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With re/brence to recently proposed theoretical models accounthlg for reduction ht 
terms of  a unified dynamics governhlg all plo'sical processes, we analyze the 
problem of  workhlg out a worldvieu, aceommodathtg our knowledge about natm'al 
phenomena. We stress the relevant conceptual differences between the considered 
models attd standard qttaattlm mechanics, bt spite of  the fact that both theories 
describe .Ll'stems withht a gemthte Hilbert space .fi'amework. the peculiar features 
o f  the spontaneous reduction models limit drastically the states which are d.rnami- 
cally stable. This fact b)' itself allows one to work out an #1terpretation o[" the 
formalism which makes it possible to give a satisfactory description of  the world 
ht terms of  the vahtes taken by an appropriatel), defined mass density fimvtion hl 
ordinary configuration space. A topology based on this fimction and whieh is radi- 
call)' different fi'om the one characterizhtg the Hilbert apace is httroduced, and in 
terms of  it the idea of  shnilarity o f  macroscopic situations is precisely deJbted. 
Finally, the formalism and the htterpretation are shown to yield a natm'al criterion 
for establishhlg the psychophysieal parallelism. The conchtsion is that. withh~ the 
considered theories and at the nom'elativistiv level, one can sati.~fv all sensible 
requh'ements for a completel)' satisfactor.l' macro-objective description of  reality. 

1. I N T R O D U C T I O N  

A quite natural question which all scientists who are concerned about 
the meaning and the value of science have to face is whether one can 
elaborate a worldview which can accommodate  our knowledge about 
natural phenomena. Such a program has been appropriately denoted by 
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A. Shimony '~ as closing the circle. As is well known, this desideratum does 
not raise particular problems within classical physics for various reasons 
which have been lucidly pointed out by J. Bell: ~2~ 

Of course it is true that also in classical mechanics any isola- 
tion of a particular system from the world as a whole involves 
approximations, but at least one can envisage an accurate theory 
of the universe, to which the restricted account is an approxima- 
tion, 

and moreover 

... even a human observer is no trouble (in principle) in clas- 
sical theory--i t  can be included in the system (in a schematic way) 
by postulating a psychophysical parallelism--i.e., by supposing his 
experience to be correlated with some function of the coordinates. 

The situation is quite different in quantum mechanics, due to the 
specific peculiarities of the formalism. In particular, the linear nature of 
the Hilbert space description of the states of physical systems gives rise to 
well-known difficulties with macroscopic objects. The theory allows linear 
superpositions of macroscopically different states which render problematic 
to attribute definite properties to the systems they describe. In particular, 
as is well known, this situation occurs in measurement-like processes in 
which, after the system-apparatus interaction is over, one has, in general, 
a linear superposition of macroscopically distinguishable apparatus states. 

Various solutions to this puzzling situation have been proposed; 
for our purposes it turns out not to be relevant to discuss their specific 
features and/or to comment on their pros and colas. What has to be 
pointed out is that now everybody agrees that one needs a reinterpretation 
or a modification of the formalism (such as breaking the von Neumann 
chain, introducing hidden variables, limiting measurability, or modifying 
the evolution law) which does not appreciably alter quantum predictions 
for microsystems but implies or makes it legitimate to state that macro- 
objects have definite macroproperties. 

All these attempts attribute to positions a privileged role in the 
description of the macroscopic world. 4 This is quite natural since the 
definiteness, the particularity of the world of our experience, derives from 
our perceiving physical objects in definite places, and this is also why the 
prescriptions for establishing the psychophysical correspondence usually 
involve positions. 

4 Obviously, a satisfactory description of tl~e macro-world also requires taking into account 
Ilow positions change with time. 
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This paper is devoted to show how, within the context of the recently 
introduced nonrelativistic models ~3'4~ of spontaneous dynamical reduction, 
one can give a consistent description of the universe satisfying all previous 
requirements in terms of mass density in ordinary space. 

In Section 2 we briefly sketch CSL, the most elaborate nonrelativistic 
model of dynamical reduction worked out till nowJ 4~ We also discuss how 
this model, while yielding a solution to the measurement problem, requires 
one to consider a question which has been raised in Refs. 5, 6 and which 
will be referred to as the problem of the tails of the wavefunction. This 
alleged difficulty will be shown to find a natural solution when one adopts 
the point of view which we are going to propose in the paper. 

Sections 3 and 4, which in a sense represent the core of the paper, deal 
with a reinterpretation of the wavefunction allowing one to describe 
the macroscopic world in terms of an objective mass density in ordinary 
space. 

Section 5 is devoted to sketching a possible way of establishing the 
psychophysical correspondence and to prove its consistency. 

2. A CONCISE  REVIEW OF D Y N A M I C A L  R E D U C T I O N  M O D E L S  

Models have recently been developed which, by corisidering nonlinear 
and stochastic modifications of Schr6dinger's dynamics, imply, without 
entailing any violation of established experimental facts, wave packet 
reduction with fixed pointer positions in measurement processes and, more 
generally, forbid the persistence of linear superpositions of macroscopically 
distinguishable statesJ 3"4~ 

The first model of this kind, QMSL, is based on the assumption 
that, besides the standard evolution, physical systems are subjected to 
spontaneous localization occurring at random times and affecting their 
elementary constituents. Such processes, which we will call "hittings," are 
formally described in the following way. When the ith constituent of the 
system suffers a hitting, the wave function changes according to 

~(r~ . . . . .  rN) ~ 7'x(rl ..... rN) = ~b,(rl ..... rN)/ll~x II 

qs,.(rl ..... rN) ~---(0C/g) 3/4 e -~/2)lr'- x)2 ~trt(r i ..... rN) 
(2.1) 

Such processes occur at randomly distributed times with a mean frequency 
)~ = 1 0  - 1 6  s e c  - l .  The probability density of the process occurring at point 
x is given by ]l~x It 2. The localization parameter 1/x/~ is assumed to take 
the value I0 5 cm. 
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The QMSL mechanism does not respect the symmetry properties of  
the wave function in the case of identical constituents. Its generalization 
satisfying such a requirement, the continuous spontaneous localization 
model (CSL), has been presented and discussed in various papersJ 4~ 

2.1. The CSL Model 

The model is based on a linear stochastic evolution equation for 
the state vector. The evolution does not preserve the norm but only the 
average value of the square norm. The equation, in the Stratonovich 
version, is 

d I~. . ( t ) )  

dt I iH+ZA~w~(t)-7~A~] [7-',.(t)) (2.2) 

In Eq. (2.2), the quantities At are commuting self-adjoint operators, while 
the quantities wi(t) are c-number stochastic processes with probability of 
occurrence satisfying 

Pcook[w(t)] =Pm,  w[w(t)] I II ~,.(g)~ II 2 (2.3) 

In Eq. (2.3) Pm, w[W(t)] is equal to 

Pk,w[W(t)] = - -  e -  /-r _,j,, (2.4) 

. I" being a normalization factor, i.e., to the probability density of a white 
noise process satisfying 

((w~(t))) = 0, ((wg(t)u)(t')))=),d~d(t-t') (2.5) 

To clarify the physical meaning of the model, let us assume, for the 
moment, that the operators At have a purely discrete spectrum and let us 
denote by M~ their common eigenmanifolds and by P~ the associated 
projection operators. 

Then we make the following precise assumption: if a homogeneous 
ensemble (pure case) at the initial time t = 0  is associated to the state 
vector [~u(0)), then the ensemble at time t is the union of homogeneous 
ensembles associated with the normalized vectors ]~,.(t))]/ll~u,,.(t))[I, 
where [~, . ( t ))  is the solution of Eq.(2.2) with the assigned initial 
conditions and for the specific stochastic process w(r) which occurred in 
the interval (0, t). The probability density for such a subensemble is that 
given by Eq. (2.3). 
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One can prove t4~ that the map from the initial ensemble to the final 
ensemble obeys the forward time translation semigroup composition law. It 
is also easy to prove that the evolution, at the ensemble level, is governed 
by the dynamical equation for the statistical operator 

dp(t) i [ H , p ( t ) ] + y ~ A i p ( t ) A . _ y  ~S,A? } dt - h , ' 2 [ ~  "P( t )  (2.6) 

from which one immediately sees that, if one disregards the Hamiltonian 
evolution, the off-diagonal elements P,p(t)P~ ( a4 : r )  of the statistical 
operator are exponentially damped. 

For our concerns, the relevant feature of the dynamical process (2.2) 
with the prescription (2.3) is that it drives the state vector of each 
individual member of the ensemble into one of the common eigenmanifolds 
of the operators A~, with the appropriate probability. To clarify this, we 
consider c4) a simplified case in which only one operator A appears in 
Eq. (2.2). The solution of this equation corresponding to the particular 
initial condition (involving only two eigenmanifolds of A with eigen- 
values cz, fl) 

I~(0))  = P~ [~(0))  + Pts 1 7/(0)) (2.7) 

when the Hamiltonian is disregarded, -~ is 

I ~ ( t ) )  =e~nt')-="~"P, IT(0))  +e~B~')-/f;'P/3 [~v(0)) (2.8) 

Here B(t) is the Brownian process 

B(t)= dr w(t) (2.9) 

Taking into account Eq. (2.8) and the cooking prescription, one gets 
the cooked probability density for the value B(t) of the Brownian process 
at time t: 

1 (1 ''~ tIlB(t) Pcook[B(t)] = IIP~ [~t(0))ll 2 - e  / -~ '  -2~,~.,,-" 

, 1 
+ LIPts I~V(0)) II- ~ e ~l/2~''~B~')- 2p~'')" (2.10) 

In Eq. (2.8) and following we have changed the notation for the state vector from the one 
labeled by the white noise symbol w as in Eq. (2.2) to the one labeled by the Brownian 
motion symbol B, to stress the fact that, under our assumptions, the state at time t does not 
depend on the specific sample function w(r) in the interval (0, t) but only on its integral, 
Eq. (2.9). 



I0 Ghirardi, Grassi, and Benatti 

From (2.10) it is evident that for t ~ or, the process B(t) can assume only 
values belonging to an interval of width x / ~  ar~ either the value 2o~yt 
or the value 213~,t. The corresponding probabil i t ies  are I[P~ l T t(0))[I 2 and 
IIP/~ I ~u(0))II 2, respectively. The occurrence of a value "near" to 2~xyt for the 
random variable B(t) leads, according to Eq. (2.8), to a state vector that,  
for t--* or, lies in the eigenmanifold corresponding to the eigenvalue ~ of A. 
In fact, one gets 

IIP/, I~,~(t)>ll2 e_2~.,l~ p)-' [IP/J [~(0)>ll  2 

liP. [ ~ ( t ) >  II 2 [IP, I~(0)> i -~ . . . .  , 0  
(2.11) 

Analogously,  when the random variable B(t) takes a value "near" to 2[37t, 
for t -+ ~ .  the state vector is driven into the eigenmanifold corresponding 
to the eigenvalue fl of A. 

It is then clear that the model  establishes a one-to-one correspondence 
between the "outcome" (the final "preferred" eigenmanifold into which an 
individual state vector is driven) and the specific value (among the only 
ones having an appreciable probabi l i ty)  taken by B(t) for t--* ~ ,  a corre- 
spondence irrespective of what [~u(0)) is. 7 In the general case of several 
operators  Ai, a similar conclusion holds for the "outcomes" ~i of A~ and 
the corresponding Brownian processes B~(t). 

This concludes the exposition of the general structure of the CSL 
model. Obviously,  to give a physical content to the theory one must choose 
the so-called preferred basis, i.e., the eigenmanifolds on which reduction 
takes place or, equivalently, the set of commuting operators  A~. The 
specific form that has been presented and shown to possess all the desired 
features is obtained ~4~ (in accordance with the remarks of Section 1 about  
the privileged role played by posit ions) by identifying the discrete index i 
and the operators  A~ of the above formulas with the continuous and 
discrete indices (r, k) and the operators  

Na"'(r) = \2rcJ ~ f dqe-'"/2"q-'"-a~(q's) ak(q's) (2.12) 

Here a ~ ( q , s )  and a~.(q,s) are the creation and annihilat ion operators  
of a particle of type k (e.g., k = electron, proton . . . .  ) at point  q with spin 
component  s, satisfying the canonical commutat ion  or ant icommutat ion 

Note that, even though the spread x/~ tends to oc. for t--* o~, its ratio to the distance 
2(~-fl) )'t between the two considered peaks of the distribution tends to zero. 

7 Obviously [~u(0)) enters in a crucial way in determining the probability of occurrence of the 
Brownian processes Bit). 
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relations. Correspondingly one has a continuous family of stochastic 
Gaussian processes satisfying 

((wk(r, t))) =0 ,  ((wt.(r, t) ~t)(r', t'))) =y6kj6(r- -r ' )6( t - - t ' )  (2.13) 

The parameter ~ is assumed to take the same value (101~ c m  - 2 )  a s  in the 
case of QMSL, while y is related to the frequency 2 = 10 - 1 6  s e c  - |  of that 
model according to y = ).(4n/ot) 3/2. 

2.2. H o w  D o e s  D y n a m i c a l  R e d u c t i o n  W o r k ?  

Due to the choice of the parameters for QMSL and the corresponding 
ones for CSL, the considered dynamics has the following nice features: 

- -  In the case of microscopic systems the non-Hamiltonian terms 
have negligible effects. 

- -  On the contrary, in the macroscopic case the reduction mechanism 
is extremely effective in suppressing linear superpositions of states in which 
a macroscopic number of particles are discplaced by more than the 
characteristic localization length. 

This can be easily seen both for QMSL and for CSL. Within QMSL, 
a localization of any one of the displaced particles yields the suppression of 
the linear superpositions. Thus, one could roughly describe the situation by 
stating that the hitting frequency is amplified in proportion to the number 
of particles. 

To discuss the decoherence features of CSL ensuing from the choice 
(2.12), even though the reduction processes occur at the individual level, 
one can limit his considerations to the evolution equation for the statistical 
operator: 

dp(t) 
dt 

i 
[H, p(t)] + y ~. f dr N'*)(r) p(t) Ntkl(r) 

k 

(2.14) 

For simplicity's sake here we will further restrict ourselves to a simplified 
version of CSL obtained by disregarding the Hamiltonian term and 
discretizing the space. This allows us to derive in a straightforward way the 
main consequences which are of interest for the subsequent discussion. 

We divide the space into cells of volume (ot/4n) -3/2 and we denote by 
N~i hl the number operator counting the particles of type k in the ith cell. As 
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follows from the discussion of the preceding subsection in the considered 
case, the dynamical evolution drives the state vector into a manifold such 
that the number  of particles present in any cell is definite. The simplified 
equation for the statistical operator  reads 

dp(t) / ct \ 3/2 . . f ~  N,~.~2 p ( t ) l )  
Ni - - 5  + ' (2.15) 

In accordance with the relation of Subsection 2.1, we will often use the 
QMSL frequency parameter  2 in place of the expression ),(c~/4n) 3/2. If we 
denote by In~, k,, n~ ~~ ..... " ' "  ,,+ .... ) the state with the indicated occupation 
numbers for the various types of particles and for the various cells, the 
solution of Eq. (2.15) reads, in the considered basis 

(n~tk,, ,,~k, .... Ip(t)l ,,,~", ,,,~" .... ) 

- e - I , v2 )zkz ,  ,,, - , i  ~-, (/1(i/,~, Ip(0)l . )  (2.16) 

Equation (2.16) shows that linear superpositions of states containing 
different number  of particles in the various cells are dynamically reduced to 
one of the superposed states with an exponential time rate depending on 
the expression (2/2) Z~- Z i  (nqi k~ -  m~ik~) 2. 

The amplification process in going from the microscopic to the macro- 
scopic case and the preferred role assigned to position make it clear how 
such models overcome the difficulties of quantum measurement theory. 
In fact in measurement processes one usually assumes that different 
eigenstates of the measured micro-observable trigger (through the 
system-apparatus  interaction) different displacements of a macroscopic 
pointer from its "ready" position. The unique dynamical principle of 
QMSL or CSL leads then, ~3"4~ in extremely short times, to the dynamical 
suppression, with the appropriate probability, of one of the terms in the 
superposition, i.e., to the emergence of an outcome. 

2.3. "Outcomes" in Dynamical Reduction Models 

For the following analysis and with reference to the fundamental issue 
of the objectification of properties, i.e., of the dynamical emergence of out- 
comes, it is important  to deepen the discussion of the formal and physical 
aspects of the theory and to mention some peculiar situations which may 
occur. To this purpose we confine our considerations to the case in which 
only two macroscopically different outcomes cr and fl which we identify with 
the eigenvalues of an operator  A can occur. We consider the CSL model 
with A taking the place of the operators A+ of Eq. (2.2) and we assume that 
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the initial state vector has the form (2.7). As repeatedly remarked,  when 
one disregards the Hamil tonian evolution, the CSL dynamics,  for t---, oo, 
drives the state vector either within the eigenmanifold M~ or within Mp. 
However, it is impor tant  to stress that for any finite time t, no one among 
the states evolved from the considered initial state vector can be exactly an 
eigenstate of A. As discussed at the end of the previous subsection, after a 
characteristic reduction time At (defined through (e-2~'~"~-/~t-',~ 1), for all 
values of the Brownian process B(At) which have an appreciable proba-  
bility of occurrence (i.e., those for which B(At) .~ 2c~y At or B(At) ~ 2fly At) 
the normalized state vector describing an individual system will have a 
negligible component  on one of the two eigenmanifolds. Since one wants 
outcomes to emerge in the characteristic reduction time At, one is com- 
pelled to at tr ibute ~71 to the system, for example, the "definite outcome ~" 
also when [IP~ I~U)l12/ll Ig")II 2 is extremely close but not exactly equal to 
one. 8 This at t i tude of at tr ibuting to the individual physical system the value 
ct of A even when the state vector describing it has a very tiny component  
on the eigenmanifold associated to the value fl, has been criticized by 
A. Shimony ~-~ and by D. Z. Albert and B. Loewer 16~ on the basis of the 
probabil ist ic interpretat ion of the wavefunction. In particular,  in Ref. 5 the 
author claims that, within a dynamical  reduction model, one should not 
tolerate tails h~ wavefimctions which are so broad that the#" different parts 
can be discriminated by the senses, even i f  very low probability amplitude is 
assigned to them. In the next section we will show how, when the state 
vector is reinterpreted according to the lines we are going to propose, the 
problem of the tails will find a natural  solution. 

We come now to the discussion ~s~ of some peculiar aspects of the 
theory. The first one derives from the fact that, in principle, also in the 
macroscopic case it could happen that even for a time larger than At no 
outcome has emerged. In fact, if one considers for the Brownian process 
B(At) the value (c~ + fl) ), At whose probabi l i ty  density, al though very small, 
is not zero, one can easily show that Eq. (2.8) leads to a state vector which 
coincides, apart  from a normalization factor, with the initial one. In other 
words, no reduction has taken place and no outcome has been obtained. Since, 
as already remarked, the probabil i ty of such a peculiar event is extremely 
small, its occurrence cannot be considered as a drawback of the theory. 

Another  peculiar si tuation can occur, namely the "reversal" of a 
macroscopic outcome. To see this, suppose one has a normalized state 

S It is useful to remark that, also within standard quantum mechanics with the reduction 
postulate, since outcomes are usually related to positions of macroscopic pointers and no 
wavefunction can have. in general, compact support in configuration space, one is 
unavoidably led to adopt an analogous criterion for the attribution of "outcomes". 

825251-2 
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vector 17 j )  which "almost" belongs to the eigenmanifold M~, i.e., for which 
liP= [~u)II 2 is extremely close but not identical to 1. One can then state that 
the definite outcome 0~ has occurred. However, according to the theory, 
there is a very small probability IIP/j]~)II 2 that in the far future the 
Brownian process B(t)  takes a value such that in the state vector (2.8) the 
norm of the second term becomes overwhelmingly large with respect to 
that of the first. Correspondingly, one would be led to conclude that the 
outcome fl has emerged. This shows that, though with extremely low 
probabilities, even definite macroscopic outcomes can (spontaneously) 
changefl The analysis we have just performed and the conclusions we have 
reached hold for Q M S L  too. The above considerations are useful for some 
points which we will discuss in what follows. 

3. HOW TO DESCRIBE THE MACROSCOPIC WORLD WITHIN A 
D Y N A M I C A L  R E D U C T I O N  C O N T E X T  

In this section we will show how, by taking advantage of the specific 
features of the dynamical reduction mechanisms, one can give a description 
of the world in terms of the mean values ,//(r, t), at different places and at 
different times, of appropriately defined mass density operators. The proce- 
dure will involve the following steps. First we will show how, if one does 
not restrict the set of all possible states of the Hilbert space of "our 
universe," one unavoidably meets situations which cannot be consistently 
described in terms of the function ._//(r, t). Fortunately, one can show that 
the universal dynamics of the reduction models does not consent to the 
p e r s i s t e n c e  for 19~ more than a split second of the unacceptable states, thus 
allowing one to use the function ~,//(r, t) as the basic element for the 
description of the world. In terms of it one can then define an appropriate 
"topology" which is the natural candidate for establishing a satisfactory 
psychophysical correspondence. 

3.1. Relating Reductions to the Mass Density 

In this subsection we consider a CSL type dynamics for the state 
vector in which, in place of the operators N~k~(x) considered previously, we 
introduce the mass density operators 

M(r) = ~ mkNIk~(r) (3.1) 
k 

To avoid misunderstandings we consider it appropriate to stress that, when one is dealing 
with an entangled state, this "reversal," if it takes place, preserves the correlations implied 
by the state vector. 
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where mk is the mass of the particles of type k. The Stratonovich stochastic 
evolution equation for the state vector is 

where m0 is a reference mass and ), is the parameter appearing in standard 
CSL of Section 2. We identify the mass m0 with the nucleon mass; in this 
way the reduction rates for macroscopic objects are practically equal to 
those of the standard CSL model. With this choice the decoherence is 
governed by the mass of the nucleons in ordinary matter, the contribution 
due to electrons being negligible. 

As usual the corresponding equation for the statistical operator is 
easily obtained: 

alp(t) i 
dt h [H,p(t)]+m--~fdrM(r)p(t)M(r)-2m---~o drM2(r),plt) 

(3.3) 

One of the main motivations to replace the number density operators 
N'k~(r) in the CSL dynamics with the mass density operators M(r) derives 
from the desire to relate reductions to gravity as suggested by various 
authors ~~ (a model with analogous characteristics has been presented in 
Ref. 11). Another important feature of the above choice has been pointed 
out by P. Pearle and E. Squires~t-'~: while the reduction rates for macro- 
objects are practically the same as those of the standard CSL model, the 
probabilities of excitation or dissociation of microscopic bound systems 
turn out to be depressed by large factors, ~-''~31 thus leading to a smaller 
disagreement with the predictions of quantum mechanics for such systems. 
In particular, a simple computation within the quark model for nucleons 
(disregarding all relativistic effects which, however, could turn out to be 
very important at this level) gives a dissociation rate for the proton well 
below the experimental bound, while this constraint is not met by the 
standard CSL model. The advantages of taking the above position have 
also been discussed by A. Rimini. ~t4~ 

3.2. Mass Density Function 

Let us now consider a physical system S which will constitute "our 
universe," and let us denote by H ~s~ the associated Hilbert space. Let 
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I~(t)> be the normalized state vector describing our individual system at 
time t; in terms of it we define an average mass density c-number function 
o//(r, t) in ordinary space as 

J / ( r ,  t ) =  < ~(t)l M(r ) I  ~(t)> (3.4) 

If one assumes, as one can consistently do within a nonrelativistic quantum 
framework, that the system S contains a fixed and finite number of 
particles, Eq. (3.4) establishes, for a given t, a mapping of H ~s~ into the 
space of positive and bounded functions of  r. 

Obviously this map is many to one; in particular, to better focus on 
this point as well as for future purposes it turns out to be useful to compare 
two state vectors I ~ >  and ]~ |  defined as follows. Let us consider a 
very large number N of particles and two space regions A and B with 
spherical shape and radius R. The state I ku~> is the linear superposition, 
with equal amplitudes, of two states ]5 uA> and [~] ,> in which the N par- 
ticles are well localized with respect to the characteristic length (10 --~ cm) 
of the model and uniformly distributed in regions A and B, respectively, in 
such a way that the density turns out to be of the order of 1 g/cm 3. On the 

A B other hand, I ~u| is the tensor product of two states I~u/2> and [@N/2> 
corresponding to N/2 particles being distributed in region A and N/2 in 
region B, respectively: 

1 
I~N/2> = I~N/2> (~) (3.5) 

It is trivially seen that the two considered states give rise to the same 
function ~ and it is clear that if one attempts to give some meaning 
to it one has to be very careful in keeping in mind from which state ~//(r) 
originates. 

In particular, it is quite obvious that in the case of ]7"*>, o//(r) 
cannot be considered as an "objective" mass density function. To see this, 
let us suppose that one can use quantum mechanics to describe the gravita- 
tional interaction between massive bodies, and let us consider the following 
gedanken experiment: a test mass is sent through the middle point of the 
line joining the centers of regions A and B with its momentum orthogonal 
to it (see Figs. la and lb). In the case of the state I~ u| for the system of 
the N particles, quantum mechanics predicts that the test particle will 
not be deflected. On the other hand, if the same test is performed when 
the state is [ ~ A )  ( ] ~ ) ) ,  quantum mechanics predicts an upward 
(downward) deviation of the test particle. Due to the linear nature of the 
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I'1' % =l,I).~:>| 

le$1 parlicle 

Iq' ~:>@1?#>- ,1~1~: >,r.,ol~D.v:> }It)> 

I"~ "> =( 1/',, 2){Iq~ .~ >*-IW~%} 

@ A  o 

B 

I'P > | - , (  1/'~2)(1',1'.~' >1r +l'-V~%le ':~~ . }  

f ": l a  ~--iq I b  

Fig. 1. Objective and nonobjective mass density distribution .//(r). The shading intensity is 
proportional to the value of .//(r) in the shaded region, In case la, corresponding to the 
factorized state I ~u| ), the mass density in regions A and B is objective and the test particle, 
interacting with I~ u| behaves in such a way as to give rise to the appropriate density along 
its natural trajectory. In case lb, corresponding to the superposition l Tte), the densities in A 
aqd B are nonobjective and the same holds Ibr the density distribution generated by the 
interaction of the test particle with I'P~'). 

theory, this implies that if one were able to prepare the state I~U~}, the 
final state would  be 

{~,v} | + | I,/'~~ ~ 1r I. :' 
) 

j~u | , }  (3.6) 
3 

with obvious  mean ing  of the symbols.  If one includes the test particle 
into the "universe" and  considers the mass density opera tor  in regions 
cor responding  to the wave packets jq~uP} and  Iq~DOWN}, one discovers 
once more  that  nowhere  in the universe is there a density cor responding  to 
the density of  the test particle. In a sense, if one would  insist in giving 
a mean ing  to the density fnnct ion,  he would  be led to conclude that 
the particle has been split by the interact ion into two pieces of half  its 
density. 

This analysis  shows that great a t ten t ion  should be paid in a t t r ibu t ing  
an "objective" status to the function ~//(r). We will tackle this p rob lem in 
the next  subsection. 

Before going on we consider  also ano ther  quan t i ty  which will be useful 
in what  follows. It is the mass density variance at r at time t defined by the 
following map  from H ~s) into 913: 
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~ ( r , t ) = ( T s ( t ) l [ M ( r ) - ( ~ u ( t ) l M ( r ) [ ~ ( t ) ) ] = l ~ ( t ) )  (3.7a) 

I ~u(t)) being a normalized state vector. 
With these premises we have all the elements which are necessary to 

discuss the problems one meets when dealing with , / / ( r ,  t) and the way to 
overcome them. We will do this in the next subsection. 

Before doing that, we consider it appropr ia te  to simply mention the 
obvious fact that the states giving rise to puzzling, nonobjective density 
functions are those corresponding to superposit ions of differently located 
macroscopic bodies, i.e., the infamous states which are at the center of the 
long debated problems about  the meaning of quantum mechanics at the 
macrolevel. 

For  future purposes it is useful to introduce a mathematical  criterion 
which allows one to make clear the different status of the mass densities in 
the two cases considered above (corresponding to the states ]~u*)  and 
IgJ |  respectively). This is more easily expressed by resorting once 
more to a discretization of space in analogy with what has been done in 
Subsection 2.2. Obviously,  in place of the space functions ~//(r, t) and 
~F "(r, t) we will consider the mean value o//~(t) and the variance "~ ;(t) of the 
mass opera tor  in the i th cell. In correspondence to an arbi t rary cell i we 
define the ratio: 

= '~/~//7 (3.7b) 

We then state that the mass �9 is objective if .8i turns out to be much 
smaller than one, that is: 

.-'~i '~ 1 (3.8) 

This criterion is clearly reminiscent of the probabil ist ic interpretat ion of 
the state vector in s tandard quantum mechanics. Actually, within such a 
theory Eq. (3.8) corresponds to the fact that the spread of the mass 
opera tor  M~ is much smaller than its mean value. Even though in this 
paper we take a completely different at t i tude with respect to the mean 
value,//~, it turns out to be useful to adopt  the above criterion also within 
the new context. In fact, as we will discuss in what follows, when one has 
a space region such that for all cells contained in it (3.8) holds, it behaves 
as if it would have the "classical" mass corresponding to ,//~. 

With reference to the previous example we stress that in the case of 
I ~  |  all cells within regions A and B are such that criterion (3.8) is very 
well satisfied. In the case of 17-' * ) for the same cells one has 

?/ / I -  .~ 

o/6 ~ ~ m 0 , :r "- - -  m ; _ 4  (3.9) 
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where n is the number of particles per cell. There follows 

~ 1  
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(3.10) 

3.3. The Mass Density Function in the Context of Dynamical Reduction 
Models 

In the previous subsection we have presented a meaningful example of 
the difficulties one meets when one keeps the standard quantum dynamics 
and tries to base a description of the world and an acceptable psychophysi- 
cal correspondence on the mass density function ,,//(r). The unacceptable 
features find their origin in the fact that, when the macrostate is I'/I ~ ) ,  
while the density function takes the value of about 1/2 g/cm 3 within regions 
A and B, if one performs a measurement of the density in the considered 
regions, or if a measurement like process (such as the passage of the test 
particle in between A and B) occurs, things proceed in such a way that it 
is incompatible with the above density value. Actually one could state that 
no outcome emerges in the measurement. To understand fully the meaning 
of this statement one could identify, for example, the final position of the 
test particle with a pointer reading; the pointer would then not point to the 
middle position (corresponding to equal densities in A and B) but would 
be split into "two pointers of half density" pointing upward and downward, 
respectively (compare with Fig. Ib). 

If one attempts to take an analogous attitude with reference to 
dynamical reduction theories, one does not meet the same difficulties 
because they imply that linear superpositions of states corresponding to 
far-apart macroscopic systems are dynamically suppressed in extremely 
short times and measurements have outcomes. (3'4's'~5~ Therefore, we can 
guess that, within the context of the dynamical reduction program, the 
description of the world in terms of the mass density function ~,#(r) is a 
good description; moreover, it is such as to allow one to base on it a 
sensible psychophysical correspondence. 

Obviously, some fitz:y situations can occur also in this context, when 
the mass density is not "objective," i.e., when (in the simplified discretized 
version) criterion (3.8) is not satisfied. However, as we are going to show, 
this does not give rise to any difficulty for the program we are furthering, 

In order to show this, we will examine, along the above lines, the 
status of the mass density function J#(r)  for the various possible states 
which are not forbidden by the reducing dynamics. We will discuss the 
cases of microsystems and macrosystems, and, with reference to the latter, 
we will identify two physically relevant classes of states which can occur. As 
we have done previously, we will deal with a discretized space. 
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3.3.1. Microscopic Systems. For the sake of simplicity, let us consider 
a single nucleon. As is well known, the reducing dynamics does not forbid 
the persistence, for extremely long times, of linear superpositions of 
far-away states of the particle, typically states like 

1 
Ir = - - ~  (IO, o ..... 1, ..... Oj .... > + IO, O ..... O, .... lj .... >) 

, / 2  
(3.11) 

where i and j are two distinct and far-apart cells. Such microscopic states 
which are not eigenvectors of the operators Mi will be called "microscopi- 
cally nondefinite," the term "nondefinite" making reference to the charac- 
teristic preferred basis of the model. As is evident fi'om (3.11), the mean 
values of M r and Mj are (1/2)171o, and criterion (3.8) is not satisfied in 
correspondence of both cells. A measurement of the mass in one of these 
two cells would give the definite outcome 0 or m 0 with equal probability 
(corresponding to the fact that wave packets of microsystems diffuse, but, 
however, the reaction of a detector devised to reveal them remains spotty) 
and not (1/2)too, the value taken by the density function within the 
considered cells. This discrepancy, this nonclassical character of ~/, and 
~/6, cannot, however, be considered a difficulty for the theory with the 
proposed interpretation; it simply amounts to recognizing that we cannot 
legitimately apply our classical pictures to the microworld. On the 
contrary, we must allow ~6~ microsystems to enjoy the cloudiness of  waves. 

3.3.2. Macroscopic Systems. The theory allows the persistence of two 
general classes of states for macroscopic systems, i.e., those corresponding 
to a macroscopic number of microsystems in microscopically nondefinite 
states and states like those of almost rigid bodies with sharply defined 
(with respect to the characteristic length of the model) center-of-mass posi- 
tion. Due to the fact that the center-of-mass wavefunction has, in general, 
noncompact support, this second class obviously includes also the states 
wich are of particular interest for our discussion, i.e., the states which, 
being brought out by the reducing dynamics, have "tails." 

Concerning states of the first class, it is of extreme relevance to make 
clear that they have a conceptual status which is very different from that 
of the superpositions of macroscopically distinguishable states like ]h v * )  
of Subsection 3.2. This important difference has already been appropriately 
stressed by A. Leggett, ~17~ who, even though in a different context, has 
introduced the mathematically precise concept of disconnectivity to 
distinguish states of this type from states like [ ~ * ) .  

To be more specific, let us consider a system of N nucleons and a 
discretization of space in cells of linear dimensions 10 -8 cm. We consider 
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again two macroscopic regions A and B, and we label with the indices k A 

and ka pairs of cells within A and B, respectively. For kgS~kg,  the two 
cells are disjoint and the union of all cells k g (ka) covers the region A(B). 
The index k runs from 1 to N, a very large number; typically if A and B 
have volumes of the order of 1 dm 3, N will be of the order of 10 27. 

Let us denote by l~ok,,) and I~0kB) the states of a particle whose 
wavefunctions in coordinate representation are well localized within k A and 
kB, respectively. As an example, we could choose 

( r  t q0k,,) = Z ( k A )  (3.12) 

Z ( k g )  being the characteristic function of cell k A. We now consider the 
following microscopically nondefinite state for the kth  particle: 

=1( 
lop k) ~ Irpk,,) + IcpkB)) (3.13) 

and the factorized state of the N particles 

I~o) = I~P'} | - | I~ o k )  | " | lop N)  (3 .14)  

In spite of the fact that the state I~o) is a direct product of microscopically 
nondefinite states, it is nevertheless "almost" an eigenstate of the operators 
Mr [ remember  that the linear dimensions of the cell to which the index i 
refers are of the order of 10 - s  cm so that one such cell contains about 10 9 

cells of the kind of kA (ka)] .  In fact, denoting by n ~ 10 9 the number of kA 
(/%) cells contained in the ith cell, one can easily see that Irp) gives rise to 
"objective" mass ~t4 in regions A and B respectively: Jo 

(MiIA,  BI ) ~lnmo, (M~A,B)) == z ( n - + n )  m;  (3.15) 

hence 

1 
'/I ~A,B~_~'~nm~ and ~ ~ ~ 1 (3.16) " 'ilA, B) N / ~  

To clarify the physical implications of the state I rp), from the point 
of view which interests us here, we can imagine that we are performing 
once more the gedanken experiment with a test particle we have already 
considered in the previous subsection, assuming, for simplicity, that the 
interactions between the test particle and the considered N particles do not 

~o In making the computations we have identified the operators M, with the sum of the 
projectors (multiplied by the nucleon mass too) of the various particles on the ith cell. 
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change the state ~j of  the latter. By subst i tut ing Eq. (3.13) into Eq. (3.14), 
we see that  I~o) is a superpos i t ion  of  2 'v states in which each part icle is well 
localized, In such a superposi t ion  all states have  an equal  ampl i tude  
( l / x / ~ )  and a lmost  all states co r respond  to abou t  N/2 particles being in 
regions A and B, respectively. Therefore ,  in the language  of  dynamica l  
reduct ion  models ,  the probabi l i ty  of  occurrence  of  a real izat ion of  the 

s tochast ic  potent ia l  leading to the "ac tua l i za t ion"  of  an a lmos t  comple te ly  
undeflected t ra jectory for the test part icle  is ext remely  close to one. J2 This  
shows that  the mass densi ty funct ion ~tl(r) cor respond ing  to the state I~P) 
behaves in a "classical way,"  so that  no t rouble  arises in this case. It has 
to be noted that,  obviously ,  the mass J/,. co r respond ing  to the state (3.14) 
coincides  with the one cor responding  to the state [ ~F |  of  Subsect ion 3.2, 
in spite of  the fact that  bo th  states are dynamica l  a l lowed and are qui te  
different as physical  states. However ,  as we have  shown,  the masses , / / , ,  in 
the two cases behave  pract ical ly in the same way and give rise to no 
t rouble,  con t ra ry  to what  happens  in the case of  l~u ~ ) .  

We come  now to the cons idera t ion  of  the o ther  type of  a l lowed states 
of  interest  for us, i.e., macroscop ic  states which are "a lmos t "  eigenstates of  
the mass opera to rs  M~ but which, however ,  have tails. Let ]tF) be the 
normal ized  state 

(3.17) 

where I ~ )  and I~u~) are the states defined in the previous  subsect ion 
and lilt 2 is extremely close to zero. In region A we have  

~//~<A) ~_ Ice) 2 mno, "G,A~ ~_ l<xl 2 Ipl 2 n2mo and  ~.c^) ~ 1/312 < 1 (3.18) 

so that  the masses "'/4(A) are object ive and pract ical ly equal  to those corre-  
sponding  to the state I7JA).  In region B we have  

.'/4(B)~ 1/312n'no, 'G,B)-~ Icq 2 lfl[2n2mo and ~ , a ) ~  I H I - 2 ~  1 (3.19) 

hence the masses ~  not  objective. 

u At any rate, possible changes in such a state would be symmetrical with respect to the 
middle plane, so that the subsequent considerations would still hold true. 

t_, It could be useful to remark that if one would analyze the same experiment in terms of the 
linear quantum dynamics, the test particle would end up in the linear superposition of an 
extremely large number of states. However, since such states correspond to trajectories 
which are very near and almost undeflected, the evaluation of the mass density associated 
to the final state vector would show that in the "middle" region there would practically be 
tbe total mass of the lest particle. Therefore, this represents a case in which even without 
any reduction process the mass density referring to the test particle would correspond to a 
precise outcome of the measurement. 
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At this point it is appropriate to make a detailed analysis, within the 
CSL scheme, to get a quantitative estimate of ~,,^~ and of the total mass 
in region B. To this purpose [as is evident from Eqs. (3.18) and (3.19)] one 
has to evaluate explicitly the order of magnitude of the parameter [fi]2 
implies by the reducing dynamics. In order to do this, to cover also the 
case of nonhomogeneous bodies, we consider again two far-apart regions A 
and B, each containing K cells and a system of nucleons which at time t = 0 
is in a (normalized) state of the type (the overall phase factor being 
irrelevant ) 

I ~ )  = ~(0) In,A, ..... nK, A~ ..... 0 ..... 0 )  + f 1(0) e ;~'~~ ..... 0, nj,n, ..... nK,~)  

(3.20) 

where 0c(0) and fi(0) are comparable positive numbers and n;,A.nl represents 
the occupation number  in the ith cell in regions A and B respectively. ~.3 We 
then study the ensemble of systems brought in by the reducing dynamics 
after a time interval of the order of, for example, 10-2 secs (the reason for 
this choice will become clear in what follows). 

According to the CSL model of Subsection 3.1, after such a time 
interval the normalized state corresponding to a definite realization of the 
stochastic potential would be of the type 

I'/%(t)) =<x~(t) lni,A) ..... nK, A), 0 ..... 0)  

+fib( t )  e i~'l~ 10 ..... 0, nun  ) ..... n,~-(n)) (3.21) 

with c%(t) and fin(t) as positive numbers. The ensemble of systems corre- 
sponding to all possible realizations of the stochastic potential would be 
described by the statistical operator 

p(t)  = f dB, .-. dBzKPcook[ B(t)]  I~B( t ) ) (  ~ d t ) l  (3.22) 

satisfying 14 

(n)(A) ..... nx, A), 0 ..... OI p( t )  l0 ..... 0, nnB ) ..... nx(B)) 

= e  -;''v-''A''? (nl(A) ..... nK(a), 0 ..... 01 p(0) 10 ..... 0, nun  ) ..... nK, n)) (3.23) 

)3 We disregard the cells which are not contained in regions A and B since they are irrelevant 
for the following discussion. 

)4 Even though we are using the CSL model relating decoherence to the mass, the formulas 
of this section coincide with the analogous ones of standard CSL. This is due to the fact 
that we deal only with nucleons and that we have chosen the coupling to the noise to be 
governed by the ratio ~,/m~. taking the standard CSL value. 
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with 2t---10 -~8. From (3.23) we see that the matr ix elements of p(t) 
between the considered states are exponentially damped by a factor which 
is propor t ional  to Y~" n~. 

In the following we consider only situations in which Y'~" n~ turns out 
to be much greater than l0 ts , so that in the considered time interval the 
linear superposit ion (3.20) is actually suppressed, i.e., either c%(t) or fiB(t) 
of Eq. (3.21) become very small. The states at time t are then typical states 
with "tails," i.e., states whose existence is considered as a drawback of the 
theory by the authors of Refs. 5 and 6. Equation (3.23) implies [ tak ing  into 
account Eqs. (3.21) and (3.22)] that 

f dB~. . .dBzxPr ->'~-,*''~ (3.24) 

From (3.24), since ~B(t) and fla(t) are positive, one can easily deduce that 
the probabi l i ty  of occurrence of realizations of the stochastic potential  
which would lead to a value for the product  ~B(t)fl~3(t) much greater 

K 2 
than e ->'v-, ", must be extremely small. Therefore, one can state that in 
practically all cases 

~K 2 
~l~(t)fl~(t)~_e >., z, ,,, (3.25) 

If we assume that e B ( t ) ~  1, so that we consider an individual case for 
which the reduction leads to the state corresponding to the nucleons being 

in region A, I/./B(t)l'- must be of the order  of e ->'z,*''~. On the basis of this 
fact, we can then estimate the value of ll312, e.g., for a homogeneous cube 
of normal  density (so that n i = n  ~ 10 9 is the number  of particles per cell) 
and of size 1 dm 3 (so that K ~  10 ~s is the number  of cells in regions A and 

_ I01~ B), getting a figure of the order  of e . Correspondingly,  we have 

"J~'i(A) ~ e - l~ ( 3.26 ) 

while for the total mass in region B we get the value 

o//~ - e - t~ 10 =7 Ilt 0 ( 3.27 ) 

Equation (3.26) shows that the mass in region A is "objective" to an 
extremely high degree of accuracy, and Eq. (3.27) shows that the total mass 
in region B is much smaller than the mass of a nucleon. If we consider a 
situation in which K or n are greater than those of the example we have 
discussed now, we find values for :~(A) and ~//B which are even smaller ~5 
than those of Eqs. (3.26) and (3.27). This fact by itself (see also the analysis 

~-~ Note that this holds also for objects like a galaxy or a neutron star. 
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of the following subsection) shows that the states with "tails" allowed by 
CSL cannot give rise to difficulties for the proposed interpretation of the 
theory. If we would perform the usual gedanken experiment with the test 
particle, it would be deflected just as if in region A there would be the 
"classical" mass Knm0. 

Concluding, we have made plausible that in the context of the 
dynamical reduction program one can consistently describe the macro- 
world, at a given time, in terms of the mass density function ~H(r). 
Obviously, since with the elapse of time the state of the world changes, a 
complete description requires the consideration of the motion picture of the 
density, i.e., of~H(r, t) defined in Eq. (3.4). We will discuss in greater detail 
this crucial point in Section 4. 

3.4. Defining an Appropriate Topology for the CSL Model 

Let us consider a system S of finite mass which will constitute our 
"universe" and its associated Hilbert space H (s). We denote by ~?/(s) the 
unit sphere in H ~s), and we consider the nonlinear map ~6o//associating to 
the element [~p) of 4/(s) the element m = { ,/4( I~P ) ) } of 12, J/,.(I~P) ) being 
the quantity (~0[ M~ Iq~). 

On )//~s)we define a topology by introducing a mapping A: q/(s)| 
9~ + according to 

A( [~p ), lip) ) = d(m, n) = x/~,  ( m i -  n,) 2 (3.28) 
i 

where m =  {o//,(I~P))}, n =  {o//Alg'))}- Such a mapping is not a distance 
since, as it emerges clearly from the analysis of the previous subsection, it 
may happen that A([~o), 1~ , ) )=0  even though [~p):~[~h). However, A 
meets all other properties of a distance: 

,~(1~o>, Ig,>)=A(14J>, I~>)>~0 (3.29) 

and 

A(I~p>, I~,7)~< s(Iq,>, lx>)+~J(Ix>, Ir (3.30) 

as one easily proves by taking into account the fact that d is a distance 
in/2. 

)6 To be rigorous, one should consider the map./! from the unit sphere of H ~s) into the space 
L 2 of the square integrable functions ofr. However, we can deal, without any loss of 
generality, with the discretized version of the model. 
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From now on we will limit our considerations to the proper subset 
.~j~sl of oil ~s~ of those states which are allowed by the CSL dynamics. In the 
previous subsection we have already identified, even though in a rough 
way, the set ~r '~s~. One could obviously be very precise about such a set by 
adopting, for example, the following criterion: let [~0)eJI/~s~, and let us 
consider the ensemble .r of states which have a nonnegligible (this 
obviously requires the definition of a threshold) probability of being 
brought in by the reducing dynamics after a time interval of the order of 
10-2sec for the given initial condition I~P). The union of all subsets 
,~'fS~(lcp)) for I(0) running over 'r is then .~,qs~. For our purposes, 
however, it is not necessary to go through the cumbersome management of 
a very precise definition of the set .r162 the consideration of the cases we 
have discussed in the previous subsection being sufficient to lead to the 
interesting conclusions. 

For any element [q~) of .~r we consider the set of states of .~,(s~ for 
which A(ltp), ]~b))~e. Here the quantity e has the dimensions of a mass 
and is chosen of the order of 10~Smo, with mo the nucleon mass. From the 
properties of the map zJ it follows that: 

i. {zl(l~o), I~P))~;  and A(l~0), I Z ) ) ~ }  implies A(Iz) ,  I ~ ) ) ~ e  

ii. {d(l~p), I~))>>e and 3(1r Iz)J~.e} implies A(IZ), I~b))>>~ 

We have introduced the parameter e in such a way that it turns out 
to be sensible to consider states similar to each other whose "distance" zl 
is smaller than (or of the order of) e. More specifically, when 

~J(l~o>, I ~ > ) ~ e  (3.31) 

we will say that I~P) and lip) are "physically equivalent." 
To understand the meaning of this choice, it is useful to compare 

it with the natural topology of H~sL We begin by pointing out the 
inappropriateness of the Hilbert space topology to describe the concept of 
similarity or difference of two macroscopic states. In fact, suppose our 
system S is an almost rigid body, and let us consider the following three 
states: Icpn), 19B), and I~A). The state ](pA) corresponds to a definite 
internal state of S and to its center of mass being well localized around A, 
the state [tp B) is simply the translated of l~p A) so that it is well localized 
in a far region B, and the state ]~A) differs from Iq~ A) simply by the fact 
that one or a microscopic number of its "constituents" are in states which 
are orthogonal to the corresponding ones in IcpA). 

It is obvious that, on any reasonable assumption about similarity or 
difference of the states of the universe, ]~n)  must be considered very 
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similar (identical) to I~o ̂ )  while 1~9 u) must be considered very different 
from [cpA). On the other hand, according to the Hilbert space topology 

I1( I~oA2 ' - -  I ~  A ) II = I1( I~oA> - -  IrP '~ ) II = ~ 2  (3 .32 )  

This shows with striking evidence that the Hilbert space topology is totally 
inadequate for the description of the macroscopic world. As a consequence, 
such topology is also quite inadequate to base on it any reasonable 
psychophysical correspondence. 

We now discuss the "distorted" (with respect to the Hilbert space one) 
topology associated to the "distance" A. First of all, we stress that the two 
states [cp A) and [~A), which are maximally distant in the Hilbert space 
toplogy, turn out to be equivalent, i.e., to satisfy condition (3.31) in the 
new topology. This represents an example showing how such a topology 
takes more appropriately into account the fact that, under any sensible 
assumption, the "universes" associated to the considered states are very 
similar. 

Obviously, one problem arises. Criterion (3.31) leads to consider 
equivalent states which are quite different from a physical point of view, 
even at the macroscopic level. To clarify this statement we take into 
account two states ]~p) and I~ )  corresponding to an almost rigid body 
located, at t = 0, in the same position but with macroscopically different 
momenta, let us say P = 0 and P, respectively. Even though the two states 
are physically quite different, their distance at t = 0  is equal to zero. 
However, if one waits up to the time in which the state [~,) has moved 
away from ]~0), the "distance" A(]q~(t)), ]~b(t))) becomes large and the 
two states are no longer equivalent. We will discuss the now outlined 
problem in great detail in the next section. 

Before concluding this part, it is important to analyze the case of 
two states ItP) and I ~ r )  such that I~)  corresponds to an almost rigid 
body with a center-of-mass wavefunction perfectly localized and ]~'r) 
corresponds to the same body with a "tail" in a distant region. As we have 
already discussed, the CSL dynamics allows the existence of this latter type 
of states; however, it tends to depress more and more the tail in such a way 
as to make the mass in the distant region extremely close to zero (much 
less than one nucleon mass) in very short times. As a consequence, 
according to the topology that we propose, the two states ]~,) and [ ~ r )  
turn out to be identical. This is quite natural. In fact, in the same way in 
which taking away a single particle from a macroscopic system would be 
accepted as being totally irrelevant from a macroscopic point of view, when 
one chooses, as we do, to describe reality in terms of mass density, one 
must consider equivalent situations in which their difference derives entirely 
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from the location of a small fraction of the mass of a nucleon in the whole 
universe. We remark that [~) and I~r)  are extremely close to each other 
also in the standard Hilbert space topology. 

4. DEEPENING THE PROPOSED INTERPRETATION 

We consider it appropriate to devote this section to discuss in great 
generality the problem of giving an acceptable description of the world 
within a given theory. Usually one tries to do so by resorting to the notion 
of observable. As repeatedly remarked, such an approach meets, within 
standard quantum mechanics, serious difficulties since the formal structure 
of the theory allows only probabilistic statements about outcomes condi- 
tional under the measurement being performed. In brief, the theory deals 
with what we f ind not with what is. This is why J. S. Bell has suggested ~18~ 
to replace the notion of observable with the one of"beable," from the verb 
to be, to exist. Obviously, the identification of the beables, of what is real, 
requires the selection of some formal ingredients of the theory we are 
dealing with. 

4.1. The Case of the Pilot-Wave Theory 

To clarify our point, it turns out to be useful to analyze the de 
Broglie-Bohm pilot-wave theory. It describes the world in terms of the 
wave function and of the actual positions of the particles of our "universe," 
each of which follows a definite trajectory. Therefore, in such a theory it is 
quite natural to consider as the beables the positions (which are the local 
elements accounting for reality at a given instant) and the wave function 
(which is nonlocal and determines uniquely the evolution of the positions). 
It is important to stress that, within the theory under discussion, all other 
"observables" (in particular, e.g., the spin variables) turn out, in general, to 
be contextual. This simply means that the truth value of a statement about 
the outcome of the measurement of one such observable (which in turn is 
simply a statement about the future positions of some particles) may in 
general depend (even nonlocally) on the overall context. This obviously 
implies that the attribution of a value to the considered observable cannot 
be thought of as corresponding, in general, to an "intrinsic property" of the 
system. 

Before coming to discuss the problem of the beables within CSL we 
would like to call attention to the fact that ~2~ within the pilot-wave theory, 
one can construct, from the microscopic variables r, macroscopic variables 
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R including pointer  positions, images on photographic  plate, etc. 
Obviously this requires some fuzziness, but such a l imitation is not relevant 
for a consistent account of reality. Thus, in this theory we are led to 
suppose that it is from the r, rather than from the wave function, that the 
observables we use to describe reality are constructed. The positions are 
also the natural  candidates to be used in defining a psychophysical 
parallelism, if we want  to go so far. An appropr ia te  way to express the now 
discussed features of the theory derives from denoting, as J. S. Bell 
proposed,  as "exposed variables" the posit ions of particles and as a "hidden 
variable" the wave function ~. 

4.2. The Case of CSL 

Let us now perform a corresponding analysis for the model theory 
considered in Section 3. Since, as it should be clear from the discussion 
given there, the most relevant feature of the modified dynamics is that of 
suppressing linear superposit ions corresponding to different mass distribu- 
tions, one is actually led to identify as the local beables of the theory 
the mass density function M(r,  t) at a given time. Obviously,  also within 
CSL just  as for the pilot-wave, the wave function plays a fundamental 
role for the evolution so that it too acquires the status of a nonlocal 
beable. 

It has to be remarked that in the interpretat ion we are proposing,  even 
though the wave function is considered as one of the beables of the 
theory, the "exposed variables" are the values of the mass density function 
at different points. It is then natural  to relate to them, as we have done 
in the previous section, the concept of similarity or difference between 
universes. 

In doing so one is led to consider equivalent, at a fixed time t, two 
"universes" which are almost identical in the exposed beables [i.e., they 
satisfy the condit ion (3.31)]. Obviously the fact that the above condit ion 
holds at t does by no mean imply that the two universes will remain 
equivalent as time elapses. 

It has to be stressed that the above-mentioned feature is not specific 
of the model  and of the interpretat ion we are proposing,  but it is quite 
general and occurs whenever one tries to make precise the idea of 
"similarity" of physical situations. In fact, within all theories we know, and 
independently of the variables we choose to use to define nearness, 
situations can occur for which nearby states at a given time can evolve in 
extremely short  times in distant states. 

To focus on this important  fact, we can consider even classical 
mechanics with the assumption that both positions and momenta  are the 

825/25/I-3 
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beables of the theory, t7 As is obvious, even if such an att i tude is taken, 
there are at least two reasons for which nearby points in phase space can 
rapidly evolve into distant ones. First of all, one must take into account 
one of the most important  conceptual achievements of recent times, i.e., the 
discovery that many systems exhibit dynamical  instability so that the dis- 
tance between "trajectories" grows exponentially with time. Secondly, even 
for a "dynamically s tandard" situation, one can consider cases in which just  
the present condit ions can give rise to completely different evolutions 
depending on some extremely small difference in the whole universe. Sup- 
pose in fact you consider two universes A, A differing only in the direction 
of propagat ion of a single particle (such universes have to be considered as 
very close in any sensible objective interpretat ion).  If the trajectory of the 
particle in ,~, is such that in a very small time it triggers, for example, the 
discharge of a Geiger counter,  wich in turn gives rise to some relevant 
macroscopic effect, while in A it does not, the evolved universes soon 
become quite different. An analogous argument obviously holds for 
s tandard quantum mechanics, the pilot-wave theory and, as previously 
remarked,  for CSL too. 

It is appropr ia te  to stress that, in a sense, the above considerations 
favor taking a posit ion about  reality which can be described in the 
following terms. One chooses the sensible beables for its theory at a fixed 
time and one distinguishes similar or different universes on the basis of 
such a snapshot. Obviously,  one must then also pay attention to the way 
in which the beables evolve, i.e., to compare snapshots at different times, ts 

4.3. The Role of Mass Density 

The previous analysis has shown that the proposed interpretat ion can 
be consistently taken. Obviously it gives an absolutely prominent  role to 
the mass in accordance with the fact that mass is the handle by which the 
reduction mechanism induces macro-objectification. 

Other features of natural  phenomena,  such as the effects related to the 
charge, are, in a sense, less fundamental  since to become objective they 
need mass as a support.  To clarify this point, we remark that one could 
consider, for example, a condenser with two plates of about  1 cm 2, at a dis- 
tance of I cm. The plates are supposed to be perfectly rigid and in perfectly 

~7 Obviously, within classical mechanics any function of these variables can be considered as 
a beable, but since all information about the system can be derived from the positions and 
the momenta, consideration of such variables is sufficient. 

~g From this point of view. one could state that also the classical world would be most 
appropriately described in terms of positions at fixed time. 
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defined positions. ,9 Let us also consider the following gedanken situation: 
the condenser can be prepared in the superposit ion of two states, [Co) and 
[C,.), the first corresponding to its plates being neutral, the second to its 
plates having been charged by displacing 1012 electrons from one plate to 
the other. We remark that for the two states the decoupling rate (recall 
that electrons, being very light, are quite ineffective in suppressing super- 
posit ions) is about  10 -8 sec - t ,  i.e., that the superposit ion can persist for 
more than 10 years. The electric field within the plates is zero or about 
10 8 V/m in the two states, respectively. Suppose now we consider a small 
sphere of radius 10 -5 cm and density 10 -2 g/cm 3 carrying a charge corre- 
sponding to 10 4 electrons. We send such a test particle through the plates 
of the condenser. What  happens? The final state is the entangled state 

I ~u( t ) ) = ~22 [ I Co) l undeflected ) + [ Co) I deflected ) ] (4.1) 

the location of the particle in the state [undeflected) and [deflected) 
differing by macroscopic amounts.  According to the CSL model of 
Subsection 3.1, one can easily evaluate the rate of suppression of the super- 
position. As already remarked,  the contr ibut ion of the electrons on the 
plates is totally negligible, so that the decoherence is governed mainly by 
the mass of the particle. Then, with the above choices for the radius and 
the density of the test particle, the superposit ion will persist for more than 
1 min. In spite of the fact that macroscopically relevant forces enter into 
the game, no reduction takes place for such a time interval. On the 
contrary,  if we put the same charge on a particle of normal  density and of 
radius 10 -3 cm, we see that the macroscopic force acting on it when the 
condenser is in the state [C,.) leads to a displacement of the order of its 
radius in about  10-5 sec and that within the same time the reducing effect 
of the dynamics suppresses one of the two terms of the superposition. 

This example is quite enlightening since it shows that superpositions of 
charge distr ibutions generating different forces which are relevant at the 
macroscopic level, are not suppressed unless they induce displacement of 
masses. 

It goes without saying that any at tempt to relate reduction to charge 
is doomed to fail since it will not suppress superpositions of macroscopi-  
cally different but electrically neutral mass distributions. 

~9 This assumption must be made because we are just discussing the role of the charge with 
respect to the one of the mass within the model. If one would allow deformations and/or 
displacements of the plates, once more the ensuing reduction would be due to the mass and 
not directly to the charge density difference in states [Cc~) and ]C~). 
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We hope to have made clear, with this perhaps tedious analysis, the 
real significance of treating the mass function as the "exposed beables" 
allowing one to describe reality. 

4.4. The Stochastic Nature of the Evolution 

So far we have discussed the description of the world allowed by the 
CSL theory in terms of the values taken by the mass density function o,//(r) 
which have been recognized to constitute the exposed beables of the theory. 
According to Eq. (3.4) it is the wave function associated to the system 
which determines �9 It is useful to analyze the evolution of the beables. 
As we have discussed in Section 2, the dynamical evolution equation for 
the wave function is fimdamentally stochastic, being governed by the 
stochastic processes w(r, t). The "cooked" probability of occurrence of such 
processes, based on the analogs of Eq. (2.3), depends on the wavefunction 
which describes the system, and this fact is of crucial importance for getting 
the "right" (i.e., the quantum) probabilities of measurement outcomes. 
Therefore, in the CSL theory, the wave function has both a descriptive 
[since it determines ~//(r)] and a probabilistic (since it enters in the 
prescription for the cooking of the probability of occurrence of the 
stochastic processes) role. 

As we have seen in Section 2, also the "tails" of the wavefunction have 
a precise role. In fact, suppose our "universe" is described at t = 0  by a 
normalized state 

[ ~u(0)) =cx(0) la )  + f l ( 0 ) [ b )  (4.2) 

with [fl(0)[ z being extremely small. The "reality" of the universe at t = 0  is 
"determined" by the state [a) ,  as we have explicitly shown in Section 3. 
However, one cannot ignore the (extremely small) probability [fl(0)[ ~- that 
a realization of the stochastic potential occurs which, after a sufficiently 
long time, leads to a normalized state 

I7/(t))  = co(t)16) +fl(t)Ib) (4.3) 

with 10c(t)l 2 being extremely small and with [c~) and [b) two of the most 
probable states at time t for the initial conditions [a) and [b), respectively. 
Then, the "reality" at time t is that associated to the state [b) which has 
its origin in the negligible component  Ib) at time t = 0 .  Thus, some 
"memory"  of a situation which at time zero did not correspond to the 
"reality" of the world remains at time t. Obviously, if such an extremely 
improbable case would occur, one would be tempted (wrongly) to retrodict 
that "reality" at t = 0  was the one associated to [b) and not the one 
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associated to [a). However, we stress that such peculiar events, which we 
could denote as the "reversal of the universe," have absolutely negligible 
probabilities. As made plausible by the estimate for the values of fl(t) 
given in Section 3, the "risk to be wrong" in retrodicting from the present 
to the past "status of the world" is comparable with the probability that 
observing now a table standing on the floor, and knowing that it has been 
kept isolated, we can infer that it was standing there even one hour ago, 
in spite of the fact that thermodynamically a very peculiar situation corre- 
sponding to its "levitation" at that time could in principle have occurred. 

5. THE PSYCHOPHYSICAL PARALLELISM WITHIN CSL 

The most characteristic and appealing feature of CSL and of its 
interpretation we have proposed in this paper consists in the fact that it 
allows one to give a satisfactory account of reality, to take a realistic view 
about the world, to talk about it as if it is really there even when it 
is not observed. However, one cannot avoid raising the problem of also 
including conscious observers into the picture, for~2): what is interesting 
(/" not experienced? Thus, one is led to consider the problem of the 
psychophysical parallelism within the considered theory. 

The previous analysis has already given clear indications about the 
way to follow to reach this goal. In this section we will first of all clarify 
how to relate the "different states of the universe" as characterized by the 
formalism according to the lines of the previous sections to the specificity 
of conscious perceptions. Secondly, we will show how the theory itself 
supports the proposed correspondence. To get this, we will perform a very 
sketchy analysis, from the point of view of CSL, of the current ideas about 
the physical processes leading to perceptions. 

5.1. External World and Internal Perceptions 

As we have seen, the CSL dynamics lead naturally to consider as the 
exposed beables accounting for "reality," the values taken by the mass 
density function o#(r, t) at different points and at different times. We have 
also shown that in the case of macroscopic objects, the dynamical evolu- 
tion forces the mass density to be "objective" at almost all times in the 
regions where such objects are. According to the above picture "reality," 
"what is out there," is identified with a precise mass distribution in real 
space. The reality of a massive macro-object in front of us corresponds to 
the fact that in the region it occupies there is the objective mass density 
which characterizes it. 
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On the other hand, it is a fundamental  feature of our perceptions 
that they correspond to objects having precise locations and extensions. 
The problem of establishing a map between reality and perceptions is 
then natural ly solved by correlating our perceptions to mass density 
distributions, 20 

After these simple remarks we can come to discuss how one can 
account, within CSL, for the emergence of perceptions. 

5.2. Describing the Perceptive Process 

To clarify how CSL is able to "describe" the occurrence of definite 
perceptions of conscious beings, it turns out to be quite appropr ia te  to 
start  by discussing a criticism which has been put forward in some recent 
papers/5'6"~9~ The idea is quite simple but raises a problem which deserves 
a detailed investigation. One considers the following process: a neutral 
microsystem with spin is sent through a S tern-Ger lach  apparatus.  The spin 
state is such that  the system ends up in the superposit ion of being deflected, 
with equal probabili t ies,  upwards or downwards,  respectively. The two 
"potential  trajectories" cross a fluorescent screen in two macroscopical ly 
far-apart  regions A and B, respectively. The part icle-screen interaction is 
such as to lead to the excitation of a small number,  e.g., of about  ten 
atoms, which subsequently undergo a transit ion to the ground state 
accompanied by the emission of photons. 

The argument of Refs. 19 goes as follows. Since only a few atoms of 
the screen are excited during the process, since their excitations involve 
displacements which are much smaller than the characteristic localization 
length of the model,  and since photons are not spontaneously localized, 
there is no way for the CSL mechanism to yield decoherence of the two 
superposed states. Thus, the superposit ion of states corresponding to ten 
photons emerging from the different space regions A and B will persist for 
extremely long times. On the other hand, since the visual perception 
threshold is quite low (about  7 photons} there is no doubt  that the naked 
eye of a human observer is sufficient to detect whether the luminous spot 
on the screen is at A or at B. This raises an interesting question: in the 
considered si tuation how can it happen that a definite perception about  
the location of the spot on the screen emerges? Are we compelled to accept 
that, at least in some circumstances, also within CSL the conscious 

'-" Obviously, our perceptions are much richer than those (corresponding to position and 
shape) we have listed here, In the next subsection we will make clear how also more 
complex perceptions (such as color, etc.) can be naturally included in the picture we are 
presenting. 
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observer and his perceptions play a peculiar role analogous to the one they 
have in Wigner 's  views? 

That  this is not the case has been discussed in great detail in a recent 
paper. ~2~ If one takes, as one must, the above remark seriously one is com- 
pelled to consider the actual systems which enter into play and to analyze 
the implications of the CSL dynamics for them. We simply sketch here the 
argument of Ref. 20. One takes into account what we know about  the 
transmission of nervous signals from, let us say, the retina and the higher 
visual cortex. Such a transmission requires, among other changes, the 
displacement of ions along the axons involved in the process. A very rough 
estimate of the mass associated to these ions and of the displacements they 
have to perform to flow through the ion channels which open at Ranvier 's 
nodes to transmit  the electric pulse can be given. This estimate makes per- 
fectly plausible that the condit ions which are sufficient, according to CSL, 
for the suppression of one of the two superposed states (nervous signals) 
within the visual perception time (which is of the order of 10 -2 sec), are 
satisfied. 

We do not want to be misunderstood; this analysis does by no means 
amount to at tr ibuting a special role to the conscious observer or to his per- 
ception. The observer 's brain is simply the only system among those which 
are present in which a superposit ion of two states involving different loca- 
tions of a large number  of particles occurs. As such it is the only place 
where the reduction can and actually must take place according to the 
theory. If, in place of the eye of a human observer, one puts in front of the 
photon beams a spark chamber  of any device leading to the displacement 
of a macroscopic pointer  or producing ink spots on a computer  output,  
reduction will take place. In the considered example, the human nervous 
system is simply a physical system, a specific assembly of particles, which 
has the same function as any one of these devices, if no such device is inter- 
acting with the photons before the human being does. 2~ In Section 3, in 
order to study the states allowed by the CSL theory and the "size of tails," 
we have considered a time interval of the order  of 10-2 sec. The reason for 
such a choice should now be clear: it is the time interval corresponding to 
the perception time, the time in which our brain, acting as a physical 
system, must (and actually does) suppress the linear superposit ions of 
states corresponding to different stimuli in order  that the observer has a 

-'~ We consider appropriate a specification. The above analysis could be taken as indicating 
that we adopt a very naive and oversimplified attitude about the deep problem of the brain- 
mind correspondence. We do not claim and we do not pretend that CSL yields a 
physicalistic explanation of consciousness. We simply point out that, for what we know 
about the purely physical aspects of the perceptual process, the conditions guaranteeing 
that superpositions of different perceptions cannot occur are satisfied. 
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definite perception. Analogous considerations have been taken into account 
in choosing the parameter e characterizing the similarity or difference of 
physical situations. 

The above analysis should be sufficient by itself to clarify our 
problem. Our perceptions are triggered by our sensory apparatuses. In 
many cases, such as for the auditory or tactile perceptions, the stimulus 
itself cannot be ambiguous, i.e., it cannot correspond to superpositions of 
different perceptions, since it requires macroscopic displacements (of the 
hearing membrane or of the skin). In other cases, as in the one discussed 
above, the nervous signal can be triggered by a microscopic system, which 
can very well be in a superposition of states capable of inducing different 
perceptions. But in all cases the nervous transmission of the signal involves 
a "macroscopic" (on the appropriate scale) displacement of mass in the 
brain. And, as repeatedly stressed, the CSL dynamics does not tolerate 
nonobjective macroscopic mass distributions lasting for a time of the order 
of the perception time. 

In a sense the analysis shows that the problem of the psychophysical 
correspondence admits a simple solution quite similar to the one which is 
usually assumed to hold for classical theories. Reality and perceptions 
involve the same and fundamental type of"exposed beables": the values of 
the mass density function. On one hand "reality," as previously discussed, 
is related to mass density, and macroscopic situations to "objective" mass 
density distributions. On the other, definite perceptions are related to 
objective macroscopic mass density distributions within the brain. 

We do not want to spend further time in elaborating on this point. 
Our aim here is not that of performing a detailed technical analysis of any 
conceivable situation but simply that of making plausible that the problem 
of the psychophysical parallelism admits, within CSL a solution which is 
quite analogous to the one of the unproblematic classical case. Thus CSL 
can be claimed, according to J. S. Bell's definition, ~2~ to be an "exact 
theory" in the precise and limited sense that it neither needs nor is 
embarrassed by an observer. 

6. CONCLUDING REMARKS 

We consider the previous analysis to be sufficient to give a clear idea 
of the reasons and the formal aspects which allow one to close the circle 
within the dynamical reduction program. We cannot, however, conclude 
our analysis without stressing the crucial role of some stimulating remarks 
by J. S. Bell for the elaboration of the ideas of this paper. He was the first 
to call attention c2~ to the fact that spontaneous reduction models, unlike 
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s tandard  q u a n t u m  mechanics ,  a l low one  to take a densi ty ra ther  than a 
probabi l is t ic  in terpre ta t ion  of  the modu lus  square  of  the wavefunct ion.  
Therefore ,  the line of  though t  o f  this paper  represents,  in a sense, an 
implementa t ion  of  his suggestions.  But there are impor tan t  differences 

between the present  a t t i tude and the one he was inclined to take. He 
repeatedly insisted that  the densi ty he was referring to was not  a mass or  
a charge density but  the density of  stuff of  which the world  is made. 
Moreove r ,  he stressed s t rongly (p robab ly  since he was worr ied  about  the 
consequences  of  adop t ing  an in terpre ta t ion  fi la Schr6dinger)  that  the 
density function had to be taken seriously only in the 3N-dimensional  
conf igura t ion  space and not  in the real 3-dimensional  space, z-' We hope 
to have shown that,  within CSL,  a quite  sat isfactory in terpre ta t ion can 
be obta ined  a long  the (more  t radi t ional )  lines we have presented in this 
paper.  
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