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N u m e r i c  E x a m i n a t i o n  o f  M u l t i v a r i a t e  So i l  S a m p l e s  ~ 

A. J. B. Anderson 2 

Nunterical methods" for the exam#ration o f  multivariate soil samples are presented ht geometric terms. 
Techniqttes o f  coordinate representation b v pr#wipal components, by nonmetric scaling, attd b), a new 
method are discussed, as are techniques for agglonterative hierarchic chtster attalysis. These are illus- 
trated by two sets o f  previousl.1, published data. KEY WORDS: classification, cluster analysis, principal 
components  analysis, numerical taxonomy. 

I N T R O D U C T I O N  

Rayner (I 966) described numeric methods for investigating relationships between soil 
samples with many known properties or attributes. Using similar techniques, Muir  
and others (1970) compared the classification of  four soil series by numerical and 
tradit ional methods. The purpose of  this paper is to draw the attention of  soil scien- 
tists to more refined methods of  clustering and coordinate representation using the 
data presented in those papers to exemplify results. 

A G E O M E T R I C  F O R M U L A T I O N  

Suppose there are t7 soil samples on each of  which m attributes have been measured. 
All the procedures to be discussed require the formation of  a table or matrix of the 
½n(n- I) similarities between pairs of samples. Rayner (1966) showed how such a 
matrix can be constructed and how a similarity between any two profiles can be derived 
from similarities between their constituent horizons. This definition of  intersample 
similarity is not in any sense unique but does present a reasonable means of  determin- 
ing the "closeness" of  two samples. 

The concept of  closeness is a geometric one, and implies that the n samples can 
be thought of  as being represented by points P~, P2 . . . .  , P ,  in Euclidean space even 
if some or  all of  the attributes are not quantitative. The validity of  such an approach 
can be proved by the following argument. 

J. C. Gower  (personal communication) showed that Rayner 's  matrix S is positive 
semidefinite. Hence, there exists an n ×p  matrix X of  quantitative elements such that  

X X '  = S 
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Then X gives the coordinates of a configuration of points PI, Pz . . . . .  P,, in p-dimen- 
sional Euclidean space. In fact, there is an infinite number of  such matrices, each 
representing a translation or rotation of  the same configuration of  points. In practice, 
p is usually equal to (#7-I). The distance d~i between any two points Pi and Pj  is 
given by 

P 

<I~ i = ~ (x ,k - -x~k)  ~- 
k = !  

P P P 

= E E .G-2 E 
k =  1 k =  t k =  I 

= Sii "~ S j j  - -  2 S i j  

= 2 ( 1 - s l j  ), because s~.~ = s i j  = 1 

Because the configuration of  a set of  points is defined, except for rigid translations and 

rotations, by the interpoint distances, the geometric approach is valid, and , f 2 ~ - s ~ j )  
represents the "distance" between samples i and j. 

Although such a formulation gives a familiar and well-defined meaning to the 
observed sample values, the amount of  data has not been reduced. To examine the 
structure of the data, or to form hypotheses, a more parsimonious summarization of  
the inherent information is required. We can provide this in two ways and these are 
discussed in the following sections. 

COORDINATE REPRESENTATION 

Numeric results are frequently presented in the form of  a diagram, and it is reasonable 
to seek a means whereby relationships among soil samples with respect to many 
attributes can be similarly represented by low dimensional spatial configurations of 
points. Sometimes a single two-way scatter plot proves adequate but, frequently, 
more dimensions are needed and diagrammatic representations are correspondingly 
more complex. In general, outlying samples, clusters of similar samples and other more 
complex patterns of association may be detected by visual inspection of the co- 
ordinate representation, and instead of  plotting points on such diagrams the values of  
observed attributes or of  subsidiary variables can be given to help identify causal 
factors visually. 

We have seen how the data can be represented by n points in a p-dimensional 
Euclidean space. We now seek a means of  compressing most of  this information into q 
dimensions, where q is small, in precise terms, the samples are to be represented in q 
dimensions by points Ql, Q2 . . . . .  Q,, and dij(q) is the Euclidean distance between 
Qi and Qs- The following paragraphs discuss three approaches to this problem. 

PRINCIPAL C O M P O N E N T S  ANALYSIS 

This is the method used in the earlier papers and is so well known that we shall note 
only two points: 
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(1} The points P~, P2 . . . . .  P, are projected perpendicularly onto a q-dimensional 
hyperplane. 

(2) The orientation of  the hyperplane is such that it accounts for the greatest 
possible variation. This is equivalent to minimizing the quantity 

t ,  J 

These concepts are most easily understood by considering projection from a 
plane (p = 2) onto a Iine (q = 1). 

Essentially, principal components analysis is applied to the configuration in p 
space defined by X. However, the computation can be shortened. Gower (1966) has 
pointed out that when the elements of S are adjusted to give S* by subtraction of the 
row and column means and addition of  the general mean, the derived configuration is 
unaltered (because s~ + s*  - 2s* = s~i + s j j -  2s;i). Hence, if we choose the columns 
of X to be the latent vectors of S*, each being scaled so that its sum of squares equals 
the corresponding latent root, we have X X '  = S* and therefore the configuration 
P~, P2 . . . .  , P,  must necessarily be referred to principal axes. This is the procedure 
reported by Rayner, and use of  the axes corresponding to the q largest latent roots 
gives the representation which is "'best" in the sense that the maximum variation 
in q dimensions is accounted for. 

Of the techniques to be described, principal components analysis is the simplest. 
Its main weakness is the possibility of  poor representation of  some samples even though 
the overall proportion of  variation is high. Anderson (1970a) has discussed the exam- 
ination of  the residuals P~Q, in this type of analysis to help detect such anomalies. 
These are easily computed, because if G is the centroid of PI, P2 . . . . .  P,, then PiG 2 = 

s~] so that P~QI = x / s *  - QiG'-. For comparative purposes, the percentage contribu- 
tion of  any residual to the total residual variation can be expressed as 

R 7 = 100 x i i 

Notice also that the cosine of  the angle P~GQ~ is given by Q~G/P~G. 

M I N I M I Z A T I O N  OF A QUADRATIC LOSS FUNCTION 

The requirement of  orthogonal projection, which is basic to the previous method, 
leads to simple mathematical equations, but places an arbitrary constraint on the 
solution. Anderson (1970a) suggested that the main criterion of  the adequacy of  a 
coordinate representation must be the closeness with which dli(q ) approximates dli for 
all pairs of  samples i and j. It is reasonable, therefore, to seek the representation that 
minimizes the quantity 

L = . ~  [dij(q) - dij] 2 
i , j  
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or, more generally, 

L,,, = ~ .  w~ [d~j(q)- , t~s] ~ 
t ,  3 

where the w u provide differential weights for the comparisons. For  example, if more 
importance attaches to the accurate representation of  large distances, we can use 

wlj ~ dij. 
The coordinates of  Q1, Q2 . . . . .  Q,, which minimize L or L w can be found only 

by iterative approximation from an initial configuration. If a Newton-Raphson tech- 
nique is used, a matrix of  order  nq must be inverted at each stage and it seems more 
reasonable to employ a steepest descent method. More research is required on this, 
particularly as regards avoidance of  local minima. The best scheme so far devised is as 
follows : 

( l )  Start with the principal components  solution in t > q  dimensions. (For  q = 2, 
t should be 4 or 5). 

(2) Find the best solution in t dimensions. 
(3) Find the best of  the t solutions in t -  1 dimensions derived from starting con- 

figurations obtained by dropping each axis in turn (t = t -  1). Repeat until 
t = q .  

N O N M E T R I C  M U L T I D I M E N S I O N A L  SCALING 

There are circumstances in which the requirement that du(q) should approximate 
d u can be replaced by the constraint that d(q) should be monotonically related to d, 
that is, dh~(q)>>-djk(q) if dhi>~d~k for all /1, i, j ,  and k. This is similar to the previous 
method, but is nonmetric in the sense that the values of  the similarity coefficients are 
ignored and only their ranking is used, Such an approach is more robust to sampling 
errors and can be used with similarity measures that are not Euclidean. 

Clearly, it may not be possible to find a representation in q ( < p )  dimensions such 
that the condition of  monotonici ty is exactly satisfied. Kruskal (1964a, 1964b) has 
defined a measure of  nonmonotonicity (called "stress") that can be minimized to 
provide a "'best" configuration. Once again, the computat ion is iterative. However, the 
computer  storage required is approximately four times greater than is needed for the 
previous method, so that, in practice, the value of n is severely limited. 

It should be noted that the stress function is not continuous and experiment 
shows that, unless the number of samples is large (n > 30, say) points may be subjected 
to appreciable displacements without any alteration in the minimum value. Indeed, 
the information lost by considering only the rank order of  the distances is sometimes 
most important.  For  example, if the samples form two welt separated main clusters, 
the histogram of the intersample distances is bimodal,  the peaks corresponding to 
within- and between-cluster comparisons. This is ignored, and the resulting representa- 
tion necessarily gives the appearance of  a uniform continuum, in the same manner, 
the presence of  outliers can be obscured. 
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EXAMPLE 

As an example of  the application of  these methods to some real data, we have re- 
analyzed the similarity matrix given in Table 2 of  Rayner's paper. This relates to soil 
samples of  brown earths (BE), some of  which are described as acidic [BE(A)] or 
lessivated [BE(L)], together with some gley soils and a rendzina (Rz) sample. 

Figure l reproduces the two-dimensional representation obtained by a principal 
components analysis (i.e., Rayner's fig. 5), and Table l gives the corresponding resi- 
duals analysis. It will be seen From this that samples 8, 18, and 20 have large residuals, 
suggesting that these are placed misleadingly near the center. Samples 3 and 14 have 
small cosine values, but these are near the centroid and therefore cannot be poorly 
fitted. The internal evidence of  Figure 1 confirms the indication that sample 8 is badly 
placed and the brown earths are not compact;  the representation is otherwise reason- 
ably satisfactory. 

Figure 2 gives the two dimensional configuration derived by minimizing the sum 
of squares of  d(2)-d. Sample 8 has now been "pushed out" into the gley soils region. 
The brown earths form a more compact set, but the two lessivated soils are separated 
owing to the improved position of sample 20. 

Figure 3 shows the similar representation derived by nonmetric scaling. In the 
absence of  clustering, this similarity is typical. 

Of the three methods, the quadratic minimization procedure is to be preferred. 

~--~ Gley 

~" IB B E ( ÷ g l c y ) ~  "~ 

• Rz 
4 

Figure 1. Principal components representation of Glamorganshire 
soils: BE--brown earth; BE(A)--acid brown earth; BE(L)-- 
lessivated brown earth; Rz--rendzina. 



Table I. Analysis 
Components 

A. J. B. Anderson 

of Residuals from Two-Dimensional Principal 
Representation of Glamorganshire Soils 

Sample(i) P~G 2 = Q~G z + P tQ ?, R? cos(P,~Q~) 

1 0.2096 0.0252 0.1844 4.74 0.347 
2 0.2199 0.0706 0.1494 3.84 0.566 
3 0.2059 0.0038 0.2022 5.20 0.135 
4 0.4114 0.2166 0.1948 5.01 0.726 
5 0.2728 0.1370 0.1358 3.49 0.709 
6 0.2607 0.1416 0.1191 3.06 0.737 
7 0.2257 0.0396 0. t 860 4.78 0.419 
8 0.3309 0.1047 0.2262 5.81 0,563 
9 0.2126 0.0674 0.1452 3.73 0. 563 

10 0.2696 0.0843 0.1853 4.76 0.559 
11 0.2289 0.1047 0.1242 3.19 0.676 
12 0.2319 0.0777 0.1542 3.96 0.579 
13 0.2481 0.0901 0.1580 4.06 0.603 
14 0.1881 0.0043 0.t838 4.73 0,151 
15 0.1986 0.0293 0.1694 4.35 0.384 
16 0.2238 0.0516 0.1722 4.43 0.480 
17 0.2790 0.1077 0.1713 4.40 0.621 
18 0.2716 0.0562 0.2154 5.54 0.455 
19 0.2092 0.0782 0.1309 3.37 0.612 
20 0.2572 0.0344 0.2228 5.73 0.366 
21 0.3352 0.1974 0.1378 3.54 0.767 
22 0.2879 0.1242 0.1638 4.21 0.657 
23 0.2427 0.0843 0.1584 4.07 0.589 

Total 5.8214 1.9308 3.8906 100.00 (mean)0.533 

It is tree f rom bo th  the  difficulties of  i n t e rp re t a t i on  inhe ren t  in pr inc ipa l  c o m p o n e n t s  

analysis ,  and  the c o m p u t a t i o n a l  p rob l ems  presen ted  by n o n m e t r i c  scaling. And ,  a b o v e  

all, the c r i te r ion  to be satisfied seems closest  to in tui t ive  ideas a b o u t  wha t  a c o o r d i n a t e  

r ep resen ta t ion  should  provide.  

H I E R A R C H I C  C L U S T E R I N G  

The  t echn iques  so far discussed have been a imed  at r educ ing  tile n u m b e r  of  a t t r ibu tes  

requi red  to descr ibe  the set o f n  samples.  T he  fo l lowing procedures ,  on  the  o the r  h a n d ,  
a t t e m p t  to compress  i n f o r m a t i o n  on  the in te r sample  s t ruc tu re  by f inding g roups  o f  

samples  whose  a t t r ibu tes  are relatively similar .  This  does  not  imply t ha t  a causal  
m e c h a n i s m  for  such divis ions  can  then  be isolated.  In geomet r i c  terms,  we mus t  

pa r t i t i on  t h e p - d i m e n s i o n a l  conf igura t ion  in such a m a n n e r  as to  fo rm an  unspecif ied 

n u m b e r  o f  c lusters  o f  relat ively close points .  T h e r e  mus t  be some  quan t i t a t i ve  i nd i ca to r  
measu r ing  whe the r  one  c lus ter ing  scheme is be t t e r  t han  ano the r ,  bu t  unless the  n u m b e r  

of  samples  is small  it is imprac t i cab le  to examine  this  for  all possible  divisions.  
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Figure 2. Quadratic loss function representation of 
Glamorganshire  soils. Abbreviations same as 
Figure I. 
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Figure 3. Nonmetr ic  scaling representation of Glamorganshire 
soils. Abbreviations same as Figure 1. 
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One simplification is provided by hierarchic clustering, which may be divisive or 
agglomerative. Divisive methods such as those described by Anderson (1970b) are 
not entirely free from computat ional  problems and we shall discuss here only ag- 
glomerative solutions, including that used by Rayner. For  these, we require a measure 
D of the affinity of  any two groups of samples. So that the discussion can be cast in 
geometric terms, we shall regard D~j as the distance between groups 1 and J. 

In agglomerative clustering procedures, n initial groups, each containing one 
sample, are successively amalgamated in n -  1 steps, until all have been combined into 
one group. At each stage, the two groups chosen for fusion are those that are nearest 
according to the definition of  D. These two groups are fused, and the distances of  the 
new group from each of  the remaining groups is calculated. To do this efficiently, we 
require some formula for Dk.~j, the distance of  group K from the union of groups I 
and J. Lance and Williams 0966) have pointed out that a general relation covering 
most distance metrics is given by 

Dk.lj = o:iDgi A- o:jD~.j -I-/3Dij "4- y iDki -- Dkj ] 

The result of  the analysis can be represented by a dendrogram, using intercluster 
distance where Rayner uses similarity. 

Various measures of  intercluster distance have been suggested. We now review 
these, giving appropriate  forms for ~t i, ~j, /3, and 7 in the above relation. We shall 
suppose that clusters L J, and K contain n r n j, and nk samples, respectively. 

Nearest Neighbor Clustering 

This is also called Single Linkage Clustering. Rayner 's  analysis can be regarded as an 
approximation.  The distance between I and J is the least of the n?7 i distances between 
elements o f / a n d  elements of  J. Clearly, 

~ =  ~j = - ~ , =  ½, /3 = 0 
that is, 

Dk.ij = ½(Dki-I-Dkj--IOai-Okjl)  

Farthest Neighbor Clustering 

This is also called Complete Linkage Clustering. Here, Dij is the greatest of the individual 
intersample distances, so that 

~ = ~j = ~' = -'2, /3 = 0 
that is, 

Dk.u = ½(Dk, + Dkj+lDk,- D d ) 

Group Average Clustering 

In this situation, the intercluster distance is taken as the average of  the nin i inter- 
sample distances, and 
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I| i I l j  
= - - ,  %- [ ; = y = O  

~i t~ i -k I~j n i -t- n j ,  

that is, 
Dk~ij = ( niDki + %Dkl)/( n~ + hi) 

A so-called unweighted analysis is possible using ~ = gj = ½, but D is not then 
explicitly defined. 

Centroid Clustering 

Gower (1967) suggested using the squared between-centroid distance as a measure of 
intercluster distance, and showed that 

ni n/ [; = - ~ i % ,  - /= 0 
I1 i -~ Ilj" I1 i + I l j '  

that is, 

An unweighted version with ~ = % -- ½ is termed Median Clustering. Again, D is not 
explicitly defined. 

Minimum Variance Clustering 

This method unites clusters so as to minimize within-cluster variance and hence Dij 
is the sum of squares between clusters I and J. Anderson (1966) showed that 

17i ~- I? k II j - ~  n k 
- , ~ j  = [ ;  = 1 - : t i -  %, ~/= 0 

~i i l i ~ _ l l j ~ _ l l  k H i . ~ l l j J C i l k ,  

that is, 

The results of  this type of  clustering can be presented as an analysis of  variance, because 
the sum of squares being subdivided is that due to the samples + samples x attributes 
effects. 

In general, nearest neighbor grouping produces elongated clusters within which 
pairs of  dissimilar samples can occur, whereas centroid clustering, group average, and 
farthest neighbor methods lead to spherical clusters of  high internal affinity. In 
taxonomic work, where plant or animal species can be related through evolutionary 
chain mechanisms, the former structure is not unreasonable, but the soil scientist is 
more usually interested in compact grouping. On the other hand, nearest neighbor 
and centroid analyses give good indication of  the presence of  single-element groups 
such as the isolated rendzina soil in Rayner's study. Outlying or erroneously measured 
samples can, of  course, cause the same effect. 

For all but the minimum variance clustering method the distance function is 
independent of  the number of units in the clusters. This is not so for the minimum 
variance technique. Thus, if the samples in two groups are duplicated, the correspond- 
ing intergroup distance is doubled. Hence, there is a tendency for equal-sized clusters 
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to be formed, because the smaller clusters unite preferentially. This does not affect 
statements about the structure of the n samples. However, corresponding population 
inferences depend on the (unknown) sampling fractions of the parent clusters. 

Example 

A study of 63 profiles belonging to four well established soil series is reported by Muir 
and others (1970), the series having been selected to provide a reasonable comparison 
between traditional and numeric methods of classification. The soil surveyors" subjec- 
tive description indicated that the Foudland series is intermediate between the Linhope 
and Countesswells series and that the Ettrick series is markedly different from the other 
three. The same attributes were available as in Rayner's study, and for numeric 
analysis the same measure of interprofile similarity was used. 

These data now have been examined further, and Figures 4-8 show the dendro- 
grams resulting from application of the five clustering methods described above. 

(1) The tendency of nearest neighbor clustering to produce clusters containing 
single elements (profiles) is clearly demonstrated. Differences between the 
dendrogram shown in Figure 4 and that given by Muir and others (1970a) are 
due to the use of the approximate sorting strategy in the earlier work. These 
differences are not negligible. However, even the accurate analysis fails to 
indicate any separation of the Linhope, Foudtand, and Countesswells series. 

(2) Farthest neighbor clustering clearly segregates the Ettrick series. Clusters 
consisting entirely of Linhope and Countesswells profiles also are apparent, 
each associated with groups containing a jumble of profiles mostly from the 
intermediate Foudland series. 

(3) Group average clustering likewise isolates the Ettrick series. Some partitioning 
of the remaining series can be detected but is obscured by the tendency to 
fragmentation. 

(4) The nonmonotonic dendrogram of Figure 7 is typical of centroid clustering. 
A cluster is frequently nearer to the centroid of two clusters than to either of 
the individual clusters. This makes the segregation of even the Ettrick series 
undetectable. 

(5) The minimum variance method isolates the Ettrick soils and then all but 
three of the Countesswells soils, There is some evidence of a Linhope group 
and a Foudland group, with a residue of jumbled samples. 

These results exemplify the typical behavior of the various distance measures. 
Except for centroid clustering, all the methods indicate the segregation of the Ettrick 
series reasonably well. Only farthest neighbor and minimum variance clustering suc- 
ceed in making any differentiation of the other series. The relationship of the minimum 
variance technique to the analysis of variance of the data suggests that further investi- 
gation of this method would be worthwhile. 
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