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Abstract 

Stability and sensitivity studies for stochastic programs have been motivated by the 
problem of incomplete information about the true probability measure through which the 
stochastic program is formulated and in connection with the development and evaluation of 
algorithms. The first part of this survey paper briefly introduces and compares different 
approaches and points out the contemporary efforts to remove and weaken assumptions that 
are not realistic (e.g., strict complementarity conditions). The second part surveys recent 
results on quafitative and quantitative stability with respect to the underlying probability 
measure and describes the ways and means of statistical sensitivity analysis based on G~teaux 
derivatives. The last section comments on parallel statistical sensitivity results obtained in the 
parametric case, i.e., for probability measures belonging to a parametric family indexed by a 
finite dimensional vector parameter. 
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1. Introduction 

A detailed insight into the origin of surprisingly many linear programming 
problems reveals that the assumption of fixed, completely known coefficient 
values is not justified in practice. This fact was already recognized in the fifties 
and stimulated the development of stochastic linear programming (e.g. [5,7,9,65]). 
First of all, it was necessary to clarify carefully the meaning of a linear program 
in which random coefficients appear and to introduce completely new solution 
concepts. In 1955-1965, the basic ideas for the development of different ap- 
proaches were elaborated and extended to stochastic nonlinear programming 
problems. At the same time, the first applications were successfully solved. In the 
next decade remarkable theoretical resul t s  were achieved. These have been 
collected in various works, e.g. in the monograph of Kall [30]. For new develop- 
ments see e.g. Wets [72]. The main interest appears to be concentrated on 
designing efficient algorithms (cf. Ermoliev and Wets [19]), on proper t reatment  
of incomplete information about the probability distribution of random parame- 
ters and on developing dynamic stochastic programming models. 
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Present knowledge gives a good basis for nontrivial applications of stochastic 
programming in which the complexity of stochastic programming problems is of 
concern. The applications have to reflect the interplay between the available 
statistical data, the chosen model and the numerical  approaches based on 
approximation techniques. Results on stability and sensitivity can help to obtain 
(probabilistic) estimates of errors and to support development of new algorithms; 
cf. Robinson and Wets [50] in connection with scenario analysis and designing 
discretization schemes, Dantzig and Glynn [10] in connection with implementa-  
tion of sampling techniques, etc. 

Consider the nonlinear programming problem 

minimize c o (x,  r ) 

subject to ci(x , o~) < O, i = 1 . . . . .  r (1) 

ci(x, ~ ) = 0 ,  i = r + l  . . . . .  r + s  

x ~ M o C R "  , 

where ~ is a random vector and an optimal decision 2 ~ M 0 has to be chosen 
before a realization of o~ is observed. For this purpose, (1) has to be reformulated 
in a meaningful way. The commonly used basic assumptions are: 
(i) (52, ~ ,  P )  is a given probability space with 52 c R/, ~ the corresponding 

Borel a-field on 52 and P a known probability measure. Moreover, P does 
not depend on x. 

(ii) M o c R" is a given Borel set and ci: M 0 x 52 --* R 1, i = 0 . . . . .  r + s are given 
functions such that c i ( x , . ) ,  i = 0 . . . . .  r + s are random variables for all 
x ~  M O. 

To build a decision model corresponding to (1) means to specify the set of 
feasible decisions, say M ( P ) c M  o and to define a real objective function 
f ( - ,  P) :  M ( P )  ~ R 1 that generates ( independently of individual realizations of 
r a preference relation on M(P) .  Finally, the mathematical  program 

minimize f ( x ,  P)  on the set M ( P )  (2) 

is solved to get the optimal decision. 
There are numerous a priori equally proper ways to get program (2): We 

mention only the models with probability (or chance) constraints with M( P ) c M o 
defined through conditions 

gi(x,  P ) : = a i - P ( c k ( x ,  co)<O, k ~ l i }  <O, i = l , . . . , m ,  (3) 

with /~ c { 1 , . . . ,  r }, a i ~ (0, 1), i = 1 . . . . .  m, and the penalty models that include 
also the two stage or recourse stochastic programs and for which M ( P )  = M c M 0 
is a fixed set independent  of P. The objective function in penalty models 

f ( x ,  P)  = Ee{ co(X, ~) + q(x ,  ~)} (4) 

contains a penalty term q(x, ~) that evaluates the loss due to violation of 
constraints by a chosen decision x ~ M for an observed realization of ~. 
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The function q:M • ~2---, R 1 can be given explicitly or implicitly as the 
optimal value function of a second stage program. We shall mention two 
examples of this type that will appear later in the description of stability results; 
for other examples see e.g. Kall [30]. 

The penalty function 

/ / q ( x , ~ 0 ) : = m i n  qTy: E wiJj=Ci(X, 6~ i = l  .... , r+s,  y>O (5) 
j = l  

with a given matrix W =  (w;j) and a given k-dimensional vector q such that 

{y 'Wy=z ,  y>O}4:~ for e v e r y z ~ R r + s  

and that 

{u" WZu<q} 4:gJ, 

corresponds to the complete recourse problem. 
For (1) with linear constraints, say 

Ax=b, x~MoCR",  

where M 0 is a nonempty convex polyhedral set and ~0 contains all random 
elements of matrix A and vector b, a quadratic recourse function 

q(x, ~ ) =  max { ( b -  Ax)Ty- �89 } (6) 
y E Y  

was introduced by Rockafellar and Wets [53]. In (6), Y is a nonempty convex 
polyhedral set and B is a given, symmetric positive definite matrix. 

The choice of the model should stem from the nature of the solved problem 
and, of course, it is often influenced by the structure of data, by the software 
available and by the decision maker's attitude as well. To solve program (2), one 
can in principle rely on the well-known nonlinear programming solution tech- 
niques. However, the dependence of the objective function a n d / o r  of the set of 
feasible decisions on the probability measure P means that even the evaluation of 
the function values can be a rather demanding procedure. That is why in many 
algorithms the probability measure P is approximated by a simpler one and an 
approximate program is solved instead of the original one (see e.g. [19,31,71]). 

The common belief is that a small change of probability measure P (due to 
approximation or estimation) does not cause a large change of the optimal value 

ep(P)=inf{f(x, P)" x~M(P)}  

and of the set of optimal solutions 

X ( P ) = { x ~ M ( P ) :  f (x ,  P ) = ~ ( P ) }  

of program (2). Unfortunately, this does not come true in general, which does not  
surprise anyone familiar with parametric programming or with robust estimation 
in statistics. 
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The need for analysis of the behaviour of optimal solutions and of the optimal 
value of approximated or perturbed nonlinear programming problems was one of 
the impulses for the development of parametric programming (see e.g. [23,46]). In 
spite of a similar motivation, the first stability and sensitivity studies for stochas- 
tic programming with respect to the probability measures developed indepen- 
dently. They were raised by the fact that in real life situations, the probability 
measure P is hardly known completely so that the program (2) is mostly solved 
for an estimate P '  of the true probability measure P. 

The first attempts [28,73] treated simple penalty models with probability 
measure P belonging to a specified set ~ *  of probability measures defined by 
prescribed values of moments. The original results were later essentially extended 
and utilized in designing algorithmic procedures [6,31,34,35]. 

The statistical approach followed in the seventies [11,36,70]: 
Based on statistical sample data, the probability measure P can be estimated 

by an empirical probability measure PN and the problem (2) solved with PN in 
place of P. Consequently, the optimal value q~(Pu) and the set of optimal 
solutions X(PN) can be considered as estimates of the true q~(P) and X(P).  The 
quality of such an estimate is related to its large sample properties such as 
consistency (considered to be the minimal requirement), asymptotic normality, 
etc. Small sample properties are of interest as well, but this area has not yet been 
explored in connection with stochastic programming. 

The consistency of qffPN) was one of the first results [11,36]: 
For f ( x ,  P) := fs~h(x, ~)P(do~) with h bounded and continuous, for M(P) = 

M ~: ~ convex, compact and for PN the empirical probability measure based on 
independent identically distributed observations (or, more generally, on an ergodic 
sequence of observations) of o~, one gets 

P{ q ~ ( P N ) ~ ( P )  as N ~ oo} = 1. (7) 

For h Lipschitzian in x with the Lipschitz constant independent of ~ it is even 
possible to prove an exponential rate of convergence of the estimate [36]. 

The results were recently extended by Kafikov$ to the case of probability 
constraints [39] and to more complicated empirical probability measures [38]. 
Nevertheless, her approach is based on uniform convergence of the functions 
involved. (The pointwise convergence of function values does not imply the 
convergence of the optimal values; for a discussion see Kall [32]). Another line of 
methodological attack uses the concept of epi-convergence that proved to be 
quite powerful and convenient; for a very general consistency result for the 
optimal values q~(PN) and for the sets of optimal solutions X(P/v), see Duparov$ 
and Wets [18]. 

As to the rate of convergence of optimal solutions, Tsybakov [66] and Vogel 
[67] gave conditions under which the probability of large deviations between the 
sets of optimal solutions X(P) and X(PN) is of a given order. See also Tamm 
[64] for a result in this direction. 
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The results concerning the asymptotic distribution of @(Ps) and X(P~) are 
still in progress, see e.g. DupaEovA and Wets [18], King [40-42], Shapiro [61]; one 
of the goals is constructing confidence intervals and regions for the true optimal 
value and for the true optimal solution. 

Results on stability and sensitivity for program (2) with respect to the parame- 
ters of the underlying probability measure are connected with certain results in 
parametric programming, some of which will be extensively reviewed in this 
volume, see also Armacost and Fiacco [1], DupaEovA [15], Attouch and Wets [2]. 
As the parameter values are typically statistical estimates of the true ones, the 
results of parametric programming have been complemented by statistical in- 
ference [12,15,60,67]: 

Similarly as in parametric programming, the first results were obtained for 
M(P)  given explicitly by inequality and equation constraints, under linear 
independence condition and under a suitable second order sufficient condition 
(to guarantee uniqueness of the optimal solutions and of the corresponding 
Lagrange multipliers) and under the strict complementarity conditions that 
reduce the local stability studies for the given problem to stability studies of a 
program constrained to an affine subspace [48]. For a survey of these results see 
DupaEov~ ([14], section 2). 

However, the assumptions listed above are too strong. They apply to stochastic 
program (2) with the true probability measure (indexed by the true but unknown 
parameter vector), so that in contrast to many parametric programming problems 
these assumptions cannot be verified. Besides, in contrast to estimation in 
statistics, even the assumed uniqueness of the " true" optimal solution cannot be 
fully accepted. For recent results that aim at removing sortie of the mentioned 
assumptions see Shapiro [60], Dupa~ovA [16,17] and section 3 of this paper. 

From the point of view of our problem setting, the most natural idea is to 
consider probability measure P in program (2) as the parameter. Equipped with the 
weak topology, the space ~ of probability measures on (I2, ~ )  is a complete, 
separable space that can be metrized by Prohorov or bounded Lipschitz metric 
(see Huber [27]). However, it is not a linear space so that results of parametric 
programming with parameters belonging to a linear metric space cannot be 
applied. We can rely only on qualitative stability results for parametric program- 
ming with parameters belonging to a general metric or topological space [4,49] 
such as continuity of the optimal value @(P) and of the set of optimal solutions 
X(P).  Moreover, for a suitable choice of a subset of probability measures, 
quantitative stability results based on a Lipschitz or HOlder property can be 
obtained [54-56]; see also section 2.2. Also, stability results with respect to a pair 
of parameters (P,  p), P E ~ and p a real vector, seem to be of increasing 
importance; cf. Robinson and Wets [50] for penalty models, R~misch and Schultz 
[56] for models with probability constraints. 

For sensitivity results or for postoptimality analysis, one can compute Gateaux 
derivatives of @(P) and of the (unique) optimal solutions under additional 
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assumptions about program (2) and to get a link with the statistical approach, cf. 
D u p a ~ v h  [13,14], Shapiro [62,63] and section 2.3. 

There are intrinsic connections between stability and sensitivity results ob- 
tained by means of the three seemingly different approaches mentioned above: 
Results on asymptotic properties of statistical estimators q~(Pu) and x(P~)  can 
be applied to the case of estimated parameters for the given parametric family of 
probability measures, GSteaux derivatives can be obtained as a special sensitivity 
result concerning a scalar parameter and, on the other hand, they can be used as 
a fieuristic tool for statistical approach. 

The developments up to 1985, except for the statistical approach, are mostly 
covered by the survey paper by Dupa6ovfi [14]. The present paper continues in a 
similar direction and gives a survey of recent developments in stability and 
sensitivity analysis for stochastic programming that are connected with results 
obtained in parametric programming; the statistical approach falls beyond the 
scope of the paper. In spite of the evident progress during the last years, there are 
still many open problems, for instance in connection with stability for models 
with probability constraints and with sensitivity analysis for optimal solutions. 

2. Stability and sensitivity analysis with respect to the probability measure 

2.1. SELECTED QUALITATIVE STABILITY RESULTS 

To study the stability of program (2) with respect to probability measure P 
means to get at first qualitative results about the behavior of the optimal value 
q~(P) and of the set of optimal solutions X(P) such as their "continuity" at P; 
for different concepts of semicontinuity of multifunctions such as Hausdorff 
upper and lower semicontinuity (H-u.sc., H-l.sc.) or Berge upper and lower 
semicontinuity (B-u.sc., B-l.sc.) consult, e.g., Bank et al. [4]. 

In our case the parameter space is a subset of the space ~ of probability 
measures on (~2, ~ )  endowed with the topology of weak convergence of probabil- 
ity measures (see definition 1 below). We can rely on general results such as 
theorems 4.2.2, 4.2.3 and 4.3.3 of Bank et al. [4] formulated below for program (2) 
as theorems 1-3. 

THEOREM 1 
Let M be continuous at P0 ~ ~ with M(Po) ~f l  and compact. Let f be lower 

semicontinuous on M(Po) • { P0 } and such that f is upper semicontinuous at a 
point (x0, P0) with x o ~ X( Po). 

Then q~ is continuous at P0 and X is R-u.sc. at P0- 

The assumption of M(Po) compact can be weakened, e.g., for f ( x ,  P) = f ( x )  
independent of P or in the convex case: 
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THEOREM 2 
Let M(Po) be closed and let M be B-u.sc. at P0- Let f ( x ,  P ) = f ( x )  be 

independent  of P and lower semicontinuous on M(P0). Then q~ is lower semicon- 
tinuous at P0. 

THEOREM 3 
Let multifunction M be B-l.sc. and closed at P0 with M ( P )  convex for all 

P ~ ~ .  Let X(Po) 4:3 and bounded. Let f be lower semicontinuous on R ~ x { Po } 
and such that f is upper semicontinuous at a point (x 0' P0) with x o ~ X(Po). 
Furthermore, let f ( . ,  P)  be quasiconvex on R ~ for any fixed P. Then ~ is 
continuous at P0 and X is B-u.sc. at P0- 

Theorem 1 can be generalized to stability of local minimizers. Another gener- 
alization is based on the concept of epi-semicontinuity that can be applied to 
extended real functions. Problem (2) can then be formulated as a seemingly 
unconstrained minimization problem 

minimize f-(x, P )  for x ~ R" (8) 

where 

f-(x, P ) = f ( x ,  P) if x ~ M ( P ) ,  

= +oo i f x ~ M ( P ) .  

Such an extended real function f~ R" x ~---, ( -  oo, + oo] is said to be proper if it 
is not identically + oo. 

The next theorem gives a very general result on stability" and persistence of 
local minimizers obtained by Robinson [49]. 

THEOREM 4 
Let f'." R " •  ~ - ~  ( - o o ,  + oo]; let G c R" be an open set and let f '( . ,  Po) be 

proper on G. Define for P ~ ~ :  

q~c(P) = inf f-(x, P )  
x E c I G  

x (e) = {x cl o:  f-(x, 
and assume that Xa(Po) c G, cl G is compact and ]"is lower semicontinuous on 
cl G •  Moreover, let at some x o ~ Xc(Po), with Y/'(x0) the system of neigh- 
borhoods of x 0, 

f-(x o, Po)>~ sup l imsup  inf f - (x ,  P )  (9) 
v ~ ' l ' (  Xo) P "  Po x~: V 

(epi-upper semicontinuity) hold true. 
Then ~ ( P 0 )  is finite and ~G is continuous at Po. XG is closed at P0 and 

B-u.sc. there. Further, there is a neighborhood U of P0 such that for each P ~ U, 
f-(-, P)  is proper on clG, Xc(P ) is nonempty,  compact and Xc(P  ) c G. 
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Application of theorem 4 to stochastic programming problems as done by Kall 
[33], Robinson and Wets [50] is discussed in what follows. The assumption of 
M(P) fixed means an essential simplification. The reason is that, except for very 
special cases discussed, e.g., by Kall [33], there are no easily verifiable assump- 
tions that guarantee epi-upper semicontinuity of f in (9) (or lower semicontinuity 
of M(P) at P0); see also Wang [69], RiSmisch and Schultz [56] for conditions that 
guarantee lower semicontinuity of special sets M(P) defined by probability 
constraints (3). 

Lower semicontinuity of objective function (8) for M(P)= M, a nonempty  
fixed convex closed set, can be ascertained by a number  of conditions (see e.g. 
Wets [72]) that cannot be clarified here in detail. The following definition 
indicates that just the weak convergence cannot fully guarantee continuity: 

DEFINITION 1 
Let P~, N = 1, 2 , . . . ,  P0 be probability measures on the same probability 

space (12, ~ ) .  Then P/v is said to converge weakly to P0 as N ~ oo if for any 
bounded continuous function h: 12 ---, R 1, 

f h(o~)Plv(dt~ ) -~ f h(o~)Po(do~ ). 

To obtain the desired continuity or epi-continuity of the expectation func- 
tionals 

f ( x ,  V ) - - f a h ( x ,  w)P(dto)  

means, e.g., to restrict the class of considered functions h (x, �9 ) or to restrict the 
set ~ of probability measures to a subset ~h with respect to which the functions 
h(x, �9 ) are uniformly integrable. This was done in detail, e.g., in Robinson and 
Wets [50] (see also Kall [33]) for stochastic programs with complete recourse (5) 
for which objective function (8) can be written in the form 

f ( x ,  P ) = e ( x )  + f j ( x ,  w)V(dto).  

They assume that ? is a (nonrandom) lower semicontinuous extended real 
function epi-upper semicontinuous at x o ~ Xo(Po) with ?(x0) finite and that 
functions c~, i = 1 , . . . ,  r + s in (5) are continuous and uniformly integrable for all 
x ~ cl G. The later assumption implies continuity and uniform integrability of 
penalty function q. 

A different continuity result was obtained in Duparovh and Wets ([18], 
theorem 3.9) in connection with the statistical approach. It is based on epigraphi- 
cal approach, too, and it has led to the concept of epi-consistency of lower 
semicontinuous real functions [43] defined as follows: 
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DEFINITION 2 
A sequence ( ~  } of random lower semicontinuous functions is epi-consistent 

if there is a random (necessarily) lower semicontinuous function f" such that f~ 
epi-converges to f" with probability 1. 

Applied to problem (8), epi-consistency of the sequence (f-(x, P~r with limit 
f-(x, P0) implies consistency of ~(P~).  Moreover, all cluster points of sequences 
of (local) minimizers of f'(x, P~r are almost surely minimizers of f (x ,  P0). 

2.2. QUANTITATIVE STABILITY RESULTS 

We shall assume now that a stability and persistence result is available. It 
surely gives a feeling of certainty in approximating (or estimating) P. In spite of 
this, the question of magnitude of the error connected with an approximation or 
estimation scheme is very important. From now on, only real functions or 
functionals will be used. 

If the true probability measure P is known one can get bounds of the error due 
to approximating P by another (simpler) measure utiliTing quantitative stability 
results. The idea is simple: choose in ~ a suitable metric d that metrizes, at least 
locally, the weak convergence. If function ~ and multifunction X enjoy a 
Lipschitz property, then 

d( P, Q) <,=, Iq~( P) - ~ ( Q )  I < K~, 

respectively 

d(P, Q ) < ,  ~ d i s tH(X(P) ,  X(Q))<K' , ,  

where the Lipschitz constants K, K' depend on the chosen metric d, and the 
Hausdorff distance distil(X, Y ) =  sup(8(X, Y), 8(Y, X)) with 8(X, Y ) =  
sup:,~xinfy~r IIx-yll is used. 

One of the first results on Lipschitz continuity of the unique optimal solutions 
can be found in Robinson [47]. As we want to avoid uniqueness assumptions 
(such as X singleton on a neighborhood of P)  as much as possible, we shall rely 
on quantitative stability results based on the notion of pseudo-Lipschitz property 
for multifunctions introduced by Aubin [3]. 

In connection with our problem (2), the following two theorems on quantita- 
tive stability were proved by Klatte [44]: 

THEOREM 5 
Assume that 

(i) X(P)  ~ bounded, multifunction M is closed-valued and closed at P; 
(ii) M is pseudo-Lipschitzian at each pair (Xo, P) ~ X(P) • (P} ;  
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dBL(P, Q) = sup fsh(~o) 

where the supremum is 
condition 

(iii) f is Lipschitzian jointly with respect to x ~ X(P) and Q belonging to a 
neighborhood of P in the following sense: There are real numbers/3 ~ (0, 1] 
Lf > 0 and t~/> 0 such that 

I f ( x ,  P ) - f ( z ,  Q ) I <  Z/( IIx-zll +d(P, 0)/3). 

Then X is u.sc. at P and q~ is Lipschitzian, i.e., there are positive numbers 8,, L ,  
such that X(Q)4:~J and 

I,~(P)-q,(Q)I<__L,d(P, a)a 
whenever d( P, Q) < ~. 

T H E O R E M  6 

Let the assumptions of theorem 5 be supplemented by: 
(iv) For program (2), there exists a strict local minimizer x(P) of order q > 1, i.e., 

there exist r > 0, A > 0 such that 

f ( x ,  e ) >  f ( x ( P ) ,  P) + z l I I x -x (P) I I  q 
for all x ~ [ M ( P ) N B ( x ( P ) ,  r ) ] - ( x ( P ) } ,  where B(x(P), r) denotes the 
closed ball around x(P) with radius r. 

Then there are positive numbers L, 8 such that 

II x(P)-xllq<=Ld(P, a)~ 
for all Q such that d(P, Q) < 8 and for all x ~ X(Q). 

Again, theorems 5 and 6 can be modified to cover the local minimization case. 
For their application to quantitative stability in stochastic programming, the 
choice of metric d on the space ~ is essential. It turned out (cf. [57]) that the 
bounded Lipschitz metric dBL and the total variation distance dTv are especially 
suitable for penalty problems and for problems with probability constraints, 
respectively. They are defined as follows: 

P(d~0) - f 5 

taken over all functions h satisfying the Lipschitz 

Ih(u)-h(o)l ~d(u, o) 
for a metric d in R ~ that is bounded by 1. The metric din_ metrizes the weak 
topology, whereas the total variation distance 

dTv(P, Q ) =  sup I P ( B ) - Q ( B ) I  
B ~ ' *  

where ~ *  is a subset of the o-field of Borel sets in R t, does not generate the 
weak topology. It reduces for 

(-oo, z], z n'} 
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to the Kolmogorov distance 

aK(P, Q ) =  sup I F v ( z ) - F o ( z ) l ,  
z E R  t 

where F e and F o denote distribution functions corresponding to the probability 
measures P and Q, respectively. (For details consult, e.g., Huber [27].) 

For stochastic programs with recourse (4), M(P) = M is a fixed closed set and 
the objective function f ( x ,  P) is linear in P. In RSmisch and Schultz [54], the 
bounded Lipschitz metric d=dBL was applied to the class ~(12, v, K ) c ~  
defined through moments  conditions 

,, r)..= {e f ll.ll 'pId.I Z K}. 
The Lipschitz property (iii) of theorem 5 was verified for P ~ ( ~ 2 ,  v, K),  for 
stochastic linear programs with Co(X, w)=cVx in (4), with linear complete 
recourse (see (5) for linear constraints) and for quadratic recourse (6). Accord- 
ingly, it was shown that the objective value function is (locally) Hrlder  continu- 
ous at P ~ ( 1 2 ,  v, K)  with exponent fl = 1 -  ( l / v )  if X(P) is nonempty and 
bounded. Moreover, for problems with linear complete recourse, HSlder continu- 
ity of optimal solutions is fulfilled at P if P has continuous and positive density. 

The case of probability constraints (3) was studied in RiSmisch and Schultz 
[54,56]. They considered the case of f independent  of P and M ( P )  given by 

M ( P )  .'= {x ~ M 0 :  P ( H ( x ) )  ~ ~}, 

with H a closed set-valued mapping, e.g., 

H ( x ) = ( w : c , ( x ,  w) <O, i= l . . . . .  r) 

for c~ continuous, i = 1 . . . . .  r. Their general stability results assert that if f is 
Lipschitzian on compact sets and the multifunction 

p ~  { x ~  M0: P(H(x))>=p) (10) 

is pseudo-Lipschitzian at each (x o, a )~  X ( P ) •  {a}, the mapping X is upper 
semicontinuous at P and r is (locally) Lipschitzian at P (with respect to the 
metric dTv for ~ *  chosen so that it contains all sets H(x) ,  x ~ M0). 

The pseudo-Lipschitz property of multifunction (10) was verified for the 
convex case, i.e., for M 0 convex, H of convex graph, the Slater condition fulfilled 
for the probability constraint and for P belonging to a convexity class, such as 
the class of log-concave probability measures (cf. Pr$kopa [45]). For the (gener- 
ally nonconvex) case of H ( w ) : = { x : A x > w } ,  sufficient conditions for the 
pseudo-Lipschitz property were obtained, too. One condition is, for instance, that 
P is absolutely continuous and its density is bounded below by a positive number  
on a neighborhood related to the set X(P) .  

The results on qualitative stability provide a deeper insight into the structural 
properties of the solved stochastic program (2) in their dependence on small 
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perturbations of the probability measure P. To apply them for computing error 
bounds one should be able to compute  at least an upper bound to the considered 
distance d(P, Q) and to the Lipschitz or HSlder constants. There exist some 
bounds on d(P, Q), e.g., for Q=P~r the empirical measure; in this case 
quantitative stability results provide rates of convergence of the optimal value 
@(PN), cf. RSmisch and Schultz [54]. However, computing bounds on the 
Lipschitz or HiSlder constants seems to be intractable. 

2.3.  D I F F E R E N T I A B I L I T Y  A N D  S T A T I S T I C A L  S E N S I T I V I T Y  A N A L Y S I S  

If the true probability measure P is not known completely, statistical sensitivity 
analysis enables one to draw statistical conclusions about the error due to 
estimation of P. 

Assume first that M is a nonempty fixed closed subset of R" and that the 
objective function has the form 

f (x ,  P) = f h(x, ,~ )?(d ,~) .  

Its optimal value @(P) = infx~ M(x, P)  is assumed to be continuous on a convex 
neighborhood U of P0, with X(Po)~SJ and q~(P0) finite. 

Due to the fact that f(x, P) is linear in P (on the restriction of the linear 
space of finite sign measures to ~ )  we have for all P, Q ~ U and 0 < t < 1: 

ep((1-t)P+tQ)= inf [ (1 - t ) f ( x ,  P)+t f (x ,  a)]>(1-t)ck(P)+tq~(Q), 
x E M  

so that @ is concave on U. The Gateaux derivative of @ at P ~ U in the direction 
of Q -  P, Q E U is defined as 

q~'(P; Q - P ) =  lim q ~ ( P t ) - ' ~ ( P )  (11) 
t _.., 0 + t ' 

where P , = ( 1  - t )P+tQ.  For a fixed Q~ U, @'(P; Q - P )  is nothing but the 
right-hand derivative of the concave function 

~Q(t) := @(e,),  ,Q: [0, a ] - - , R '  

at t = 0. This means, inter alia, that the limit (11) exists and 

qr  Q -  P )  > qs(Q) - q~(P). 

To obtain an explicit formula for @'(P; Q -  P)  we can apply directly, e.g., the 
theorem of Danskin ([8], chap. 2, theorem 1). 

To this purpose notice that the derivative af(x, Pt)/Ot exists for all x E M and 
equals the difference quotient: 

-~O f(x '  p , ) =  f (x ,  P , ) - f ( x ,  P) t =f(x,  Q ) - f ( x , P ) .  (12) 
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T H E O R E M  7 

Let M be compact ,  let f (x,  P),  f (x ,  Q) be finite cont inuous  funct ions of x. 
Then  

q~'(P; Q - P ) =  min [f(x ,  Q ) - f ( x ,  P)]  = min  f ( x ,  Q)-ep(P) .  (13) 
x~X(P) x~X(P) 

In the convex case (see assumptions  of theorem 3 with M(P)= M and with 
f ( - ,  P )  cont inuous  for all P ~ U), the same result and formula (13) follow, e.g., 
f rom theorem 16 of Gol 'shtein [24]. Using a similar approach,  it is even possible 
to prove it for local minimizers. 

T H E O R E M  8 

Let the assumptions  of theorem 4 be fulfilled for P0 = P and let f (x ,  P) be 
cont inuous  on G. Let Q be an arbitrary element  of a ne ighborhood U of P for 
which X c ( Q ) ~ ,  Xc(Q)c G and f ( . ,  Q) is finite on G. Then the G~teaux 
derivative of q~c at P in the direction of Q - P exists and is given by 

q ~ ( P ;  Q - P ) =  min f ( x ,  Q)-epc(P ). (14) 
x~-X~(P) 

Proof 
Put Pt = (1 - t)P + tQ. Due to the upper  semicontinui ty of X c at P, Xc(Pt)  

c G for t small enough,  say for t ~ (0, to), t o > 0. According to (12) we can write 
for any x o ~ Xc( P ), x, ~ Xc( P,) 

a 
q)G(Pt) =f (x , ,  P t )=f (x , ,  P )+  t - ~ f ( x  t, P ) < f ( x  o, et) 

a 
= f ( x 0 ,  P ) + t - ~ f ( x o ,  P,)=q~c(P)+t[f(xo,  Q ) - f ( x  o, P ) ] ,  (15) 

so that  
- 

<f(x ,  Q) - f ( x ,  P) for all x ~ Xc(P ). (16) 
t 

Using the trivial inequality f(x,,  P) > q~c(P) together with the first part  of (15), 
we get 

dpc(Pt)>dpG(P)+t[f(x,, a ) - f ( x , ,  P)]  

and, consequently,  

~c(P')- eke(P) > f(x, Q)-f(x, P) 
t = 

Inequalit ies (16) and (17) imply that 

min  
x~ X~t P,) 

for all x ~ X~ ( Pt ). 

[f(x ,  Q ) - f ( x ,  P)]  < q~c(PI)-q~c(P) 
= t 

< rnin I f (x ,  Q ) - f ( x ,  P ) ] .  
x~ Xcf P) 

(17) 

(18) 
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Denote  re(t)= minx~x~(p,)[f(x, Q ) - f ( x ,  P)]; in this parametric  optimization 
problem, the assumptions of theorem 2 are fulfilled, so that m(t) is lower 
semicontinuous on 0 _< t _< t 0. Accordingly, (18) implies 

lim sup re(t) < m ( 0 ) =  lira inf m ( t ) ,  
t--*O t--*0 

so that the limit 

lim qJa(P') - r176 = ,;t,~(P; Q - P )  
t--,0 t 

exists and equals (14). [] 

Comput ing the Gfiteaux derivative at P in the direction of Q -  P means 
solving two stochastic programs: to obtain the whole set X(P) of optimal 
solutions of stochastic program (2) for the given probability measure P and to 
evaluate the minimum of the objective function 

f ( x ,  Q)= s r 

on the set of optimal solutions X(P) .  
The function q~ is said to be G~teaux differentiable at P if there is a linear 

functional lp such that 

'h ' (P;  Q - P ) = l e ( Q - P )  v O ~  U. (19) 

If this functional is continuous it can be represented as 

eo'(P; a - p) = faq, e(to)O(dto), 

with g'e standardized so that 

f a , , ( ~ ) P ( d ~  ) = O. 

If X(P) = { x ( P ) )  is a singleton, we can evidently put 

q ,e (u)=h(x(e ) ,  u ) - rk (P) .  (20) 

Moreover, for a special choice of Q = 8 u - the degenerated probability measure 
concentrated at the point u - we get 

,'(P; 8u- P)= 
which is the influence function suggested by Hampel  [25]. It measures the 
influence of an observation u toward the approximate estimation error r  PN 
- P )  when the empirical probability measure P~v is used instead of P. Notice 
that due to the linearity of ,h'(P; �9 ) we have 

1 Jv 
, (e , , )  - , ( e )  e , , - e ) =  E ,t,,,(u,,). 

k = l  
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If q'e is unbounded, an outlier may cause great  discrepancies. The maximum 
absolute value of the influence function 

Y* = s u p i n e ( u )  I (21) 
u 

is called the gross error sensitivity. According to Hampel [25] it measures the 
worst approximate influence which a fixed amount of contamination can have on 
the value of the estimate. Another characteristics that may be relevant in the 
context of stochastic programming concerns the worst approximate effect of 
wiggling or rounding of observations: the local-shift sensitivity 

i X* = sup (22) 
u, o l u - v l  

The influence function provides a simple heuristic insight into the asymptotic 
properties of the estimate, i.e., of q'(Pu) in our context. 

If the function q~ was Fr6chet differentiable at P, i.e., 

Iq~(Q)-q~(P()-q~'(P; Q - P ) I  Q) as d(P, Q)--O, (23) 

with ,#'(P; Q - P)  linear and continuous in the increments, and if the empirical 
probability measure Pu converged to the true one at the rate N -1/2, i.e., 

 /Nd(PN, P) bounded in probability as N--,  oo, (24) 

one could get a simple proof of asymptotic normality for '#(PN): 

1 u 
r  ~ E +p(u,)+C~o(d(e~, e)), 

k = l  

so that the limit distribution of fN-(q,(Pu) - q~(P)) would be given by that of the 
sum 

1 N 

E 
k = l  

of independent identically distributed variables ~/e(u,). Provided that the vari- 
ance 

= < 

q'(PN) would be asymptotically normal 

r  ~ ( P ) ) -  ~ ( 0 ,  o~). 

(25) 

(26) 

Unfortunately, (24) does not hold true in general (see Huber [27]). As to 
Frrchet differentiability of q~, if the Frrchet differential q~'(P; Q -  P) in (23) 
exists, it equals the G~tteaux differential (19) that can be obtained by routine 
calculations that do not involve a metric. Computing G~teaux derivatives is thus 
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a proper starting point of a statistical analysis. As to the linearity of GSteaux 
differentials r  Q -  P)  with respect to Q we have to turn our attention once 
more to the properties of the stochastic program (13) or (14) whose objective 
function f(x, Q) is linear with respect to parameter  values Q ~ U and whose set 
of feasible solutions X(P) does not depend on the parameter  Q. Hence, r  Q 
- P )  given by (13) or (14) is concave on U in general. Its linearity is guaranteed 
in case X(P) is a singleton. 

Summary 
If the set of feasible solutions is fixed, M ( P )  = M ~ ~ and fulfils together with 

objective functions 

f(x,  P)= f h(x, ~0)P(dt~) 

the assumptions of theorems 7 or 8 (or of a similar theorem that also guarantees 
persistence and stability) and if the set of optimal solutions X(P) = { x (P )}  is a 
singleton, then the optimal value function ~ is GSteaux differentiable at P and 
its GSteaux differential can be represented as 

r  a - P )  = 

with 

+p(u) =h(x(P), u)- +(e) 
Provided that the asymptotic variance 

o e =  Lke ) (d~o)< 

one can try to prove the asymptotic normality of g,(PN), i.e., the statement that 

>x(0, 
To this purpose, the statistical approach mentioned in the introduction is needed 
to get rigorous statistical results in terms of convergence in distribution. In the 
general case, i.e., for X(P) containing more than one point, one cannot  expect 
asymptotically normal behavior of the estimate g,(PN). 

Example 
A stochastic programming formulation of the newsboy problem leads to the 

program 

maximize[(s-p)x-sEe(x-~o) § f o r 0 < x < b .  

Here, s is the sale price, p is the purchasing price, ~ is the random demand and 
x is the amount  of newspapers to be ordered. Accordingly, we have 0 < p < s and 
we put o~ =p/s. 

Assume that the probability measure P is carried by a compact  support, say 
[_d, d]  with 0 < d < d < b and that it is absolutely continuous. This implies that 
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the objective funct ion to be maximized can be writ ten as 

f(x, P )  = (1 - a)x for x < _d, 

= ( 1  - a)x- ~(x- to )P(d to)  for d < x < d,  

for x > d.  

Ae= (1-a)x(e)  -ck(P)(= fax(e)F(y) dy >O) " _  

The  influence function (20) (for u > 0!) 

+,,(u)=A, , -(x(e)-u)  + 
=A e for u> x(P), 
=u+Ae-x (P  ) for u<x(P). 

Accordingly,  the gross error sensitivity (21)" 

' * = m a x [  Ae '  0_~u_~x(,o)max lu+A,,,-x(P)l] 

= max[A~,  IA~,-x(P) l] = m a x [ A , ,  + ( e ) +  < + o o .  

The  local shift sensitivity (22) approximately equals the slope of the influence 
funct ion 

I,l,e(v)-~p(u)l 
~* = sup l u _  v l = 1, 

u:#o 

and the asymptot ic  variance 

= fd_*<P)(x(P)-to)2p(dto)-A 2 < +oo. 

= --etx + Epto 
It attains its m a x i m u m  on the interval [d, d] at the point  

x ( P )  = u , _ o ( P ) ,  

the 100(1 - a)% quanti le  of P. The  opt imal  value 

q ~ ( P ) =  max f(x, P )=x(P) (1 -a ) -  f*(P)F(y)dy, 
x~[0 ,  b] d d  

where F(y) = P{ to < y ) is the distr ibution funct ion corresponding to P. 
Let Q be another  probabil i ty measure carried by a subset of [0, + c~). Then  

r  Q-P)=f(x(P) ,  Q)-r  

= + ( e ) -  Q(dto) .  

Denote  
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One can thus expect that 

( 1 N 
q , ( P u ) =  max 1 - a ) x - ~  Y'. ( x -uk )  

O ~ x < _ b  k =  1 

is asymptotically normal 

v~-(~ ( P ~ ) -  ~ , ( P ) ) -  .# ' (0,  o~). 

+] 
(27) 

Moreover, if (27) holds true, then ag can be replaced by its empirical estimate 
2 

O p x  �9 

Similar results can be obtained for P an absolutely continuous distribution 
over [0, oo) that possesses the mean value Ep~. 

It is also possible to prove the existence of Gateaux derivatives of the optimal 
value function q~ in the case that the set of feasible solutions depends on P and is 
given by explicit constraints. However, to interpret the results, there is no longer 
at our disposal a direct parallelism with the statistical inference based on the 
notion of the influence function. 

Assume that 

M(P)={x~Mo:g , ( x ,P )<O,  i = 1  . . . . .  m},  (28) 

with g, linear with respect to the parameter P and with M 0 c •" nonempty 
closed convex. Evidently, the models with probabilistic constraints can be written 
in this form, too. Notice that the perturbed program 

minimize f (x ,  P,) (29) 

on the set 

M(P,)  = { x ~ M 0 :  gi(x, P , ) < 0 ,  i =  1 . . . . .  m} (30) 

that corresponds to the contaminated probability measure 

P, = (1 - t)P + tQ 

depends (for P, Q fixed) linearly on the scalar real parameter t ~ [0, 1]. This 
means that results of parametric programming for finite dimensional parameters 
can be used, cf. Gol'shtein [24], Rockafellar [51], Fiacco and Kyparisis [22]. 

Denote L(x, v, P) the Lagrange function corresponding to the problem 

minimize f (x ,  P) on the set M(P) given by (28), (31) 

i.e., 
??l  

L(x, v, P)=f (x ,  P) + Y'. v,g,(x, P). (32) 
i=1 

For P fixed, L is defined on M 0 x R +. Consider further the dual problem 

maximize inf L(x, v, P) on the set R+ (33) 
x ~  M o 
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and denote by X(P) and V(P) the sets of optimal solutions of (31) and (33), 
respectively. The following theorem is a simple adaptation of Gorshte in 's  result 
to our problem. 

THEOREM 9 ([24], theorem 17) 

Let M 0 :~ ~ be convex, closed and P, Q ~ ~ .  Let f (  -, P),  gi( ", P),  1 < i < m 
be convex continuous on M 0. Let for programs (31), (33) the sets X(P) and V(P) 
be n o n e m p t y  and  b o u n d e d .  A s s u m e  f u r t h e r  tha t  the f u n c t i o n s  
f ( ' ,  Q), gi(', Q), 1 < i< m are convex and finite for all x belonging to a 
neighborhood of X(P). Then the G~teaux derivative of q,(P) in the direction of 
Q - P exists and 

#(P; Q - P ) =  rain max (L(x, o, Q ) - L ( x ,  o, P)) 
x ~ X ( P )  o~ V(P) 

= max min ( L ( x , v , Q ) - L ( x ,  v, P)). 
v ~  V(P) x E X ( P )  

Again, for X(P) ,  V(P) consisting of one point only, one gets linearity of 
q,'( P; Q -  P)  on a whole convex neighborhood U of P that contains probability 
measures Q for which the assumptions of theorem 9 are fulfilled. Furthermore,  in 
accordance with our previous results, uniqueness of Lagrange multipliers v ~ V(P)  
is not  relevant if the set M(P) is fixed, independent  of P. 

In the nonconvex case with M 0 = R", one can impose different assumptions 
that imply uniqueness of the K u h n - T u c k e r  point [x (P) ,  o(P)]  that corresponds 
to the local minimizer x(P) of (31) such as the linear independence condition 
(see, e.g., Fiacco [21]). If they are fulfilled, the optimal value function 

q~(P,) = q~((1 - t)P + tQ) = q~Q(t) 

is differentiable at t = 0 with 
P epQ(O)=ep'(P; Q -  p )=  L(x(P) ,  v(P), Q ) -  L(x(P) ,  o(P), P). 

Of course, the formulation of the second order sufficient conditions assumes 
that the objective function f ( . ,  P)  and the constraints g;( . ,  P),  i = 1 . . . . .  m, are 
twice continuously differentiable at x(P). We are not going to discuss these 
smoothness assumptions; for relevant results in this direction see Wang [68]. 

If, in addition, strict complementari ty conditions are fulfilled and the functions 
g,(x, Q), i = 1 ..... m, f(x,  Q) are differentiable at x(P), then ,~Q is twice con- 
tinuously differentiable on a right neighborhood of 0 with 

ep~(O) = -(17zL(z(P), a ) -  XTzL(z(P), P))VC-'(v~L(z(P), Q) 

-~T t ( z ( P ) ,  P), (34) 

where z(P) = [x (P) ,  v(P)]  and C = 17~L(z(P), P). Without strict complemen- 
tarity conditions, this result is no longer valid. Nevertheless, it is still possible to 
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provide a second-order approximation of ~,(P,), cf. Fiacco and Kyparisis [22], 
Shapiro [60,62]. 

Let us turn our attention now to Gateaux differentiability of optimal solutions. 
Quite naturally, this concept can be directly applied if the optimal solution of 
program (31) is unique and if multifunction X is in fact a function on a 
neighborhood of P. The first results in this direction - see DupaEov~ [13] - were 
obtained under corresponding differentiability assumptions, for M(P) fixed, 
independent of P, under the linear independence condition and the strong second 
order sufficient condition fulfilled for (31). These conditions guarantee the 
existence of unique optimal solution x(P,)  and of the unique vector of Lagrange 
multipliers v(P,) for program (29), (30) for all t belonging to a right neighbor- 
hood of 0. The result can be easily extended to the set of feasible solutions given 
by (28). In this case, the Ggtteaux derivative 

x( P,) - x( *') 
x'(P; Q -  P)  = lim 

t._.0 + t 

exists and equals the (necessarily unique) optimal solution of the following 
convex quadratic program that stems from Jit torntrum [29]: 

minimize �89 o(P), P)x + xTWxL(x(P), o(P), Q) (35) 

subject to  xTWx&(X(P), P)+g,(x(P),  a )=o ,  i~ l+(P) ,  (36) 

xTv,,gi(x(P), P)+&(x(P) ,Q)<O,  i~ I~  (37) 

where i ~ I+(P) are indices of those constraints of (28) that are active at x(P) 
with a positive Lagrange multiplier o~(P), whereas 1 ~ I~ correspond to the 
remaining constraints of (28) that are active at x(P). Moreover, G~teaux deriva- 
tives v~(P; Q - P )  of nonzero Lagrange multipliers for (31) equal Lagrange 
multipliers corresponding to the optimal solution of the quadratic program 
(35)-(37). 

The G~teaux derivatives are linear with respect to Q only if strict complemen- 
tarity conditions hold true, i.e., I~ For explicit formulas see Dupaeov~ 
[13,14]. 

Relaxation of strict complementarity still gives x'(P; Q -  P) continuous but 
no longer linear in Q. To interpret this result, consider M(P)fixed, independent  
of P,  so that 

gi(X(P), Q ) = 0  for i~ I+(P)UI~  

in constraints (36), (37). For Q = *oN, the empirical probability measure con- 
centrated in N points, say, %,  k = 1 . . . . .  N, we get that the Ggtteaux derivative 
x'(P; P~-P)  equals the optimal solution of the convex quadratic program 
whose set of feasible solutions is a convex polyhedral cone (see (36), (37)): 

K = {x"  xT~Txgi(x(P))=O, iEI+(e), xTVxgi(x(P))zO, i~ I~  
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and whose vector of coefficients in the linear term of the objective function (see 
(35)) equals 

1 ~ I ] vxh(x(P), + E o,(e)vxg,(x(e)) 
k = l  i~l+(P)ulo(p) 

and, being an average of independent identically distributed random vectors, it is 
asymptotically normal provided that the variance matrix of gr h (x(P) ,  ~0) is of a 
bounded norm. It gives again some heuristic for the asymptotic distribution of 
the optimal solutions x(PN) of (31) with P replaced by its estimate P~v: one can 
expect that r - x(P)) is asymptotically equivalent to the solution of the 
corresponding quadratic program with asymptotically normal coefficients in the 
linear term of the objective function. 

A similar result has been obtained by Shapiro [63] who also studies the 
existence and properties of G~teaux derivatives x'(P; Q - P )  under 
Mangasarian-Fromowitz constraint qualification. He shows that G~teaux deriva- 
tives can be discontinuous if Lagrange multipliers are not unique. 

Example (continued) 
In our example, we have got that the optimal solution x(P)4:0, x (P)= 

Ul_~(P ) and moreover, x(P) is an unconstrained maximizer of f (x ,  P). This 
means that the strict complementarity condition is fulfilled. Asymptotic normal- 
ity of the sample quantiles 

x( P,v ) = Ul_~( PN ) 

for 0 < a < 1 is a well known result; see e.g. Serfling [59] for the statistical 
background and Wets [70] for an application to this example. 

3. Remarks on parametric case 

Assume now that the true probability measure P in stochastic program (2) is 
known to belong to a parametric family ~ =  { Py, y ~ Y } of probability mea- 
sures on (I2, ~ )  that is indexed by a parameter vector y belonging to an open set 
Y c R q. This means that stability and sensitivity for stochastic program (2) can be 
treated via existing techniques of parametric programming with parameters 
belonging to a subset of Euclidean space. For one of the first papers in this 
direction see Armacost and Fiacco [1]. 

In the context of stochastic programming, the true parameter values are often 
not known but estimated by means of sample data. The estimates usually enjoy 
quite convenient statistical properties. A natural question is how far are these 
properties inherited by the optimal value function and by the set of optimal 
solutions obtained by solving the substitute stochastic program that corresponds 
to the estimated parameter values. 
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In the parametric case we can assume that the stochastic program (2) has the 
form 

minimize f(x, y) on a set M(y) (38) 

with the optimal value function 

ep(y)=inf{f(x, y) :  x~M(y)} 
and with the set of optimal solutions 

X(.y)=(x~M(y): f(x, y)  = t h ( y ) ) .  

We shall denote by , / t he  true parameter vector. 
We shall assume that the conditions under which the continuity (local stability) 

results hold true are already known from parametric programming. 
The weakest continuity property is needed in the following result due to Vogel 

[67]. 

THEOREM 10 
Let the multifuction X be H-u.sc. at *1. Assume further that there exists an 

estimate Y~v of 7/ such that for all ~ > 0 and for a k > 0, 

P(I lY~v-~II  > ~ }  =o(N-k) for N--->oo. 

Then for all c > 0, 

P(3~X(yN)with d(~, X(~))>,)=o(N-k). 

If the optimal value function is continuous at *1 we can use properties of 
transformed random sequences (see, e.g., Serfling [59]) to obtain statistical 
properties of the estimate ~(YN) of the true optimal value ~(~7). The same idea 
also applies to the estimated optimal solutions provided that the optimal solution 
x(y) of (38) is almost surely unique and continuous on a neighborhood of ~7. 

THEOREM 11 ([59], theorem 1.7) 
Let ~:  Y---, R 1, x :  Y---, R n be Borel functions that are continuous on a neigh- 

borhood U of ~/with P probability 1. Then we have 

(a) P( lLm y~ = 71)= 1 =~ P( lim ~ ( y ~ ) =  ~ (7 / ) )=  1 and 
x N---* oo x N--- ,  oo 

P(N~ooX(Ylv)=X(~)) =1 

(convergence with probability 1). 

(b) lim P (  I lY~-n l l  <,) = l ,  V e > 0 = ~  

lim P{ I~(YN)-'/'(n)I <,}--1, V,>0 
N " - *  oo 

and lim e{ llx(y~,)-x(~)ll <,} =l ,V,>0 
N - - ~  oo 

(convergence in probability). 
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Consistency of the optimal value q~(YJv) and of the (unique) optimal solution 
x(y,v) of the substitute program 

minimize f ( x ,  Yu ) on the set M(yu  ) (39) 

thus follows from the consistency of the estimate y~ and from the continuity of 
the functions q~ and x. For 

M ( y ) = { x ~ R " :  gi(x, y ) < 0 ,  i = 1  . . . . .  m} (40) 

it is sufficient to this purpose if the linear independence condition and the strong 
second order sufficient condition of Robinson [47] are fulfilled for the true 
program (38) with y = 77. 

The assertions of theorem 11 can be completed by a rate of convergence if the 
functions ~ and x are continuously differentiable at y = 77. We shall discuss here 
only the case of asymptotically normal estimates y in which the delta-theorem 
(cf. Serfling [59], theorem 3.3.A and its corollary) can be applied as was done in 
Dupa6ovh ([12], [14], section 2). 

THEOREM 12 
Let Yu be an asymptotically normal estimate of 71. i.e., ~/-N(YN - 71) converges 

in distribution to a random vector with distribution JV'(0, Z), briefly r - 71) 
- ~ ( 0 ,  X) .  
(a) Let q~ be continuously differentiable at 71 with Vq~(7/)4= 0. Then q~(y~,) is 

asymptotically normal: 

r  ~(~/))- ,A/ ' (0,  (V~('0))T~7~(7])). (41) 

(b) Let X(y) = {x(y)} be singleton for y belonging to a neighborhood of T/and 
let x be continuously differentiable at 71 with (VX(TI))TZ(vX(~))4= O. Then 
x(yn)  is asymptotically normal: 

r  (x(Yl~) - x(*l)) - .eft(O, ( Vx(*I))rZVx(,1)). (42) 

As we know from parametric programming, substantially weaker conditions 
are needed for differentiability of the optimal value function than for differentia- 
bility of optimal solutions. Even under the linear independence condition and the 
strong second order sufficient condition (but without strict complementarity 
conditions fulfilled for (38) at the true parameter vector .~), only directional 
differentiability of x can be proved [29,48]. Directional derivatives x'(71; z) and 
v'(~/; z) can again be obtained as the optimal solution and the corresponding 
multipliers of the convex quadratic program (compare (35)-(37), [29,60]) 

minimize IzT%yt(X(l~), 0(17) , I~)Z -[- x T V x y t ( X ( ~ ) ,  0(17), ~)Z 

+�89 o(~l), ~)x (43) 
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subject to  

zTv'ygi(x(~), ~l) + x'rgr.,gi(x(~l), 7/ )=0 ,  i~I+(rl) ,  (44) 

zTgrygi(X(~l), ~1) + xTgrxgi(x(71), 7q) <0, i~10(71), (45) 

where 

m 

L(x ,  v, y ) = f ( x ,  y) + ~_, o, gi(x, y) 
i = 1  

is the Lagrange function of program (38), (40); I+(~)  is the set of indices of the 
constraints gi(x, ~) < 0 that are active at x(~/) with positive Lagrange multipliers 
oi(~/); and I~ is the set of indices of the remaining constraints that are active 
at x(~). Detailed stability analysis of this program with respect to its parameter 
z = y u - 7 /  helps to describe the generally nonnormal asymptotic distribution of 
the optimal solutions x(yN); see Duparovh [16] for a fixed polyhedral set M of 
feasible solutions. The quadratic program (43)-(45) depends on the unknown true 
parameter vector ~/ and on the true optimal solution x(~). Nevertheless, it is 
possible to prove [17] that for N large enough, the coefficients can be replaced by 
their sample counterparts (i.e., ~ replaced by YN, etc.) without influencing the 
asymptotic results. 

Higher order differentiability results help to obtain further statistical informa- 
tion such as Berry-Essren rate of convergence in (41) or (42) - for an example 
see Duparovh [12], or a higher order asymptotic expansion for the density of 
~/-N(x(yu) -x(~/) )  by the method suggested by Vogel [67]. However, besides the 
corresponding smoothness properties of the functions f ,  g;, i = 1 , . . . ,  m, results 
of this type are conditioned by the strict complementarity conditions. 

The linear independence condition can again be replaced by the 
Mangasarian-Fromowitz constraint qualification [62], the assumptions of a 
unique optimal solution of (38) on a whole neighborhood of 7) and those of 
second order differentiability for the true program (38) with y = 71 can be relaxed 
to a certain extent by means of the concept of generalized derivative suggested by 
Rockafellar [52] and complemented by results on convergence in distribution for 
measurable multifunctions and selections by Salinetti and Wets [58]. This gives a 
possibility to generalize the asymptotic result (42) as done in detail for the 
linear-quadratic stochastic program with quadratic recourse function (6) and 
with Co(X, oa)= c(x), a nonrandom quadratic function [40]. 

Extension of this methodology to more general topological spaces (see King 
[40-42]) also opens up quite new perspectives to the statistical approach and to 
the statistical sensitivity analysis with respect to the probability measure. Also in 
this case, quadratic programs with randomly perturbed linear term in the objec- 
tive function play an essential role. 
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