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Abstract 

This paper surveys the main developments in the area of sensitivity analysis for geometric 
programming problems, including both the theoretical and computational aspects. It presents 
results which characterize solution existence, continuity, and differentiability properties for 
primal and dual geometric programs as well as the optimal value function differentiability 
properties for primal and dual programs. It also provides an overview of main computational 
approaches to sensitivity analysis in geometric programming which attempt to estimate new 
optimal solutions resulting from perturbations in some problem parameters. 
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1. Introduction 

The study of sensitivity analysis in geometric programming was an integral 
part of the original monograph by Duffin, Peterson, and Zener [16]. At about the 
same time, sensitivity analysis was independently developed for more general 
nonlinear programming problems by Fiacco and McCormick [21]. While geomet- 
ric programs form a special class of nonlinear programs, the sensitivity analysis 
results obtained in nonlinear programming were not applied to geometric pro- 
gramming until the appearance of the article by Dembo [5]. Until recently, almost 
all sensitivity results in geometric programming were obtained for the dual 
program [5-7,16,26]. 

This paper surveys the main developments in the area of sensitivity analysis for 
geometric programming, including both the theoretical and computational aspects. 
A unified and comprehensive theoretical framework for sensitivity analysis for 
general parametric posynomial geometric programs was recently developed in 
Kyparisis [24]. That paper specialized the sensitivity analysis results in nonlinear 
programming, obtained by Fiacco and McCormick [21], Fiacco [19,20] and 
Ji t torntrum [22], to posynomial geometric programs, both primal and dual, by 
exploiting the special structure of these programs. The obtained results char- 
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acterized solution existence, continuity and differentiability properties for primal 
and dual geometric programs as well as the optimal value function differentiabil- 
ity properties for primal and dual programs. These results considerably extended 
and corrected the earlier results of Dembo [5]. 

A systematic development of computational approaches to sensitivity analysis 
in geometric programming is due mostly to Dinkel and Kochenberger [6,7,9] and 
Dinkel, Kochenberger and Wong [11,12], and also Dembo [5]. These papers 
estimate the new optimal solution resulting from perturbations in some problem 
parameters (either coefficients c i or exponents aij). They also attempt to de- 
termine the range of parameter values for which feasible solutions exist and thus 
perturbed optimal solutions can be computed. The approach of Dinkel et al. 
[6,7,11] is based on the sensitivity analysis theorem of Duffin et al. [16] for the 
reduced dual geometric program and an incremental procedure for updating the 
inverse of a certain Jacobian matrix. This results in a computational method for 
calculating new optimal solutions which depend on the perturbed problem 
coefficients. In addition, Dinkel et al. [9,12] have also utilized the sensitivity 
analysis results of Bigel6w and Shapiro [2], obtained for nonlinear programming 
problems, to propose an incremental method for computing new optimal solu- 
tions depending on the perturbed problem exponents. Furthermore, both Dinkel 
and Kochenberger [7] and Dembo [5] derive approximate formulas for the 
feasibility ranges of equations for sensitivity calculations. 

There are a number of additional results, of theoretical, computational, or 
applied nature, that are not surveyed here. Among theoretical results, one should 
mention the sensitivity analysis results in the monograph by Beightler and 
Phillips [1] obtained for posynomial primal geometric programs using the "con- 
strained derivatives" approach. Another important paper is the comprehensive 
survey of geometric programming theory by Peterson [25] which discusses a 
number of issues pertaining to parametric generalized geometric programs. Peter- 
son's results include characterizations of convexity, continuity and directional 
differentiability properties of the optimal value function, and the relationship 
between the absence of the duality gap and certain properties of the optimal 
value function. Some results on the convexity or concavity properties of the 
optimal value function and on the optimal value bounds were also obtained by 
Dembo [5] and Kyparisis [23]. In another development, Fang and Rajasekera [18] 
used a perturbation approach to prove the main duality theorem for quadratic 
geometric programs. 

Among computational approaches not surveyed here is the method developed 
by Dinkel et al. [13] which uses sensitivity analysis procedures to accelerate 
convergence of the harmonic mean algorithm for polynomial geometric programs. 
Another paper by Dinkel and Tretter [14] uses an interval arithmetic approach to 
sensitivity analysis in posynomial geometric programming which results in gener- 
ation of an interval of solution values associated with an interval of coefficient 
parameter values. The paper by Fang et al. [17] proposes a well-controlled dual 
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perturbation method for posynomial geometric programs which guarantees an 
almost-optimal primal-dual solution pair. This approach is designed to overcome 
difficulties of dual solution methods due to the non-differentiability of the dual 
objective function. 

Several authors have also applied sensitivity analysis results obtained for 
geometric programming problems to some special classes of problems found in 
applications. These papers include applications to optimal engineering design by 
Dembo [4] and Dinkel and Kochenberger [8], to constrained entropy maximiza- 
tion models by Dinkel and Kochenberger [9] and Dinkel et al. [10], and to 
optimization of petroleum drilling operations by Dinkel and Wong [15]. 

The organization of the papers is as follows. Section 2 presents formulations of 
the parametric primal and dual geometric programs. Sections 3, 4, and 5 are 
based on the theoretical sensitivity analysis results in Dembo [5] and Kyparisis 
[24]. Section 3 presents results on solution differentiability properties for primal 
geometric programs. Section 4 discusses results on solution differentiability for 
dual geometric programs and it also relates the results of sections 3 and 4 via 
duality theory of geometric programming. Section 5 provides an overview of the 
optimal value differentiability properties for primal and dual programs. Section 6 
presents an overview of the computational approaches to sensitivity analysis 
developed by Dinkel and Kochenberger [6,7,9] and Dinkel et al. [11,12]. Finally, 
section 7 includes the concluding remarks and directions of future research. 

2. Formulation of parametric primal and dual geometric programs 

In this section, we formulate the primal and dual geometric programs and their 
parametric versions. We study the properties of these programs in the subsequent 
sections of the paper. The material of this section is based on [5,11,16,24]. 

The primal posynomial geometric program has the form (Duffin et al. [16]) 

minimize, go ( t ) GP 

subject t o  gk(t) <~ 1, k = 1 , . . . ,  p, (2.1) 

t j > 0 ,  j = l  . . . . .  m, 

where 
m 

gi(t) = ~., cil-" It]'~, k = O ,  1 , . . . , p ,  
iEJk  j = l  

t h e  i n d e x  sets Jk a r e  d e f i n e d  by Jk = { ink ,  m k  q- 1 . . . . .  n k ) ,  k = 0 ,  1 . . . .  , p ,  m 0 = 

1, m 1 = n o + 1, m 2 ---- nl + 1, . . . ,  mp=  np_ 1 + 1, np = n, the exponents aij a r e  

arbitrary real numbers and the coefficients c~ are positioe. 
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The dual posynomial geometric program, associated with the primal geometric 
program GP, has the form (Duffin et al. [16]) 

n p 

maximize(8.x ) v ( &  h ) =  I-I(c,/8~)8,I-I x~ ~ 
i = 1  k = l  

no 

subject to Y'. 8 i = 1, 
i = 1  

n 

au ,S  , = 0 ,  
i = 1  

Z ~ i = X k  ' 

j = l , . . . , m ,  

k = l  . . . . .  p ,  

8i>~0, i = 1  . . . . .  n, 

hk>_-0, k = l  . . . . .  p ,  

GD 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

where the sets Jk are defined in GP. Under  very general assumptions, optimal 
solutions of the primal program G P  and the dual program GD have been shown 
by  Duffin et al. [16] to satisfy certain duality relationships. 

When the constraints (2.2)-(2.6) of the dual geometric program GD are solved 
in terms of a set of basis vector b o)  for j = 0, 1 . . . . .  d, the following reduced dual 
geometric program is obtained (Duffin et al. [16]) 

d n p 

maximize, v ( r ) = K o I -  I Kf'HSi(r)-E(r) H hk(r)  xk(r) GD r 
j = l  i = 1  k = l  

d 

subject to 8 , ( r ) = b ~  ~  Y'~rjb~J)>~0, i = l  . . . . .  n, 
j = l  

where 
d 

h , ( r )  = X(~ + y" . ),(J) k ' j " k  ' 
j=l 

= Z b J', 
i E J  k 

Kj= f i  b?' Ci , 
i = l  

k = l  . . . . .  p ,  

j = 0 , 1  . . . . .  d , k = l  . . . . .  p, 

j = 0 , 1  . . . . .  d,  

rj, j = 1 . . . . .  d are the new independent  variables, the constant vectors b (j) form 
a basis for the column space of matrix A, composed of coefficients aij of dual 
constraints, and d = n - m - 1 is called the degree of difficulty. The advantages 
of considering the reduced dual program GD a were discussed in Duffin et al. [16]. 

The earliest sensitivity analysis results for geometric programs, due to Duffin 
et al. [16], were based on the dual formulation GD a and involved changes in the 
optimal dual (and primal) solution resulting from perturbations of coefficients c i 
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treated as parameters. The exponents aij were assumed constant. Moreover, the 
early computational approaches to sensitivity analysis in geometric programming 
developed by Dinkel et al. [6,7,11] have also been based on the formulation GD n 
and involved perturbations of parameters c~. 

More recently, Dembo [5] has considered the following primal posynomial 
geometric program with variable right hand sides in constraints (2.1) (this 
problem was also implicitly considered in an earlier paper by Dinkel and 
Kochenberger [7]): 

minimizer go (t) GP '  

subject to g k ( t )  <~r k, k =  1 . . . . .  p ,  (2.7) 
t j > 0 ,  j = l  . . . . .  m, 

where r k > O, k = 1 . . . . .  p and the other quantities are the same as in GP. The 
geometric dual of GP'  is defined as 

P 

maximizecs,x ) v(8, X) = ILl ( c J S , ) 8 ' I - [  (~kk/rk) ~k G D '  
i = l  k = l  

subject to (2.2)-(2.6). 

Dembo [5] conducted sensitivity analysis for the geometric programs GP '  and 
GD'  where perturbations were allowed not only in the coefficients c~ but also in 
the coefficients a u and r k. The results of Dembo [5] were considerably extended 
and corrected in a recent paper of Kyparisis [24] who developed a comprehensive 
framework for sensitivity analysis for general parametric versions of primal and 
dual geometric programs. These parametric geometric programs are formulated in 
the second part of this section. 

The parametric version of GP, denoted by GP(c) [24], is obtained when the 
exponents a u and .the coefficients c~ in GP are replaced by au(e  ) and c~(e), 
where c ~ R r is the parameter vector. It is assumed here that agj and c~ are twice 
continuously differentiable functions of ~. Note that the formulation GP(c) 
allows for arbitrary perturbations of coefficients c~ and exponents a u. In ad- 
dition, GP(c) also generalizes the formulation GP'  since the (positive) right hand 
sides r k in constraints (2.7) can be accommodated by dividing both sides of 
inequality constraints (2.7) by r k and defining the new coefficients c" = c i / r  k. 
Perturbations of r k can thus be translated into corresponding perturbations of the 
new coefficients c/' (see [7]). 

In this paper, the following equivalent parametric convex program, obtained by 
using the transformation tj = exp(xj) (see Duffin et al. [16]), is analyzed [24]: 

minimiZex f0 ( x , ' )  P ( , )  

subjectto f k ( X ,  C) <~ l ,  k =  l , . . . ,  p ,  

where 

f k ( x ,  c ) - -  Y'~ ci(c ) exp a u ( c ) x  j , k = O ,  1 . . . . .  p ,  
i~Jk 
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and the sets Jk are defined in GP. The convex equivalent of a simpler uncon- 
strained parametric primal posynomial geometric program, i.e. the unconstrained 
version of P(c), is also separately considered: 

minimizex fo( x, r P0(') 

Similarly to GP(c), one can formulate the parametric version of GD, denoted 
by GD(c) [24], where aij and c i are replaced by aij(e) and ci(c ). In this paper, 
the following equivalent parametric concave program, which is derived by sub- 
stituting V(& X, c) = log(v(8, X, c)) for v(8, X, e) in GD(c) (see [16]), is analyzed 
[24]: 

n p 

maximizec,.x ) V(8, A, e ) =  E 8~ log(ci(,)/Si) + E hk log X k D(r 
i = 1  ' k = l  

subject to AT(c)8 = e 0, 

BS=X,  
8>~0, ~,>~0, 

where log = log e, A(c) = [~ I A~c)], A--(c) = [aij(c)], i = 1 . . . . .  n, j = 1 . . . .  , m, 
corresponds to the constraint (2.2) in GD, e 0 = (1, 0 . . . . .  0)T~ R "'§ and the 
constant p • n matrix B corresponds to the constraints (2.4) in GD. The concave 
equivalent of the parametric dual geometric program corresponding to the 
unconstrained parametric primal geometric program Po(') has the form [24] 

no 

maximizes Vo(8, ' ) =  E 8, log(c~(,)/8~), Do(, ) 
i = 1  

subject to A o ( , ) T S = e  o, 6>10, 

where Ao(, )=[eo[A-o(r -4o( r  i = l  . . . . .  n o , j = l  . . . . .  m, eo= 
(1, . . . ,  1 )  T E R no. 

3. Solution differentiability properties for the primal geometric program 

This section presents results on the differentiability properties of the perturbed 
optimal solution (and the associated optimal Lagrange multipliers) of the para- 
metric primal geometric program P(c). It is based on the recent paper by 
Kyparisis [24]. 

Since P(c) is a nonlinear programming problem, the Lagrangian for P(c) has 
the form 

P 

Lp(x ,  I~, r  , )  + ~'. lxk(fk(x, , ) -  1), 
k = l  

where /~=  (/~1,.-.,/~p)V is the Lagrange multiplier vector. Suppose that x* is a 
solution of the unperturbed problem P(r We shall assume in the sequel, 
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without any loss of generality, that all the constraints of P(c*)  are binding at x*,  
i.e. that f k (X*,  c*) = 1, k = 1 , . . . ,  p (if this is not the case, then the nonbinding 
constraints can be deleted from P(r without affecting the local analysis of 
solutions of P(c) in a neighborhood of x*) .  It is well known [21] that, if an 
appropriate constraint qualification holds at x*,  then the Karush-Kuhn-Tucker  
(KKT) conditions hold at x* for P(c*),  i.e. there exists /~  >/0, k =  1 . . . . .  p, 
such that 

V'xLp(x*, gt*, c*) 

' )]X( = ~ ' x f ~ ( A - ( c * ) x * , , * ) +  ~-~ /x~ vz f~ (A- (c* )x* ,e*  , * ) = 0 ,  (3.1) 
k = l  

f ~ ( . 4 ( , * ) x * ,  , * ) -  1 = 0, k = l , . . . , p ,  (3.2) 

where we have introduced the notation 

f ~ ( z , , ) =  Y ' . c , ( , ) exp (z , ) ,  k = 0 , 1  . . . .  , p , z ~ R " ,  

so that 

f , ( x ,  , ) = ~ ( ~ ' l ( , ) x ,  e), k = 0 ,  1 . . . .  , p.  

Denote by M~ the Jacobian of the KKT system of equations (3.1)-(3.2) with 
respect to (x, /~), evaluated at (x*,  ~*, c*). It can be shown [24] that M r  is of 
the form 

[ CA* 0 
where 

H = d iag{ . . . ,  ci ( ,*  ) exp(z* ), i ~ Jo . . . .  , lX'~ci(,* ) exp(z* ), i ~  Jk . . . .  }, 

k ~ l  . . . .  , p ,  

z* =A-*x*, = h-(,*), 
c = , , ) ] .  , L )  T 

(3.3) 

The following theorem relates the second order and regularity conditions for 
nonlinear programs, which are known to be necessary and sufficient for the 
nonsin_gularity of the Jacobian M~ [21], to certain conditions on the matrices C 
and A(~ * ) and the Lagrange multiplier vector/~*. 

THEOREM 3.1 [24] 
Suppose that the following assumptions hold: 
(A1) the KKT conditions hold at x* for P(c*)  with some/~*, 
(A2) fk(x*,  c*) -- 1, k = I, . . . .  p. 
Then, the matrix Mfl is invertible if and only if the standard second order 

sufficient condition, the linear independence condition, and the strict com- 



46 J. Kyparisis / Sensitivity analysis in geometric programming 

plementarity slackness condition [21] hold for P(c*) at x* with g*; i.e., if and 
only if the following conditions are satisfied: 

(A3) rank (CA*) = p ,  
(A4) rank A* = m, 
(A5) g ~ > 0 ,  k = l  . . . . .  p. 

The next theorem is the key sensitivity analysis result for the parametric primal 
geometric program P(c). It states sufficient conditions for the existence, continu- 
ity and differentiability of the perturbed optimal solution x(~) and the associated 
Lagrange multiplier vector g(c) for P(c) in the nondegenerate case, i.e. when the 
strict complementarity slackness condition (A5) holds. We also note that when 
some of the constraints of P(c*)  are not binding at x*, this theorem can be 
stated in an appropriately modified form ([24], proposition 5.2). 

THEOREM 3.2 [24] 
Suppose that the assumptions (A1)-(A5) hold. Then, for c is some neighbor- 

hood of c*, there exist unique once continuously differentiable vector functions 
x(c) and/.t(c) such that the conditions (A1)-(A5) hold at x(c) with g(c) for the 
problem P(c) (and thus x(c) is a unique global minimum of P(c)). 

Moreover, the derivatives ~ x ( ~ * )  and V,g(~*) are uniquely determined by 
the system 

~Tx(e*) = - ( M ~ ) -  (3.4) 

v,~(,*) L v j (x*~* ,  ,*) 
and the inverse of matrix M~ can be computed using the formulas 

( ~ / ; ) - ~  _- 
cX* o = L.4~1 A ~ 2 '  

= 

AlP2 = (API) T= gpl(CA -'* )T[(cX* )Hp1(CX * )T] -1, 

A~2 = - [ (  CA-* )H~-1( CA* ) T] -1, H l, = X* THA., 

where the matrix Hp is invertible. 

We now consider separately the parametric unconstrained geometric program 
P0(c) and state the result analogous to theorem 3.2. The KKT conditions at x* 
for P0(c*) have the form 

W'zof~ (.4o (c*)x*, ,* ) A-o (c*)=0,  (3.5) 
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where 

- [ . )] Ao(c ) =  ai j (c  , i = l  . . . . .  n o , j = l  . . . . .  m,  z o ~ R  "~ 

PROPOSITION 3.1 [24] 
Suppose that the following assumptions hold: 
(AI ' )  the KKT conditions hold at x* for Po(r 
(A6) rank Ao* = m, where Ao* = A--0('*). 
Then, for c in some neighborhood of c*, there exists a unique once continu- 

ously differentiable vector function x(c) such that the conditions (AI ' )  and (A6) 
hold at x(~) for the problem Po(c) (and thus x(E) is a unique global minimum of 
Po(c)). 

Moreover, the derivative ~7,x(c*) is uniquely determined by the system 

~',x (e*)  M* -1 = - ( " o )  VLlo(X*, '*), 
where M* is the Jacobian of the KKT system of equations (3.5) with respect to Po 
x, evaluated at (x *, c * ), given by 

M* = ,,z~* T/'[ ~-* 
Po 0 0 " ~ 0  , 

Ho = diag ( c,(e* ) exp(z~*) . . . . .  c,0(e* ) exp(z*o) } , 

z~ = A~x*.  

The following theorem extends theorem 3.2 to the degenerate case when the 
strict complementarity slackness assumption (condition (A5)) does not hold for 
the problem P(r In that case, the assumption concerning the rank of A* must 
be strengthened. 

THEOREM 3.3 I24] 
Suppose that, in addition to assumptions (A1)-(A3), the following assumptions 

hold: 
(A7) /~  > 0, k ~ I, ~ = 0, k ~ K, where I = ( 1 , . . . ,  P / ) ,  K =  

( Px+i . . . . .  PJ,  Pl <P,  
(A8) rank A 7 = m, where we denote A--~ =A--s(C*) and A--s(') = [a,j( ,)] ,  i 
Jk, k ~ (0} tA S, j = 1 . . . . .  m, for any index set S. 
Then, for c in some neighborhood of c*, there exist unique vector functions 

x(c) and /z(~), continuous and such that the conditions (A1)-(A3), (A7)-(A8) 
hold at x(~) with #(c) for the problem P(c) (and thus x(c) is a unique global 
minimum of P(c)). 

Moreover, the directional derivatives of x(c) and/~(e) at c* in any direction v, 
denoted by Dox(c* ) and Do~(r respectively, exist and are uniquely de- 
termined by the system 

(.z~*THIA/* )9~ + (CA*)Tf i  = - v 2 , x L p ( x  *, tt*, ,*  )v ,  (3.6) 



48 J. Kyparisis / Sensitivity analysis in geometric programming 

[ IT, ( C l a l * ) ~ :  . . . , -  (~7c~(X*x* , , * ) o )  T, k E I  . . . .  

( C K X ~ ) X  > f [ . . . .  --(~7r ~*)O) T, k ~ K  . . . .  ]T, 

>_.o, + vs *)v] 

(3.7) 

(3.8) 
= 0 ,  k ~ K ,  

(3.9) 

where we define ~ = Dox(c*), 12 = Do~(r /ik = Do/zk(r and 

Hz = diag( . . . .  c , ( , *  ) exp( z* ), i ~ Jo . . . . .  i.t•ci(,* ) exp(z~* ), i ~ Jk . . . .  }, 

k ~ I ,  
~ -- ]T 

Cs= [ . . . .  vz, f k ( A * x * ,  r k ~ S  . . . . .  

Z s=(  . . . .  zi, i E j  k . . . .  )T, k ~ {0} [,.,j S, 

for any index set S. 

4. Solution differentiability properties for the dual geometric program 

This section presents results on the differentiability properties of the per turbed  
opt imal  solution (and the associated opt imal  Lagrange multipliers) of the para- 
metric dual geometric program D(c). The  main result of this section, theorem 4.2, 
was originally proved in Dembo  [5]. It extends the earlier result in Duff in  et al. 
[16], stated for per turbat ions in coefficients c~ only, which is given as theorem 6.1 
in section 6. Most  of the remaining results in this section were obta ined in 
Kyparisis [24]. 

Since D(c) is a nonlinear  p rogramming  problem,  the Lagrangian for D(c) has 
the form 

LD(8,  X, w, u, • )=  V(3, X, , ) +  wT(A( , )T 3 - - eo )+  u T ( B d - X ) ,  

where w =  (w o . . . . .  w,,) v, u =  (u 1 . . . . .  up) v are the Lagrange multiplier vectors. 
Suppose that (3" ,  X*) is a solution of the unper turbed  problem D(r  We shall 
assume in the sequel, unless stated otherwise, that  the dual variables are positive, 
i.e. that 8 7 > 0, i = 1 . . . . .  n and thus also that ~,~ > 0, k = 1 . . . .  , m. This implies 
that  in a ne ighborhood of (3" ,  X*) the constraints  8 >i 0 and h >/0 are not  
b inding and can be disregarded. 

The  K K T  condit ions at (8" ,  A*) for D(r ), which hold under  an appropr ia te  
constraint  qualification, are: there exist w*, u* such that 

g78LD(8* , ~.*, w*,  u* ,  c*)  = g78V(8*, •*, c*)  + w*TA( ,* )  T 

V' LD(8*, X*, w*, .*,  .*) = v.y(8*,  x*, 

A([* )Ts* -- e o = O, 
B 3 *  - X* = 0. 

*) = 0 ,  

+ u * T B = o ,  

(4.1) 

(4.2) 

(4.3) 

(4.4) 
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The following proposition summarizes the well-known facts pertaining to the 
dual geometric program. 

PROPOSITION 4.1 [16] 
Suppose that (8, ~,) is a feasible point of D(c), i.e. A(e)T8 = e0, B8 = )% and 

that 8 i > 0, i = 1 . . . .  , n. Then the following results hold: 
(i) the matrix H 8 = V2V(8, ~, c) = d i a g { - 1 / 8 1 , . . . ,  - 1/8,}  is negative defi- 

nite and the matrix H x = V2,V(8, )~, e ) =  diag{1/)~ 1 . . . . .  1/Xp} is positive 
definite; 

(ii) the matrix H R = H 8 + BTHxB is negative semidefinite and it can be ex- 
pressed as H R = H 8 - BT( B H [  1BT)- lB. 

Denote by M~ the Jacobian of the KKT system of equations (4.1)-(4.4) with 
respect to (8, X, w, u), evaluated at (8",)~*,  w*, u*, e*). It can be shown [5,24] 
that Mt~ is of the form (where we denote A* = A(e*)) 

. 0 A *  

Mt~ = H x. 0 - - I  . 

LABT O, 0 - 0 
(4.5) 

The following theorem relates the second order and regularity conditions for 
nonlinear programs, which are known to be necessary and sufficient for the 
nonsingularity of the Jacobian M~ [21], to certain conditions on the matrices B, 
Hs. ,  and A*. The sufficiency of these conditions to guarantee the nonsingularity 
of Mr~ was proved by Dembo [5] and their necessity by Kyparisis [24]. 

THEOREM 4.1 [5,24] 
Suppose that the following assumptions hold: 
(B1) the KKT conditions hold at (8" , )~*)  for D(c*)  with some w* and u*, 
(B2) 8 i * > 0 ,  i = l , . . . ,  n. 
Then, the matrix Mt~ is invertible if and only if the standard second order 

sufficient conditions and the linear independence condition [21] hold for D(c*)  at 
(8" , )~*)  with w* and u*; i.e., if and only if the following conditions are 
satisfied: 

(B3) rank ( BH~-.1A * ) = p,  
(B4) rank A * = m + l .  

The next theorem is the main sensitivity analysis result for the parametric dual 
geometric program D(c). It states sufficient conditions for the existence, continu- 
ity and differentiability of the perturbed optimal solution [8(e), ~(c)] and the 
associated Lagrange multiplier vectors w(e) and u(e) for D(c) in the nondegener- 
ate case, i.e. when the condition (B2) holds. This theorem extends an earlier 
sensitivity analysis result in Duffin et al. [16], obtained for perturbations in 
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coefficients c i only, which is given as theorem 6.1 in section 6. Duffin et al. [16] 
assumed that conditions (B1), (B2) and (B4) hold and also that the Jacobian Mt~ 
is nonsingular. They also showed that if, in addition, the submatrix with elements 
b~ J), i = 1 . . . . .  n o, j = 1 . . . . .  d (defined in GDR) has rank d, then the Jacobian 
M~ is nonsingular. Theorem 4.1 uses an alternative additional condition (B3) to 
guarantee the nonsingularity of Mg.  Since this condition is directly verifiable 
given the problem data, theorem 4.2 is a more general and direct sensitivity result 
than those in [16]. 

THEOREM 4.2 [5,24] 
Suppose that the assumptions (B1)-(B4) hold, Then, for ~ in some neighbor- 

hood of c*, there exist unique once continuously differentiable vector functions 
8(c), ~,(~), w(c), and u(c) such that the conditions (B1)-(B4) hold at [8(c), X(c)] 
with w(c) and u(c) for the problem D(c) (and thus [8(~), )~(c)] is a unique global 
maximum of D(c)). 

Moreover, the derivatives X7,~(~*), V',~,(c*), V',w(~*), VT, u(~*) are uniquely 
determined by the system 

V"~k(e*) / = - ( M ~ ) - '  
v,w(,*) / 
v,u(,*) ~ 

v~,v(~*, x*, ,*) +A(,*)w 
v,~v(a*, x*, ,*) 

0 

(4.6) 

where the non-zero part of the three-dimensional matrix A(~*) is defined by 

t t - {c*)=[gr ,  a i j ( , * ) ] ,  i = l , . . . , n ,  j - - - 1 , . . . , m ,  

A ( c * ) w * =  ... ij(e* *, i - -1  n , . - .  , . o . ,  , 

j = l  

and the inverse of matrix Mt~ can be computed using the formulas 

p* [a~, a=~J' 
a,~ = m ' ( * -  e**[ e*m'e**l- 'e*ua'},  

A,~ = (A~,)T = u a , e . T [  v*/4g'p**] -', 
a="=: - [ e * n a ' e * T ]  - ' ,  

A'T 0] 0] 
p .  = HI) = , 

B - I ' Ha. 

where the matrix HI) is invertible. 



J. Kyparisis / Sensitivity analysis in geometric programming 51 

Under assumptions (B1)-(B4), the derivatives V,8(E*), XT, h(c*) ,  V,w(c*), 
V',u(c*) can also be obtained using an alternative system of equations [5,24]: [ ] [ ]_1  

V',8(c* ) H R A* 

tT, W(C*) A *T 0 

v,x  ( , * )  = B v , 8 ( , * ) ,  

*' )t*' C* ) + BT v'ZxV(8*' X*' "* ) + fI( '*  )W* )Ts.  (4.7) 

v , u ( , *  ) = H .B v ,8 ( ,*  ) + *, X*, ,*  ). 

Theorem 4.2 provides formulas (4.6) (or, alternatively (4.7)) for the first-order 
derivatives of the optimal solution [8((), )t(c)] of the perturbed dual program 
D(c). Higher-order sensitivity analysis was also considered in the papers by 
Dembo [5] and Kyparisis [24]. Dembo [5] derived equations for the approximate 
second-order derivatives of [~(c), ~(c)] and Kyparisis [24] derived a corrected 
version of these equations and also obtained equations for the exact second-order 
derivatives of [8(c), ~t(c)]. 

The next result shows that theorems 3.1, 3.2 and 4.1, 4.2 are closely related. It 
is based on duality relationships between P(c) and D(c). 

THEOREM 4.3 [24] 
Consider the set of sufficient conditions (A1)-(A5) for the differentiability of 

the solution x(c) and the Lagrange multiplier vector t~(c) for the primal geomet- 
ric program P(c) and the set of sufficient conditions (B1)-(B4) for the differentia- 
bility of the solution [8(c), )~(c)] and the Lagrange multiplier vectors w(~) and 
u(c) for the dual geometric program D(c). 

Then, (A1)-(A5) and (B1)-(B4) are equivalent, i.e., if one set of conditions 
holds, then the other set of conditions also holds. 

We consider separately the parametric dual geometric program Do(c*) and 
state the result analogous to theorem 4.2. Assuming that 8i* > 0, i = 1 . . . . .  no, the 
KKT conditions at 8" for Do(c*) are: there exists w* such that 

~78V0 (6" , , * )  + A o ( , * ) w *  = 0 , (4.8) 

A0(c*)Ts* -- e0 = 0. (4.9) 

PROPOSITION 4.2 [5,24]Suppose that the following assumptions hold: 
(BI')  the KKT conditions hold at 8* for Do(c*), 
(B2') 8 i*>0,  i = l , . . . , n  o , 
(B5) rank A~' = m + 1, where A~' = A0(c* ). 
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Then, for c in some neighborhood of c*, there exist unique once continuously 
differentiable vector functions 8(e) and w(c), such that the conditions (BI'),  
(B2') and (B5) hold at 8(c) with w(c) for the problem D(c) (and thus 8(c) is a 
unique global maximum of Do(c) ). 

Moreover, the derivatives ~8(~ * ) and gr w(c* ) are uniquely determined by 
the system 

V',w(c*) = - ( M ~ ~  A 0 ( c * ) T ~  * ' 

where M* is the Jacobian of the KKT system of equations (4.8), (4.9) with Do 
respect to (8, w), evaluated at (~*, w *, c* ), given by 

" [A~ T 0 '  

the three-dimensional matrix A0(c* ) is defined similarly to the matrix A(e*)  
used in theorem 4.2, and the inverse of matrix M* D. can be computed using the 
formulas 

(M~.) [A~ T 0 [A~'~ --2~"/'j 

A~' = re.l{ ~ - AZ[AZ ~m.IAZ ] - IAZ ~m. I }, 

A~'~ = -[ A~ TH;.1A Z ]-i 

We note that in the special case when A0(c* ) = O, i.e. when only the coeffi- 
cients ci(c ) are perturbed and the exponents aij(c ) are constant, the derivatives 
V',8(c * ) and gz, w(c * ) can be computed using simpler formulas 

V,8( ~* ) = - { ns 1 - H~.'A~ [ A~ THi.IA ~ ] - '  A~ THi.1 } V',28V0 ( ~ *, e* ), 

Vr, w( (* )  = -[A~TH~.IA~] -1A~TH;. 1 V',28Vo(8 *, c* ). 

The above formula for V,8(c*) has been previously obtained in [26] under the 
assumption that M ~  is invertible. 

In section 3 the basic sensitivity analysis result for the primal geometric 
program P(c), stated as theorem 3.2, was extended in theorem 3.3 to the 
degenerate case. For the dual geometric program D(c), it does not seem possible 
to similarly directly extend theorem 4.2 to the degenerate case when some ~* are 
zero. The main reason for this is the non-differentiability of the objective function 
V(8, )~, c) at feasible points (8, h) when any 8 i or 2~, are zero. The next theorem 
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provides an indirect extension of theorem 4.2, based on theorem 3.3 and duality 
theory for geometric programs. Note that the conditions (B1) and (B3) assumed 
in theorem 4.2 cannot be used here since we consider the case where some 8~* are 
zero. 

T H E O R E M  4.4 [24] 
Suppose that the assumptions of theorem 3.3 are satisfied. Then, for c in some 

neighborhood of c*, there exist unique vector functions 8(c) and X(c), continu- 
ous and such that [8(c), ~(c)] is a unique global maximum of D(c). If the unique 
optimal solution x(c) of the primal geometric program P(c) and its associated 
unique Lagrange multiplier vector /~(c) are known (they exist by theorem 3.3), 
then [8(c), ~(c)] can be computed using formulas 

l j = l  1 
8i (l[) = m 

tZk(')C,(`) exp[j~=laiJ(')xj(c)]/fo(X('), "), i ~ J  k, k = l , . . . , p ,  

(4.10) 

(4.11) Xk(C) = E 3,(C)=#k(C)/fo(X(C),C), k = l , . . . , p .  

Moreover, the directional derivatives of 3(c) and )~(c) at c * in any direction v, 
denoted by Do3(c * ) and Do)~(c * ), respectively, exist and can be calculated using 
formulas (4.10), (4.11) and the directional derivatives D~x(c*) and Do#(c*) 
determined by the systems (3.6)-(3.9) in theorem 3.3. 

The next result may be useful when, after solving the dual problem D(c* ), one 
wants to apply theorem 4.4 to that problem. 

PROPOSITION 4.3 [24] 
Suppose that (3",)~*) is the optimal (global) solution of D(c*) .  If the 

problems P(r and D(r are canonical [16] and if rank A'~=m, where 
1=  (k[)~ ~ > 0} and A~' = A,(c*),  then the unique optimal (global) solution x* 
and the (possibly nonunique) optimal Lagrange multiplier vector ~* for the 
problem P(c*) exist and are determined from (6",)~*) by the following for- 
mulas: 

x* =(&TX,* )-%*Tz:, 
z T =  ( . . . .  z* . . . .  )T, i ~ h , k ~ { O } U I ,  

log[3i*/ci(c*)] + V(3*, )~*, ,*), i ~ J  o, (4.12) 
z*= log[r$i./()~.kci(,.))], i~Jk, k E I ,  
/~Z = X~ exp[V(3*, 2~*, ,* ) ] ,  k = l  . . . . .  p ,  

i.e., /~ >0 ,  if k ~ I ,  la~ =0,  if kq~I. 
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In the nondegenerate case, i.e., when 8;* > 0, i = 1 . . . . .  n, the problems P(c*)  
and D(E*) will be canonical if (8",  ~*) solves D(c*). If, in addition, rank 
A-* = m, then 

x*=(A*TA*)- IA*Tz  *, 
where z* is given by (4.12), with I = ( 1 . . . . .  p }. 

5. Optimal value differentiability properties for the primal and dual geometric 
programs 

In this section we obtain formulas for the derivatives of the optimal value 
functions of the primal geometric program P(c*) and the dual geometric program 
D(c*). These formulas are essentially a consequence of the results in sections 3 
and 4 and are based on the paper by Kyparisis [24] as well as on the paper by 
Dembo [5] where less general versions of these results are given. 

Consider the primal geometric program P(c). The optimal value function 
f * ( c )  for P(c) is defined by 

f * ( c )= in f x (  fo(X, c)I fk(x ,  c) <~ 1, k=  1 .. . . .  p}.  
However, because only local behavior of the perturbed solution x(~) is studied 
here, the formulas for the first-order and second-order derivatives of f * ( c )  are 
derived for the ~ optimal value function f *  (e) defined by 

f*( , )=fo[X(C) ,  ,]. 

P R O P O S I T I O N  5.1 [24] 

Suppose that the assumptions (A1)-(A5) of theorem 3.2 hold. Then, the 
optimal value function f * ( c )  of P(c) is twice continuously differentiable for c in 
some neighborhood of c* and 

(i) f * ( , ) = f o [ X ( , ) ,  ,] = L p [ x ( , ) ,  # ( , ) ,  , ] ;  
P 

(ii) v , f * ( e ) =  V, Lp [x (e ) ,  /~(,), ,] = x7,fo[X(,), e] + E /~k(e) ~7,fk[x(e), e] 
k = ]  ,(m ,)j 

i = 1  j = l  

Xexp ~7,aij(e)xj(e 
Lj=I  

+ Y'~ IZ,(() V, c i (c)+ci( , )  V',aij(c)xj(,) 
k = l  i 

•  ~7"caij e Xg e ; 
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(iii) ~;7,2f* ( e ) =  V,[V, Le[x(e) ,  ~(e), e] "r] = v,2Lp[x(e), p(e),  ,] 
P 

+ V2xLp[x(e), ~t(e), e] T ~7~X(e) -l- E v ,  f k [ x ( e ) ,  e] V , P ( ' )  
k~l  

= v,2Lp[x(e), p(e),  e ] -  Ng(e)(Me(e))-lNv(e), 
where Mp(, ) is the Jacobian of the KKT system of equations (3.1), (3.2) with 
respect to (x, #) and Nv(e ) is the Jacobian of the KKT system (3.1), (3.2) with 
respect to e, both evaluated at Ix(e), tt(e), e] (see the analogous formulas for M~ 
given in (3.3) and for Ntg given as the matrix on the right-hand-side of (3.4)). 

In the degenerate case, when the strict complementarity condition (assumption 
(A5)) does not hold, the following result extends the applicability of proposition 
5.1. 

PROPOSITION 5.2 [24] 
Suppose that the assumptions (A1)-(A3) and (A7), (A8) of theorem 3.3 hold. 

Then, the optimal value function f *(e) of P(e) is once continuously differentia- 
ble for e in some neighborhood of e* and 

(i) f*(e)=fo[X(e ), c] =Lp[x (e ) ,  /~(e), e]; 
P 

(ii) v , f * ( e ) =  V, Lp[x(e) ,  /x(e), e] = v, f0[x(e), e] + E ~k( ' )  v' ,fk[x(e), e]. 
k=l  

For the unconstrained primal geometric program P0(') the following result 
summarizes differentiability properties of the optimal value function f0*(e) of 
Pot')- 

COROLLARY 5.1 [24] 
Consider the problem Po(C) and suppose that the assumptions (AI') and (A6) 

of proposition 3.1 hold. Then, the optimal value function f0*(c) of Po(C) is twice 
continuously differentiable for c in some neighborhood of c* and 

(i) f0*(c)=f0[x(c) ,  c]; 

(ii) ~7,fo*(e ) = ~7,f0[x(e), e l 

.~ ))] = I2 v,c,(e) + c,(e  ',a;j(e)xj(e 

] Xexp ~ ~a i j ( e )x j ( e )  ; 
Ljffil 

(iii) v,2f0* ( e ) =  V,[V, fo[X(e), el "r] -- v2,folx(e), el 

-' v. xlolX(,), , l  
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In the remainder of this section we consider the dual geometric programs D(c) 
and Do(c ). The optimal value function V*(c) for D(c) is defined by 

V*( , )  = supc,,x~{ V(3, X, e) [A(,)T3----- e0, B3 =2~, 8>_-0, 2~>_-0}. 

However, since only local behavior of the perturbed solution [3(~), A(e)] is 
studied here, the formulas for the first-order and second-order derivatives of 
V*(e) are derived for the "local" optimal value function V*(~) defined by 

v*( , )  = v[8( , ) ,  x(e), ,]. 
A special case of the formula for the first-order derivative of V*(e) given in 
proposition 5.3, part (ii), was obtained by Duffin et al. [16] for the perturbations 
in coefficients c; only (compare formula (6.1) in section 6). 

PROPOSITION 5.3 [24] 
Suppose that the assumptions (B1)-(B4) of theorem 4.2 hold. Then, the 

optimal value function V*(e) of D(e) is twice continuously differentiable for e in 
some neighborhood of e* and 

(i) V*(e)  = V[3(e) ,  •(e), e] = L D [ y ( e ) ,  el; 

(ii) x7,V*(e) = v, Lo[y(,) ,  ,] = V',V[8(,),  X(e), ,] + w(e)'rA'r(e)8(e) 
n 

= E [8,(e)/c,(e)] v,c,(e) + W(e/TAT(e/8(,/; 
i = 1  

(iii) Vr,2V* (e)--- ~7,2Lo[y(e), e] + V,28Lo[y(,), ,]-r ~,3(e) 

+ [,/w(e)8(e)] w V,w(e) 

= v, Lo[y(e), e] - Ng(e)(Mo(e))-'No(e),  
where y ( c ) =  [3(~), k(e), w(e), u(e)] "r, d(e)  is defined in the same manner as 
A(c*), MD(C ) is the Jacobian of the KKT system of equations (4.1)-(4.4) with 
respect to (3, h, w, u) and No(e ) is the Jacobian of the KKT system (4.1)-(4.4) 
with respect to ~, both evaluated at [3(c), )~(c), w(c), u(~)] (see the analogous 
formulas for Mt~ given in (4.5) and for N~ given as the matrix on the 
right-hand-side of (4.6)). 

In the degenerate case, when some 3;* are zero and thus assumption (B2) does 
not hold, the following result indirectly extends the applicability of proposition 
5.2. Its proof is based on proposition 5.2, the result of Dembo [3], and the 
following relationship between the optimal value functions f* (e )  of P(c) and 
V*(e) of D(c) 

V * ( , )  = log f *  (e). 

This relationship can also be used to derive alternative formulas for the deriva- 
tives of V*(c) under the assumptions of proposition 5.1. 
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PROPOSITION 5.4 [5,24] 

Suppose that the assumptions (A1)-(A3) and (A7), (A8) of theorem 3.3 hold. 
Then, the optimal value function V*(c) of D(c) is once continuously differentia- 
ble for ~ in some neighborhood of c* and 

(i) V * ( , ) =  V[8 ( , ) ,  X(,) ,  , ] ;  

(ii) ~TV*(c)= V,V[6(c),  ?~(c), c] + X(~)TA-(c)T~(C), 

where x(c) is the optimal solution of P(c). 

For the dual geometric program Do(c), the following result summarizes dif- 
ferentiability properties of the optimal value function V0*(~ ) of D0(c). 

COROLLARY 5.2 [24] 

Consider the problem D0(r ) and suppose that the assumptions (BI'), (B2') and 
(B5) of proposition 4.2 hold. Then, the optimal value function V0*(c ) of D0(c) is 
twice continuously differentiable for c in some neighborhood of c* and 

(i) V0*(, ) = V0[~(, ), q ;  

(ii) gr, Vo* ( , )  = gr, V0[8(r ), ,] + W(,)Td0(•)Ts(e) 
n 

= E [~i(')/Ci(')] ~7,Ci(') "~- W ( ' ) T d 0 ( c ) T ~ ( ' )  ; 
i=1 

(iii) gr,2Vo* ( , ) =  [ V',28Vo[8(,), ,] + / i o ( , ) w ( , ) ]  "r V',~(,) 

+ T q + 

where the non-zero part of the four-dimensional matrix A'o(C) is given by 

A '0 ( , )= [g r )a / j ( , ) ] ,  i = l  . . . . .  no, j = l  . . . . .  m. 

6. Computational approaches to sensitivity analysis for geometric programs 

In this section we review computational approaches to sensitivity analysis for 
geometric programs developed by Dinkel et al. [6,7,9,11,12]. We consider prim- 
arily the reduced dual geometric program GD n, in which the coefficients c i, 
i = 1 . . . . .  n serve as perturbation parameters and the exponents aij  are assumed 
to be constant, and present the incremental procedures for estimating the new 
optimal solution of GDn resulting from changes in coefficients ci. We also briefly 
mention the extension of this approach to the situation with perturbed exponents 
a~j and present a result on the range of coefficients c~ values for which feasible 
solutions exist. 



58 J. Kyparisis / Sensitivity analysis in geometric programming 

The following sensitivity analysis theorem, which relates changes in the pr imal  
coefficients c i to changes in the opt imal  dual  solution of the program GDa(e ) ,  
was proved by Duff in  et al. ([16], appendix  B). This theorem forms the basis for 
the computa t ional  approach to sensitivity analysis developed by Dinkel  et al. 
[6,7,9,11,12]. 

THEOREM 6.1 [16] 
Suppose  that the primal  geometric program G P  has d > 0 and rank A = m, 

where A = [au]. If the solution of GD is such that  3~* > 0, i = 1 . . . . .  n and if the 
matrix J (3 )  with componen ts  (compare GDR) 

n p 

J / j (3 )  = E ~'th(i)t'(J)/'~", / ~ t -  ~-, x(i)X(J)/x r i, j -~  1,.  ., d ,  Xk(3) = E 3, 
~  " " k  / ' " k ~  " ' 

I = 1  k = l  i ~ J , ~  

is nonsingular  at 3 *, then the functions which give the opt imal  solution value 3 * 
and the opt imal  objective value 0 (3* )  ( := v(3* ,  h (3*) ) )  in terms of variable 
coefficient vector c are differentiable on an open ne ighborhood of c. These 
differentials are 

?1 

do~v* = Y'~ 3,* dcJci ,  (6.1) 
i = l  

d 3 i =  Y'. b} j) Y'~ ' (3*)  ~_, b~ k) dcJQ , i =  1 . . . . .  n, (6.2) 
j = l  k = l  / = l  

where  J jk l (3  * ) represents the componen t s  of the inverse of J ( 3 * ) ,  v* = v (3*) ,  
and 

d?~k= E d3,, k = l  . . . .  , p .  (6.3) 
i E J  k 

Theorem 6.1 holds only if there are no nonb ind ing  primal constraints at the 
opt imal  solution, since it requires that  3i* > 0, i = 1 . . . . .  n. Thus it is assumed 
f rom now on that  the problem has been reformulated,  if necessary, to satisfy this 
.condition. 

The  new dual solution and the opt imal  dual objective value can be est imated 
for differential changes d c i, which main ta in  the positivity condi t ions on all dual  
variables, using the formulas 

3[ = 3,* + d3~, i = 1  . . . . .  n,  
n 

v' = v* + v* Y'~ 3,* d ci/ci, 
i ~ l  

t r 

and h ,  = Zi e s, Si, k = 1 . . . . . .  p, where d3 i 

(6.4) 

(6.5) 

is given by (6.2). Once the dual  
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solution is known the estimate of the new primal solution, t ' ,  is computed from 
the duality relationships [16] as: 

(log tj ) = [ ~-TA--] -1A-TZ, (6.6) 

where Z is a vector with elements 

{ ,  ! log 8, +log v 8 ) - l o g ( c , + d g ) ,  i = l  . . . . .  n o , (6.7) 
I Z ; =  log 8; - log Xk-- log(c ;+ dc,),  i =  n o + 1 . . . . .  n. 

In the practical application of these results, the differential changes dci/c; of 
eqs. (6.1) and (6.2) are approximated by the difference form (c~. - g) /c , ,  where g' 
and g are, respectively, the new and old values of the coefficient. It is clear from 
eqs. (6.1) and (6.2) that the use of the difference form in place of d g / g  results in 
the introduction of error into the computations of bounds and new values of the 
variables. The accuracy of the results when using the difference form can be 
improved by using an incremental procedure proposed in [7] which allows for the 
continued updating of j - l .  The procedure considers a "small" change about 8 * 
and computes a new solution 81 using the formulas 

8} = 8i* + dS], 

dS1 = E b~ j) E 1( 8 *  ) b}k)(c;--c,) /c`  , 
j = l  k = l  I=1  

This new solution 8} is used as the point about which a new solution 82 is 
computed for a small change, that is 

8? = 8} + dS?, 

j ~ l  t " k = l  = 

This procedure can be continued until some desired level of change is achieved or 
until termination. The incremental procedure has the effect of allowing for 
updating the evaluation of J -1  according to 

j/~-i 8 * +  ~ d8 (t) , 
t = 0  

where T defines the number of increments and d8 (~ = 0. Several types of 
incrementing procedures have been discussed in Dinkel et al. [7,11,12]. These 
discussions centered around different methods for choosing the increment size. 
For example, the increment size is defined in [11] as a percentage of the original 
coefficient so that for (c~.- c;)/c i = A / g  no incrementing implies all computa- 
tions are made using J-1(  8 * ), 50 percent increments implies A / g  = 0.5 for each 
increment or c" = 1.5c;, etc. An analysis of the accuracy of the primal and dual 
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solutions computed using the incremental procedure was conducted in Dinkel et 
al. [11,12]. The error in the solution was computed using the formula 

percent error = ((true - predicted) / t rue)  x 100 percent, 

where " t rue"  corresponds to the variable value as determined by the optimal 
solution and "predicted" corresponds to the variable value as determined by the 
sensitivity analysis procedures. The numerical results in [11,12] show that the 
primal solution exhibits less error than the dual solution and that both the primal 
and objective functions display less error than the variables. Overall, these results 
showed the ability of the incremental procedure to control the error, especially in 
view of large parameter changes. 

In addition to computing a new dual solution via eqs. (6.4) and (6.5) and the 
new primal solution via eqs. (6.2) and (6.3), Dinkel et al. [7,11] also propose a 
method for computing approximate bounds on allowable changes in a coefficient. 
This is done by determining A such that 

0 = 8 ,  =8 ,*+ Z b~ j) y'~ 1(8")  b~ k) A / c '  , i = l  . . . . .  n. 
j = l  k = l  /=1  

For decreases in the coefficients a lower bound of zero is imposed in order to 
preserve the posynomial nature of the program. The following result in Dinkel 
and Kochenberger [7] develops explicit formulas for such approximate ranges of 
allowable changes in the coefficients c; which can be easily programmed for 
automatic computation. 

THEOREM 6.2 [7] 
Suppose that the solution of the dual geometric program GD is such that 

8~* > 0, i = 1 . . . . .  n and that J - 1 ( 8 " )  exists. If c s changes for any 1 ~< s ~< n, then 
the approximate range of values for c" for which (6.1)-(6.5) are valid is given by 

maxi:o, >0( cs-Si*csDi~ 1, 0} <c"  < mini:D, <0{ c,--Si*c,D[~l},  

where 

Di,= E b} j) E ~. )b(~ �9 
j=l k=l 

A similar result is given in [7] for allowable changes in the right hand side 
coefficients r k and related results can also be found in Dembo [5]. 

In the preceding discussion it was assumed that the original problem was 
reformulated to delete any constraints which are nonbinding at the optimal 
solution. Since changes in the problem coefficients are likely to affect such 
constraints, Dinkel and Kochenberger [7,11] also propose an analysis of nonbind- 
ing constraints which proceeds as follows. Theorem 6.1 [16] precludes the direct 
inclusion of nonbinding constraints, however, eqs. (6.4), (6.6), and (6.7) provide a 
means of computing the new primal associated with a change in the coefficients. 
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Hence one can evaluate any nonbinding constraints as the solution changes, that 
is, the value of t '  from eq. (6.6) is used to evaluate gk(t) for those constraints for 
which gk(t*) < 1 (t* denotes the optimal solution of GP). It follows that as long 
as such constraints remain nonbinding the analysis remains valid. Termination of 
the procedure occurs if (i) a binding constraint becomes nonbinding, (ii) a 
nonbinding constraint becomes binding, or (iii) a maximum limit in the changes 
is exceeded. 

An extension of the computational approaches discussed so far in this section 
to the case where the exponents aiy are perturbed was also proposed by Dinkel 
and Kochenberger [9,12]. In that case theorem 6.1 does not apply and the analysis 
in [9,12] is based on the results on the directional differentiability of the 
perturbed optimal solution of a parametric nonlinear programming problem, due 
to Bigelow and Shapiro [2] (these results were subsequently generalized by 
Jittorntrum [22]). The application of the results in [2] to the optimal dual solution 
8 of GD (which depends on perturbations in exponents au) results in formulas 
analogous to the systems (4.6) or (4.7) in section 4, except that the first-order 
derivatives are replaced by corresponding directional derivatives. Dinkel and 
Kochenberger [9,12] propose to replace the differential changes in these formulas 
by discrete approximation in order to compute approximate dual solutions for 
perturbed exponents a u. An incremental procedure which replaces a large change 
in aij by a sequence of smaller changes is used in actual computations in [9,12], 
similarly as in the method discussed in the earlier part of this section. When the 
approximate dual solution is finally obtained, the corresponding primal solution 
can be calculated using the duality relationships. 

7. Summary and conclusions 

This survey demonstrates that sensitivity analysis has been an integral part of 
the developments in geometric programming theory and applications in the past 
two decades. Research in this area has initially proceeded separately from similar 
studies for nonlinear programming problems, which subsume the class of geomet- 
ric programs. In the last decade, however, the general theory of nonlinear 
programming sensitivity analysis has been extensively applied to geometric pro- 
gramming, taking into account unique features of geometric programs. This offers 
the promise of continued development in this area parallel to the developments in 
sensitivity analysis in nonlinear programming. 

The following directions of future research on the topic of sensitivity analysis 
for geometric programming problems seem to be promising and should lead to 
new significant advances in geometric programming: 
(1) extension of the existing theoretical framework for sensitivity analysis for 

parametric posynomial geometric programs [5,16,24] to signomial (or poly- 
nomial) geometric programs (i.e., programs with arbitrary coefficients ci); 
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(2) further development of sensitivity analysis for parametric posynomial geo- 
metric programs using the general recent results obtained in nonlinear pro- 
gramming [20]; 

(3) a wider application of sensitivity analysis results in the construction of more 
efficient algorithms and accelerating convergence of the existing algorithms 
for solving geometric programming problems, following the example of 
[13,17]; 

(4) integration of sensitivity analysis computations into principal algorithms for 
solving geometric programs, similar to the work in nonlinear programming 
[201; 

(5) continued efforts to apply the existing and to develop new sensitivity analysis 
results to analyze special classes of problems originating from applications of 
geometric programming. 
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