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A solution of  the  stress, deformat ion  and deformat ion  energy is g iven  for an  edge 
dislocation wi th  its dislocation line hav ing  the  shape of  a circle in an unl imi ted  isotropic 
medium.  The possibi l i ty of  using this solution in s tudying  the  dislocation loop in a crystal  
is discussed. 
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INTRODUCTION 

Increased attention has recently been paid to the formation of small dis- 
location loops in crystals by the condensation of vacancies and the collapse 
of the surfaces of the flat cavity produced. It was found that such loops, pro- 
duced particularly after quenching [I], can play an important part for example 
as slip nuclei [2], in the formation of dislocation networks [3], in the production 
of nuclei Of a brittle fracture [4] etc. When considering these loops it is import- 
ant to know the stresses, deformations and deformation energy caused by 
them. 

In a crystal the plane of the loop is a certain important crystallographic 
plane and its dislocation line is formed from the straight section of important 
crystallographic directions. For the sake of simplicity, we shall consider the 
circular dislocation loop according to Fig. I in a continuous medium. 

A related problem was dealt with by Franz and Kr6ner [5] when studying 
the stability of Guinier-Preston zones; using the method of continuous dis- 
tribution of dislocations [6] they derived an approximate expression for the 
deformation energy of a circular dislocation loop. 

It is stated in Kr6ner's book [6] that as yet unpublished papers by Pflei- 
derer and Keller also deal with the problems of dislocation loops from the 
point of view of continuous distribution of the dislocations. Questions of the 
interaction energy of circular dislocation loops are solved from the same 
aspect by de Wit [7]. A simplified expression for the energy of a circular 
dislocation loop is given in the book by R e a d [8]. In an earlier paper, N a b a r- 
ro [9] studied the field of stresses of an infinitesimal dislocation loop for the 
different case of a Burgers vector lying in the plane of the loop. 

When studying a circular dislocation loop it is not necessary to start out 
from the theory of the continuous distribution of dislocations but we can start 
from the classical theory of elasticity. For example, the general Burgers 
relation [10] can be used for a dislocation loop of arbitrary shape but the 
calculation is very complicated. 

In the present paper we therefore use a different procedure for calculating 
the stresses, deformations and deformation energy of a circular dislocation 
loop, whereby we employ the symmetry of the whole problem with respect to 
the plane of the loop z = 0. Calculation is carried out for half-space z > 0 
and the boundary condition on the plane z = 0 is chosen so that the solution 
corresponds to a circular dislocation loop located in unlimited space. 
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We shall then discuss the possibility of using the results, valid for a con- 
tinuous medium on the assumptions of the classical theory of elasticity, for 
investigating dislocation loops in a crystal. 

F O R M U L A T I O N  O F  P R O B L E M  

We give the solution of the following problem of the classical mathematical  
theory of elasticity: 

P r o b l e m  1: In an unlimited medium there is a Volterra edge dislocation 
with dislocation line having the shape of a circle and with Burgers vector 
normal to the plane of the circle. The components of the stress tensor, dis- 
placement vector and deformation energy, are to be determined. 

The cylindrical coordinates are denoted by r, #, z, and the dislocation line 
is chosen in the plane z -- 0 as a 
origin of the coordinates (Fig. 1). 
The Burgers vector has only one 
non-zero component in the di- 
rection of the z axis denoted by b. 
The components of the stress ten- 
sor in the cylindrical coordinates 
are further denoted by ~ ,  ~ ,  a~, 
r~o, T~, ~ ,  and the components 
of the displacement vector by u~, 
uo, u~. The medium is charac- 
terized by the shear modulus /z 
and by the Poisson constant ~. 

circle with radius R, with the centre in the 

- - ' 1  

R 

Fig.  1. Circular d is locat ion  loop. 

Since the problem is one with cylindrical symmetry,  the solution does not  
depend on v% 

A circular dislocation loop as in Fig. I can be formed by taking out a thin 
circular plate of thickness b and radius R and then bringing together and 
joining the two circular bases of the cavity thus formed; the bases must be 
shifted in the z direction by �89 and --�89 ~Te thus obtain continuous material  
in the z --~ 0 plane except for a singular dislocation line. 

Due to the symmetry of the solution with respect to the plane z = 0, we 
can then carrv out the solution only for the upper half-space with a boundary 
condition on the plane z = 0 for a displacement u~; a supplementary condition 
must then ensure the symmetry  and continuous transition of the solution into 
the lower half-space. The following problem is equivalent to problem 1. 

P r o b l e m  2: To find a solution for the half-space z > 0 with the following 
mixed boundary condition: 

(1) z = 0: for 

for 

(2) z = o: 

O ~ r  < R . . . u ~ ( r ,  O) = - -  �89 , 

r > R . . .  u , ( r ,  O) -~  O ; 

~(r ,  O)= 0. 

Condition (2) for a shear stress ~,~ ensures the required symmetry and con- 
tinuous transition to the lower halLspace. The solution of prob]em 2, for which 
the components of stress and displacement approach zero for z -+ ~ and r -~ 
-~ ~ ,  is the only one and is simultaneously the solution of problem l. 
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CALCULATION OF STRESS AND DEFORMATION 

The method of Hankel transformation, elaborated for cylindrically symmet- 
rical problems of the theory of elasticity in Sneddon's book [II], is used 
to solve problem 2. Instead of the biharmonic stress function ~b(r, z), used 
earlier in solving cylindrically symmetrical problems, the stress function 
G(~, z) is introduced as its Hankel transformation of zero order 

oO 

,(3) G($, z) = f r O ( r ,  z) Jo(~, r) d r ,  
0 

where J0 is the Bessel function of zero order. The stress and displacement 
components are expressed directly in [11] by  means of the function G. I t  is 
thus possible to express the boundary conditions for the stress and displace- 
ment  as conditions for the function G($, z). 

I t  is further shown that  the function G($, z) has the general form 

(4) G($, z) = [A(~) + B($) z] e-~ ~ + [C(~) + D(~) z] e~ ~ 

where A, B, C and D are generally functions of the parameter ~. The solution 
of the problem then becomes the determination of these four functions from 
the boundary conditions. 

The following relations are obtained from the requirement of zero values 
of the stress and displacement for z -~ c~ 

(5) C(~) ---- D(~) ~ 0;  

the boundary condition (2) for shear stress ~r~ gives the relation between A(~) 
and B($) so that  according to [11] 

B(~) 
(6) G(~:, z) = ~ -  (2a ~- ~z) e -~  . 

The remaining unknown function B(~) is determined from boundary condition 
(1) for displacement up. For this displacement it holds, according to [11], tha t  

cO 

/F /I-d2G 2(1 - o)  2G1 (7) uz(r, z) Jo(~r) d ~ .  
3 

o 

By substituting this relation into boundary condition (1) and introducing the 
non-dimensional arguments 

r 
(8) 
and denoting 

,(9) 

1 - -  2o 
(10) a - -  R3b 

4(1 - o) 

we obtain the condition for the unknown function/(t) ,  
o0 

{11) f / i f )  Jo(te) dt : a for 0 ~ e < 1, 
0 

oO 

f / ( t )  J o ( t e ) d t = O  for e >  l .  
o 
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By means of the inverse Hankel  transformation we obtain (e. g. from the 
tables of Hankel  transformations in [11]) 

(12) [(t) = aJ l ( t  ) , 

where J~ is the Bessel function of the first order. 
After substituting into relation (9) we can thus determine the sought 

function B(~) 
Ct 

(13) B(~) = ~ J ~ ( $ R ) .  

The stress function G(~, z) is thus also determined according to Eq. (6) 
and the problem is solved. 

By  means of the general relations between the stress and displacement 
components and the stress function G(~, z) given in [11] (one of them has al- 
ready been used as Eq. (7)) we then calculate the required stress and dis- 
placement components if, for the sake of brevity, the following is introduced 

oo 

(14) I~(~ ,  ~) = ft '~Jm(to) J~(t) e-tr d t ,  

We then obtain for 

(15) ~ (~ ,  ~) - 

0 

= z / R .  

the stress components 

b [ I  1 - ~I~ 
R 2(1 r__ O') L 
b /~ [ 1 -- 

a ~ ( ~ ' ~ ) - - R 2 ( 1 - - ~ ) L  e 
b /, 

~ ( e ,  ~) = ~ 2(1 - G) 

b ~ ~I1', 

~ ( ~ ,  $) = 0 ,  
~o~(Q, ~) = o 

and fox" the displacement components 

b 
(16) ur(~), ~) - -  4(1 -- a) 

b 

1 - 2a ~ I ] ]  
e I~O + S  ' 

2 ~ i o _ ~  , . + 2 ~ x ~  , 

2 [Io ~ + J o ] ,  

[ ( 1  - -  2 a ) I  ~ - -  ~ I I ]  , 

u , ( ~ , g ) - -  4 ( 1 - - a )  [ 2 ( 1 - - a )  Io ~ @~Io t ] ,  

ue(q, r = 0 .  

These components obviously satisfy the boundary condition for u~ and T,, 
and the conditions at infinity and are thus the only solution of our problem. 

The stress and displacement components are expressed in Eqs. (15) and 
(16) by  means of six integrals of the type  (14) for m = 0, 1 and n = 0, 1, 2, 
which due to the term e-*r may be considered as Laplace transformations of 
the function tnJ ,~( t~)Jl( t )  with the variable t and parameter  ~. In order to 
calculate the stresses numerically either numerical calculation of these in- 
tegrals can be carried out or they can be expressed by  means of hypergeo- 
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metr ic  funct ions,  or b y  means  of elliptic integrals.  We car ry  out  this  calculat ion 
for  two of the  physical ly  mos t  in teres t ing stress components ,  the  shear  s tress  
on a slip cyl inder  r = R, i.e. for  v~:(1, ~), and  for  normal  stress on the  plane 
of s y m m e t r y  z = 0, i.e. for  ~:(Q, 0). F r o m  Eqs.  (15) we obta in  af te r  l eng thy  
calculat ion using the  relat ions for the  integrals f rom the  Bessel funct ions  [12] 
and the  relat ions for hypergeomet r i c  funct ions  and thei r  connect ion wi th  
complete  elliptic integrals (given e.g. in [13]): 

o o  

(17) b ,u 
J 

R 2(1 - -  ~) o 

_ _  1 

~' ~ + 4  ~ , ~ + 4 1  ~ G  ~ , -  2 , - -  = 

k 
- -  = ~  [(1 - -  k ~) K(k) + (21c 2 - -  1) E ( k ) ] ,  

where 
2 

<is)  = i 7 F : : 7 7  ' 

2F~ is a hypergeomet r ie  funct ion and E and K are complete  elliptic in tegrals  
in the  usual nota t ion ,  

c o  

~ ( e ,  o) - -  t im f t Jo ( t g )  J ~ ( t )  e - r  d t ,  (19) b !, ~ o , /  
0 R 2 ( 1 - ~ )  

for  0 ~ ~) < 1 

~(9 ,  0,) , 3 2 1 
- ~ ~(-~-, -~, 1, ~ )  = .  E ( e )  (20) b /~ ~ 1 --  o" ' 

for  9 > 1 

R 2 ( 1 - - ~ )  

~ ( e ,  o) l 
(21) - 5 . . . .  / . . . . . .  5~7  ~El(~, ~, 2, 1/~2) -- 

R -  2(1 - -  ~i 

[ ] 2 K(1/~) E(1/~) 
7~ 9 9 ~ - -  1 " 

The  t abu l a t ed  values for  complete  elliptic integrals were used for the  cal- 
culation. Relat ions (17), (20) and  (21) are p lo t t ed  in Figs. 2 and  3. The values 
for  ~ < 0, following f rom the  condi t ion of s y m m e t r y  for a dislocation loop, 
are p lo t t ed  for the funct ion  Tr~(1, ~). Due to  the  s y m m e t r y  the  con t inua t ion  
into lower half-space for  the  solut ion of problem 1 is such t h a t  the  displace- 
merits % and u~ are symmetr ica l  wi th  respect  to  the  plane z -= 0, i.e. u ,  is 
an even  and  u~ an  odd funct ion of z. I t  t h e n  follows f rom Hooke ' s  law t h a t  
the  normal  stresses a,, a+, a~ are an even  and the  shear  stress v,~ an odd func t ion  
of 2:. 
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DEFORMATION ENERGY 

As is known, the deformation energy of a linear dislocation in an unlimited 
medium, calculated from the aspect of the classical theory of elasticity, is 
infinitely large for two reasons. The first is tha t  the stresses in the immediate 
neighbourhood of the dislocation line are infinitely large. In a crystal, of course, 
the stresses are limited and when calculating the energy it is therefore best 
to cut off the immediate neighbourhood of the dislocation line -- the dis- 
location centre -- and estimate the energy of the centre from atomic considera- 
tions. The second reason for the infinite magnitude of the energy of a recti- 
linear dislocation is the slow decrease in stress with distance from the dis- 
location line; a limited body with dimensions equal in order of magnitude to 
the dimensions of crystals should therefore be considered instead of an unlimi- 
ted medium. 

The latter reason drops out for circular dislocation loops because, due to 
the  interaction of the opposite parts of the dislocation, the stresses decrease 
rapidly with the distance, the energy is concentrated in the immediate neigh- 
bourhood of the loop and calculation can be carried out for an unlimited me- 
dium. 'The first reason remains, of course, since in the immediate neighbour- 
hood of the dislocation line our solution has the same character at the limit 
as in the neighbourhood of a straight dislocation. When calculating the energy 
of a dislocation loop we therefore again cut off the centre of the dislocation 
and express the total  energy of the loop W as a sum 

(22) W --~ W1 ~- W~, 

where Wi is the energy in an unlimited medium outside the dislocation centre 
and Wj is the energy of the centre. 

The energy outside the centre is calculated as the work of external normal 
stresses in forming a dislocation 

R - - e  

,(23) W1 = 2�89 / [-- ~(r ,  0)] . (-- �89 27:r d r ,  
0 

where e is the radius of the centre, 0 < s < R (for physical considerations 
as a rule s ~ R). 

After substituting from Eq. (19) into (23) using (8) and after one integration 
over r we obtain 

oO 

w l  - = ( R  ~)] J~(~R) de. 

2(1 - -  a) o 

Further  calculation, using [13], gives the final expressions 

<25) 

2 ( 1 -  a) 
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A quanti ty equal in order of magnitude to the Burgers vector [ 15], s ~ b, 
is usually taken as the radius of the centre ~. 

The estimate in [15], independent of the radius of the centre, is taken for 
unit length for the energy of the centre of an edge dislocation 

#b ~ 
wj = "47:(1 -- a)" 

We can with good approximation assume the same energy of t h e  centre 
and unit length for our circular loop so tha t  the energy of its centre is 

/~b2 R . 
(26) W j - -  2 ( 1 - - a )  

The total  energy of a circular dislocation loop is then given by the sum of the 
energy outside the centre and the energy of the centre, i.e. by Eqs. (22), (25) 
and (26). 

For e ~ R we can use the limiting relations for complete elliptic integrals 
(see e.g. [14]) 

4 
x--> l ,  K ( x ) - ~ l n - - ,  E ( x ) - - +  l ,  

y l  - x 2 

and we obtain the following approximate expression for the total energy 

/~b2 R ( l n  8R 1) 
(27) W ~  2(1--  a) 7 - -  ' 

which agrees with the expression given in [5]. 

DISCUSSION 

Calculation was carried out for a circular dislocation loop such as would be 
formed in a crystal after the condensation of vacancies into a flat cavity and 
the approach of their surfaces. The solution for a circular loop with Burgers 
vector of opposite sign, corresponding on the contrary to a greater distance 
between .the circular bases and the insertion of a thin circular plate -- or in 
a crystal the assembly of interstitial or impurity atoms into a thin disc -- is 
obtained from our relations by merely changing the sign at the Burgers 
vector b. 

The course of the stresses and displacements, as is shown by our Figs. 2 and 
3, is very different from an edge dislocation with a straight dislocation line. 
The stresses decrease much more rapidly with distance, e.g. ~r~(1, $) as 1/$ ~, 
a~(@, 0) as 1/@ 3. From this follows small interaction of the dislocation loop 
with more distant defects in the crystal lattice. 

The deformation energy of a dislocation loop is primarily concentrated in 
the immediate neighbourhood of the loop and the energy per unit length of 
the dislocation line is much smaller for a small radius of the loop than per 
unit length of a straight dislocation line. The energy of the centre is no 
longer negligible compared with the energy outside the centre; fo~" example, 
for ~/R  = 10 -2 , W r  1 : 0'.22. 

For very small radii of the loop our solution no longer corresponds to the 
actual state in the crystal. As long as the flat cavity, produced by the con- 
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densation of vacancies, does not exceed the critical radius Rk, the bases of 
this cavity do not approach and the dislocation loop is not formed since the 
preservation of the cavity with free surfaces is more advantageous from the 
energy point of view. The condition of equali ty between the energy of the 
free surface of the cavity and the energy of the dislocation gives a rough esti- 
mate of the critical radius R~ 

2~R~y ---- W(/~, a, b, e, Rk) 

-3 

'-2 

-4 

-5 

-6 

-2 

1 2 z 3 

Fig.  2. Curve of  shear  s t ress  Vrz on slip cyl inder  
= r /R  ~ 1. 

Cq, O) 
b ~ ',,' 

-fi- 2 ( l :  ~r) 
6 

5 

4 

3 

:lj 
t 

. , 1 1  _ ,  2 . . . . . .  

- I  I 

-2  

-3 

-4 

- g  

-6  

Fig. 3. Curve of  no rma l  s t ress  a z in 
p lane  of  loop z -~ 0. 

where y is the surface energy. For  a cavity one atom thick, i.e. for a dislocation 
with minimum Burgers vector, the critical radius for metals is, however, very  
small, R~ < 2b. 

Since the solution is carried out from the aspect of the classical theory of 
elasticity, the calculated values of the stresses and displacements in the neigh- 
bourhood of the dislocation approach bffinity. The solution is not  therefore 
valid in the centre of the dislocation. In order to calculate the stresses and 
displacements in the centre one must start  out from other models, based on 
atomic concepts, or from the non-linear theory of elasticity. Our solution, how- 
ever, holds well in a crystal outside the centre of the dislocation, where the 
atomic stnlcture does not  basically assert itself, and helps in solving a number 
of problems such as in studying the interaction of a loop with other defects. 

A closer approximation of the actual conditions in a crystal would be ob- 
tained b y  a solution from the aspect of the anisotropic theory of elasticity 

Czech. 3". Phys. B I0 (1960) 291 



F. Kroupa 

and  by  considering a dislocation loop composed of straight sections instead 
of a circular loop, e.g. for the cubic crystal of a square or triangular loop (for 
loops in the (100) and (111) planes). Such a solution is, however, much more 
laborious. 

The above solution may be the starting point for solving a circular dislo- 
cation loop from the aspect of the P e i e r l s - N a b a r r o  [16] model, which so 

_% 

Fig. 4. Deformation energy of circular 
dislocation loop as a function of radius 

of cer~tre e. 
W~ 

c u r v e  1 . . .  
/~b~ R 

2(1 - -  ~) 

c u r v e 2  . . .  W j  

#b~ R ' 
2(1 - -  ~) 

W curve 3 . . .  
/~b~ R ' 

2(1 - -  ~) 

curve 4 . . .  In SR__ 1 . 

far has only been elaborated for a recti- 
linear dislocation line in the same way as 
other models, e.g. the Y o f f e  model [17]. 
The basic P e i e r l s - N a b a r r o  integro- 
differential equation can be derived for 
the displacement uz(R, z) on a slip cylin- 
der, analogously to E s h e l b y ' s  procedure 
[18], as a condition for a continuous dis- 
tr ibution of the dislocation loops on a 
cylindrical sudace r = R for which the 
shear stress ~ ( R ,  z) is a periodic function 
of the mutual  displacement of the atoms 
along both sides of the cylindrical surface 
in the direction of the z axis. For a shear 
stress %,~ of the dislocation loop we can 
then use our expression (15).The P e i e r l s -  
N a b a r r o  equation is, however; very 
complicated and numerical methods should 
be used for its solution. 

CONCLUSIONS 

An exact calculation is carried out  of 
the stresses, displacements and energy of 
a circular dislocation loop, with Burgers 
vector normal to its plane, from the point, 
of view of the classical isotropic theory 
of elasticity. The axial symmetry of the 
problem and the symmetry  with respect 
to the plane z = 0  was made use of in 
the solution and the calculation was car- 
ried out by the method of Hankel trans- 
formation for half-space with corres- 
ponding boundary condition. The cal- 
culated stresses can be used with good 

accuracy for studying some of the properties of a dislocation loop formed 
in the crystal by  the condensation of vacancies or interstitial atoms. Small 
interaction of the dislocation loop with more distant defects follows from 
the rapid decrease in stress with distance and the small deformation energy. 

The author  thanks M. ~ i m a n o v s  for carryirlg out the numerical calcula- 
tions and J .  K a e z 6 r  and B. ~ e s t s  for remarks and discussion. 
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