see (14)]. Therefore, since the parameter h' is free, 
both type of transitions are allowed. We also conclude that 6(l) is always 
nonzero in this general case. If, however, we take the particular case in 
which h ' =  h we obtain 

4 e 2 2 eZcoo (el__ gO) (29) 
~" ~Vl"'#"l- 3 m c  3 

8 ( l )  = 

which is the well-known result obtained using QED perturbative calcula- 
tions, t~aJ An exact (nonperturbative) calculation should give a different 
result, t lL 13, ~5-~9) which may include upward transitions in the general case 
of nonzero temperatures, for exampleJ TM These are also expected, for 
instance, in the (slowly damped) oscillations of a squeezed coherent state 
solution of the harmonic oscillatorJ ~8'19~ In other words, if h'>h, for 
instance, there are upward transitions which are present in the oscillations 
of the Gaussian (non-Heisenberg) state solutions. These solutions are 
similar to the Gaussian states first encountered by Schr6dinger ~15' ~9~ and 
will be presented in Sec. 4. 

It is also possible to conclude from (29) that the stationary state 
["energy" go=h(o)o/2)] cannot be stable in the absence of the vacuum 
electromagnetic fluctuations which exactly balance the energy loss due to 
self-reaction/~41 Therefore, a striking conclusion that we have re-encoun- 
tered in the above analysis is that it is the vacuum energy that prevents the 
oscillator (or atomic) collapse and gives us the criterion to identify the 
equilibrium state. 

4. EXACT SOLUTIONS AND NON-HEISENBERG STATES 

Let us see how one can easily find a set of exact (nonperturbative) 
solutions of the stochastic Schr6dinger-like equation (9). We shall also 
show once more that the free parameter h' has no dynamical role. 

Using a well-known procedure (see the paper by Schr6dinger~lS)), one 
should look for solutions of (9) or (11 ) with the form of Gaussian states 

qG(x,t)=qbo(X-X,.(t))exp[~(xP,.(t)-g(t)) 1 (30) 

Here we are considering h' C-h, and ~bo(x) is given by (12) with n =0.  We 
shall call these states classical sub-Heisenberg states if h' < h. The functions 
xc(t),p,.(t), and g(t) are obtained by substituting (30) into (9). 
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It is straightforward to show that pc(t)=m2c(t) and that xc(t) must 
obey the classical equation of motion (3). It is also not difficult to obtain 
a closed expression for g(t) which will be given by ~171 

g(t)=--~+l~'co~ fo 2 , , , ] [ p,.(t ) mco?)xT(t' ) (31) 
dt'[ ~m 2 

The classical trajectories xc can be more easily found if we consider the 
approximation (20) for the radiation reaction force. More rigorous treat- 
ments of the radiation reaction can also be used. 171 Here, however, we shall 
avoid these more elaborated approaches which consider the charge as an 
extended particle. We shall denote 

x~(t) - Xd(t) + .~r(t) (32) 

where xi(t) is the fluctuating part. In (32) Xd(t) is the deterministic part, 
which depends on Xo (initial position of the Gaussian center), and the 
initial velocity of the Gaussian center, namely, po/m. More explicitly, 

{ t+(myx~176 sin t i e  -~'/'- (33) Xd--= L Xo cos co, \ 2nm~ .j co, 

where co~ = coo - ),-'/4. 
The fluctuating part, x f, depends on the vacuum field EvF(t) and has 

the simple form 

el2 .X~r(t) - dt' EvF(t' ) sin[col(t--f)] ey 1''-'1/2 (34) 
177(_01 �9 

With the knowledge of these nonperturbative solutions ~k,.(x, t), one 
can obtain exact expressions for the coefficients a,,(t) used in the earlier 
expansion formula (15). We shall not present these expressions here since 
they have been explicitly written previously I ~6. tT) (the only difference is that 
here h' is a free parameter). It is also interesting to recall that for each Xo 
and Pc [see (30)] we have a different state. I j6' 17) Therefore, one can obtain 
various sets of phase-space distributions W(x,p, t) through different ff~ 
with different Xo, P0, and h'. The completeness of these functions was dis- 
cussed previously (in the particular case h' = h )  by several authors. ~L 13. 171 

The Wigner function associated to the states ~b,,(x, t) also has a simple 
form. If we subsitute (30) into (8) and use (6), we get 

I mcoo . . . .  2 (P--Pc)-'] W(x,p, , ) = ( n h ' ) - '  exp - / - -~ - t -x - -x ,4  - ~ J (35) 

which has interesting properties. 
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Since h' is a free parameter, we can consider, for instance, the par- 
ticular case 

lim W ( x ,  p ,  t = O) = ~ ( x  - Xo) f i ( p  - Po)  
h ' ~ O  

(36) 

which is a typical deterministic initial phase-space distribution. 
If, for instance, Xo=Po=O but h' 50 ,  we get an initial phase-space 

distribution 

W(x,p, t=O)=n_@exp( mfOoX2 p2 h' h'-~(oo) ~ Win(X' p) (37) 

which corresponds to an initial classical uncertainty relation of the form 

((•x) 2 ) = ( h ' / 2 )  2 (38) 

Therefore, we can analyze the phase-space evolution of our system by 
using the non-Heisenberg states (30). Our conclusions are not restricted to 
the perturbative domain [see (28) and (29)], and also include arbitrary 
initial shape because/~' defines the initial Gaussian phase-space distribution 
[see (37)]. This freedom is possible within SED. Within QED this may be 
possible provided that we do not postulate the Heisenberg commutation 
relation for the variables x0 and Po which appear in (33). The variable Xo 
is simply the center of the Gaussian ~b function and not the actual position of 
the charged particle. 

5. EVOLUTION IN PHASE SPACE 

The classical trajectory x,.(t) and momentum p,.(t)=m2,.(t), which 
appear in the Wigner function W(x,p, t) obtained above [see (32)], are 
correlated. The various moments can be obtained from the definitions (33) 
and (34). These calculations will require the use of the statistical properties 
of the vacuum electric field [see (1)]. In this section we shall obtain the 
ensemble-averaged phase-space distribution, namely ( W(x, p, t)), by using 
the transition probability ~'-~ in phase space Q(xpt[x'p'). In other words, if 
Win(X', p') is the initial (t = 0) phase-space distribution, then, at later times, 
we get 

I I ( W(x,p, t)) = dx' dp' Q(xptl x'p') win(x', p') (39) 
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The transition probability Q satisfies a Fokker-Planck (2m equation 
which is the generalization of the Liouville equation (5). Within SED, this 
equation is well known and can be written as 

~t +_~x(pO Q)+ O_~p[-(yp+mog~x)+D~p] Q = 0  (40) 

where D is the diffusion coefficient (see de la Pefia and Cettol2)). 
At zero temperature, the diffusion coefficient is given by 

�9 hymcOo (41) D = y[ l im ( p ) ( t ) )  ] - 2 

where pf(t)=m.~:r(t ) and xf(t) is given by (34)�9 
The solution of (40) is also well known and can be written in the 

f o r m  (20,21) 

2mXl0r 2 X/1 __~2 Q(xptlx'p') 

{ [(p__,,)2_~p ( x  - od 
Xd) 2 

= exp - ~ 
~1~2 
2____~_~ (x-xa)(p-pa)]/2( 1 _ ~ 2 ) }  

(42) 

where xd(Pd=D12d) is the deterministic trajectory [see (33) and replace 
Xo --+ x' and Po -+ P' ]. 

The function ~l(t) is given by 1211 

" '- Y sin(2cOlt)] e -~''} (43) ~i(t) = D {1 - I 1 + 2@o~ sin-'(o), t '  -- 2-~ol 

whereas ~2(t) is such that 

- -~ , 1--  1 +  ,sin'-(~o i t ) +  sin(2~o it)  e -~'' (44) ym-co; 2o9 i 

The correlation ~ is given by 

D 
~0q 0~_, = , sin'-(e)l t) e -~" (45) mcoy 

and, since Q(xptlx't') is a classical transition probability within SED, we 
also have 

lim Q(xptlx'p')= ~ ( x - x ' ) ~ ( p - p ' )  (46) 
t ~ 0  
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Let us assume that Win(x'lp') is given by (37), which characterizes a 
simple initial non-Heisenberg state in phase space. We now want to 
calculate the average energy d( t )  as a function of time. The explicit defini- 
tion is 

g,(t)- dp dx ~.. +~mCOoX'- (,W(x,p,t)) 
- -  o C ,  

1 ~-~ 
= 2rn p- -I-~rnco~x- (47) 

Using (39) and also (42) we obtain for x'- the following result: 

x~ - 2mco----o cos-'(COl t) + 1 + sin-'(col t) + sin(2cOl t) e -r,  

h { [ , 2  1) +2--~oo 1-- 1 + } - ~  sm-(~~ sin(2c~ e-~'  (48) 

and a similar expression for p2. 
It is interesting to observe that x'-=h'/2mco o for t =0.  However, for 

•t >> 1 we get x 2=  h/2m~o o as expected. Notice that here h is the Planck's 
constant whose origin is the vacuum field which was introduced through 
(34), (1), and (2). 

The final result to the average energy is 

h~176 (h'-I~)c~176 [ ~ ] 
~(t) =--~--+ -2- e -~'' 1 + sine(co0 t) (49) 

where we have neglected y4/co4 as compared to 1. It is easy to see that 
d~(t) varies from o~(O)=h'coo/2 to o~(oo)=hcoo/2, which is the average 
energy of the mechanical oscillator in the stationary regime. The above 
result (49) is more general than our previous formula for o~(l), presented 
in Sec. 3 [see (28) and (29)]. The reason is that the initial state ~k,. is an 
exact solution of (9), that is ffc has contributions from all states ~b~(x) 
introduced in (12). Since h' is arbitrary, the states tp,. are associated {see 
(30) and (35).] to a large class of phase-space distributions. However, if 
h' <h,  these Gaussian phase-space distributions violate the Heisenberg 
principle and, therefore, their real existence remains dubious in this special 
case. Nevertheless, examples of thermal phase-space distributions [see 
(37)] with h' =hcoth(hcoo/2kT)>h were discussed previously using the 
familiar quantum mechanical approach ~ (without the zero-point field). 
This will be commented upon in Sec. 6. 
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6. CONCLUSION AND DISCUSSION 

Let us briefly discuss the effects of nonzero temperatures and also 
other interesting environmental effects on the evolution of the non-Heisen- 
berg states analyzed in this paper. 

If the oscillator is inside a cavity with temperature T, then the spectral 
distribution of the vaccum electromagnetic fluctuations is given by ~ 1" 2) 

hco3[1 1 ] h(o3 coth ( hco ) 
Pr(C~ 2 +exp(h~o /kT) -  l --2n'-c -----5 ~ (50) 

instead of (2). Therefore, a simple rule, to generalize the result of our pre- 
vious sections to finite temperatures, is to replace h by hcoth(hcoo/2kT) in 
every place in which Planck's constant appears, for instance, in the diffusion 
coefficienty D given in (41) and also in Eq. (28), which is the main result 
of Sec. 3. If we want, for instance, to describe finite temperature effects 
(and dissipation by radiation reaction) on the oscillator, within the usual 
quantum formalism, we should use (9) with h '=  h. The thermal radiation 
effects will appear through EVF, which now has the spectral distribution 
(50). However, the oscillator equilibrium distribution in configuration 
space, that is, the "ground" state probability distribution at finite tem- 
perature, can be obtained directly from (12) by using a simple algorithm, 
namely, we take [~bo(X)[ 2 with h' =hcoth(hcoo/2kT). The detailed justifica- 
tion of this result (within quantum mechanics) is not trivial. 122) 

We also want to make some comments concerning the limitations 
of the application of the stochastic Schr6dinger-like equations (9) or (11). 
As we have explained in Sec. 2, Eqs. (9) and (11) are equivalent to the 
Liouville equation (5) only 07 the particular case in which the potential 
V(x, t) can be written as 

V(x, t )=a( t )  x'- + b(t) x + c(t) (51) 

where a(t), b(t), and c(t), are arbitrary functions of the time (see 
G. Manfredi et al. in Ref. 10). In other words, the time-dependent potential 
must be a quadratic polynomal in x. Despite this limitation, Eqs. (9) and 
(11) are useful because many physical systems can be modeled with such a 
potential. ~23J Moreover, exact solutions of the Schr6dinger equation with 
the potential (51) are well known (see Kleber, 123J for instance) and can be 
applied to (9). 

On the other hand, our previous equation (7) does not have the above- 
mentioned limitation and can be applied to a potential V(x) with a more 
general x dependence. Therefore, we also want to say a few words as far as 
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the computional use of Eq. (7) is concerned. Firstly, an expansion of the 
type 

l~(x,y, t )=  ~ ~ Ch,(t)dp~'(x+y)(b,,(x-y ) (52) 
/ = 0  n = O  

where Ch,(t) are unknown time-dependent coefficients, may be useful. The 
Hermite functions ~,,(x) [see (12)] form an orthogonal and complete basis 
[-see Franga and Marshall ~3~] which allows us to write (52). The substitu- 
tion of (52) into (7) will give a linear first-order differential equation for 
the coefficients Q,(t). This equation may be solved analytically or, at least, 
numerically. Therefore, we would like to suggest that the application of 
Eq. (52) and (7) to other physical systems deserves further attention. 

In our opinion, the application of (7) to the three-dimensional motion 
of the electron in the Coulomb field of a proton, for instance, may reveal 
the possible existence of sub-Heisenberg states in the hydrogen atom. This 
is expected within the classical SED approach. In this case, Eq. (7) can be 
easily generalized to the three spatial dimensions with V(r)= -e2/r ,  where 
r is the distance between the electron and the proton, namely 

{ih ,h,,2 ie2, ]} ~ + ~  Or.a~+2~. --7+elEvF+~,RR) ~(r,~,t)=0 (53) 

Here I~ (r, ~, t) is the three-dimensional generalization of (6) and 
~=(~.,., ~y, ~:) is the vector associated to the auxiliary coordinates. If a 
solution of Eq. (53) is constructed, then the probability distribution in 
configuration space will be given by the ensemble average ( l~(r, 0, t)).  At 
this point it is worthwhile to stress that we are unable to make any com- 
ment, concerning the success or failure of (53) for a full modeling of the 
hydrogen atom, without doing explicit calculation. In this regard, the 
mathematical similarity between the Coulomb and the harmonic oscillator 
problems has been stressed by several authors ~241 and may or may not be 
useful. Nevertheless, for almost circular classical orbits [ r ( t )=cons t ] ,  
Eq. (53) can be transformed into a stochastic Schr6dinger-like equation 
for a frequency-modulated harmonic oscillator. One can show that this 
equation has exact solutions in the form of squeezed coherent states c231 
which may be observed, associated to quasi-circular Rydberg atomic states. 
Therefore, at least these particular cases may be treated within SED using 
the proposal developed in our paper (see Sufirez Barnes et al.~231). 

Classical stochastic electrodynamics allows a simple mathematical 
introduction of sub-Heisenberg states by using the free parameter h'. These 
states on their turn, are associated to trajectories and, consequently, may 
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provide a natural ~25~ connection between the "quantum regimen" and the 
classical chaotic dynamics. This connection is a difficult problem because at 
the microscopic level, the Heisenberg uncertainty principle precludes the 
notion of classical orbits since position and momentum cannot be 
measured with infinite precision at each instant. "This implies that most 
definitions of classical chaos, which require the existence of orbits, lose 
validity. ''t251 At the same time, h :/: 0 within the SED scheme. Therefore, we 
suggest that the use of the SED approach explained here may also be useful 
to the study of chaotic phenomena (classical or quantum)/25-271 For 
instance, a remarkably simple example of classical chaotic behavior with a 
bifurcation diagram is given for an extremely simple nonautonomous cir- 
cuit. 1281 It is a series connection of a linear resistor, a linear inductor, and 
a two-segment, piecewise-linear capacitor driven by a sinusoidal voltage 
source. The equation of motion for the charge in the capacitor is similar to 
(3) because the capacitor is piecewise linear/28~ We suggest that our 
method (see Sec. 4) may be useful to study the connection between the 
classical and the "quantum" behaviour of this system. 

Let us consider another interesting simple system. This occurs when a 
charged oscillator is inside resonant cavities 1291 or between two perfect 
plane mirrors. ~3~ In the latter case, the emission and the absorption 
of the oscillator depend on the position and the orientation which the 
oscillator has with respect to the mirror plates. If the oscillator is oriented 
parallel to the plates, the damping constant y [see (20)] is modified 
to another one [yll(COo)] which is a more complicated function of coo, 
namely, 130. 31 ) 

2co0----~3zcc t,oo,,/,,.~[ +(Trcs~2]\cooa/d s i n 2 ( - ~ )  ,54) Yql( coo) = ? ~o.= 1 

Here, a is the distance between the mirror plates and b (b < a) is the dis- 
tance from the oscillator and one of the plates. An interesting remark is 
that Yll(co0)= 0 if coo <rcc/a. In this case the oscillator cannot lose energy 
and all states are stable, including the nonphysical states (12), which we 
have introduced in See. 2, using the free parameter h ' ~  h. In other words, 
the charged oscillator behaves as an uncharged Newtonian oscillator. Even 
the true Planck's constant h has no role in this particular case. The reason 
is that the spectral distribution is also modified by the perfect mirrors, that 
is, Po(co) is replaced by Pll(co) such that 13~ 

Yu(co) &~ 
PlI(CO) Y 2~z2c3 , Co>~O (55) 

Therefore, Pll(co)= 0 for frequencies 0 ~< co ~< nc/a. If the oscillator frequency 
COo is this interval, then the "vacuum" field EVF is unable to excite the 
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oscillator which is oriented parallel to the perfect mirror plates (the situa- 
tion is completely different if the oscillator is oriented perpendicularly to 
the plates). Therefore, the equation of motion (3) becomes simply 

.#( t ) = -COoX( t ) (56) 

which is the Newton equation of an uncharged oscillator. 
It is interesting to see what happens, from the QED point of view, 

with the "Newtonian" oscillator if we remove the perfect mirrors at t = 0, 
allowing radiation of all frequencies to excite the oscillator for times t > 0. 
Within the QED approach the electromagnetic fields Evv and ERR are 
operators. Therefore, we can assume, without proof, the validity of Eq. (3) 
as the Heisenberg equation for the position operator x(t) as we said in the 
introduction. The solution of the Heisenberg equation can be written as 
before [see (32) to (34)]. Due to the effect of the perfect mirror plates, the 
oscillator is initially Newtonian and we can consider Xo and Po [see (33)] 
as commuting variables. Therefore, after removing the perfect mirror plates 
at t = 0 it is possible to show that the commutation relation at later times 
will be (see Ref. 3 and 32, and also Eckardt in Ref. 8) 

[x, p] = Ix 0, Po] e -~" + ih( 1 - e -~") = ih( 1 - e -~") (57) 

This qualitative analysis shows that, in principle, sub-Heisenberg states are 
possible within the realm of QED because [ x , p ] ~ i l i  for small times 
(~,t ~ 1). However, when the conductivity of the plates is finite, the discon- 
tinuities of (54) become smooth because there is always some residual 
noise at all frequencies, ~331 that is, pll(co)~ 0 for 0 ~< co <~ nc/a. This residual 
noise is very small ~331 but may forbid practical observations of sub-Heisen- 
berg states (or trajectories) by this method. However, other related inter- 
esting phenomena (as the superpression of spontaneous emission) have 
been observed experimentally ~34~ and explained theoretically within the 
realm of S E D .  16~ To our knowledge, the QED calculation was not pub- 
lished (see Ref. 34 and J. P. Dowling in Ref. 31) and within the SED 
calculation explicit use was made of the concept of trajectory. In this 
regard, the (indirect) observation of the particle trajectory seems to be 
possible despite the position-momentum uncertainty relation (see Refs. 6 
and 35). 

We believe that these conclusions may be extended to other dynamical 
variables, such as the spin and the magnetic dipole. The reason is that 
every physical system is exposed to fluctuating forces and, consequently, 
will exchange angular momentum with its surroundings. Schiller and 
Tesser, ~8~ Boyer, ~36~ and Barranco, Brunini, and Franga c37~ have discussed 
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this point within QED and SED. It is shown clearly that the concept of 
"spin vector trajectory" is useful and is also in good agreement with 
the experimental observations, t36'37) Therefore, in our opinion, the 
paramagnetic behavior may be interpreted as experimental evidence of the 
spin vector trajectoryJ 37~ Moreover, quite recently, it has been suggested 
that new detectors constructed with the aid of modern quantum optics may 
provide a way to understand better the relation between path detection and 
the uncertainty principleJ 381 

Here, by using a simple mathematical approach, we have shown that 
the harmonic oscillator is an essentially classical system. This has been 
known since the pioneering works by Wigner (1932), within conventional 
quantum mechanics, ~1~ and by Marshall (1963), within the realm of ran- 
dom (or stochastic) electrodynamicsJ ~ Within our approach, which may be 
considered only a simple mathematical exercise, we have shown how to con- 
nect the oscillator Liouville equation with a stochastic Schr6dinger-like 
equation, using a convenient arbitrary constant h'. This freedom allow us 
to see very clearly, in Eqs. (12) to (15), that the energy levels and eigen- 
functions of the harmonic oscillator are only a useful mathematical basis of 
functions: "No excited state of the harmonic oscillator is a real physical 
state. ''t13~ Therefore, the usual "quantization" of the free electromagnetic 
field, as an infinite set of uncoupled harmonic oscillators, may be considered 
as a formal mathematical treatment of a classical random field, t ~-3~ 

In this regard, we would like to recall that Born, Heisenberg, and 
Jordan (1926) and Dirac (1927), showed how to systematically "quantize" 
free electromagnetic field by exploiting the representation of each field 
mode as a harmonic oscillatorJ 39~ They, therefore, rediscovered the classical 
zero-po#Tt electromagnetic fluctuations used by Planck, Einstein, Stern, 
Nernst, Debye and others, t~-5~ In fact, "zero-point energy was a hot topic 
during the decade preceding Heisenberg's matrix mechanics and 
Schr6dinger's wave mechanics. ''~4~ We have to recognize that, at present, 
there is also an increasing theoretical and experimental interest in many 
other manifestations of the zero-point electromagnetic fluctuations. ~4~-4s~ 
Therefore, we think that our paper may be useful within this wide context. 
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Erratum 

K. D e c h o u m  and H. M. Fran~a 

The Ibllowmg misprints appeared in the paper "'Non-Heisenberg 
States of the Harmonic Oscillator," Found. Phys'. 25, 1599-1620 (1995). 

Page 1599 (lille 15, abstract): replace (h--+ 0) by (h' 4 0 ) .  
og," 

Page 1603 [Eq. (7)]: replace ih'c-gTl by - i h '  0--7-" 

Page 1607 [Eq. (24)]: rephtce h' by h'. 
Page 1607 [Eq. (27)]: replace - / b y  / ill tile second summation. 
Page 1607 (line 6 f,'om below): the correct phrase is "These authors, 

however, used Eq. (21 and Eq. (3), that is, their approach is based on the 
Heisenberg picture." 

Page 1608 (line 13): replace h' > It by h >/ / .  
Page 1609 [ Eq. (34) ]: the correct factor is exp[),(t' - t )/2 ]. 
Page 1609 (last line): tile complete line is "'which has interesting 

properties in the limit t ~ 0. It should be remarked that the limit t ---, ~o is 
,ncaningful only in the case l/--+ 0." 

Page 1610 (linc 13): replace h' by h'(<h).  

Page 1613 (line 15): replace Ef.F by ~.,,~,,,,,i 
Page 1613 (line 16): replace (50) by p r (m)-p , , (m)  [see (50)]. 
Page 1614 [Eq. (53)]: replace ih'(O/Ot) by -il/(O/Ot). 
Page 1614 (last line): replace "trajectories and" by "trajectories 

(h' --, 0) and." 
Page 1615 (line 16): replace (see Sec. 4) by (see Sec. 5). 
Page 1615 (last line): replace "~,),, is this" by "~o. is within this." 
Page 1620 (ReI: 46): the correct reference is "H. M. Fratwa, A. Maia, 

Jr., and C. P. Malta, Found. Phys. 26, 1055 (1996)." 


