Journal of Radioanalytical and Nuclear Chemistry, Articles, Vol. 133, No. 1 (1989) 3-41

k, -MEASUREMENTS AND RELATED NUCLEAR DATA COMPILATION FOR (n, γ) REACTOR NEUTRON ACTIVATION ANALYSIS

IIIa: EXPERIMENTAL

F. DE CORTE**, A. SIMONITS**, A. DE WISPELAERE*, A. ELEK****

*Institute for Nuclear Sciences, Rijksuniversiteit, Proeftuinstraat 86, B-9000 Gent (Belgium) **Central Research Institute for Physics, H-1525 Budapest 114, P. O. Box 49 (Hungary)

(Received December 7, 1988)

The determination of k_0 -factors has been continued covering now the relevant gamma-lines of 112 analytically interesting radionuclides. Experimental details are given, and an extended tabulation is presented of complex activation decay types and the associated expressions for the parameters involved in the k_0 -method.

Introduction

The former publications in this series, dealing with the k_0 -factors for a total of 35 and 72 radionuclides of interest in (n, γ) reactor neutron activation analysis, date from 1980 (Part I)¹ and 1984 (Part II),² respectively. Science 1984, the cooperative work at the analytical laboratories of the Institute for Nuclear Sciences (INW, Gent/Belgium) and the Central Research Institute for Physics (KFKI, Budapest Hungary) has led to a significant extension and updating of the material available, now covering 112 radionuclides.

In the present paper, the new or revised output of the k_0 -measurements is given together with the relevant experimental details, the knowledge of which is a prerequisite in order to ascertain the traceability of k_0 -based NAA-results.³ For that reason, essential input nuclear data (half-lives, Q_0 - and \overline{E}_r -values) are to be found also in Part IIIb.⁴ Additionally, an extended version is presented of the activation decay types and associated expressions for the parameters involved in the k_0 -method.

Elsevier Sequoia S. A., Lausanne Akadémiai Kiadó, Budapest

[&]quot;Senior Research Associate of the National Fund for Scientific Research.

⁺⁺Deceased May 1988.

Theoretical

Let it be recalled that the fundamental equations of the $k_0\mbox{-standardization}$ method are:

for k_0 -determination (INW/KFKI):

$$k_{0,c}(s) = \frac{A_{sp,s}}{A_{sp,c}} \cdot \frac{G_{th,c}f + G_{e,c}Q_{0,c}(\alpha)}{G_{th,s}f + G_{e,s}Q_{0,s}(\alpha)} \cdot \frac{\epsilon_{p,c}}{\epsilon_{p,s}}$$
(1)

or, according to the Cd-subtraction method:

$$k_{0,c}(s) = \frac{[A_{sp,s} - [(A_{sp})_{Cd}]_s / F_{Cd,s}] / G_{th,s}}{[A_{sp,c} - [(A_{sp})_{Cd}]_c / F_{Cd,c}] / G_{th,c}} \cdot \frac{\epsilon_{p,c}}{\epsilon_{p,s}}$$
(2)

with s – standard,

c - coirradiated comparator.

in actual analysis (concentration ρ):

$$\rho_{a}, ppm = \frac{\left[\frac{N_{p}/t_{m}}{SDCW}\right]_{a}}{A_{sp,m}} \cdot \frac{k_{0,c}(m)}{k_{0,c}(a)} \cdot \frac{G_{th,m}f + G_{e,m}Q_{0,m}(\alpha)}{G_{th,a}f + G_{e,a}Q_{0,a}(\alpha)} \cdot \frac{\epsilon_{p,m}}{\epsilon_{p,a}} \times 10^{6}$$
(3)

or, when applying ENAA:

$$\rho_{a}, ppm = \frac{\left[\left(\frac{N_{p}/t_{m}}{SDCW}\right)_{Cd}\right]_{a}}{\left[(A_{sp})_{Cd}\right]_{m}} \cdot \frac{k_{0,c}(m)}{k_{0,c}(a)} \cdot \frac{F_{Cd,m}G_{e,m}Q_{0,m}(\alpha)}{F_{Cd,a}G_{e,a}Q_{0,a}(\alpha)} \cdot \frac{\epsilon_{p,m}}{\epsilon_{p,a}} \times 10^{6}$$
(4)

where a – analyte in sample, with
$$k_{0,c}$$
 (a) = $k_{0,c}$ (s),
m – coirradiated monitor, with experimentally determined $k_{0,c}$ (m) [if m = c,
then $k_{0,c}$ (m) = 1].

In Eqs (1)-(4):

$$A_{sp} = \frac{N_p/t_m}{SDCw}$$

with N_p - peak area corrected for pulse losses (true and random coincidence; dead time),

t_m – measuring time,

- S, D, C saturation, decay and counting factor, to be modified in case of complex activation and decay (see Table 1),
- w mass of irradiated element (g),
- W sample mass (g),

f $= \Phi_s/\Phi_e$, thermal (subcadmium) to epithermal neutron flux-ratio,

G_{th} - thermal neutron self-shielding correction factor.

$$Q_0(\alpha) = (Q_0 - 0.429)\overline{E}_r^{-\alpha} + 0.429/[(0.55)^{\alpha}(2\alpha + 1)],$$

- with α representing the non-ideal $1/E^{1+\alpha}$ epithermal neutron flux distribution,⁵
 - \bar{E}_r effective resonance energy,⁵
 - $Q_0 = I_0 / \sigma_0,$
 - $I_0 (n, \gamma)$ resonance integral,
 - $\sigma_0 2200 \text{ m} \cdot \text{s}^{-1}$ (n, γ) cross-section, to be modified in case of complex activation-decay (see Table 1),
 - Ge epithermal neutron self-shielding correction factor,
 - F_{Cd} -correction factor for Cd transmission of epithermal neutrons,⁶
 - ϵ_p -full energy peak detection efficiency, including gamma-attenuation.

A more detailed discussion of the experimental parameters (f, α , ϵ_p , . . .) can be found in a recent review paper⁷ and references therein.

In the above, the k_0 -factor is defined as a compound nuclear constant (for modifications, see Table 1)

$$k_{0,c}(s) = \frac{M_c \Theta_s \sigma_{0,s} \gamma_s}{M_s \Theta_c \sigma_{0,c} \gamma_c}$$
(5)

with M - molar mass;

- Θ isotopic abundance;
- γ absolute gamma-intensity.

Modifications in case of complex activation decay

In the above, the terms $\frac{N_p/t_m}{SDC}$ and Q_0 , as well as the k_0 -definition, should be

modified in case of branching activation and mother-daughter decay. An extended version of the formerly treated¹ practical activation-decay cases encountered in (n, γ) activation analysis is presented in Table 1, together with relevant expressions for the parameters involved.

It should be remarked that the expressions for $\frac{N_p/t_m}{SDC}$ are not at all specific to

to the k₀-method, but are to be used inevitably in all types of standardization, the relative method included. This implies that, also there, such data as $\gamma_2/F_2\gamma_3$ (type II/d), F_{24}/F_2F_3 (type III/a), $F_2\sigma_0^m/\sigma_0^g$ and $[f+Q_0^m(\alpha)]/[f+Q_0^g(\alpha)]$ (type IV/a), etc., have to be known occasionally.

Results

Experimental k_0 -determination

The experimental results of the present work are shown in Table 2. Some of the radionuclides were already included in References 1 and 2, but improved remeasurements are given now. All k₀-factors are expressed versus Au as comparator $[c = {}^{197}Au(n, \gamma){}^{198}Au; E_{\gamma} = 411.8 \text{ keV}]$. Note that each entry under the heading "Measured k_{0.Au}" is the average of 3–5 repetitions.

It should be emphasized that, as a first essential principle with respect to quality assurance, the k_0 -factors were determined in a parallel but independent way at the INW, Gent and at KFKI, Budapest. This means that in both laboratories, use was made of different experimental setups, viz.:

Chemical and physical characteristics of standards and comparators (see Table 2).

Reactors (THETIS, Gent and WWR-M, Budapest), and irradiation positions with different f and α values (see Refs 1 and 2). For a number of isotopes, the average of 4 determinations in channel R4V4 of the DR-3 reactor (Risø, Denmark) is included: the high thermal-to-epithermal neutron flux ratio in this channel (f $\simeq 320$) was especially interesting when studying (n, γ) reactions with a high Q₀-value [${}^{96}Zr(n, \gamma)^{97}Zr$, ${}^{98}Mo(n, \gamma)^{99}Mo$, ${}^{124}Sn(n, \gamma)^{125}Sn$, etc.], the k₀-factors of which were determined by the Cd-subtraction method.⁸

Ge-detectors and counting geometries. In general, the gamma-measurements in each laboratory were performed with 2 different Ge detectors (1 GAMMA-X detector at Ris ϕ), with an accurately determined "reference" full-energy peak detection efficiency curve for point-geometry at 15–20 cm distance to the detector (ϵ_{p}^{ref} ; see below).

Peak area evaluation methods: SEQAL⁹ (INW, Risø), HYPERMET^{10,11} (KFKI), MARKER/CAOS¹² (INW), SAMPO80¹³ (INW, Risø), ND-604A¹⁴ (Risø) and TRAP, based on the trapezoidal method (INW, KFKI, Risø);

Correction procedures for dead-time and/or pulse pile-up, including the use of a dead-time stabilizer^{15,16} (INW), a CANBERRA 2020 AMPLI/PUR (INW, KFKI) and a pulser (KFKI, Ris ϕ).

As a rule, a Gent-Budapest meeting was organized each year, where it was decided for which elements, isotopes and gamma-lines k_0 's had to be determined in the course of the following year, and where the fully documented k_0 -results of the past year were critically compared and examined. Possible discrepancies were tracked down, sources of error discovered and repetitions imposed. The sources of error could be attributed to problems associated with the stoichiometry of the chemical compounds, micropipetting, contamination or losses, neutron self-shielding, reaction or spectral interferences, peak area evaluation of multiplets, accuracy of Q_0 -values, etc.

Apart from the k_0 -determinations performed in different experimental conditions (INW, KFKI, Ris ϕ), in general the following precautions were taken with respect to accuracy and traceability:

The volumes of comparator and standard sources were kept as small as possible, and they were counted at the reference distance of 15–20 cm from the Ge-detector. This procedure rendered true-coincidence effects negligible,¹⁷ and it allowed the introduction in Eqs (1) and (2) of ϵ_p^{ref} -corrected for slight gamma-attenuation effects-, or of ϵ_p^{geo} (geo = actual geometry) calculated from ϵ_p^{ref} according to the program SOLANG¹⁸ with minor conversions only.

Whenever possible, use was made of sufficiently thin and/or dilute sources so as to make thermal and epithermal neutron self-shielding effects negligible (Gth and $G_e = 1$): thin metallic foils or wires, fine powders spread out over a large area or mixed with inert (i.e. low cross-section) materials, dried spots of solutions on Al-foil or W-41 paper, dilute Al-alloys, etc. [e.g. Al-Au alloyed wires of different composition and production (0.097-0.503% Au content, 0.1-1 mm diameter, manufactured by ATEC or CBNM/Belgium); for the wires with $\simeq 0.5\%$ Au, $G_{th} = 1$ but G_e is 0.985.19 Occasionally, isotopically enriched compounds (supplied by ORNL) were used to eliminate neutron shielding caused by other isotopes of the element studied. Owing to the depletion of the shielding isotope(s), a limited dilution can be sufficient. so that adequate activities of the studied isotope could be obtained. This was the case for ¹¹⁵Cd/¹¹⁵mIn [98.55% ¹¹⁴Cd-enrichment; depleted to 0.60% ¹¹³Cd $(\sigma_0 = 20600 \text{ barn})$], for ¹⁵⁹Gd and ¹⁶¹Gd [81.0% ¹⁵⁸Gd, 98.71% ¹⁶⁰Gd enrichment; depleted to, respectively, 1.72% and 0.14% 155 Gd ($\sigma_0 = 60900$ barn), and 9.72% and 0.24% 157 Gd ($\sigma_0 = 254000$ barn)], and for 171 Er [96.89% 170 Er enrichment; depleted to 0.72% ^{16.7} Br ($\sigma_0 = 659$ barn)]. The choice of the final sample composi-

tion (dilution, thickness, etc.) was based on calculation or estimation of the neutron self-shielding effects.

Irradiations were performed in reactor channels with sufficiently stable flux characteristics (ϕ_s , f, α) so as to guarantee negligible errors not only from variations during one irradiation,⁷ but also from possible differences between the irradiations of bare and Cd-covered samples (in the Cd-subtraction method). This stability was not only evident from the power recording in the reactor operation logbook, but also from repeated experimental determination – as a function of time – of ϕ_s , f and α . In fact, this established stability allowed, in reactor THETIS/INW, to rely on the a priori determined flux characteristics, which were, however, checked regularly. Flux gradients within the irradiation container were accounted for by sandwiching each standard sample between two Al-Au wires (or by using an internal comparator; see below).

Significant errors caused by random coincidence (pulse pile-up) were avoided by keeping the count rates sufficiently small, even when a CANBERRA 2020 AMPLI/PUR was used. In case of short-lived radionuclides, errors due to a decrease of dead time during counting were minimized by using a dead time stabilizer¹⁵,¹⁶ (INW), or by keeping the counting time below one tenth of the half-life of the measured radionuclide (KFKI, Ris ϕ).

Care was taken to have very accurate knowledge of the masses of comparator and standard. Whenever possible, use was made of high purity substances as starting materials (especially feasible for metals, but also for sulfur, etc.). When using dilute Al-alloys, the homogeneity and the content of the alloyed element were carefully checked (e.g. for Au-Al; see Ref.³). As chemical compounds, preferably primary standards were selected with generally accepted well-known stoichiometry [e.g. NaCl, Na₂CO₃, KHCO₃, KHC₈O₄H₄ (potassium biphthalate)]. Whenever necessary, these primary standards were pretreated according to the prescription, e.g. Na₂CO₃ was heated for one hour at 270-300 °C. Other compounds were of specpure (J. M.) or ultrapure quality, and again a proper pretreatment was done; e.g. the rare earth oxides were ignited at 900 °C for 1 hour. If available, easily soluble specpure (J. M.) compounds were used with a certified concentration of the main element: e.g. (NH₄)₂ Ru(H₂O)Cl₅ with 30.6% Ru content, (NH₄)₂ OsCl₆ with 43.6% Os content, etc. Occasionally, when significant discrepancies between the INW and the KFKI results were observed, the content of the main element in the compound used was redetermined experimentally: e.g. Ce in Ce(SO₄)₂ \cdot 4H₂O (expected 34.7% Ce) by titration of Ce(IV) [after adding ammoniumpersulfate] with As(III), according to the procedure developed by GLEU²⁰; the Ce-content in the compound used was found to be 31.4%. In order to make suitable dilutions, the starting materials, weighed on a calibrated (micro) balance, were dissolved in ultrapure solvents, and the solu-

tion was transferred to a volumetric flask. At the KFKI, small aliquots were then spotted on high purity Al-foil by means of a calibrated micropipette. After drying, the Al-foil was folded, up and pressed to a small cylindrical pellet, usually 6.4 mm diameter $\times 2$ mm height. At the INW, use was made of an internal comparator (index ic; with accurately known k₀-factor), a known amount of which was brought in solution together with the standard. From this solution, $\simeq 100$ or 250 μ l was spotted on a circular W41 paper, which was then dried — usually under an I. R. lamp (but occasionally at room temperature; e.g. for mercury). The thus loaded W41 paper was folded up, enveloped in a second W41 paper and finally pressed to a pellet, usually 10 mm diameter $\times 4$ mm height. By means of radioactive tracers it was shown that the spotted substance was homogeneously distributed over the W41 paper. With this technique of the internal comparator, the k₀-factor can be obtained as:

$$k_{0,c}(s) = \frac{w_{ic}}{w_{s}} \cdot \frac{\left[\frac{N_{p}/t_{m}}{SDC}\right]_{s}}{\left[\frac{N_{p}/t_{m}}{SDC}\right]_{ic}} \cdot \frac{G_{th,ic} \cdot f + G_{e,ic}Q_{0,ic}(\alpha)}{G_{th,s} \cdot f + G_{e,s}Q_{0,s}(\alpha)} \cdot \frac{\epsilon_{p,ic}}{\epsilon_{p,s}} \cdot k_{0,c}(ic)$$
(6)

From Eq. (6) it is clear that only the mass ratio w_{ic}/w_s should be known, thus avoiding quantitative work after simultaneous dissolution of internal comparator and standard. Also, flux gradients are automatically accounted for, and the counting geometries of internal comparator and standard are identical, so that – in spite of the relatively large volume of the W41 pellets – it is allowed to introduce ϵ_p^{ref} -values, which should only be corrected for gamma-attenuation in the paper. The gamma-attenuation factor was experimentally determined as a function of gamma-energy by measuring various point sources (at the reference distance from the detector) with and without screening by means of a 2 mm thick W41 pellet (half height of the usual pellet). To a good approximation, the gamma-attenuation function could be fitted as:

$$F_{att} = 0.953 + 4.86 \cdot 10^{-5} E_{\gamma} (keV) [r^2 = 0.9992]$$

in the energy region 60 keV $\leq E_{\gamma} \leq 900$ keV. Above 900 keV, gamma-attenuation was considered to be negligible (< 0.3%).

Experimental conditions were chosen so as to obtain, for the analytically interesting gamma-lines under consideration, a statistically acceptable number of counts (s < 1%) in the full-energy peaks, with negligible spectral interference. This could be achieved using high purity-materials, and by optimizing the irradiation, decay and counting times and the weight of the irradiated element (taking care to minimize neutron self-shielding effects). For instance, when determining the k_0 -factor of the 279.2 keV-line of ²⁰³ Hg (46.612 d), it is mandatory to wait for the decay of ^{197m} Hg (23.8 h), the 279.0 keV line of which can cause of spectral interference. For k_0 -determination of the ²³⁹Np gamma-lines, use was made of a U-standard (a Al-0.443% U wire) depleted to a 0.0375% ²³⁵U content (and enriched to 99.962% ²³⁸U); this reduced strongly the dead-time, background and interfering lines due to the ²³⁵U(n, f) fission products. For k_0 -determination of the ¹⁴⁷Nd, ¹⁴⁹Nd/¹⁴⁹Pm and ¹⁵¹Nd/¹⁵¹Pm gamma-lines, use was made of isotopically enriched oxides (ORNL); this reduced drastically the complexity of the spectra, otherwise showing numerous interfering lines. Optimization of the irradiation, decay and counting times can also lead to considerable reduction of the uncertainty originating from T, due to (partial) compensation of terms in the function describing the propagation of the error on T towards k_0 .

 Q_0 -values and F_{Cd} -factors were either critically selected from the literature or experimentally determined (see Part IIIb).⁴ As to the Q_0 -values, it follows from error propagation calculations that the residual uncertainties of k_0 , determined according to Eq. (1), do not exceed 1%. When using the Cd-subtraction method [Eq. (2)], no Q_0 -values are involved.

In Table 2, a "recommended" k_0 -factor is usually the average of 3-5 repetitions $\times 1-2$ irradiation channels $\times 2$ reactors, and the quoted uncertainty is the standard deviation on the mean (except for the k_0 's of the Zr-isotopes, where the weighted mean and the larger of the internal or external error was calculated; see Ref.⁸). It should be remarked that a k_0 -factor, even when obtained according to the above outlined procedure, is only recommended when the standard deviation of the mean is less than 2%.

A k_0 -factor is considered to be "tentative" in brackets in Table 2, and with no mention of the uncertainty) when the standard deviation is exceeding 2% or when for a particular isotope, or for a particular gamma-line of a given isotope, the determinations were only performed in one reactor. Even then, the average usually results from 3-5 measurements \times 2 irradiation channels, and the accuracy is probably not worse than $\approx 5\%$.

*

In particular the authors want to express their gratitude to prof. J. HOSTE for his continued interest in this work.

Grateful acknowledgment is made to the Pelgian "National Fund for Scientific Research" and the "Interuniversity Institute for Nuclear Sciences", for financial support.

Thanks are due to L. MOENS (Gent), A DEMETER and E. SZABÓ (Budapest), K. HEYDORN, L. H. CHRISTENSEN, J. JACOBSEN, E. DAMSGAARD and U. JACOBSEN (Ris¢) for their help in various vays.

ved in the ko-method	$ \frac{\mu}{p} / t_{\rm m}^{\rm u} = \mu g_{\rm SOC} (1.3-18) - (1.3-21), \\ \frac{\mu}{100} = 0 \text{ divided by w for obtaining A}_{\rm sp} \\ \text{ in Eqs } (T.3-18) \cdots (T.3-21) $	$\frac{N_{P,2}}{S_{2}} L_{P,2} \frac{N_{P,2}}{S_{2}} L_{m}$	$\frac{\frac{P_{p-3}}{2}}{t_m} + \frac{\lambda_3 2^2 p_2 2^2 - \lambda_2 3 p_3 2^3}{\lambda_3 2^2 2^2 2^2 - \lambda_2 3 p_3 2^3}$	$\frac{N_{\rm B}}{3} \frac{3}{2} \frac{t_{\rm m}}{c_{\rm s}}$	$\frac{\lambda_3 - \lambda_2}{\lambda_3} \cdot \frac{N_{p,3} V_m}{S_2 h_2 C_2}$	$\frac{\frac{N_{3,2}D_{2}C_{2}-\lambda_{2}S_{3}D_{3}C_{3}}{\lambda_{3}-\lambda_{2}}+\frac{\gamma_{2}}{\lambda_{2}}s_{2}D_{2}C_{2}}{\lambda_{3}-\lambda_{2}}$	$ \begin{array}{l} (w_{p,4}/\epsilon_{m}) \cdot \left[s_{z}^{D} p_{z}^{C} \frac{\lambda_{4}}{\lambda_{z}^{-1} \lambda_{z}^{-1}} \frac{\left(\frac{\lambda_{3}}{\lambda_{z}^{-1} \lambda_{z}^{-1}} + \frac{F_{2}4}{k_{z}^{-1} \lambda_{z}^{-1}} \right)}{s_{z}^{2} \lambda_{4}} \\ & - s_{y} s_{z}^{D} q_{z} \frac{\lambda_{z}}{(\lambda_{4} - \lambda_{3}^{-1})^{1} (\delta_{3} - \lambda_{z}^{-1})} \\ & + s_{z} b_{4} c_{4} \frac{\lambda_{z}}{\lambda_{4}^{-1} \lambda_{z}^{-1}} \frac{\lambda_{3}}{\lambda_{4}^{-1} - \lambda_{z}^{-1}} - \frac{F_{2}4}{E_{z}^{2} \lambda_{3}^{-1}} \right]^{-1} \end{array} $
trameters invol	q0" in Eqs (1.3-20) (1.3-21) (1.3-21)	0 0 0	$\frac{1}{\sigma}$	E	F	=	000 1000
xpressions for the pa	θσ ₀ γ" in k ₀ -defini- "M" [Eq.(I.3-f4)]	^{0.4} 0 ^{У2} М	$\frac{\theta \cdot \sigma_0 \cdot \mathbf{F}_2 \cdot \mathbf{Y}_3}{\mathbf{M}}$	ź	=.	=	$\frac{9 \sigma_0 F_2 F_3 v_6}{M}$
Activation decay types and relevant expressions for the parameters involved in the k0-method	Activation-decay scheme	$1 \frac{\pi_1 \gamma}{\sigma_0^{-1} \Omega_0} \frac{2}{2} \frac{\lambda_2}{2\delta_{AB}} \left[e_1 g_1 \frac{\lambda_2}{\delta_A} \left[e_1 g_1 \frac{\lambda_2}{\delta_A} + \frac{\lambda_2}{\delta_A} \right] \right]$	$\frac{1-\frac{n_1\gamma}{\sigma_0,1_0}-2\cdot\frac{\mathbb{P}_2^{\gamma,\lambda}\gamma}{\mathbb{P}_2^{\gamma,1_0}-2}\cdot\frac{\lambda_3}{2}}{1000000000000000000000000000000000$	Special case: $\lambda_2 \gg \lambda_3$ and $b_2 = 0$ [e.g. $\frac{233}{Pa}$ from $\frac{232}{Pa}$ from 2^{12} rh (n_1, i)]	Special case-: $\lambda_2 < \lambda_3$ and $D_3 = 0$	Special case : measurement of the 140.5 keV line of <u>90m/99mic</u> [from 98Mo(n,y)]	$1 \xrightarrow{\eta_1 \gamma_2} 2 \xrightarrow{F_2 \sqrt{2}} 3 \xrightarrow{F_3 \sqrt{3}} 4 \xrightarrow{\lambda_4}$ $0^{0,1} \xrightarrow{0} \frac{2 \gamma_4 \gamma_5}{2 \gamma_{\text{ND}}} \text{ from } 9^6 $
	Activation-	т	II/a	Ш/Р	II/c	* *	111/a

Table 1 ion decay types and relevant expressions for the parameters involved in the

Activation- decay type	Activation-decay scheme	$\frac{\theta\sigma_0\gamma''}{M} in k_0^{-defini-}$ tion [Eq.(I.3-14)]	Q0" in Eqs (1.3-18) (1.3-20) (1.3-21)	$ \begin{array}{c} & N \ fr \ ^{M} \\ & N \ ^{M} $
q/111	Special case : $F_{24} = 0$.	$\frac{\theta}{M} \frac{\sigma_0 F_2 F_3 \gamma_4}{M}$	0 0 0	$\mathfrak{m}_{p,4},\mathfrak{m}, \left[\mathrm{s}_2 \mathrm{p}_2 \mathrm{c}_2 \left(\frac{\lambda_4 \lambda_3}{\lambda_4 - \lambda_2} \right) \mathrm{t}_3 \frac{\lambda_4 \lambda_3}{2 - \lambda_2} \right]$
			:	$= s_3 p_3 c_3 \frac{\lambda_2 \lambda_4}{(\lambda_4 - \lambda_3)(\lambda_3 - \lambda_2)}$
-		, ,		+ $s_4 D_4 C_4 \left(\frac{\lambda_2 \lambda_3}{(\lambda_4 - \lambda_2)(\lambda_4 - \lambda_3)} \right)^{-1}$
111/6	Special case : $\lambda_3 \gg \lambda_2$ and λ_4 , $D_3 = 0$ $F_3 = 1$, $F_2 + F_{24} = 1$ $[e, e, \frac{105_{Eh}}{E}$ from $10^4 Ru(n, \gamma)$]	^{6 0} 0 [√] 4 M	=	$(s_{p,4}/t_m) \cdot \frac{\lambda_4 - \lambda_2}{\lambda_4 s_2 p_2 c_2^2 - \lambda_2^2 s_1^p h_4^2 c_4^4}$
IV/a	$\left \begin{array}{c} \sigma_0^m, r_0^m \\ r_0, r_0 \\ r_1, r \\ r_2, r_2 \end{array} \right _{\mathbb{F}_2, r_2} $	6 α ⁰ γ ₃ 	000 000 000 000	$(N_{p,3}/t_m)$, $\left[\frac{F_2\sigma_m^m}{\sigma_B^m}\frac{\epsilon+q_m^m(\alpha)}{1+q_R^m(\alpha)},\frac{\lambda_3 z_2 p_2 c_2 - \lambda_2 s_3 p_3 c_3}{\lambda_3 - \lambda_2}\right]^{-1}$
*	$\begin{bmatrix} \sigma_0^{\beta}, I_0^{\beta} & \frac{3}{2} & \frac{3}{3} \\ [e,g, \frac{80}{2} from ^{79} Br(n,\gamma) \end{bmatrix}$			$= (x_{p+3}/t_m) \cdot \left[\frac{k_m}{k_0} \frac{\pi + k_0^m(\alpha)}{\pi + k_0^m(\alpha)} \frac{\lambda_3 s_2 v_3 c_2}{\lambda_3^2 - \lambda_2 s_3^3 v_3^2} + s_3^3 v_3^2 c_3^3 \right]^{-1}$
IV/b	Special case : $\lambda_2 \gg \lambda_3$ and $D_2 = 0$ [e.g. $\frac{6C_{CD}}{CD}$ from ⁵⁹ Co(n, y)]	$\frac{\theta(\mathbf{F}_{2}\circ_{0}^{m}\circ_{0}^{2})\gamma_{3}}{M}$	$\frac{F_2 I_0^m + I_0^g}{F_2 \sigma_0^m + \sigma_0^g}$	$\frac{N_{\rm p}}{3}/t_{\rm m}$ $\frac{N_{\rm p}}{3}$
IV/c	Speciel case : $\lambda_2 < \lambda_3$ and $B_3 = 0$	$\frac{9 F_2 G_0 Y_3}{M}$	щ <mark>о</mark> ще	$\frac{\lambda_{3} - \lambda_{2}}{\lambda_{3}} \frac{N_{p,3}/t_{m}}{s_{2}^{2} b_{c}^{2} c_{2}}$

Table 1 (cont'd)

table I tconi al	1 4 1			
Activation- decay type	Activation-decay scheme	θ ^θ 0 ^{γ"} in k ₀ -defini- "tion [Eq.(1.3-14)]	Q0" in Eqs (I.3-18) (I.3-20) (I.3-21)	N/L" in Eqs (1.3-18) - (1.3-21), "SOL divided by w for obtaining A ₅ p in Eqs (1.3-18) - (1.3-21)
IV/a	Special case : measurement of the 112.9 keV and 208.4 keV lines of $\frac{177n_{\rm Lu}/177_{\rm Lu}}{16}$ [from ¹⁷⁶ Lu(a, γ)]	с с с	⁸ 2) ⁸⁶ 0	$ \begin{pmatrix} (N_{\mathbf{b}}, 2^{\mathbf{a}} + 3^{\mathbf{b}})^{\mathbf{c}}, \\ 0_{0}^{\mathbf{b}}, 1, \\ 1, 2 + 3^{\mathbf{b}} \begin{pmatrix} 0_{0}^{\mathbf{b}}, 2 \\ 0_{0}^{\mathbf{b}}, 1 \end{pmatrix}, \\ 1, 2 + \frac{\mathbf{E}}{3} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \\ 1, 2 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} 1^{2} - \frac{1}{3} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} 1^{2} \\ 1 \end{pmatrix} $
a/v ***	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	9.0 ⁸ F ₃ 7.4 M	<u>ဖ</u> င္ရာ ဖင္	$ \begin{array}{l} (M_{p,4}/r_m), \left\{ \frac{R_m^0}{R_0} \frac{\pm 4R_m^0(\alpha)}{R_0} \left[s_2 p_2 c_2 \left(\lambda_4^{-\lambda_2} \right)^{(\lambda_3^2-\lambda_2)} \right] \\ & - s_3 p_3 c_3 \left(\lambda_4^{-\lambda_3} \right)^{(\lambda_3^2-\lambda_2)} \\ & + s_4 p_4 c_4 \left(\lambda_4^{-\lambda_2} \right)^{(\lambda_4^2-\lambda_3^2)} \\ & + \frac{\lambda_4 s_3 p_3 c_3^2 - \lambda_3 s_4^{-\lambda_4} c_4}{\lambda_4^{-\lambda_3}} \right] \end{array} $
٩/٨	Special case : $\lambda_4 \ll \lambda_2$ and λ_3 [e.g. $\frac{199}{\Delta u}$ from $^{198}\text{Pt}(n, \gamma)$]	$\frac{\Theta(F_2 \sigma_0^m + \sigma_0^B) F_3 \gamma_4}{M}$	$\frac{F_2}{F_2} \frac{\mathbf{I}_0^m + \mathbf{I}_0^g}{\sigma_0^m + \sigma_0^g}$	$S_{A}^{P_{a}} \frac{d^{b}t^{m}}{d^{b}d^{b}d^{b}}$.
V/c	Special case : $\lambda_3 \ll \lambda_2$ and λ_4 $D_2 = D_4 = 0$ [e.g. 113mIII from 112 Sn(n, Y)]	÷	F	$\frac{N_{p,4}/t_{m}}{s_{3}^{5}b_{3}^{2}c_{3}^{2}}$

Table I (cont'd)

lable I (conf d)	(a)			
Activation- decay type	Activation-decay scheme '	00 ₀ ^{\u0374} in k ₀ -defini- "tion [Eq.(I.3-14)]	Q ₀ " in Eqs (1.3-18) (1.3-20) (1.3-21)	$ \begin{array}{c} N \ / t_{m}^{u} \\ P \\ R \\ n \\ SDC \\ n $
и	Special case : measurement of $\frac{124}{2}$ {from 123b(n,v)] after long decay time. ($D_2 = D_3 = 0$) ($D_2 = D_3 = 0$) $\frac{m_2}{\sigma_0} \frac{m_2}{10} \frac{124m_2}{2}$ b ($T_{1/2} = 20.2min$) 123b $\frac{m_1}{m_1} \frac{m_1}{m_1} \frac{124m_1}{2}$ b $\frac{\lambda_2 F_2}{T_2} = 1$ 123b $\frac{m_1 \gamma m_1}{\sigma_1} \frac{m_1}{\sigma_1} \frac{124m_1}{\sigma_1}$ b $\frac{\lambda_2 F_2}{T_2} = 1$ $\frac{\sigma_0^2 T_0^2}{\sigma_1^2 0} \frac{124m_1}{\sigma_1} + \frac{\lambda_2 F_2}{T_2} = 0.75$	$\frac{6[F_3(\sigma_0^m+\sigma_0^m)+\sigma_0^m]\gamma_4}{M}$	$\frac{F_{3}(\mathbf{u}_{0}^{m}+\mathbf{n}_{0}^{m}^{2})+t_{0}^{m}}{F_{3}(\mathbf{a}_{0}^{m}+\mathbf{a}_{0}^{m}^{2})+\mathbf{u}_{0}^{m}}$	²
VII/a	$\int_{0}^{0} \frac{1}{10^{10}} \frac{1}{10^{10}} = \frac{1}{2} \frac{1}{10^{10}} \frac{1}{10^$	7 200 к К Ю	жо ю <u>6</u>	$ \begin{array}{l} \left(x_{p,4} / t_{m} \right) & \left\{ \begin{array}{l} \frac{\sigma_{m}^{0} F_{2,4}}{\sigma_{m}^{0} F_{2}} & \frac{t + \sigma_{m}^{0} (\omega)}{s} & \frac{\lambda_{4} S_{2} P_{2} C_{2} - \lambda_{2} S_{p} P_{4} d_{4}}{\lambda_{4} - \lambda_{2}} \\ & + \frac{\lambda_{4} S_{3} p_{3} C_{3} - \lambda_{3} S_{4} P_{4} C_{4}}{\sigma_{6}^{0} - \lambda_{3}} \\ & + \frac{\sigma_{m}^{m} F_{2}}{\sigma_{6}^{0}} & \frac{t + \sigma_{6}^{0} (\omega)}{s} & \left[S_{2} P_{2} C_{2} & \frac{\lambda_{4} A_{3}}{\lambda_{4} - \lambda_{2}} \right] \\ & - S_{3} p_{3} C_{3} & \left(\chi_{4} - \chi_{3} \right) \left(\chi_{3} - \chi_{3} \right) \\ & + S_{4} P_{4} C_{4} & \left(\chi_{4} - \chi_{2} \right) \left(\chi_{3} - \chi_{3} \right) \\ \end{array} \right) \right\} - 1 \end{array} $
d/IIV	Special case : $F_2 = 0$ [e.g. $\frac{125}{5b}$ from 12^4 sn(n, γ)]	F	Ŧ	$ (N_{p,4}/t_m) \cdot \begin{bmatrix} \sigma_0^{T} F_{24} & f + \sigma_0^{T}(\alpha) & \lambda_4 S_2 P_2 C_2 - \lambda_2 S_4 P_4 C_4 \\ \sigma_0^{T} F_3 & f + \sigma_0^{T}(\alpha) & \lambda_4 - \lambda_2 \end{bmatrix} $ $ + \frac{\lambda_4 S_3 P_3 C_3 - \lambda_3 S_4 P_4 C_4 }{\lambda_4 - \lambda_3} \end{bmatrix} $

Table 1 (cont'd)

		Refe
		i.
		z of results in Refer
		g
		updating
	lable 2	and
Ē	lat	fextension and

ŕ

rences 1 and 2 (for survey: Experimental determination of k0, Au-factors [extension and updating of results in I see Part IIIb)⁴; activation decay type: see Table 1]

					-				
210-1 210-1		Isotope	^ ¤	Me	Measured k _{0,Au} and relative error,	relative error, 7		Recommended or (tentative)	
ment	Sample preparation	(Activation- decay type)	keV	KFKI "WWR-M"	WR-M"	L, MNI	INN "THETIS"	k _{0,Au} (relat. err., %) [experimental]	NOTES
r.	<pre>KFXI : ~ 2.5 mg CaCO3 packed in Al-foil; pellet 6.4 mm diam. x 0.2'mm. Viaf viaf</pre>	43	489.2 807.9 1297.1 159.4	- - 1.1	9.20.10 ⁻⁸ (5.0) 9.20.10 ⁻⁸ (6.0) 9.11.10 ⁻⁷ (1.2) 8.25.10 ⁻⁷ (1.0)	9.16.10 ⁻⁸ (1.1) 9.23.10 ⁻⁸ (1.4) 9.58.10 ⁻⁷ (0.3) 8.54.10 ⁻⁷ (0.2)	$\begin{array}{c} 9.50.10^{-8}(0.8)\\ 8.71.10^{-8}(1.3)\\ 9.17.10^{-8}(1.2)\\ 9.88.10^{-7}(0.2)\\ 9.66.10^{-7}(0.2)\\ 8.91.10^{-7}(0.3)\\ 8.91.10^{-7}(0.3)\\ \end{array}$	$\frac{9.14.10^{-8}}{9.20.10^{-7}}(1.8)$ $\frac{9.20.10^{-8}}{0.54.10^{-7}}(1.7)$	
· · · · · · · · · · · · · · · · · · ·	<pre>KFXI : 20 mg GaCO₃ powder in W 41; pellet 6.4 mm diam. x 1.5 mm pellet 6.4 mm diam. x 1.5 mm IXW : CoCO3 powder in W 41; 30 mg (CH 9), 200 mg (CR 8); pellet 10 mm diam. x 3.7 mm</pre>	(11/a) 49 _{Ca} (1)	3084.4	1.02.10 ⁻⁴ (1.5)		9.81.10 ⁻⁵ (1.2)	8.57.10 ⁻⁷ (0.2) 9.99.10 ⁻⁵ (0.8)	<u>1.01.10⁻⁴ (0.9)</u>	
£	KFKI : Al-1% km wire, 0.2 mm diam. INN: Mn ₃ O ₄ powd., 1 mg (GH 3), Z mg (GH 15) Z mg (GH 2) B (GH 2) A (GH 2)	56 km	846.8 846.8 1810.7 2113.1	4.95.10 ⁻¹ (0.6) 5.06.10 ⁻¹ (2.3) (NISØ) 1.34.10 ⁻¹ (1.0) 7.20.10 ⁻² (1.2)	4.93.10 ⁻¹ (0.8) 4.84.10 ⁻¹ (1.8)* (BISØ) 1.34.10 ⁻¹ (1.0) 7.15.10 ⁻² (0.8)	4.98.10 ⁻¹ (1.8) 1.36.10 ⁻¹ (2.9) 7.17.10 ⁻² (2.8)	4.97.10 ⁻¹ (1.0) 1.36.10 ⁻¹ (2.2) 7.15.10 ⁻² (1.4)	4 <u>.96.10⁻¹</u> (0.6) 1. <u>35.10⁻¹ (0.4)</u> 7.17.10 ⁻² (0.4)	4.93.10 ⁻¹ (0.8) 4.98.10 ⁻¹ (1.8) 4.97.10 ⁻¹ (1.0) 4 <u>.96.10⁻¹(0.6)</u> ^A cd-subtr.method 4.84.10 ⁻¹ (1.8)* (HIS0) 1.34.10 ⁻¹ (1.0) 1.36.10 ⁻¹ (2.9) 1.36.10 ⁻¹ (2.2) 1 <u>.35.10⁻¹(0.4)</u> 7.15.10 ⁻² (0.3) 7.15.10 ⁻² (0.2) 7.15.10 ⁻² (0.2)
ປ ຄ.	<u>KFKL-RISG</u> : Pe foil 25 µm <u>INM</u> : 1) Fe foil 85 µm 2N 70 mg Fe ₂ O ₃ in W41; pellet 6 mm diam.x1.5 mm	59 (1)	142.6	1.34.10 ⁻⁶ (2.4) 1.27.10 ⁻⁶ (1.5) 1.20.10 ⁻⁶ (4.0) 1.33.10 ⁻⁶ (5.0) 3.73.10 ⁻⁶ (2.0) 3.73.10 ⁻⁶ (2.0) 3.75.10 ⁻⁶ ($\begin{array}{c} 1.37.10^{-6}(1,4)\\ 1.45.10^{-6}(1,8)\\ 1.13.10^{-6}(6,0)\\ 1.33.10^{-6}(1,6)\\ 3.23.10^{-6}(1,5)\\ 3.68.10^{-6}(2,0)\\ 3.68.10^{-6}(2,0) \end{array}$	1.21.10 ⁻⁶ (1.6) 3.78.10 ⁻⁶ (0.3)	1.38.10 ⁻⁶ (7.2) 1.29.10 ⁻⁶ (1.7) (RLSØ) 3.70.10 ⁻⁶ (0.8) 3.89.10 ⁻⁶ (1.2)	<u>1.33.10⁻⁶</u> (1.6) <u>3.78.10⁻⁶</u> (0.6)	
(cont'd)	d)		334.8		1	1	(13.00) - 3.82.10 ⁻⁷ (3.3) (RISG)	(3.82.10 ⁻⁷)	

Table 2 (cont ^a)	5 (com u)								
- 1 a		Isotope	ະ ພ	W	leasured k _{0,Au} and	Measured $k_{0,Au}$ and relative error, \tilde{x}	84	Recommended or (tentative)	
ment	Sample preparation	(Activation- decay type)	keV	KFKI "	КГКІ ^п илг-м ¹¹	" MNI	", STHELLS", WI	k _{0,Au} (relat. err., Z) [experimental]	SELON
Fe (cont'd)			1099.2	7.75.10 ⁻⁵ (0,6) 7.68.10 ⁻⁵ (0.6) 7.88.10 ⁻⁵ (1.0) 7.74.10 ⁻⁵ (0.8)	7.64.10 ⁻⁵ (0.8) 7.75.10 ⁻⁵ (1.3) 7.67.10 ⁻⁵ (1.3)	7.76.10 ⁻⁵ (1.5)	7.77.10 ⁻⁵ (1.2) 8.07.10 ⁻⁵ (0.8) (RISØ)	7.77.10-5 (0.5)	
			1291.6	5.88.10 ⁻⁵ (0.6) 5.89.10 ⁻⁵ (0.6) 6.00.10 ⁻⁵ (1.0) 5.94.10 ⁻⁵ (0.8)	5.85.10 ⁻⁵ (0.9) 5.81.10 ⁻⁵ (1.3) 5.85.10 ⁻⁵ (1.3)	5.94.10 ⁻⁵ (1.3)	5.95.10 ⁻⁵ (1.2) 6.10.10 ⁻⁵ (0.9) (RISØ)	<u>5.93.10⁻⁵(0.4)</u>	
Ę	KFKC-IM-AISO : Za foil 25 µm	65 _{2n} (1)	1115.5	$5.76.10^{-3}(0.5)$ $5.64.10^{-3}(0.7)$ $5.54.10^{-3}(1.9)$ $5.57.10^{-3}(1.4)$ $5.65.10^{-3}(1.4)$	5.75.10 ⁻³ (1.0) 5.59.10 ⁻³ (2.3) 5.72.10 ⁻³ (0.8) 5.87.10 ⁻³ (0.4)	(9.0) ⁻³ (0.7) 5.70.10 ⁻³ (0.8)* 5.79.10 ⁻³ (0.3) 5.76.10 ⁻³ (0.8)* 5.79.10 ⁻³ (0.3) 5.79.10 ⁻³ (0.4)* 5.80.10 ⁻³ (0.5)* 5.80.10 ⁻³ (0.9)* 5.88.10 ⁻³ (0.9)* 5.69.10 ⁻³ (0.9)*	5.70.10 ⁻³ (0.7) 5.76.10 ⁻³ (0.3)* 5.79.10 ⁻³ (0.3)* 5.9.10 ⁻³ (0.4)* 5.80.10 ⁻³ (0.9)* 5.69.10 ⁻³ (0.9)* 5.69.10 ⁻³ (0.9)*	<u>5. </u>	* %Cd-subtr.method
		uz (1)	¢.38.4	$3.83.10^{-4}(1.0)$ $3.97.10^{-4}(0.3)$ $3.87.10^{-4}(2.9)$ $4.14.10^{-4}(2.0)$	3.95.10 ⁻⁴ (0.9) 3.95.10 ⁻⁴ (1.5)* 3.87.10 ⁻⁴ (2.4) 4.07.10 ⁻⁴ (2.3) 4.08.10 ⁻⁴ (0.9)*	8.90.10 ⁻⁴ (0.8) 88.10 ⁻⁴ (1.0)* .08.10 ⁻⁴ (1.0)* .12.10 ⁻⁴ (0.9)*	$\begin{array}{c} 3.87, 10^{-4}(0.3) \\ 3.85, 10^{-4}(0.9) \\ 4.06, 10^{-4}(0.9) \\ 4.05, 10^{-4}(1.5) \\ 4.07, 10^{-6}(1.5) \end{array}$	<u>3.98.10 (</u> (0.6)	* Cd-sibtr.aefhod
g	<pre>XFXI: 552 ug Ga (in HNO₃) on Al-foil; pellet 6.4 mm diam. x 0.2 mm (in the second seco</pre>	72.ca (TV/b)	629.9 834.0 894.2 1050.8 2201.7 2491.0 2507.9	$\begin{array}{c} -2 \\ 5.16.10^{-2} \\ (3.3,10^{-3} \\ (2.3)^{-3} \\ (2.3)^{-3} \\ (2.3)^{-3} \\ (1.47,10^{-2} \\ (2.8)^{-3} \\ 4.26.10^{-3} \\ (3.0)^{-3} \\ (2.6) \\ 1.15.10^{-2} \\ (2.6) \end{array}$	$\begin{array}{c} & -2 \\ 5.22.10^{-2}(1.2) \\ 9.47.10^{-3}(1.4) \\ 3.81.10^{-3}(1.2) \\ 1.52.10^{-2}(1.8) \\ 4.36.10^{-3}(1.2) \\ 4.36.10^{-3}(1.2) \\ 1.19.10^{-2}(1.2) \\ 1.19.10^{-2}(1.2) \\ 7.51.10^{-3}(0.6) \end{array}$	1.51.10 ⁻² (1.9) 5.24.10 ⁻² (2.1) 5.36.10 ⁻³ (1.7) 5.36.10 ⁻³ (1.7) 3.80.10 ⁻³ (2.0) 1.48.10 ⁻² (1.6) 4.14.10 ⁻³ (2.1) 4.14.10 ⁻³ (2.1) 1.15.10 ⁻² (1.6) 7.19.10 ⁻³ (2.1)	$\begin{array}{c} 1,47,10^{-2}(1,4)\\ 5,24,10^{-2}(0.5)\\ 5,22,10^{-3}(1.1)\\ 3,22,10^{-3}(1.1)\\ 3,63,10^{-3}(2.6)\\ 1,45,10^{-3}(0.6)\\ 4,03,10^{-3}(0.6)\\ 1,11,10^{-2}(1.3)\\ 1,11,10^{-3}(0.6)\end{array}$	$\begin{array}{c} (1,49,10^{-2}) \\ (1,49,10^{-2}(0,6)) \\ \underline{5.24,10^{-3}}(0,9) \\ \underline{5.42,10^{-3}}(0,9) \\ \underline{3.48,10^{-3}}(0,9) \\ \underline{1.48,10^{-3}}(1,9) \\ \underline{1.45,10^{-3}}(1,2) \\ \underline{1.15,10^{-3}}(1,2) \\ \underline{1.15,10^{-3}}(1,3) \\ \underline{1.15,10^{-3}}(1,3) \end{array}$	Eeff of 2491.0, 2507.8 Eeff of 2515.4

		Tsorope		×	Measured k. and relative error.		z	Recommended	
clar.		formed	÷.	-	0,Au			or (rentative)	
JUƏN	Sample preparation	(Activation- decay type)	keV	KFKI "WAR-M"	ым к- м''	L, MNI	"NW "THETLS"	^R 0,Au (fetat) err., Z) [experimental]	NOTES
As	KFKI : 53 µg As (in HNO ₃) on W 41;	76 _{AS}	559.1	I	I	- 4.90.10 ⁻² (0.3)	- 4.75.10 ⁻² (0.4)	<u>4.83.10⁻²(1.6)</u>	INW : intern.comp. ₂) 69m _{7n}
	pellet ; 5 mm diam, x 3 mm INW :		559.2	4.88.10 ⁻² (2.0)	5.03.10 ⁻² (0.9)	4.99.10 ⁻² (0.2)	4.99.10 ⁻² (0.9)	4.97.10 ⁻² (0.6)	
	1) 0.66 mg As ₂ 0 ₃ (in NH ₄ OH) on R41; pellet 10 mm diam, x		563.2	t	I	5.04.10 7(0.3)	4.89.10 -(0.4) -	(1.40.10 ⁻³)	
			;	, , 1		1.44.10 ⁻³ (1.9)	1.36.10 ⁻³ (3.4)		•
	2) As ₂ 0 ₃ (in NH ₄ OH) on W 41; 0.24 me As (CH 3), 0,48 mg As		657.1	6.42.10 (2.1)	6.73.10 ⁻ (1.4)	(2.0) 01.26.4 (7.0) ⁻³ (0.7)	6.31,10 ⁻³ (5.4)	ام	
	(CH 15); pellet 10 mm diam. x		1212.9	ţ	I			(1.49.10 ⁻³)	
			1215.1	5.26.10 ⁻³ (3.0)	5.36.10 ⁻³ (1.1)	$5.15.10^{-3}(0.1)$	(1.6) $(0.7)(1.6)^{-3}(0.7)$	<u>5.25.10⁻³(0.8)</u>	E _{eff} of 1212.9 & 1216.1
•		•	1216.1	ţ	I	5.37.10 ⁽ (2.2)		(3.78.10 ⁻³)	
						(6.1) 01.68.6	(4.2) 01,10.L		
Br		80 ^m Br							Internal.compar.; ⁸² Br THIS WORK :
	pellet 6 mm diam. x 6 mm	T.1 5				1		ŗ	F, CD
		80Br	616.3	1	1	6.61.10 (0.7)	6.73.10 (0.9)	(6.67.10 ⁻⁾	$\frac{2}{\sigma_0^{\rm B}} = 0.261$
		(2/AT)	665.8	ĩ	ł	1.17.10 ⁻³ (1.2)	1.15.10 ⁻³ (0.5)	(1.16.10 ⁻³)	,
48 Kb	KEKI :	86 _{Rb}	1076.6		7.67.10 ⁻⁴ (1.2)	7.32.10 ⁻⁴ (1.2)	7.49.10 ⁻⁴ (0.5)	7.65.10-4 (1.0)	: MNI
	1) 835 µg RbCl in Al-foil;	(q/AI)		7.89.10 (1.2)	-4	7.88.10 (0.5)	7.61.10 (0.1)		SD
	pellet 6.4 mun diam. x 0.2 mm				7.90.10 '(0.7) (BISM)				
	z) 1 mg KDNU3 (111 m20/ 04 A. 2012) pellet 6.4 mm diam. x 0.2 mm								
	INW ,								
	1) 10 mg RbCl in W41; pellet								
	10 mon diam. x 5 mm								
	(CH 3); 170 mg (CH 15); pellet								
	12 mm diam. x 3 mm								
	RISC : 2 mg RbN0 ₃ (in H ₂ 0) on Al-				·,				
	IOII; petter 0.4 mm gram v.v.								

										F
Eler		Lsotope formed	*, ⊡	Wea	Measured k _{0 s} Au and relative error;	relative error, Z.		Recommended or (tentative) k. (relat.		
mexit:	Sample: preparación.	(Activation- decay type)	keV	кект "ини"	R-M"	"NATTHT" WIL	HETIS"	0, Au Contact err., 7) [experimental]	NOTES	1.1.1
N Vi	$ \begin{array}{l} \frac{KFKL}{2}: Src(No_3)^2 (in \ H_2O); \ 120 \ \mugc \\ \ Sr \ on \ Al=Goll; \ peller' \ Get \ mmc \\ \ diam \times 0.2 \ mm \\ \ diam \times 0.2 \ mm \\ \ Sr \ on \ Al=Goll; \ peller' \ Get \ H_2O); \ 4.5 \ mgc \\ \ Sr \ on \ Al=Goll; \ peller' \ Get \ H_2O) \ \ Get \ Mell \ $		23°t.,7 514.0	231.7 		7.00.10 ⁻⁵ (0.2) [6.86,10 ⁻⁵ (1.8) 	6.86.10 ⁻⁵ (1.9) 	. (6.92.10 ⁻⁵) 9.15.10 ⁻⁵ (0.9)		and the second
N	eren, ING. 1156 - 125 um 2n Soil	$\underset{\substack{\mathbf{y}_{1}\\\mathbf{y}_{2}\\\mathbf{y}_{3}\\\mathbf{y}_{4}\\\mathbf{y}_{$	724.2 756.7 736.7 765.8	9. 387. 10 ⁻¹⁴ (1. 1) * 1. 150. 10 ⁻⁶ (1. 1) * 2. 088. 10 ⁻⁶ (0. 9) *	2.152.10 ⁻⁴ (1, 0) + (R150) - (R150) - (R150) - (R150) - (R150) -	9.354.10 ⁻⁵ (0.9)* 9.167.10 ⁻⁵ (1.4)* 9 <u>.321.10⁻⁵(0.6)</u> * * cd-subtr.mmthod 9.271.10 ⁻⁵ (1.9)* 1.154.10 ⁻⁴ (1.6)* 1 <u>.1491.10⁻⁶(0.6)</u> * * cd-subtr.mmthod 1.157.10 ⁻⁴ (0.1.5)* 2.091.10 ⁻⁶ (1.1.5)* * 2.094.10 ⁻⁶ (0.6) * E _{4E} = 742.2 keV 2.093.10 ⁻⁴ (0.6)* 2.011.10 ⁻⁶ (1.1.5)* 2.094.10 ⁻⁶ (0.6) * E _{4E} = 742.2 keV 2.112.10 ⁻⁶ (1.13)* * 2.094.10 ⁻⁶ (0.6) * E _{4E} = 742.2 keV 2.013.10 ⁻⁶ (0.6)* 2.011.10 ⁻⁶ (1.13)* * 9.00 ⁻⁶ (0.6) * (0.6)	$2, 1672, 10^{-5}(1, 4) \times 9, 221, 10^{-5}(1, 9) \times 9, 221, 10^{-5}(1, 5) \times 9, 221, 10^{-6}(1, 5) \times 10^{-6}(1, 1) \times 10^{-6}(1, $	<u>9. 321 , 10 ⁻⁵</u> (0. 6), ⁺ <u>1. 149: 10 ⁻⁶</u> (0. 6) + <u>2. 094, 10 ⁻⁶</u> (0. 6) +	$ \frac{2.34,10^{-5}(0,2)}{9.271,10^{-5}(1,9)*} \frac{9.221,10^{-5}(0,4)}{1.154,10^{-5}(1,9)*} \frac{10^{-5}(1,4)}{1.154,10^{-5}(1,4)} \frac{10^{-5}(1,4)}{1.154,10^{-4}(1,4)} \frac{10^{-5}(1,4)$	
(contd.	KFKT, LNW, RISG': 125 µm Zr fail	6 6 7 8 9 8 9 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8	355. 4. 2. 355. 4	()	(1.2,7,2,1) (1.10 ⁻⁷ (2.1) (2.14) (2.14) (2.14) (2.14)	1 L	1)	(1.91.10 ⁻²)°. (3.06.10 ⁻⁷)		· · · · · · · · · · · · · · · · · · ·

Table 2 (conf'd)

Table	Table 2 (cont'd)								
1.18	-	Isotope	ີ່ພິ	Me	Measured $k_{0,Au}$ and relative error,	relative error, %		Recommended or (rentative)	
Juen 1	Sample preparation	(Activation- decay type)	r keV	KEKI "WWR-M"	WR-M'	"RITHETLS"	IETIS"	k _{0,Au} (relat. err., 7) [experîmental]	NOTES
Zr (cont'd)			507.7	1	- 7.11.10 ⁻⁷ (2.2)	in an	ĩ	(7.11.10 ⁻⁷)	* Gd-subtr.method
5 50		89	602.4	• • • • •	(RISØ) - 1.99.10 ⁻⁷ (4.0)	1	. 4	(1.99.10 ⁻⁷)	+ weighted mean
	,	E ⁵ =0*-6 035	703.7		(RISØ) - 1.42.10 ⁻⁷ (3.3)	in the second se	· · · · ·	(1.42.10 ⁻⁷)	
		0= ⁷⁷ 3	1148.0	1	(RISØ) - 3.57.10 ⁻⁷ (2.0)		1	(3.57.10 ⁻⁷)	
		97m _{Nb} (II/a)	743.3	1.318.10 ⁻⁵ (10.1)*	(RISØ) -	1,307,10 ⁻⁵ (2.2)* 1.253.10 ⁻⁵ (2.0)* 1.296.10 ⁻⁵ (0.9)+ 1.287.10 ⁻⁵ (6.3)*	1.253.10 ⁻⁵ (2.0)* 1.287.10 ⁻⁵ (6.3)*	1.296.10 5 (0.9)+	
		F3=1			1.310.10 ⁻⁵ (1.2)*				
<u>.</u>		97 _{Nb} (III/a)	657.9	1.319.10 ⁻⁵ (10.1)*		1.333.10 ⁻⁵ (1.9)* 1.294.10 ⁻⁵ (2.0)* <u>1.304.10⁻⁵(0.9)+</u> 1.243.10 ⁻⁵ (5.3)*	1.294.10 ⁻⁵ (2.0)* 1.243.10 ⁻⁵ (5.3)*	<u>1.304.10⁻⁵</u> (0.9)+	,
					1.299.10 ⁻⁵ (1.3)* (RISØ)				
Ŵ	<u>кгкг, 18м</u> : Mo foil 25 µm <u>N150</u> : Mo foil 5 µm	од (1)	181.1		4.19.10 ⁻⁵ (0.8) 4.20.10 ⁻⁵ (1.1)	4.22.10 ⁻⁵ (0.9)	4.22.10 ⁻⁵ (1.1) 4.14.10 ⁻⁵ (0.2)*	<u>4.15.10⁻⁵ (0.6)</u>	* Cd-subtr.method
		<mark>د 688.</mark> 0= م	366.4 739.5	4.05.10 ⁻ (1.4)* 8.37.10 ⁻⁶ (0.4) 8.20.10 ⁻⁵ (1.9) 8.63.10 ⁻⁵ (0.7)	8.34.10 ⁻⁶ (0.3) 8.31.10 ⁻⁵ (0.9) 8.47.10 ⁻⁵ (0.9)	8.10.10 ⁻⁶ (1.1) 8.50.10 ⁻⁵ (0.6)	8.64.10 ⁻⁶ (1.0) 8.48.10 ⁻⁵ (0.9) 8.64.10 ⁻⁵ (1.5)*	<u>8.36.10⁻⁶</u> (1.3) <u>8.46.10⁻⁵</u> (0.7)	
(cont'd)				8.20.10 ⁻⁵ (3.0)*			(RISØ)		

		Isotope	ш	Me	asured k0, Au and	Measured k0, Au and relative error, 7		Recommended or (tentative)	
de ut	Sample preparation	Activation- decay type)	keV	иня-и"	MR-M.	L. ANNI	INW. "THETIS"	k _{0,Au} (relat. err., Z) [experimental]	NOTES
Mo (cont'd)		-a 	778 . 0∻	3.02.10 ⁻⁵ (2.0) 2.96.10 ⁻⁵ (2.6) 2.89.10 ⁻⁵ (1.8) 2.79.10 ⁻⁵ (8.0)*	3.03.10 ⁻⁵ (2.1) 3.09.10 ⁻⁵ (1.6)	2.99.10 ⁻⁵ (0.4) 2.97.10 ⁻⁵ (0.4)	2. <i>9</i> 7,10 ⁻⁵ (0.4)	2 <u>.97.10⁻⁵ (1.1)</u>	
		олт Ст.		-				<u>.</u>	
	١	140.5 keV Tevel (II/d)	140.5	5.22.10 ^{~4} (1.7) 5.26.10 ^{~4} (3.0) 5.19.10 ^{~4} (0.4) 5.09.10 ^{~4} (1.9)*	5.35.10 ⁷⁴ (0.3) 5.31.10 ⁷⁴ (0.2)	[5.43.10 ⁻⁴ (0.6) [5.32.10 ⁻⁴ (1.9) 5.20.10 ⁻⁴ (2.0)* [5.21.10 ⁻⁴ (0.6)* 5.27.10 ⁻⁴ (0.6)* [5.24.10 ⁻⁴ (0.6)* 5.27.10 ⁻⁴ (0.6)* [5.24.10 ⁻⁴ (0.6)*	5.32.10 ⁻⁴ (1.9) 5.21.10 ⁻⁴ (0.8)* 5.24.10 ⁻⁴ (0.6)*	<u>5.27.10 (0.5)</u>	^Y 140.MD = 0.0675 <u>F</u> 2. ^Y 140.TC (THIS WORK)
				_			5.46.10 ⁻⁴ (1.1)* (RISØ)		
	KEKI, INM : No foil 25 µm BTEGG • Mo foil 5 µm	101 Ho	80.9	. 1	1	1	1	(1.80.10 ⁻⁵)	* Cd-subtr, method
) —	-	1.77.10 ⁻⁵ (1.4)* [1,83.10 ⁻⁵ (3.0) (RISØ) (RISØ)	1,83,10 ⁻⁵ (3.0) (RISØ)				
			191.9	ì	1	I	1	(7.71.10 ⁻⁵).	
				7.70.10 ⁻⁵ (1.5)* 7.71.10 ⁻⁵ (1.6) (RISØ) (RISØ)	7.71.10 ⁻⁵ (1.6) (RISØ)				
			195.9	1	1	י <u>ו</u>	ı	(1.02.10 ⁻⁵)	
				9.84.10 ⁻⁶ (7.4)* 1.06.10 ⁻⁵ (3.6) (RISØ) (RISØ)	1.06.10 ⁻⁵ (3.6) (RISØ)	· · · · ·			
		ļ- -	192.4	I	1	8.36-10-5(0.8) 8.14.10-5(0.3)		<u>8.36.10⁷⁵(1.6)</u>	8:36.10 ⁷⁵ (1.6) E _{dff} = 191.9 & 195.9
		a 23		8.42.10 ⁻⁵ (2:4)* 8.77.10 ⁻⁵ (1.8) (RISØ) (RLSØ)	8.77.10 ⁻⁵ (1.8) (RLSØ)		-		
-			408.7	i	1	ì.	1	(5.85.10 ⁻⁶)	
(cont'd)				5.85.10 ⁻⁶ (3.3) (RISØ)					

Table 2 (cont'd)

		Lsotope	8	Me	Measured $k_{0,Au}$ and relative error,	telative error, Z		Recommended or (tentative)	
Ele-	Sample preparation		kev	KFKI "HHR-M"	MR-M"	"NHETIS"	teris"	kG, Au (relat. err., X) [experimentak]	NOTES
iq.		******	4.,964	1	1	I	-	(5.63.10 ⁻⁶)	
(cont'd),		<u>a a na an </u>	202 202	563. r0 ⁻⁶ (3.2) (RI30) (462. r0 ⁻⁵ (3.6) 452. r0 ⁻⁵ (2.2)	(0,-5) ⁻⁵ (0,-5) (0,-5) ⁻² (0,-5)	4.79.10 ⁻⁵ (0.2)	4,25,10 ⁻⁵ (0,4)	<u>4.71,10⁻⁵ (1.9)</u>	E.e.f.£ = 505.1 & 505.9
<u> </u>		<u>n – negovina – nagovi – erieč</u> Landar – stanska – stanska	27965 5	₩.98L10 ⁻³ (1.4).# (RL50) 8.55.10 ⁻⁵ (1.3) 8.00.10 ⁻⁵ (2.1)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8.02.10 ⁻⁵ (0.3)	7.97.40 ⁻⁵ (0.3)		E _{eff} = 590.1 & 590.9
<u> </u>		1 	693° 6	87910 ⁻⁵ (08) % 88010 ⁻⁵ (08) (RES67) (RES67) 2185. 10 ⁻⁵ (119) 282.10 ⁻⁵ (11.1) 21.2210 ⁻⁵ (31) 28410 ⁻⁵ (30)	8.80.10 ⁻⁵ (0.9) (RISØ) 2.87.10 ⁻⁵ (1.1) 2.84.10 ⁻⁵ (7.0)	2.71.10 ⁻² (0.8)	2.68.10 ⁻⁵ (0.8) <u>2.99.10⁻⁵(1</u> .6)	<u>2. 89.10⁻⁵ (</u> 1.6)	interfer.: 694.7 keV (101rc)
			d Mitto	1	2.9210 ⁻⁷ (r9) (arsa)	1		(1,37,10 ⁻⁵)	
·····		<u> </u>	870.9	.137.10 ⁻⁵ (3.5) (reso)	. 1	1		(8.61.10 ⁻⁶)	5 ⁶ EE = 869.7 & 871.1
			877.4	g. 61. 10 ⁻⁶ (7. 3) (RISA) -	· 1	1	ł	(1.53.10 ⁻⁵)	
		_		1.53.10 ⁻⁵ (1.5) (RISØ):					

Ele-		Isotope	. لم	ж	asured k _{n,Au} and	Measured $k_{\Lambda,\mathrm{Au}}$ and relative error, $\mathbf{\tilde{z}}$		Recommended or (tentative)	
	Sample preparation	rormea (Activation- decay type)	kev	KFKI ⁱⁿ WR-M ⁿ	WR-M'	I, MNI	"SIT3HT" WI	K ₀ , Au (relat. err., Z) [experimental]	NOTES
9J		_	934.0	F	I	1	I K	(1.75.10 ⁻⁵)	E _{eff} = 933.3 & 934.2
(cont'd)				1.75.10 ⁻⁵ (3.1)		-			
			1012.3	1.5)	6.25.10 ⁻⁵ (2.0) 6.36.10 ⁻⁵ (1.9)	5.94.10 ⁻⁵ (0.8)	6,00,10 ⁻⁵ (0.6)	<u>6.18.10⁻⁵ (2.2)</u>	E _{eff} = 1011.1 & 1012.5
					6.67.10 ⁻⁵ (1.1) (RISØ)				
-			1161.0	ı	I	ı	1	(1.82.10 ⁻⁵)	
				1.82.10 ⁻⁵ (1.2) (RISØ)					
		⁸	1251.0	I	1		ı	(2.14.10 ⁻⁵)	E _{eff} = 1249.4 &1251.1
				2.14.10 ⁻⁵ (0.6) (RISØ)					
			1304-0	١	1	1	I	(1.30.10 ⁻⁵)	
	·			1.30.10 ⁻⁵ (7.1) (RISØ)					
			1532.5	I	I	ı. I		(2.73.10 ⁻⁵)	
				2.73.10 ⁻⁵ (2.5) (RISM)					
		101 Tc	127.2	1	I		ı	(1.20.10 ⁻⁵)	
		(11/a)		1.20.10 ⁻⁵ (2.1)* 1.20.10 ⁻⁵ (1.8) (RISØ) (RLSØ)	1.20.10 ⁻⁵ (1.8) (RISØ)			• •	
			184.1	1	1	1	ł	(5.50.10 ⁻⁶)	
(Planci)				5.50.10 ⁻⁶ (3.7) (RISØ)				_	_

Table	Table 2 (cont'd)								
		Latope	ŝ	We	Measured $k_{0,Au}$ and relative error, \ddot{x}	relative error, Z		Recommended or (tentative)	
ment	Sample preparation	K(Activetion-	keV	KFKI "'	KFKI "WWR-M"	J ₁₁ MNI	"SITTHETLS"	K _{0,Au} (relat. ert., Z) [experimental]	NOTES
Mo (cont ^t d)		-	306,8	$\begin{array}{c c} 3.75.10^{-4}(1.9) \\ 3.68.10^{-4}(2.4) \\ 3.81.10^{-4}(1.4) \end{array}$	3.73.10 ⁻⁴ (1.6) 3.81.10 ⁻⁴ (1.4)	$3.53.10^{-4}(0.4) - 3.65.10^{-4}(0.8)$ $3.63.10^{-4}(0.7)* 3.63.10^{-4}(0.8)*$	-3.65.10 ⁻⁴ (0.8) 3.73.10 ⁻⁴ (0.8)*	<u>3.73.10⁻⁴(1.3)</u>	
				3.90.10 ⁻⁴ (0.9)* 3.90.10 ⁻⁴ (1.0) (RISØ) (RISØ)	3.90.10 ⁻⁴ (1.0) (RISØ)	3.60.10 (1.U)* 3.61.10 ⁻⁴ (0.3)* 3.73.10 ⁻⁴ (0.6)*	3.71.10 ⁻⁴ (0.7)*		
			531.4	1	I	1	1	(5.01.10 ⁻⁶)	
· · · · · · · · · · · · · · · · · · ·			545.1	5.01.10 ⁻⁶ (5.2) (RISØ) 2.52.10 ⁻⁵ (2.5) 2.45.10 ⁻⁵ (3.0)	2.51.10 ⁻⁵ (0.6) 2.54.10 ⁻⁵ (2.4)	(1.1) ² (1.10 ⁻⁵ (1.1))	2.41.10 ⁻⁵ (1.1)	<u>2.49.10⁻⁵(1.0)</u>	
·				2.55.10 ⁻⁵ (1.1)* 2.55.10 ⁻⁵ (1.0) (RISØ) (RISØ)	2.55.10 ⁻⁵ (1.0) (RISØ)				
라	<pre>KFKI : 3 mg Ru powder in Al-foil; .pellet 6.4 mm diam. x 0.3 mm INN 7 mg Ru sponge in polychene vial 2) (NH₂)₂ Ru(R₂)015, (30.62 Ru certified)(in H₂)0 un 4.1; 1.3 mg Ru (GH 3), 3.2 mg Ru (CH 15); pellet 10 mm diam. x 4 mm</pre>	$\begin{array}{c} \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $					$\begin{array}{c} 1.39.10^{-6}(0.9)\\ 1.2.10^{-6}(1.1)\\ 3.50.10^{-6}(1.1)\\ 3.55.10^{-6}(0.8)\\ 3.07.10^{-6}(2.1)\\ 2.07.10^{-6}(1.2)\\ 9.27.10^{-6}(0.6)\\ 8.43.10^{-6}(0.6)\\ 8.43.10^{-5}(2.1)\\ 9.41.10^{-5}(1.6)\\ 9.41.10^{-5}(1.6)\\ 1.03.10^{-6}(2.5)\\ \end{array}$	$\frac{1.31\cdot10^{-4}(1.8)}{3.47\cdot10^{-4}(1.3)}$ (2.95.10 ⁻⁴) (2.95.10 ⁻⁴) (1.7) (1.7) (1.7) (1.1) (<u>1.31.10⁻⁴(1.5)</u> INW : internal compar.: <u>3.47.10⁻⁴(1.3)</u> E _{6ff} of 469.4 & 470.1 (2.95.10 ⁻⁴) <u>8.87.10⁻⁴(1.7)</u> <u>9.20.10⁻⁵(1.3)</u> <u>9.20.10⁻⁵(1.3)</u>
			319.2	3.59.10 (2.4) 3.85.10 (2.4)	3.85.10 (2.4)	3.61.10 (1.4) 3.38.10 ⁻⁴ (1.5)	3.63.10 (0.8) 3.34.10 ⁻⁴ (0.3)	<u>3.57.10</u> (2.1)	

Ele-		Isotope	, "	We	sasured k _{0,Au} and	Measured $k_{0,Au}$ and relative error, 7		Recommended or (tentative)	
ment	Sauple preparation	Activation- decay type)	keV	КРКІ "НИКР-М"	₩R−M"	L, MNI	"SITAHT" WAL	k _{0,Au} (relat. err., Z) [experimental]	NOTES
42	<pre>IIW :) (NN4_3RhCl6.1\$1\$19(0(J.M. cmc- cif. Rh content) (In dil.NN03) on W 41; 16 µg Rh (CH 9), 305 µg Rh (CH 8); pmllet 10 mm diam. * 4 mm mixed with 600 mg wax; pmllet 10 mm diam. * 5.3 mm (CH 8)</pre>	42 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - 1	555.8	,	l.	6.15.10 ⁻² (1.9) 6.04.10 ⁻² (1.9)	6.15.10 ⁻² (1.9) 6.04.10 ⁻² (1.5)	(6.11.10 ⁻²)	intern.compar.: 1) 52_{y} $\mathbb{E}_{2} \sigma_{0}^{m} \sigma_{0}^{2} = 0.082$ (THIS WORK)
የፈ	<u>INN</u> : (NH ₄) ₂ PdCl ₄ (J.M. certif. Pd content) (Ji HLJ) on W 41; 1.8 mg Pd (CH 3), 4.5 mg Pd (CH 15); pellet 10 mm diam. x 4 mm	$\overset{100}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$	311.1 414.4 602.5 636.3 647.3 781.4 88.0			$\begin{array}{c} 1.57 \cdot 10^{-5} (1.3) \\ 8.63 \cdot 10^{-6} (2.5) \\ 3.56 \cdot 10^{-6} (2.4) \\ 4.26 \cdot 10^{-6} (2.4) \\ 1.07 \cdot 10^{-5} (2.3) \\ 1.07 \cdot 10^{-5} (2.3) \\ 4.78 \cdot 10^{-5} (4.9) \\ 1.85 \cdot 10^{-3} (0.6) \end{array}$	$1.61.10^{-5}(1.2)$ $9.08.10^{-6}(4.3)$ $3.29.10^{-6}(1.3)$ $4.65.10^{-6}(2.9)$ $4.44.10^{-6}(2.9)$ $4.44.10^{-6}(4.2)$	(1.59.10 ⁻⁵) (8.85.10 ⁻⁶) (8.62.10 ⁻⁶) (4.62.10 ⁻⁶) (1.09.10 ⁻⁵) (1.09.10 ⁻⁵) (1.01.10 ⁻⁶) (1.79.10 ⁻³)	intern.compar. : 69m_Zn E ₆₆ £ = 309.1 & 311.4 E ₆ ££ = 413.0 & 415.2
	<pre>INW : (NH₄)₂ PdCl₄(J.M. certif. Pd content) (in HCl) on W 41; 1.8 mg Pd (CH1), 4.5 mg Pd (CH15); pellet 10 mm diam. x 4 mm</pre>	111m _{Pd} (I)	172.1	•		8.64.10 ⁻⁶ (0.3)	9.44.10 ⁻⁶ (1.9)	(9.04.10 ⁻⁶)	intern.compar. : 69m_zn

Table 2 (cont'd)

F. DE CORTE et al.: ko-MEASUREMENTS AND RELATED NUCLEAR DATA, IIIa

Table	(n the to could a)								
		Isotope	с ,	W	Measured k _{0,Au} and relative error,	relative error, %	÷	Recommended or (tentative)	•••
Eler	Sampie preparation	Lotueu (Activation- decay type)	keV	KEKI "	∕т КғКІ "Чике-м"	L., MNI	"SILƏHL, MNI	^k 0,Au (relat. err., Z) [experimental]	NOTES
A <u>R</u>	<u>KZYCT</u> : (1) 580 μg Ag on W41; pellet 6.4 mm diam. x 1.5 mm	108Åg (I)	433.9	1.71.10 ⁻³ (0.4) 1.71.10 ⁻³ (2.8)	1.71.10 ⁻³ (0.4) 1.71.10 ⁻³ (2.8) 1.65.10 ⁻³ (2.9)	$1.56.10^{-3}(0.9)$ $1.49.10^{-3}(1.9)$ $1.54.10^{-3}(1.7)$	1.57.10 ⁻³ (0.5) 1.49.10 ⁻³ (0.1) 1.56.10 ⁻³ (0.6)	<u>1.59.10⁻³(1.8)</u>	INW : intern.compar.: 1) 66cu 2) 69m _{2n}
	<pre>2) 2.8 µg Ag on W41; pellet 6.4 mm diam. x 1.5 mm</pre>		618.9	9.12.10 ⁻⁴ (0.2) 9.4 <u>9</u> .10 ⁻⁴ (2.4)	- 9.38.10 ⁻³ (5.1)	1. 2	1	(9.33.10 ⁻²)	<u>۵- ۲</u> (٤
	<u>INW</u> : 1) AgNO ₃ (in dil.HNO ₃) on W 41; 1 mg Ag (CH 9, CH 8); pellet		633.0	6.01.10 ⁻³ (0.3) 6.37.10 ⁻³ (3.1)	- 6.43.10 ⁻³ (0.5)	$5.95.10^{-3}(1.1) \begin{vmatrix} 5.93.10^{-3}(1.4) \\ - \\ 5.71.10^{-3}(0.5) \end{vmatrix} = 5.67.10^{-3}(0.4)$	$5.93.10^{-3}(1.4) = \underbrace{6.01.10^{-3}(1.9)}_{5.67.10^{-3}(0.4)}$	6.01.10 ⁻³ (1.9)	
	10 mm diam. x 4 mm 2) $A_{\rm E}NO_3$ (in dil.HNO_3) on W41; 1.7 mg Ag (CH17), 4 mg Ag								
. <u> </u>	(UH 9); PEILEL 10 MM LLAM. A 4 mm 3) AgNO ₃ (in dil.HNO ₃) on W 41; 0.2 mg Ag (CH 9), 0.5 mg Ag	<u>.</u>						-	
	(CH8); pellet 10 mm diam, x 4 mm								
3 ·	<u>INN</u> : ¹¹⁴ CdO (98.55% ¹¹⁴ Cd en- richan.)(in HNO3) on W 41; 200 µG Cd (GH 3), 700 µg Cd (CH 15);		527.9	1	I	3.19.10 ⁻⁴ (1.8)*	3.19.10 ⁻⁴ (1.8)* 3.48.10 ⁻⁴ (1.0)* 3.58.10 ⁻⁴ (0.2)+	(3.42.10 ⁻⁴)	<pre>* Cd-subtr.method (F_{Cd} = 0.45) .</pre>
	pellet 6 um diam. x 2 um	دهم 115m (II/a)	336.2	1	1	5.28.10 ⁻⁴ (1 <u>.</u> 9)*	5.28.10 ⁻⁴ (1.9)* 5.64.10 ⁻⁴ (1.9)* 5.78.10 ⁻⁴ (0.4)*	(5.57,10 ⁻⁴)	+ 2-channel method
u I I	KrKI : Al-0.099% In wire, 1 mm diam.	ittan _{Ln} (IV/b)	190.3 558.4 775.2	1.03.10 ⁻³ (0.2) 2.75.10 ⁻⁴ (0.7)	9.96.10 ⁻³ (9.3) 2.75.10 ⁻⁴ (1.1) 2.71.10 ⁻⁴ (1.3)	1 1 1	1 1 1	(1.01.10 ⁻³) (2.75.10 ⁻⁴) (2.73.10 ⁻⁴)	

Table 2 (cont'd)

Table	Table 2 (cont [°] d)	_	•						
Els.		Isotope formed	. °		Measured $k_{0,Au}$ and relative error, Z	relative error,	27	Recommended or (tentative)	
le st Be	Sample preparation	(Activation- decay type)	kev	, TALX	KFKI "WWR-M"	- MNT	"THETIS"	k _{0,Au} (relat. err., Z) [experimental]	NOTES
ŝ	<pre>KEVKI : 5n wire 0.25 mm diam., and Sn foil 40 µm <u>LNW</u> : 1) Sn foil 1 mm 2) Sn (in HF + fuming HNO₃) on</pre>								KFKI, INW : corrected for gamma-attenuation INW : corrected for
	W41; 5.7 mg (CH 3), 15 mg (CH 1); 19 mg (CH 15); pellet 10 mm diam, x 4 mm RIS@ : Sn foil 25 µm	(V/c) (V/c) (V/c)	391.7	5.88.10 ⁻⁵ (0.5) 5.81.10 ⁻⁵ (0.9)	5.92.10 ⁻⁵ (2.0) 5.90.10 ⁻⁵ (0.8)	5.97.10 ⁻⁵ (3.4)	6.06.10 ⁻⁵ (0.8)	5.99,10 ⁻⁵ (0.8)	ve INW : internal compar. 5.2n
		•	•				6.04.10 ⁻⁵ (0.9) (RISØ)		
	<u>1844, R150</u> : Sn foil 25 µm	11755 (I)	158.5	- 1.37.10 ⁻⁵ (1.0)* (RISØ)	E.	1	1.31.10 ⁻⁵ (1.6)* 1.37.10 ⁻⁵ (1.2)* 1.36.10 ⁻⁵ (5.8)*	(1, <u>35, 10⁻⁵ (1</u> , 1)	E _{eff} : 156.0&158.6 * Cd-subtr.method NOT SUITED FOR COMPA-
						-			RATOR-TYPE NAA DUE TO STRONG ¹¹⁷ Su(n,n') 117 ^m Su INTERFERENCE
,	XFYL: Sn foil 40 µm XNH: 1 Sn foil 1 mm 1 Sn foil 1 mm 2 Sn (in HF + fuming HNO ₃) on W 41:5.7 mm (CH 9), 15 mm Vanot 10.1 (10.1 H)	123a ₅ n (I)	160.3	1.02.10 ⁻⁴ (1.4) 1.01.10 ⁻⁴ (0.5) 1.01.10 ⁻⁴ (0.5) 1.02.10 ⁻⁴ (1.4) 1.02.10 ⁻⁴ (1.4) (RISØ)	*	$\begin{array}{c} 9.94, 10^{-5}(0.8), & 1.01, 10^{-4}(1,1) \\ 9.88, 10^{-5}(2.0)*, & 1.02, 10^{-4}(1,0)* \\ 9.88, 10^{-5}(1,1)*, & 1.02, 10^{-6}(1,1)* \\ 1.02, 10^{-6}(1,1)*, & 1.04, 10^{-6}(1,1) \end{array}$	$1.01.10^{-4}(1.1)$ $1.02.10^{-4}(1.0)*$ $1.02.10^{-4}(1.0)*$ $1.04.10^{-4}(1.1)*$	<u>1.02,10⁻⁴(0.5)</u>	INW : internal compar. 65 _{2n} corrected for slight interference ¹²⁴ Sn(n,2n) ^{122m} Sn
(cont'd)	RISØ		- mene						* Cd-subtr.method

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
which matrix Sample preparation (Activity Preparation access type) keV TEXX "where" Sn <u>WWI</u> : Shifting Day MI : Ultrapure Sn (in WF + Ew (1) 331.9 1.17.10 ⁻⁴ (1.2) 1.13.10 ⁻⁴ (1.1) Reserve from SNO ₂ on N 41; 5.7 mg (SHO ₂) on N 41; 5.7 mg (SHO ₂) on N 41; palser 10 mm diam. x 4 mm 125_{Sn 322.1 - - RESG : Sn foil 25 µm (1) (1) (1) (1) - - RESG : Sn foil 25 µm (1) (1) (2) (1) - - (2001) (1) (1) (1) (1) - - (2012) (1) (2) (2) (2) - - (2012) (1) (2) (2) (2) - - (2012) (2) (2) (2) (2) - - (2014) (2) (2) (2) - - -	·	- 613		Isotope		W	easured k _{0,Au} and	relative error,	z	Recommended or (tentative)	
and the set of the set		Juan	Sample preparation	(Activation- decay type)	kev	" KEKI	WWR-M"	"" WNI	INW "THETIS"	k _{0,Au} (relat. err. %) [experimental]	NOTES
(cont d) (c	L	Sn Eônt'd)		125m _{Sn} (1)	331.9	1.17.10 ⁻⁴ (1.2)	1.13.10 ⁻⁴ (1.1)	1.14.10 ⁻⁴ (0.4)	1.14.10 ⁻⁴ (0.4) 1.26.10 ⁻⁴ (1.2)	1.18.10-4(2-0)	INW : internal compar. 65 _{2n}
pollet 10 mm diam. x 4 mm 135 sn foil 25 µm (1) 332.i 332.i									-4.27.10 ⁻⁴ (1.4)* (RISØ)		* Cd-subtr.method
(1) (1) (1) (1) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2			pellet 10 mm diam. x 4 mm	125 _{Sn}	332.1	ĩ	1	1	I	(5.40.10 ⁻⁸)	
(cont'd) (co	i		111 C7 TTOI US : 0STN	Ê.					5.40.10 ⁻⁸ (17.)		
(cont'd) (co					822.5		1	I	(RISØ) -	(1.98.10 ⁻⁷)	
الالك الك الك الك الك الك الك الك				L =			_		1.98.10 ⁻⁷ (7.6)		
(vII/b) (42.4)	· ·			1 E ⁵⁷⁴	1067.1	, 	,	1	(RISG)	(1 32 10 ⁻⁷)	
(VIII/b)				a ≂5ª							
									4.37.10 ⁻⁷ (2.9) (RISØ)		
125 _{Sb} 176.3 - 176.3					1088.9	1	ı	1	1	(2.48.10 ⁻⁷)	E _{eff} of 1087.1&1089.2
125 ₅ b 176.3 - 427.9 427.9 427.9 427.9									2.48.10 ⁻⁷ (11.) (RISd)		
421.9				125 _{Sb}	176.3	1	I	ı	1	(2.47.10 ⁻⁷)	
- 463.4	-								2.47.10 ⁻⁷ (1.8) (RISØ)		
4.63.4	<u> </u>				427.9	3	ſ	ı	1	(1.23.10 ⁻⁶)	
463.4								-	1.23.10 ⁻⁶ (0.7) (RISØ)		
(cont'd)				_	463.4	ŧ		1	ſ	(4.43.10 ⁻⁷)	
		(cont'd)							4.43.10 ⁻⁷ (2.9) (RISØ)		

Table 2 (cont'd)

(mano) = oroma									
Ele-		Lsotope formed	^	~	Measured k _{0,Au} and relative error,	relative error,	2	Recommended or (tentative)	
ment	Sample preparation	(Activation- decay type)	keV	KFKI '	КҒКІ "ЧАЯК-М"	, MNI	"utheris"	k _{0,Au} (relat. err., Z) [experimental]	NOTES
Sn (cont'd)			600.6	I	1	2	J	(7.05.10 ⁻⁷)	
					2		7.05.10 ⁻⁷ (2.0)		
			606.6	1.	1	t	(MCTY)	(1.71.10 ⁻⁷)	
							1.71.10 ⁻⁷ (5.1) (RLSØ)	,	
			635.9	,	ı			(4.91.10 ⁻⁷)	
					·		4.91.10 ⁻⁷ (0.3) (RLSØ)		
Sb		124m ₂ 5b							INW : internal compar.: 65 _{Zn}
		1- 124m Sh							
		.T.I 2 27.0=£							
		• 1245b	602.7	602.7 2.94.10 ⁻² (0.8)			2.97.10 ⁻² (1.3)	2.96.10 ⁻² (n.6)	
		(TA)	645.9	2.97.10 - (2:0)			2.86.10 ⁻² (0.5) 2.18.10 ⁻³ (2.4)	· · · · · · · · ·	
			770 B	2.22.10 ⁻³ (2.6)	2.20.10 ⁻³ (3.2)		2.17.10 ⁻³ (0.4)	(/ 0) 01 - 1	
:		-	0.44	3.26.10 ⁻³ (2.6)	- 3.15.10 ⁻³ (1.1)	3.00.10 ⁻² (2.8) 3.34.10 ⁻³ (0.3)	3.29.10 ⁻³ (0.6) 3.07.10 ⁻³ (2.0)	<u>3.19.10⁻³(0.8)</u>	
			1691.0	- 1.41.10 ⁻² (2.3)	- 1.36.10 ⁻² (2.1)		$1.42.10^{-2}(0.8)$ $1.41.10^{-2}(0.5)$	<u>1.41.10⁻²(1.1)</u>	
			2090.9	- 1.57.10 ⁻³ (2.4)		$1.64.10^{-3}(0.3)$ $1.66.10^{-3}(0.5)$	1.66.10 ⁻³ (2.5) 1.57.10 ⁻³ (0.7)	<u>1.58.10⁻³(2.0)</u>	

Table 2 (cont'd)

Tab	Table 2 (cont'd)								
ļ		Isotope	Ŀ	Me	Measured $k_{0,AM}$ and relative error, 7	relative error, 7	-	Recommended or (tentative)	
Ele- ment	s- Sample preparation at	formed (Activation- decay type)	kev	₩ KFKI	KFKI "WWR-M"	L,, MNI	"THETIS"	k _{0,Åu} (relat: err., %) [experimental]	NOTES
°	Сs <u>XFWI</u> : 20 µg CsNO ₃ (in H ₂ O) on Al-foil; pellet 6.4 mm diam. ~ 0.7 mm	134m _{Cs} (1)	127.5	5.47.10 ⁻³ (1.3)	5.47.10 ⁻³ (1.3) 5.54.10 ⁻³ (1.3)	5.69.10 ⁻³ (0.6)	5.69.10 ⁻³ (0.6) 5.23.10 ⁻³ (1.0)	<u>5.48.10⁻³(1.7)</u>	<u>5.48.10⁻³(1.7)</u> INW : internal compar. 69m _{Zn}
,		17.1 2 17.1 2 17.6 17.7 17.7 17.7 17.7 17.7 17.7 17.7	563.2 569.3	4.22.10 ⁻² (2.6) 7.41.10 ⁻² (0.9)	4.09.10 ⁻² (3.2) 7.36.10 ⁻² (1.8)	4.26.10 ⁻² (0.6) 7.51.10 ⁻² (0.5)	3.99.10 ⁻² (1.3) 7.07.10 ⁻² (0.2)	<u>4.14.10⁻²(1.7)</u> <u>7.34.10⁻²(1.5)</u>	·
			604.7 795.8 801.9	4.81.10 ⁻¹ (1.0) 4.21.10 ⁻¹ (0.7) 4.16.10 ⁻² (2.0)	4.75.10 ⁻¹ (2.1) 4.18.10 ⁻¹ (1.8) 4.10.10 ⁻² (2.7)	4.93.10 ⁻¹ (0.3) 4.26.10 ⁻¹ (0.4) 4.27.10 ⁻² (1.9)	4.53.10 ⁻¹ (0.2) 3.93.10 ⁻¹ (0.2) 3.91.10 ⁻² (0.6)	$\frac{4.76.10^{-1}}{4.15.10^{-1}}(2.0)$ $\frac{4.15.10^{-1}}{2.0}(2.0)$	
£	Ba <u>KFKI</u> : Λ 3.5 mg Ba(NO ₃) ₂ packed in Al-foil; pellet 6.4 mm diam. x 0.2 mm	13. 13. 13. 13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14							INW : incernal compar.; 69m2n and 657n
	<u>IMM</u> : BaCO ₃ (in RNO ₃) on W 41; 6 mg (CH 3), 12 ug (CH 15); pellet 10 mm diam. x 4 mm	ri¶≊ 131 _{Ba} (IV/b)	123.8 133.6 216.1	4.13.10 ⁻⁵ (0.7) 3.14.10 ⁻⁶ (1.0) 2.88.10 ⁻⁵ (1.0)	4,16.10 ⁻⁵ (1.1) 3.34.10 ⁻⁶ (0.7) 2.90.10 ⁻⁵ (1.3)	4.25.10 ⁻⁵ (1.0) - 3.00.10 ⁻⁵ (0.6)	3.99.10 ⁻⁵ (0.9) - 2.87.10 ⁻⁵ (0.6)	$\frac{4.13.10^{-5}(1.3)}{(3.24.10^{-6})}$	
			373.2 486.5 496.3 620.1	2.04.10 ⁻⁵ (0.7) 3.46.10 ⁻⁶ (1.2) 6.96.10 ⁻⁵ (1.7) 2.26.10 ⁻⁶ (2.2)	$2.07.10^{-5}(1.3)$ $3.41.10^{-6}(1.0)$ $7.01.10^{-5}(1.3)$ $2.41.10^{-6}(2.6)$	2.07.10 ⁻⁵ (0.8) - 6.80.10 ⁻⁵ (0.3)	.1.94.10 ⁻⁵ (1.4) 	$\frac{2.03.10^{-5}(1.5)}{(3.44.10^{-6})}$ $\frac{6.84.10^{-5}}{(1.4)}$ $(2.34.10^{-6})$	
·		133m _{ba} (I)	276.1	1	, I	2 (28, 10 ⁻⁶ (0,8)	2.28.10 ⁻⁶ (0.8) 2.27.10 ⁻⁶ (1.0)	(2.27.10 ⁻⁵)	

:	· · · · · · · · · · · · · · · · · · ·	Lactope formed	°,	£	Measured k _{0,Au} and relative error, 7	relative error,	2	or (tentative)	
ment	Sample preparation	(Activation- decay type)	keV	KFKI	KFKI "WWR-M"	L _u MNI	"NW "THETIS"	k0,Au (retat. err., Z) [experimental]	NOTES
PN	<u>XFKI</u> : Nd ₂ 0 ₃ (in HNO ₃); 237 иg Nd on Al-foil: rollef 6 A mm diam	(1) PN ₂₇₁	1-16	91.1 9.90.10 ⁻⁴ (1.0)	9.71.10 ⁻⁴ (0.9)		$1.01.10^{-3}(0.7) = 9.60.10^{-4}(1.3)$	1.02.10 ⁻³ (2.5)	INW : internal compar. 1) ^{69m} 2n
	X 0.2 mm		120.5	1.30.10 ⁻⁵ (1.2)	1.26.10 ⁻⁵ (2.0)			(1.28.10 ⁻⁵)	2) ⁶⁵ 2n
	INW :		275.4	3.00.10 ⁻⁵ (1.5)	3.07.10 ⁻⁵ (2.7)	2.81.10 ⁻⁵ (0.4)	2.76.10 ⁻⁵ (0.5)	2.86.10 ⁻⁵ (2.0)	* Cd subtraction
	(in HNO ₃) on W 41; 6.5 mg Nd		319.4	319.4 6.86.10 ⁻⁵ (1.3)	6.63.10 ⁻⁵ (1.6)	$2.74.10$ $(2.1)^{*}$ 6.94.10 ⁻⁵ (1.9)		<u>6.78.10⁻⁵ (0.9)</u>	IN PRACTICE, MANY
	(CH 3), 16 mg Nd (CH 15); pellet 10 mm diam. x 4 mm		398.2	2.89.10 ⁻⁵ (1.4)	2.91.10 ⁻⁵ (2.2)		6.92.10 ⁻ (1.3)*: -	(2.90.10 ⁻⁵)	SPECTRAL INTERFERENCES WITH OTHER Nd-ISOTOPES
	2) $146 \text{ Nd}_2 \text{ o}_3$ (97.637 146 Nd_2		6.964	4.10.10 ⁻⁵ (1.1)		4.34.10 ⁻⁵ (1.9)	4.30.10 ⁻⁵ (1.8)	4.22.10 ⁻⁵ (1.4)	AND DAUGHTERS OCCUR;
	enrich.)(ign. ac 900°C) (in HNO ₃) on W 41; 0.9 mg Nd		531.0	531.0 4.50.10 ⁻⁴ (1.0)	4.44.10 ⁻⁴ (1.3)	4.40.10 (1.9)* 4.73.10 ⁻⁴ (0.8)	4.08.10 - (2.7)* 4.44.10 - 4(0.8)	4.56.10 ⁻⁴ (1.1)	IT IS POSSIBLE.TO WALT FOR THEIR DECAY, SINCE
	(CH2 and CH 10); peller 6 mm diam. x 2 mm		685.9	685.9 2.75.10 ⁻⁵ (0.8)	2.60.10 ⁻⁵ (3.4)	4.60.10 ⁻⁴ (0.1)* -	4.64.10 ⁻⁴ (0.8)*	(2.68.10 ⁻⁵)	T (¹⁴⁷ Nd) = 10.98d
	<u>KFKI</u> : as for ¹⁴⁷ Nd	149 _{Nd}	97.0	ł				(3.32.10 ⁻⁵)	E _{eff} of 96.9 & 97.0
	147	3 -	114.3	l		4.16.10 ⁻⁴ (1.7)		(4.05.10 ⁻⁴)	
	1) as for Na		_	-		3.97.10 ⁻⁴ (1.3)*	$4.03.10^{-4}(3.2)*$	1	
	(ign. at 900°C)(in HNO ₃) on		155.9	1	1	1.29.10 ⁻⁴ (2.2) 1.19.10 ⁻⁴ (0.6)*	$(1.29.10^{-4}(2.2)$ $(1.15.10^{-4}(1.2)$ (1.2) $(1.2)^{-4}(1.2)$	(1.22.10 ⁻¹)	E _{eff} of 155.1 & 155.9
	W 41; 90 µg Nd (CH 3), 550 µg Nd (CH 5); pellet 6 mm diam.		198.9		,		1	(2.98.10 ⁻⁵)	E _{eff} of 197.8 & 198.9
	x 2 mm			•		2.91.10 5(2.4)*	2.91.10 ⁵ (2.4)* 3.04.10 ⁵ (1.7)*		INW ; internal compar,
			1.902	I		- 5,53.10 ⁻⁵ (1.4)*	5.53.10 ⁻⁵ (1.4)* 5.88.10 ⁻⁵ (3.7)*		1) ^{69m} 2n; 2) ⁵⁶ Mn
		E2=1	211.3		<u>.</u>			(5.26.10 ⁻⁴)	*. Cd subtraction method
			240.2		1	-		(7.72.10 ⁻⁵)	IN PRACTICE, MANY
		_				7.61.10 ⁻⁵ (0.7)*	7.61.10 ⁻⁵ (0.7)* 7.82.10 ⁻⁵ (0.4)*		SPECTRAL INTERFERENCES
			267.7	I	•			(1.16.10 ⁻⁴)	OCCUR WITH OTHER NG-
			270.2	ı	1			(2.12.10 ⁻⁴)	NOTABLY WITH 151 Nd.
						$2.04.10^{-4}(0.4)*$ $2.20.10^{-4}(0.9)*$	2.20.10 ⁻⁴ (0.9)*		FOR WHICH IT IS POSSI-
(cont'd)			326.6	ł	1	- 8.96.10 ⁻⁵ (1.0)*	- 9.19.10 ⁻⁵ (1.8) 8.96.10 ⁻⁵ (1.0)* 9.14.10 ⁻⁵ (0.9)*	(^{c_} 01.01.6)	BLE TO WAIT FOR DECAY

	11111C 7 1 COM M)								
Ele-		Isotope formed	È	×	Measured k _{0,Au} and relative error,	relative error, Z	×	Recommended or (tentative)	
ment	Sample preparation	Activation- decay type)	keV	" KFKI	KFKI "WWR-M"	L ₁₁ MNT	"THETIS"	k _{0,Au} (relat. err., Z) [experimental]	NOTES
Nd (constan			349.1	'	ł			(2.96.10 ⁻⁵)	E _{eff} of 347.8 & 349.2
WORL O			423.6	1	١.	$1.68.10^{-4}(2.0)$	$1.58.10^{-4}(0.7)$	(1.60.10 ⁻⁴)	E _{eff} of 423.6 & 425.2
			540.5	I	I	1.55.10 (1.0)*		(1.35.10 ⁻⁴)	
		, . <u>.</u>	654,8	1	. 1			(1.66.10 ⁻⁴)	
ļ		+ 149 _{Pm} (II/a)	285.9	6.25.10 ⁻⁵ (1.4)	6.04.10 ⁻⁵ (2.3)	1:68.10 ⁻⁶ (0.7)* 6.32.10 ⁻⁵ (1.3) 5.86.10 ⁻⁵ (3.1)*	$1.63.10^{-4}(1.2)*$ $6.00.10^{-5}(0.4)$ $6.11.10^{-5}(1.7)*$	<u>6.10.10⁻⁵</u> (1.1)	
	<u>INW</u> : 1) NA O (inn of OnO ^C O)(in dil	151 _{Nd} (T)	255.6	1	t	- 1.32.10 ⁻⁴ (0.5)	$1.33.10^{-4}(0.1)$ $1.29.10^{-4}(0.3)$	(1.31.10 ⁻⁴)	internal compar. : 1) ⁶⁶ Cu
-	$HNO_3 VEGU = 0 UVALUAL $ $HNO_3 On W 41; 5 µg Nd (CH 9);$) <u> </u>	1180.6	r	1		$1.29.10^{-4}(0.6)$	(1.09.10 ⁻⁴)	2) ⁵² V * Cd-subtr method
	2) Md_2O_3 (¹⁵⁰ Nd enrichm. =	ی <mark>ہے۔</mark> ع				$1.10.10^{-4}(0.4)$	1.09.10 ⁻⁴ (0.3)		
	96.137)(ign. at 900°C)(in dil. HNO ₂) on W 41; 14 µg Nd	151 Pm	340.1	I	ı	1.10.10 7(1.7)*			255.6 keV-LINE INTER- FERED BY ¹⁴⁹ Nd, ¹⁵¹ Pm
	(CH 17), 28 μg Nd (CH 9); pellet 10 mm diam. x 4 mm	(11/a)				$1.75.10^{-4}(0.9)$ $1.76.10^{-4}(2.1)*$	1.71.10 ⁻⁴ (0.4) 1.70.10 ⁻⁴ (0.9)*	(1.73.10 ⁻⁴)	AND ¹⁴⁹ Pm; INTERFER- ENCE NEGLICIBLE FOR
	· · · · · ·								short t _d
Ęu	<u>KFKI</u> : Al-560 ppm Eu wire; 1 mm	154m _{Eu}							INW : internal compar.
	diam. INW :	.T. ۴=2					-		1) 65_{zn}
	1) Eu203 (ignited at 900°C)	<u>a</u> 1		ī		Ţ			3) 60 00
	(in HNO ₃) on W 41; 0.1 mg (CH 3), 0.1 mg (CH 15); pellet	(IV/b)	248.0	1.52.10 (2.6)	1.53.10 '(3.2)	1.51.10 '(1.3) 1.74.10 ⁻¹ (6.1)	1.40.10 ⁻¹ (2.7)	(1.55.10 ⁻¹)	All values are related
	10.mm diam, x 4 mm		a 103	1 07 10 ⁻¹ (3 a)	1 11 10 ⁻¹ (2 2)	1.63.10 ⁻¹ (0.9)			co T (Eu) = 8.561 y
	(in HNO ₃) on W 41; 50 µg Eu		0.160					((1) 01.80.1	
	(CH 3; CH 5; CH 11); pellec				·	1.02.10 ⁻¹ (0.9)	T T	ī	
	 Bundlam, X 2 mm Eu₂O₂ (ignited at 900°C) 		r.rz/	(+		4.21.10 ⁻¹ (3.3)	4.48.10 (0.8)	4 46 10 (1.5)	
	(in HNO ₃) on W 41; 500 µg Eu						ī	1	
	(CH11); pellet 10 mm diam. x		756.9	,	r	1.09.10 (3.2)	1.10.10 '(1.0)	(1.08.10)	
(cont'd)						1.06.10 ⁻¹ (1.4)			

		Lsotope	2	8	Medsuren "0, Au alla rezerve crive, "			or (tentative)	
Ele-	- Sample preparation	rormed (Activation- decay type)	Y keV	" KFKI	KFKI "WWR-M"	L _{it} MNI	"SILERL _I , <i>M</i> NI	KO, Au (relat. err., 7) [experimental]	NOTES
R			873.2	2.79.10 ⁻¹ (1.9)	2.80.10 ⁻¹ (2.2)		2,68,10 ⁻¹ (0.8)	<u>2.72.10⁻¹</u> (1.4)	
(Doubled)			4.996.		·1	2.67.10 ⁻¹ (2.7) 2.38.10 ⁻¹ (2.7)	2.41.10 ⁻¹ (2.33)	((2.30,10 ⁻¹)	
			1274.4	7.87.10 ⁻¹ (2.7) 7.94.10 ⁻¹ (2.3)		2.15.10 (2.6) 2.26.10 ⁻¹ (0.9) 7.42.10 ⁻¹ (1.6) 7.42.10 ⁻¹ (0.4)	7.98.10 ⁻¹ (0.8)	7.77.10 ⁻¹ (1.1)	
3	<u>TXW</u> : ¹⁵⁸ 6d ₂ 0 ₃ (81.00Z ¹⁵⁸ cd en- <u>TXW</u> : ¹⁵⁸ cd ₂ 0 ₃ (81.00Z ¹⁵⁸ cd en-	159 _{Gd}	363.6	ę.		$\begin{array}{c c} 8.24.10^{-4} (0.5) \\ 8.40.10^{-4} (1.3) \\ 8.03.10^{-4} (2.5) \ast & 8.40.10^{-4} (1.3) \\ \end{array}$	8.40.10 ⁻⁴ (1.3) 8.46.10 ⁻⁴ (3.0)*	(8.28.10 ⁻⁴)	internal compar. : 69m_2n
	richard Albert at 900 UNAN CHAIS'	3		-					* Cd-subtr, method
	INW : 160 Gd_00, (98.71% 160 Gd en-	194	102.3	,		7.91×10 ⁻⁴ (0.5) 77.565.10 ⁻⁴ (1.20)	7,66,10 ⁻⁴ (1,0)	(\));	internal compar. : 52
		Ê	165.2	,	1	8.16.10 (13)* 7.29.10 (13)* 1.02.10 ⁻⁴ (6.29) 1.10.10 ⁻⁴ (8.4)	(2.19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	(01::2021)	
			28376	,	1	1.05.10 ⁻⁴ (9.3)* 2.72.10 ⁻⁴ (2.1)	1.05.10 ⁻⁴ (2.1) 1.09/10 ⁻⁴ (1.2) 2.72.10 ⁻⁴ (2.1) 2.797.10 ⁻⁴ (1.2)	((2,184, 10 ⁻⁴)	
			314.9	1	!	$2.69.10^{-4}(2.9)$ * $1.02.10^{-3}(0.3)$	2.98.10 ⁻² (1.5)* 1.03.10 ⁻³ (1.0)	(<u>-01/50-1)</u>)	
						$1.03.10^{-3}(1.1) \times 1.03.10^{-3}(1.2) \times 10^{-3}(1.2) \times 10^{-3}(0.1)$	1.03.10 ⁻³ (1.2)*	E. 01 02 04	
			- 790-9	•	1	2.72.10 ⁻³ (1.3)*	2.72.10 ⁻³ (1.2)*		
			1.084	I	I	1.05.10 ⁻⁴ (3.3)	1.06.10 ⁻⁴ (8.2)	((1,04,10 ⁻⁴)	
						1.01.10 (53)*	1.02.10 (10.4)*		

		Isocope	Ē		Measured $k_0, {\rm Au}$ and relative error, \tilde{z}	relative error,		Recommended or (tentative)	
1Uau	Sample preparation	(Activation- decay type)	keV	KFKI	KFKI "WRR-M"	. MNI	"SITHETLS"	KO, Au (relat. err., Z) [experimental]	NOTES
ζđ	<u>INN</u> : 1 Dr ₂ O ₃ (ign. af 900°C)(in. HNO ₃) on W41:5 µg.Dy (CH:9), if.ur. Dv (CH:8): petlet 10 mmm	165 ⁸ by (I)	108.2 515.5	1 1	- - -	1.86.10 ⁻¹ (0.6) 9.17.10 ⁻² (0.6)	1.90.10 ⁻¹ (0.9) 9.33.10 ⁻² (1.2)	(1.88.10 ⁻¹) (9.25,10 ⁻²)	INW : ÎNLERNAl compan 52 _V
	diam. X 4 mm	.1.1 .1.1					<u></u>		
	$\frac{\text{KFKI}}{\text{KFKI}} : \text{IN}_2 \text{O}_3 \text{ (in HNO}_3) \text{ on Al-foil};$		64.7	3.72.10 ⁻¹ (1.2)	3.73.10 ⁻¹ (1.5)	3.47.10 ⁻¹ (2.3)	3.46.10 ⁻¹ (0.9)	3.57.10 ⁻¹ (1.4)	INW : internal compar.
	Z.6 µg Jy; peller of a multidum. x.0.2 mm.		279.8	4.94.10 ⁻² (1.4)	5.00.10 ⁻² (1.8)	$4.71.10^{-2}(1.7)$	$4.87.10^{-2}(0.1)$	4,88,10 ⁻² (0.8)	2) 69m ² n
	<u>INW</u> : 1) Dy ₂ 0 ₃ (ign. at 900°C)(in.		361.7	8.31.10 ⁻² (1.3)	8.48.10 ⁻² (1.9)	$4.84.10^{-}(0.3)$ $8.10.10^{-}(1.9)$	$4.89.10^{-6}(0.3)$ $8.47.10^{-2}(1.2)$	<u>8, 36, 10⁻² (0, 7)</u>	
	HNO ₃) on W 41; 20 µg Dy (CH 3 and CH 15); pellet: 10 mm diam.		633.4	633.4 5.74.10 ² (2.4)	5.95.10 ⁻² (1.0)	$8.35.10^{-}(0.5)$ $5.46.10^{-2}(2.2)$	$8.46.10^{-}(0.2)$ $5.62.10^{-}(2.5)$	5.62.10 ⁻² (1.5)	
	х.4 ним 2) as above : 1 µg Dy (СН 3), 3 µg Dy (СН 15)		715.3	715.3 5.36.10 ⁻² (1.9) 5.44.10 ⁻² (1.8)	5.44.10 ⁻² (1.8)	5.07.10 ⁻² (1.7) 5.07.10 ⁻² (1.7) 5.07.10 ⁻² (0.6)	5.26.10 ⁻² (2.8) 5.15.10 ⁻² (0.3)	<u>5.23,10⁻²(1.2)</u>	
뇞	<u>KEKI</u> : ¹⁷⁰ Er20 ₃ (96.892 ¹⁷⁰ Er antichen): 3.7 mor Pr on Al-foil:	171 _{Er} (T)	.111.6	.111.6 3.42.10 ⁻³ (0.4)	3.30.10 ⁻³ (0.5)	3.46.10 ⁻³ (1.3) 3.48.10 ⁻³ (1.5)*	3.41.10 ⁻³ (1.0)	<u>3.41.10⁻³(0.8)</u>	INW : internal compar. 69m,
	pellet 6.4 mm diam. x:0.2 mm		116.7	3.44.10 ⁻⁴ (0.5)	3.09.10 ⁷⁴ (1.2)	$3.47.10^{-4}(1.2)$ $3.48.10^{-4}(1.4)*1$	3.33.10 ⁻⁴ (5.6) 3.32.10 ⁻⁴ (5.9)*	<u>3.36.10⁻⁴(1.8)</u>	
	enrichm.) (ign. at 900°C) (d.in 		124.0	1.54.10 ⁻³ (0.3)	1.53.10 ⁻³ (0.2)	$1.52.10^{-3}(1.1)$	1.49.10 ⁻³ (1.3)	1.52.10 ⁻³ (0.6)	
	(CH15); pellet 6 mm diam. x 2 mm		210.6	1.10.10 ⁻⁴ (2.0)	1.07.10 ⁻⁴ (5.0)			(1.09.10 ⁻⁴)	E _{eff} of 210.1 & 210.6
			295.9	5.04.10 ⁻³ (0.6)	4.99.10 ⁻³ (1.0)	4.68.10 ⁻³ (1.8)	4.68.10 ⁻³ (0.5)	(01.02.0) (2.10 ⁻³ (1.5)	
			308.3	1.09.10 ⁻² (0.4)	1.08.10 ⁻² (0.8)	4.69.10 (2.0)* 1.02.10 ⁻² (1.0) 1.02.10 ⁻² (1.2)*	4.69.10 (2.0)* 4.66.10 (0.5)* 1.02.10 ⁻² (1.0) 1.01.10 ⁻² (0.9) 1.02.10 ⁻² (1.2)* 1.01.10 ⁻² (0.9)*	<u>1.04,10⁻²(1,4)</u>	
Ę.	. H	170 _{Tm} (1)	84.3	3	1	4.26.10 ⁻² (3.9)	4.33.10 ⁻² (2.6)	(4.30.10 ⁻²)	internal compar. 65 _{Zn}
	(CH3),215 µg Tm (CH15); pellet 10 mm diam, x 4 mm							-	

Table 2 (cont[']d)

Te ut		formed	Е,		U.,'AU	Measured "Ko, Au and relative error, Z		or (tentative)	
	Vanipie Prefaration	(Activation- decay type)	keV	M-BARL IN	₩R –M''	L, MAT	"NW "THETIS"	k _{0,Au} (relat. err., 7) [experimental]	NOTES
	<u>LNW</u> : 1) Yb ₂ 0 ₃ (ign. at 900°C)(in	177 _{Yb} (IV/b)	121.6	I	1	1.55.10 ⁻⁴ (0.8) 1.67.10 ⁻⁴ (0.7)	1.60.10 ⁻⁴ (1.5) 1.66.10 ⁻⁴ (3.0)	(1.64.10-4)	internal compar. 1)2) 69m _{Zn}
	dil. HNO ₃) on W 41; 460 µg Yb (CH 3), 1.5 mg Yb (CH 15);		138,6	1	r	1.67.10 ⁻⁴ (0.8)* -	1.67.10 ⁻⁴ (3.1)*	(6.48.10 ⁻⁵)	* Cd~subtr.method
·,	pellet 10 mm diam. x 4 mm					6.36.10 ⁻⁵ (0.3)	6.58,10 ⁻⁵ (1.8)		
	<u>INW</u> : 2) ¹⁷⁶ Yb ₂ O ₄ (96.68Z ¹⁷⁶ Yb en-		150.4	ı	ا	6.37.10 ⁻⁵ (0.3)* 8.41.10 ⁻⁴ (0.8)	*(8.1) ^C 01.05.6	(8.94.10 ⁻⁴)	
	richm.)(ign. at 900°C)(in	2				9.14.10 ⁷⁴ (0.3)	9.20.10 ⁴ (0.4)		
	dil. HNO ₃) on W 413 40 µg Yb (CH 3) 400 µe Yb (CH 15):		899.2	ļ	1	9.17.10 (0.4)*	9.23.10 ⁻⁴ (0.5)*	(3 12 in ⁻⁵).	
	pellet 6 mm diam. x 2 mm	•, .				3.16.10 ⁻⁵ (2.0) 3.08.10 ⁻⁵ (5.4)	3,08,10 ⁻⁵ (5,4)		
						3.15.10 ⁻⁵ (2.2)* 3.09.10 ⁻⁵ (5.5)*	3.09.10 ⁻⁵ (5.5)*		
			941.7	į.	I	1	• •	(4.87.10 ⁻⁵)	
						4.90.10 ⁻⁵ (2.8) 4.84.10 ⁻⁵ (3.4)	4.84.10 ⁻⁵ (3.4)		
						4.91.10 ⁻⁵ (3.0)* 4.85.10 ⁻⁵ (3.5)*	4.85.10 ⁻⁵ (3.5)*	ų	
			1028.0	1	,	1	1	(^{c_} 01.46.2)	
						2.95.10 5(3.9)	2.93.10 ⁻⁵ (3.7)		
					• •	2.96.10 ⁻⁵ (4.2)*	2.94.10 ⁻⁵ (3.8)*		
			1080.1	i	1	2.58.10 ⁻⁴ (1.1)	2.57.10 ⁻⁴ (0.8)	(2.68.10 ⁻⁴)	
<u> </u>						2.69.10 ⁻⁴ (0.1)	2.76.10 ⁻⁴ (1.0)		
, · · ·		•			-	2.70.10 ⁻⁴ (0.2)*	2.76.10 ⁻⁴ (1.1)*		
<u></u>			1.119.6	9	,	. 4	.u	(2.74.10 ⁻²)	
	-	<u> </u>				2.72.10 ⁻² (5.0)	2.78.40 ⁻² (1.1)		
						2.70.10 ⁻³ (5.5)* 2.78.10 ⁻³ (3.2)*	2.78.10 ⁻² (3.2)*		
			1149.7	ļ	,	1	, 1	(2.96.10 ⁻²)	
						3.00.10 ⁻² (1.8) 2.93.10 ⁻² (4.8)	2.93.10 ⁻² (4.8)		
			1241.4	ı	t.	$1.57.10^{-4}(0.6)$	1.55.10 ⁻⁴ (0.6) 1.66.10 ⁻⁴ (2.0)	(1.62.10 ⁻⁴)	
-,						1.63.10 ⁻⁴ (0.9)*	1.63.10 ⁻⁴ (0.9)* 1.67.10 ⁻⁴ (2.0)*		

Table	Table 2 (cont'd)								
Elé-	C Annel A	L'sortopu» Formed	. <u>à</u>	W	Measured k _{0,Au} and relative error, 2	relative error, 7		Recommended or (tentative)	
านคนเ		(Activation damay: type)	keV	KFKI "WWR-M"	WuR-M"	"RITCHT" WNI	HETIS ⁴¹	^k 0,Au (relat. err., Z) [cxperimenta1]	NOTES
Γr.	<pre>KKET : AL-0.103% Lu wire, 1 mm dfiam INW : 1) Lu₂O₃ (ign. ar 900°C) (in HNU₂) on W 41;11 µg fiu (CH 9);27 µg Lu (CH 15); pellër 10 mm dianu. x.4.mm 2) Lu₂O₃ (ign. at 900°C) (ifn HNO₂) on W41;60 µg Lu. (CH 5 and. CH 15); peller 10 mm dianu. x.4 mm. 3) Al-0.103% Lu wire, trandianu.</pre>	17.0mg,Lut (T.)		1.82.10 ⁻² (0.8)	1.82.10 ⁻² (0.8) 1.87.10 ⁻² (2.8).	$1.70 \pm 10^{-2} (1.2)$ $1.64 \pm 10^{-2} (1.6)$ $1.27 \pm 10^{-2} (0.7)$	1.71.10 ⁻² (0.6) 1.68.10 ⁻² (0.1) 1.73.10 ⁻² (0.5)	1. 73, 10 ⁻²⁰ (1. 5)	1NWA: fiterral, compart. 1). 69m_2H 2). 88km; 2). 88km;
ца П	<pre>XFALT: XFALT: 1) HFO₂ (dissolved%in HF in teflon bomb); 6.9 µg HF on Al-Foil; poller 6.4 mm diam x.0.2 mm 2) Al- 0.09045 HE wires, i mm diam. 2) Al- 0.09045 HE wires, i mm 1.4 mg. HF (GH 3) ; 4 mg. HF (GH 15) pollet: 12.5 mm diamx.3 mm</pre>	180% ₈₆ (L)	93.3 215.2 332.3 443.2 443.2	93.3 215.2 6.13.10 ⁻⁴ (1.0) 332.3 7.26.10 ⁻⁴ (1.6) 6.12.10 ⁻⁴ (1.6) 6.55.10 ⁻⁴ (1.6) 6.25.10 ⁻⁶ (1.9) 4.63.2 6.25.10 ⁻⁴ (1.9) 5.25.10 ⁻⁴ (2.5)	1.24, 10 ⁻⁴ (3:1) 5.74, 10 ⁻⁶ (3:1) 6.48, 10 ⁻⁶ (1:2) 5.88, 10 ⁻⁶ (1:9) 7.04, 10 ⁻⁶ (1:9)	$F_{*,25}.10^{-4}(0.4)$ $f_{*,23}.10^{-4}(f_{*,43})$ $5.80, 10^{-4}(0.4)$ $5.77, 10^{-4}(0.4)$ $6.69, 10^{-4}(0.4)$ $6.69, 10^{-4}(0.4)$ $5.87, 10^{-4}(0.1)$ $5.87, 10^{-4}(0.4)$ $5.87, 10^{-4}(0.1)$ $1.01, 10^{-4}(0.7)$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	1. <u>28. 10⁻⁴</u> (0. 5) <u>2. 24. 10⁻⁴</u> (1. 5) <u>9. 28. 10⁻⁴</u> (1. 9) <u>1. 02. 10⁻⁴</u> (0. 9)	KFKL: internal com- parator: : 2) ¹⁷² HE and 181 HE 2) ¹¹⁵ HE and 181 HE rator : 60 Go
Ke:	<u>NEX.1</u> : Alt=0.118% Re. wiree, 1. mm		92. £	- 1⊴36.10 ⁷ .3(2.5)≿	7.51.10 ⁻⁶ (1.9). 1.57.10 ⁻⁵ (4.1)	7.87.10 ⁻⁴ (0.6) 1.42.10 ⁻³ (1.4) 1.44.10 ⁻³ (1.4)	7.43.10 ⁻⁴ (1.1) 7.88.10 ⁻⁴ (1.1) 7.88.10 ⁻⁴ (2.2) 1.48.10 ⁻³ (1.3)	<u>7.77.10⁻⁴</u> (1.5); <u>1.50.10⁻³(1.6)</u>	<u>7.77.10⁻⁶ (1.5)</u> (1.5). [INM: internal compar.; 1.50.10 ⁻⁹ ().6)
	65.4.87 Rea (CH.3), 150 Mg Re (CH'15); peilet : 10 mm diam. x 4 mm 2) MH ₂ Redy69.4X;Re certifical (MH ₂ NO ₃), on W41; 75 mg Re (CH 20(3), on W41; 75 mg Re (CH 20(3), on W41; 75 mg Re	188 Re (IV/a)	155.0° 478.0° 6333.37 829.5 934.3	$7.22.10^{-2}(0.7)$ $7.22.10^{-2}(1.2)$ $5.27.10^{-3}(1.7)$ $5.27.10^{-3}(1.6)$ $5.27.10^{-3}(1.6)$ $7.76.10^{-3}(0.40)$ $7.71.10^{-3}(1.4)$ $7.71.10^{-3}(1.4)$ $2.15.10^{-3}(1.1)$ $2.16.10^{-3}(1.1)$ $2.16.10^{-3}(2.1)$ $2.03.10^{-3}(2.0)$	$7,75,10^{-2}(0.3)$ $8.00,10^{-2}(1.7);$ $5.29,10^{-3}(0.5)$ $5.22,10^{-3}(1.0)$ $7.89,10^{-3}(4.1);$ $7.89,10^{-3}(4.1);$ $2.17,10^{-3}(4.1);$ $2.17,10^{-3}(6.4);$ $2.82,10^{-3}(6.0)$ $2.88,10^{-3}(6.0)$	2 C	$7.68.10^{-2}$ (1.63) $7.56.10^{-2}$ (0.3) $5.58.10^{-3}$ (0.4) $5.13.10^{-3}$ (0.4) $7.66.10^{-3}$ (2.2) $7.66.10^{-3}$ (2.2) $7.17.10^{-3}$ (0.8)	$\frac{7.77,10^{-2}(0.6)}{2.29,10^{-3}}(0.8)$ $\frac{7.64,10^{-3}}{(1.1)}(1.1)$ $(2.17:10^{-3})$ $(2.85,10^{-3})$	<u>7.77, 10⁻² (</u> (1.6): <u>5.29.10⁻³ (</u> 0.8): <u>7.64, 10⁻³ (</u> 1.3) : E _{eff} of 633.1 & 635.0 (2.17:10 ⁻³) (2.65, 10 ⁻³).

Table 2 (cont d)	* incurs								
e tar	· .	Isotopes Formed:	្ឋិន	H	Measured $k_{0,\rm Au}$ and relative error, z	relative error, 2		Recommended or. (tentative)	·
ment	Sample preparation	Activationr (Activationr decay type)	keW	" KFKI	KFKI "WWR-M"	L, MNI	" SITAHT" (MA	<pre>%0,Au (Estate err., Z) [experimental]</pre>	NOTES
SO ,	KFKI :: (NH4,)20SC16 43.6% 0s certir Fied; 8.86 µg 0s on Al-Foil; pellet : 6.4 µm diam.x0.2. nm	185 _{0s} (I)	646.1	6466.1 [6.45.10 ⁻³ (4.0) [6.15.10 ⁻³ (1.2)	6. 15.10 ⁻³ (1. 2)	6.76.10 ⁻³ (2.0) 6.39.10 ⁻³ (1.3)	$6.42.10^{-3}(0,7), \frac{6.43.10^{-3}}{6.43.10^{-3}}(1,3)$	<u>6.43,10,3</u> (11.3)	INW.: 1) internal compart: 69m _{2n}
	INM	20 10 11 12 12 12 12 12 12 12 12 12						· · · · · · · · · · · · · · · · · · ·	2) internal compar.: 952 and 972r
	x 4 mm x 4 mm 2) (NH ₄) ₂ OsCl ₆ 43.6% Os certified (in HNO./HP) on W44!0.3 mg	191 0s (IV/a)	129.4	2.87.10 ⁻³ (2.3) 2.79.10 ⁻³ (1.0)	2.79.10 ⁻³ (1.0)	2.84.10 ⁻³ (4.5) 3.03.10 ⁻³ (0.8)	$= 3.00110^{10} \frac{3}{2} (1.6) = \frac{2.91.10^{-3}}{2.6} (1.63)$	<u>2. 91, 10⁻³ (</u> 1.6).	
	0. (CH 3), 1.0 mg 0. (CH 15), pellet : 10 mm diam.x4 mm	193 0s	139.0	139.0 5.37.10 ⁻⁴ (3.6) 5.36.10 ⁻⁴ (2.2)	5.36.10 ⁻⁴ (2.2)	- 552. 10 ⁻⁴ (01.6)) - 552. 10 ⁻⁴ (01.6))	5.25.10 ⁻⁴ (3.5);	(4,1) ^{4,10} (1,4)	5.44.10 ⁻⁴ (1.44) E _{6.6E0} o£138,9.4.142.1
		(1)	180.9	1	1	4.77.10 ⁻⁵ (3.0)	4.70.10 ⁻⁵ (4.7)	(4.76.10 ⁻⁵)	E _{eff} af 180.0 & 181.8
			219.1	ł	I	4.82.10 ⁻² (0.8) 3.78.10 ⁻⁵ (2.7)	3.69.10 ⁻⁵ (2.5)	(3+86+10 ⁻⁵))	Ĕ _{eff} α£-218.8 & 219.1
			251.6	2.90:10 ⁻⁵ (15.0)	1	$4.10.10^{-}(1.1)$ 3.16.10 ⁻⁵ (1.3)	3.01.10 ⁻⁵ (2.2)	(3.04.10 ⁻⁵)	
			280.4	1. 79.10 ⁻⁴ (5.5)	1.78.10 ⁻⁴ (3.3)	$3.09.10^{-4}(2.7)$ $1.79.10^{-4}(0.2)$	1.77.10 ⁻⁴ (14.0)	(5.0) (0.5)	
			298.8	2.99.10 ⁻⁵ (5.0)	1	1.82.10 (1.5) 2.92.10 ⁻⁵ (3.8)	2,60,10 ⁻⁵ (1,1)	(2.83.10 ⁻⁵)	
			321.6	$321.62 1.82.10^{-4} (5.8) 1.72.10^{-4} (2.0)$	1.72.10 ⁻⁴ (2.0)	2.82.10 (6.8) 1.80.10 ⁻⁴ (0.6)	t.78.10 ⁻⁴ (1.0)	<u>1.78.10⁻⁴(0.9)</u>	
			361.8	. ,	3.51.10 ⁻⁵ (12.0)	1.78.10 (0.8) 3.70.10 ⁻⁵ (0.7)	4.01.10 ⁻⁵ (2.1)	(3.81.10 ⁻⁵)	
			367.5	1.69.10 ⁻⁴ (3.2)	1.65.10 ⁻⁴ (1.3)	$4.00.10^{-4}(1.4)$ $1.76.10^{-4}(1.4)$	1.78.10 ⁻⁴ (0.4)	1.73.10 ⁻⁴ (1.5)	
			460.5	5.58.10 ⁻⁴ (3.3)	5.26.10 ⁻⁴ (2.3)	1.77.10 (1.0) 5.64.10 ⁻⁴ (0.1)	5.58.10 ⁻⁴ (1.3)	<u>5.55.10⁻⁴ (</u> 1.4)	
			537.9	537%.9% 2:45.10 ⁻⁴ (5.5)	2.47.10 ⁻⁴ (4.9)	5.70.10 7(1.0) 2.69.10 4(0.3) 2.53.10 4(0.7)	2.55‡10 ⁻⁴ (3.1).	<u>2.54.10⁻⁴ (1.7)</u>	2.54.10 ⁻⁴ (1.7) E _{2EE} of 556.0, 557.4;

	NOTES	2.03.10 ⁻² (1.3) INW : internal compar. 2.03.10 ⁻¹ (1.0) 2.06 _{Cul} 3.69 _{Cul} 4.05 _{m2n} (9.38.10 ⁻³) (9.38.10 ⁻³)	INV: internal compar 69 _{m2} n
Recommended or (tentative)	k _{0,Au} (relat. err., Z) [experimental]	2 <u>.03.10⁻²</u> (1.3) <u>1.03.10⁻¹</u> (1.0) (9.38.10 ⁻³) (4.76.10 ⁻³)	<u>1.03.10⁻³</u> (1.4) <u>2.26.10⁻⁴</u> (1.0)
24	"NITHT" WI	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$	$\begin{array}{c} 4.53.10^{-3}(0.2)\\ \\ 9.90.10^{-4}(0.9)\\ 1.00.10^{-3}(0.9)\\ 2.18.10^{-4}(0.4)\\ 2.18.10^{-4}(0.4)\end{array}$
relative error,	IN MNT	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & $	$\begin{array}{c}4.38.10^{-3}(0,4)\\1.02.10^{-3}(0,4)\\1.03.10^{-3}(0,4)\\1.03.10^{-4}(0,7)\\2.22.10^{-4}(0,7)\\2.25.10^{-4}(0,7)\end{array}$
Measured $k_{0,\mathrm{Au}}$ and relative error, $\mathbf{\tilde{z}}$	KFKI "WWR-M"	2.05.10 ⁻² (0.7) 1.06.10 ⁻¹ (0.4) 1.00.10 ⁻² (1.2) 5.16.10 ⁻³ (3.7)	
2	KFKI "	293.5 2.04.10 ⁻² (1.1) 2.05.10 ⁻² (0.7) 328.4 1.07.10 ⁻¹ (0.6) 1.06.10 ⁻¹ (0.4) 645.1 9.74.10 ⁻³ (1.6) 1.00.10 ⁻² (1.2) 938.7 4.95.10 ⁻³ (0.8) 5.16.10 ⁻³ (3.7)	158.4 1.06.10 ⁻³ (2.2) 1.05.10 ⁻³ (1.3) 208.2 2.29.10 ⁻⁴ (2.5) 2.30.10 ⁻⁴ (1.3)
, щ	kev	293.5 328.4 645.1	158.4
Isotope formed	(Activation- decay type)	194. (I)	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $
Ele-		KFWI: Al- 0.107% IF wire, 1 mm diam. diam. IAm. IAm. IN 1 Al. 0.107% IF wire, 1 mm diam. 1N. 11 Al. 0.107% IF wire, 1 mm diam. 11 Al. 0.107% IF wire, 1 mm diam. 21 will prove the state of	Ir (GH 3), 140 µg Ir (GH 15); pellet 10 mm diam.x4.mm <u>KKK1</u> : Al- 1.03% Pt wire, 1 mm diam. <u>IWM</u> : 1) Pt (in A.R.) on W41; 2 mg (GH 3), 5 mg (GH 15); pcllet 10 m diam.x4 mm 2) Al- 1.03% Pt wire, 1 mm diam.
Ele-	ment	<u>н</u>	ц А,

Table 2 (cont²d)

21/11/1	annie = (com a)									Ì
		Lsotope	ш		Measured $k_{0,Au}$ and relative error, \ddot{z}	relative error,	\$2	Recommended or (tentative)		
E Hent	Sample preparation	tormeu (Activation- decay type)	ke.V	KFKI	KFKI ^{, n} WWR-M ^a	MNT.	"SITSHT" WI	K _{0,Au} (relat. err., Z) [cxperimental]	NOTES	
Ϋ́	<u>KFKI</u> : Al- 0.1% Au wire, 0.2 mm diam.;	198 _{Au} (1)	411.8						 COMPARATOR 	[
	Al- 0.5% Au wire, 0.5 mm diam.;		-				<u> </u>			
	Al- 0.1010% Au Wire, 1 um diam.; Al- 0.1011% Au wire, 1 um diam.;							-		
	12 µg Au (in A.R.) on Al-foil; pellet 6.4 mm diam. x 2 mm									
	INN : MIL					-	į.			
	ALT U.SU. AU WITE, 1 mm diam.; Alt 0.5% Au wite, 1 mm diam.;		1.4							
<u>-</u>	Alt 0.1018% Au wire, 35 mm diam. p.			·						
	Al- 0.1011% Au wire, 1 mm diam.;			-, 5-10-						
	A1- 0.1005% Au wire, 1 mm diam ;						_			
	Al-0.097% Au wire, 1 mm diam.									
	RISØ :									
	Al- 0.1005Z Au wire, 1 mm diam.									
n	KFKI, INW, RISØ : AL- D.443% U	239 ₀							* Cđ subtr, method	j
	wire, 1 mm diam. (depleted U : 99.962% ²³⁸ U 735	5 ⁵ =ا								
-	0.03752 U)	239 _{NP} (11/b)	209.8	ı	7.87.10 ⁻⁴ (1.9)		7.87.10 ⁻⁴ (1.4) <u>7.80.10⁻⁴</u> (0.5)	7.80.10 ⁻⁴ (0.5)		
						7.77.10 ⁻⁴ (0.8) (RISØ)	7.77.10 ⁻⁴ (0.8) 7.71.10 ⁻⁴ (0.8)* (RISØ) (RISØ)			
			228.1	r	2.72.10 ⁻³ (1.4)	-	2.81.10 ⁻³ (0.3)	2.77.10 ⁻³ (0.7)	2.77.10 ⁻³ (0.7) E _{eff} of 226.4 & 228.2	
<u></u>						2.78.10 ⁻³ (1.2) (RISØ)	2.78.10 ⁻³ (1.2)* (RISØ)			
(cont'd)										
										1

		Esotope	ω		Measured $k_{0,Au}$ and relative error, \overline{x}	relative error, 7		Recommended or (tentative)	
Eie- Sample r	Sample preparation	tornwa (Activation- decay type)	keV	K-MWM	"WWR-Y	l _{at} mnat	"SITSHO"	k _{0,Au} (relat. err., Z) [experimental]	NOTES
n			277.6	I	3240.10 ⁴³ (1.4)		3,48,10 ⁻³ (0,9)	3.48.10 ⁻³ (0.9) 3.40.10 ⁻³ (0.8)	
(cont d)			285.5	1	1	3:38,10 ⁻³ (0,8) (resø)	3:38.10 ⁻³ (0.8) 3.36.10 ⁻³ (0.8)* (RESØ) (RISØ)	(⁴⁻ 01,683,1),	
			. 315.9	ı	3.66.10 ⁻⁴ (2.7)	1.84.10 ⁻⁴ (1.3) (RISØ) 3.79.10 ⁻⁴ (0.2)	1.83.10 ⁻⁴ (1:5)* (RISØ)	(5-1) <u>+0</u> -89*E	
			334.3	- t		3.65.10 ^{m4} (1.77) (Resø)	(Q.1) ⁴ -01.18.15 ((T.1) ⁴ -01.28.15 (0211)	<u>4.81.10⁻⁴</u> (1.0)	
		-				4.75.10 ⁻⁴ (1.0) (RISØ)	4.75.10 ⁻⁴ (1.0) 4.71.10 ⁻⁴ (1.0)* (RISØ) (RISØ)	;	

F. DE CORTE et al.: K₀-MEASUREMENTS AND RELATED NUCLEAR DATA, IIIa

References

- 1. A. SIMONITS, L. MOENS, F. DE CORTE, A. DE WISPELAERE, A. ELEK, J. HOSTE, J. Radioanal. Chem., 60 (1980) 461.
- 2. L. MOENS, F. DE CORTE, A. DE WISPELAERE, J. HOSTE, A. SIMONITS, A. ELEK, E. SZABÓ, J. Radioanal. Nucl. Chem., 82 (1984) 385.
- 3. F. DE CORTE, J. Trace Microprobe Techn., 5 (1987) 115.
- 4. F. DE CORTE, A. SIMONITS, J. Radioanal. Nucl. Chem., 133 (1989) 43.
- 5. F. DE CORTE, L. MOENS, S. JOVANOVIC, A. SIMONITS, A. DE WISPELAERE, J. Radioanal Nucl. Chem., 102 (1986) 37.
- 6. T. ELNIMR, F. DE CORTE, L. MOENS, A. SIMONITS, J. HOSTE, J. Radioanal. Chem., 67 (1981) 421.
- 7. F. DE CORTE, A. SIMONITS, A. DE WISPELAERE, J. HOSTE, J. Radioanal. Nucl. Chem., 113 (1987) 145.
- 8. A. SIMONITS, F. DE CORTE, A. DE WISPELAERE, J. HOSTE, J. Radioanal. Nucl. Chem., 113 (1987) 187.
- 9. J. OP DE BEECK, Description and Structure of the Programs GELIAN and MULTIP, Internal Report INW-Gent, Nov. 1976.
- 10. G. W. PHILLIPS, K. W. MARLOW, NRL-Memorandum Report 3198, 1976.
- 11. G. W. PHILLIPS, NRL-Memorandum Report 3963, 1979.
- 12. W. WESTMEIER, private communication.
- 13. M. J. KOSKELO, P. A. AARNIO, J. T. ROUTTI, Computer Phys. Commun., 24 (1981) 11.
- 14. NUCLEAR DATA Inc., ND6600 Peak Search Program Algorithm ND-604A, Schaumburg 1980.
- 15. J. BARTOSEK, G. WINDELS, J. HOSTE, Nucl. Instr. Methods, 103 (1972) 43.
- 16. J. BARTOSEK, J. MASEK, F. ADAMS, J. HOSTE, Nucl. Instr. Methods, 104 (1972) 221.
- 17. F. DE CORTE, A. DE WISPELAERE, presented at the 8th Czechoslovak Spectroscopic Conference, 19-24 June, 1988. Ceske Budejovice, Czechoslovakia.
- L. MOENS, J. DE DONDER, LIN XILEI, F. DE CORTE, A. DE WISPELAERE, A. SIMONITS, J. HOSTE, Nucl. Instr. Methods, 187 (1981) 451.
- 19. L. M. HOWE, R. E. JERVIS, T. A. EASTWOOD, Nucl. Sci. Eng., 12 (1962) 185.
- 20. O. A. OHLWEILER, J. O. MEDITSCH, C. M. S. PIATNICKI, Anal. Chim. Acta, 63 (1973) 341.