
Bulletin Geodesique (1992) 66:296-305 Bulletin
Geodesique

({;; Springer-Verlag 1992

A comparative study of algorithms for reducing the fill-in
during Cholesky factorization

P. J. de Jonge *

Delft Geodetic Computing Centre (LGR), Faculty of Geodesy, Delft University of Technology, Thijsseweg 11, 2629 JA Delft, The Netherlands

Received May 21; Accepted May 22, 1992

Abstract

In this paper several ordering algorithms for the un­
knowns in geodetic least squares systems are compared,
The comparison is restricted to the case of the well
known Cholesky factorization of the normal matrix A
into a lower triangular factor L.

The algorithms which were investigated are: minimum
degree, minimum deficiency, nested dissection, reverse
Cuthill-McKee, King's-, Snay's-, and Levy's-banker's
and Gibbs-King.

Also some strategies are presented to reduce the time
needed to compute the ordering using a priori informa­
tion about the way the unknowns are connected to each
other.

The algorithms are applied to normal matrices of the
least squares adjustment of 2D geodetic terrestrial net­
works, photogrammetric bundle-block adjustments, and
a photogrammetric adjustment using independent mod­
els.

The results show that ordering the unknowns yields a
considerable decrease of the cpu time for computing the
Cholesky factor, and that in general the minimum degree
and Snay's banker's ordering perform best. Furtheron
they show that a priori information about the connection
structure of the unknowns speeds up the computation of
the ordering substantially.

1 Introduction

One of the most time consuming steps in a least squares
adjustment is the solution of the system oflinear normal
equations

Az =b (1}

where A is a square and symmetric positive definite n
by n matrix. This is especially true if the system is very
large which is quite common in the field of geodesy. For­
tunately, often many entries of A are zero, and usually
the fraction of nonzero entries (the 'fill') decreases with
the size of the matrix.

If we distinguish between zero and nonzero entries
('nonzeros' and 'zeros') in a matrix, we have a sparse
matrix. There are two important advantages when us­
ing sparse matrices. Firstly, if we operate only upon the
nonzeros, we save time; secondly, we only have to store
the nonzeros. We need however, special data structures
and special algorithms which have an overhead in storage
and computing time. Furthermore, we have to design our
algorithms in a way that they use and preserve sparsity.

The algorithm used at the Delft Geodetic Computing
Centre for the solution of the system in Eq. (1) is based
upon Cholesky factorization, resulting in the decompo­
sition of the normal matrix A into the product of a lower
triangular matrix Land an upper triangular matrix LT:

(2)

We can solve for z by forward (Lt = b) and backward
(LT ;z; = t) substitution.

If A is sparse then the Cholesky factor L generally is
also sparse. L has at least the same nonzeros as the lower
triangle of A (neglecting numerical cancellations), but
usually some new nonzeros arise in L (the 'fill-in'). The
amount of fill-in and its location depends on the order in
which the pivots of the Cholesky factor are chosen, and
hence on the order of the unknowns. The solution of the
permuted system

(3)

with the orthogonal permutation matrix P and solution
z = pT(Pz), is identical (except for small round off)
to the solution of the system of Eq. (1). Since there
is no need to pivot i.e. exchange rows or columns for
stability reasons, we are free to choose the order of the
unknowns, or the permutation matrix P, in such a way as
to minimize fill-in and hence computing time and storage
requirements.

* Supported by the Netherlands Organization for Scientific Research (NWO)

2 Sparse matrices

The representation of a sparse matrix

When using sparse matrices we try to store and oper­
ate upon the nonzeros only; therefore we have to spec­
ify a storage scheme or data structure in order to store
a sparse matrix in computer memory, and design algo­
rithms which use this data structure in the most prof­
itable sense. In this paper we distinguish between two
data structures:

1. Nonzero storage; only the nonzeros are stored. The
set of elements a;j which are stored is called Nz(A). If
we only store the lower triangular part of A, which we
usually do if A is symmetric, the set of elements is defined
by

(4)

2. Envelope or variable band storage (for symmetric
matrices only); all elements within the envelope around
the diagonal, zeros and nonzeros alike, are stored. The
set of elements a;j which are stored is called Env(A):

Env(A) = {a;jl/;::; j::; i} (5)

where /; is the first nonzero element in row i. Only half
of the matrix is stored since the matrix is symmetric.
The number of elements which are stored, IEnv(A)i, is
called the 'profile' and is defined by

n n

IEnv(A)I = n + ~)i- /;) = n + L.Bi (6)
i=l i=l

where ,B; is called the i-th or local bandwidth.
The envelope storage scheme involves less overhead

and is faster in accessing individual elements than the
nonzero storage scheme. However, also zeros within the
envelope are stored and hence will be used in computa­
tions.

For the description and explanation of sparse matrix
algorithms we use the concepts of graphs. A graph G =
(V, E) consists of a set of nodes or vertices V, and a set of
edges E. We may associate the symmetric n by n matrix
A with a labelled undirected graph GA = (VA, EA).
The set of nodes corresponds to the diagonal entries of
the matrix, the set of edges to the off-diagonal entries.
Labelled means that each node has a unique number
corresponding to a row, column or unknown; undirected
means that we do not distinguish between the edge from
node v to w and the edge from w to v, in other words
the matrix is symmetric.

Two nodes v and w are adjacent in a graph if there
is an edge between them, so the nonzero structure of A
corresponds to a so-called 'adjacency structure' of GA.
This adjacency structure is usually stored by a nonzero
storage scheme. The nodes which are adjacent to a node

2
3 •

• 4 • •

• 5
6 •

• • 7

•

8 • •

.. 9 •

• • 10

297

Figure 1: Symmetric matrix and its associated graph.

w are said to be in the adjacent set of w, denoted by
Adj(w). The number of nodes in Adj(w) is called the
degree of w denoted by Deg(w). Simultaneously we may
define the nodes adjacent to a set of nodes W by Adj(W).

Cholesky factorization

One of the methods to perform Cholesky factorization
is the outer product method. Since this method is well
suited to explain a number of phenomena occurring dur­
ing factorization, it will be described here:

1. At= A

2. Fori= 1, n- 1

2. (a) partition A; into [
d;
Cj

(b) Cj f-- Cj I v'di

(c) L(i: n, i) t-- [~]
(d) - T

Ai+l <--- Ai+l- c;c;

3. L(n, n) t-- ffn

The input is a n by n symmetric and positive definite
matrix A with only the elements of the lower triangle
stored.

At each step i we have the transformation of Ai+l
into Ai+l· If we assume that exact numerical cancel­
lation does not occur, then (A;+t)ik is nonzero if and
only if (Ai+ 1)jk is nonzero, or the outer product element
(c;c[)ik is nonzero. The outer product element (c;c[)jk
is nonzero if and only if (c;)j and (c;)k are nonzero.

If we now introduce the associated graphs G; and Gi+l
of A; and Ai+ 1 , then one step of Cholesky factorization
can be described as a graph transformation by the fol­
lowing recipe due to [Parter, 1961]

to obtain G;+ 1 from G;, delete node v; and all
edges incident to it, and add all possible edges
between nodes which are adjacent to v; in G;

298

where node v; is associated with the pivot d;, and the 3
set of nodes adjacent to v; is associated with the nonzero

Minimum fill strategy

elements in c;.

The graphs G;, i = 1, 2 ... , n are called elimination
graphs, and the whole process of Cholesky factorization
can be seen as the formation of the sequence of elimina­
tion graphs:

(7)

The order in which nodes are eliminated influences
the number of new formed edges. The storage and cpu
time needed for the factorization depends for factoriza­
tion based on a nonzero storage scheme on the amount
and position of the nonzeros in the factor, and for factor­
ization based on an envelope storage scheme on the size
and form of the envelope. Table 1 gives the operation
count for the two types of storage schemes as a function
of the 'i-th frontwidth' h;. For nonzero factorization h;
is equal to IN z(c;) J. For envelope factorization it is equal
to the number of elements of c;, zeros and nonzeros alike,
which are within the envelope (the 'active' rows).

storage (exclusive
administration)

multiplicative
operation count

additive
operation count

n-l

tEh;(h; + 3)
i=l

n-1

t.~:.=h;(h; + 1)
i=l

Table 1: Operation count and storage for Cholesky fac­
torization.

Ordering strategies

The ordering algorithms in this paper can be divided
into two groups, viz. those that minimize the number of
nonzeros in the Cholesky factor, and those that minimize
the size of the envelope of the normal matrix.

The former group can be subdivided into the 'min­
imum fill strategy' where A is permuted such that at
each step of the factorization L suffers minimum fill-in
(section 3), and the 'dissection strategy' where the un­
knowns are partitioned in k sets and ordered in such a
way that the fill-in is confined to certain regions as small
as possible (section 4).

The objective ofthe 'minimum envelope strategy' is to
permute A such that its envelope is as small as possible;
the envelope of L equals the envelope of A, and fill-in
will only occur within this envelope (section 5).

The minimum degree algorithm

In graph terminology Parter's recipe means that after
elimination of v;, its adjacent set becomes a 'clique', i.e.
every node in this set is adjacent to every other node in
it. In matrix terms it means a full sub-matrix which may
be, depending on the ordering, scattered throughout the
matrix.

If we want to minimize, at least locally, the fill we
should eliminate at each step of the elimination process
a node of minimum degree in the current elimination
graph. In matrix terms this corresponds to the col­
umn/row with the least nonzeros in it. This is the basic
idea of the minimum degree algorithm:

1. Compute the degree of all nodes in Gr.

2. Fori::::: 1, n- 1

(a) Choose from G; a node of minimum degree v;

and label it i.

(b) Form Gi+ 1 by eliminating v;.

(c) Update the degree oft he nodes which were ad­
jacent to v; in G;.

3. The last node Vn gets label n.

The difficulty with the minimum degree algorithm is that
the graph changes during the elimination, both in size
as in structure. Therefore we have to insert and delete
edges from the adjacency structure of the elimination
graph. There are several algorithms which can handle
this. We have tested the following two:

1. the quotient minimum degree algorithm of [George
and Liu, 1980] where elimination is modelled implic­
itly using 'quotient graphs'.

2. the linked lists minimum degree algorithm where
elimination is modelled explicitly by formation of
the elimination graphs, using a circular linked list
data structure for the successive elimination graphs
[de Jonge, 1991].

The latter algorithm has been developed at the Delft
Geodetic Computer Centre, and is a derivative of the
algorithm of George and Liu in the sense that we have
'borrowed' some concepts from it. The most important
feature is the notion that during elimination some nodes
become 'indistinguishable' with respect to elimination.
It means for the adjacent nodes v and w that Adj(v)­
w = Adj(w) - v, which implies that we can combine
them into one so-called 'super node'. This can speed
up the computation of the ordering considerably. As we
shall see in section 6, in geodesy we often can point out
indistinguishable nodes before the computation of the
ordering starts.

The minimum deficiency algorithm

The minimum degree strategy does not guarantee that at
each step the number of new edges is minimized (the fill­
in). If this is our purpose we have to apply the minimum
deficiency algorithm. Then we have to examine at each
step for each non-labelled node how many new edges will
be formed if we eliminate it, which is computationally
far more complex. Although this algorithm at each step
locally minimizes the fill-in, the resulting global fill-in
is for a large class of graphs of the same order of the
fill-in of a graph ordered by a 'good' minimum degree
algorithm.

4 Dissection strategy

The rooted level structure of a graph and
pseudo-peripheral nodes

The nested dissection algorithm described in [George
and Liu, 1981], the (reverse) Cuthill-McKee algorithm
and the Gibbs algorithms are all based on a rooted level
structure of the graph. Such a rooted level structure
rooted at node :e (the 'root') of G = (V, E) is defined as
the disjoint partitioning

.C(v) = {Lo(v), L1(v), L2(v), ... , Le(v)(v)} {8)

where e(v) is called the 'eccentricity' of node v, Lo(v) =
{v}, and L;(v), i = 1, ... , e(v) consists of the nodes adja­
cent to L;_ 1 which are not already in one of the previous
levels. Thus nodes in L;(v), i = 1, ... , e(v)- 1 are only
adjacent to nodes of levels i- 1, i, i + 1.

The length of .C(v), defined as the number of levels
minus 1, is equal to the eccentricity e(v) of its root v.
The width of .C(v) is defined as the maximum number of
nodes in any level.

299

with that of v. If it is equal, a pseudo-peripheral node
has been found, otherwise repeat the whole procedure
with a node of minimum degree from the last level of
.C(w).

The nested dissection algorithm

The thought behind the method of nested dissection is
the following: the associated graph is systematically par­
titioned using 'separators'. A separator is as set of nodes
which by its removal splits the graph in two or more
components. When a separator is found, its nodes are
labelled and removed from the graph, thus leaving the
graph partitioned into two or more components. Good
separators are those which are as small as possible and
lead to a partitioning with components comparable in
SlZe.

Subsequently, separators are found for each compo­
nent and the procedure is continued until no separators
can be found. If at a certain stage no separator can be
found for a component, the whole component is labelled.
After this dissection, the labelling is reversed.

Essential for the nested dissection labelling is that the
separator is labelled after the components it divides. The
fill-in is confined to the areas which are formed by the in­
tersection of the separator with the components divided
by it .

In [George and Liu, 1981] a nested dissection scheme
is given based on a level structure rooted at a pseudo­
peripheral node w. Each level is a separator of the
graph although not a minimal one. A small separator
which splits a graph in comparably sized components
can be obtained by taking only those nodes of the 'mid­
dle' Li(w), which are adjacent to some node in L;+ 1{w).
It can be shown that if the separators are chosen in this
way, the internal labelling of their nodes does not influ­
ence the fill-in.

Minimum envelope strategy
For a good performance of the level structure based

ordering algorithms, a level structure containing many 5
small levels is needed (i.e. a level structure with a small
width and a large length). The (reverse) Cuthill-McKee algorithm

Such a level structure is usually obtained if we take
for the root a node of high or even maximum eccentric­
ity (a peripheral node). Algorithms to find a peripheral
node are very time consuming. Usually an algorithm
proposed by [Gibbs et al. 1976], or the adjusted one
by [George and Liu, 1979] to find a so-called 'pseudo­
peripheral' node is used. The latter is as follows:

Choose an arbitrary node v in V, and generate its
rooted level structure .C(v). The eccentricity of any node
in the last level of .C(v), is at least equal to the length of
.C(v) (= eccentricity of v), but it may be larger. There­
fore generate .C(w) with w a node in this last level of
minimum degree (since such a node is even more likely
to have a large eccentricity) and compare its eccentricity

The Cuthill-McKee algorithm [Cuthill and McKee, 1969]
was the first non-iterative envelope reducing algorithm.
The principle is the following: Let v be a labelled node,
and w an unlabeled adjacent node. To minimize the
local bandwidth it is necessary to label node w as soon
as possible after v. By this strategy both the bandwidth
as well as the envelope are reduced.

Soon it was noticed that reversing the labelling results
in an equally sized bandwidth, and a smaller or equally
sized envelope.

The Cuthill-McKee algorithm is based on a rooted
level structure of the graph; the nodes are labelled level
by level. In each level internally the nodes adjacent to

300

the lowest labelled node in the previous level are labelled
first in order of increasing degree and so on until the
highest labelled node in the preceding level. If we reverse
the labelling we get the reverse Cuthill-McKee labelling:

1. Determine a starting node v1 (preferably a pseudo­
peripheral one) and label it.

2. Fori= 1, ... , n find all unlabeled nodes in Adj(v;)
and label them in increasing order of degree.

3. Reverse the labelling.

The banker's algorithms

The banker's algorithm, published in [Snay, 1976], and
the algorithms published in [King, 1970] and [Levy, 1971]
are essentially the same. The algorithm got his name due
to an analogy with a banker's problem presented in the
paper of Snay.

Recall that the number of active rows in column i
is called the i-th frontwidth. The number of elements
within the envelope equals the sum of the i-th front­
widths. If we want to minimize (at least locally) the size
of the envelope we should minimize this frontwidth by
allowing a minimum growth of it. The price paid for
this, is that the bandwidth may become very large.

The algorithms of Levy, King and Snay all use this
strategy. They only differ with respect to the way in

strategy may be provided. In [King, 1970], [de Jonge,
1987] some strategies are discussed, but it is our current
opinion that unless one has to deal very often with the
same class of regular graphs, one should not try to find
a strategy, and break ties arbitrarily. There is not a tie
break strategy that gives good results for all classes of
graphs, and besides, it takes time to compute.

The Gibbs-algorithms

The Gibbs-Poole-Stockmeyer algorithm [Gibbs et al.
1976] and the Gibbs-King algorithm [Gibbs, 1976] are
both based on the variant of the rooted level structure
described in section 4. It is a combination of a level
structure rooted at a pseudo-peripheral node, and one
rooted at a pseudo-peripheral node in the last level of
it. It aims at minimizing the level width still further,
while the level length stays the same; it is however more
complex.

Again the nodes are labelled level by level. In the
Gibbs-Poole-Stockmeyer algorithm which primarily aims
at reducing the bandwidth, the labelling within the levels
is accomplished using the reverse Cuthill-McKee strat­
egy. In the Gibbs-King algorithm, which aims primar­
ily at reducing the envelope, King's banker's strategy is
used. We have only tested the Gibbs-King algorithm.

which nodes are considered a candidate for labelling. G
More formally than above, we can describe the al­

gorithm as follows, where V as before is the set of all
nodes, L the set of labelled nodes, C the set of candi­
dated nodes, and H the set of 'hopeful' nodes. Nodes
are called hopeful if they are adjacent to already labelled
nodes, again according to this banker's analogy.

Performance of the algorithms

1. Determine a starting node (we take a pseudo­
peripheral node found by the scheme of George and
Liu) v1, and label it; L = v1

2. Fori= 2,n

(a) H = Adj(L)

(b) C = H
C = H u (Adj(H) - L)
C=V-L

(King)
(Snay)
(Levy)

(c) Label next node v; E C which minimizes:
IWI - d, where

W = Adj(v;) - H and d = { 0 if v; E H
1 ifv; ¢ H

(d) L = LUv;

(IHI + IWI -d) equals the i-th frontwidth, where i is
the current label, and thus represents the change of the
profile. When there is more than one node that fulfills
the above mentioned minimum, some kind oftie breaking

Introduction

The ordering algorithms have been tested on several
geodetic problems, viz. the adjustment of two 2-D terres­
trial networks, and four 3-D photogrammetric networks.
All test runs were made on a DEC-VAX 751 in a single­
or semi-single-user interactive mode. The routines were
compiled by the VAX Fortran v5.2 compiler. The cpu
times are in seconds and we estimate them to be re­
peatable within approximately 5 %; two digits after the
decimal point are given however, to make comparisons
between the several orderings possible. The following
algorithms and implementations were tested:

0. NATural or original ordering
1. Quotient Minimum Degree Sparspak
2. !!inked lists Minimum Degree LGR
3. !!inked lists Minimum DeEiciency LG R
4. Nested Dissection Sparspak
5. Reverse Cuthill-McKee Sparspak
6. KING's banker's LGR
7. SNAY's banker's LGR
8. LEVY's banker's LGR
9. Gibbs-King ToMS

Sparspak is a sparse matrix package developed at the
University of Waterloo, Canada. We have only tested
the version described in (George and Liu, 1981] adapted
to our data structures. The new licensed version is
much faster, (see e.g. [George and Liu, 1989] for devel­
opments of the minimum degree algorithm), but does
not run on our computer. The implementations marked
by LGR are developed by the Delft Geodetic Comput­
ing Centre. ToMS is a library with the collected algo­
rithms from the 'ACM Transactions Qn Mathematical
~oftware'. The material in this library is copyrighted by
the ACM (Association of Computing Machinery), which
"grants general permission to distribute provided the
copies are not made for direct commercial advantage". It
is available from the 'NETLIB' network (see (Dongarra
et al. 1987]), where one can also obtain the Sparspak
routines.

For Cholesky factorization we used two schemes, both
have as input the nonzero stored lower triangular nor­
mal matrix, the output however consists of the nonzero
stored factor, resp. the envelope stored factor. Also the
computation of the 'sparse inverse' has been used as a
benchmark for the orderings. A sparse inverse scheme
only computes those elements of the inverse which are
nonzero in the Cholesky factor, see e.g. (van der Mare!,
1988].

Test matrices

For the surveying networks we tested a cadastral network
in the northern part of the Netherlands (ZK85), and a
network in Oman from Petroleum Development Oman
(OMAN). It are free networks, so the rank deficiency
is four, thus four nodes (the S-basis) are - with their
incident edges - excluded from the graph.

Unknown parameters are the cartesian x- and y­
coordinates of the points; nuisance parameters are an
orientation for every point at which direction measure­
ments have been made, and one or more scale factors.
The x- and y-coordinate, together with the orientation
parameter, form a clique. The x- and y-coordinate are
from the start of the elimination indistinguishable.

A set of coordinates is connected to an other set of
coordinates by a distance or direction measurement. An
orientation parameter is connected to the set of coordi­
nates from which the direction measurement has been
made, and to the set of coordinates of the points aimed
at. The scale factor is connected to every x- and y­
coordinate of a point from which distances have been
measured; its initial degree is thus very high.

The original or 'natural' ordering is: coordinates (x­
and y-coordinate of one point are together), orientation
parameters, scale factor(s).

For the photogrammetric networks we have tested nor­
mal matrices, originating from two types of adjustments:

301

I number of: ZK85 OMAN I

points 180 2008
orientation parameters 148 2352
scale factors 1 2
unknowns 509 6370

Table 2: Some characteristics for the terrestrial networks

Firstly, some matrices which originate from a bundle­
block adjustment (BU [number of strips] * [number of
photos in a strip]). The unknown parameters are carte­
sian x- 1 y- and z-coordinates of the terrain points. Nui­
sance parameters are cartesian x-, y- and z-coordinates
of the principal point, and the rotation parameters
t>., w, and ¢ of the camera. The three coordinates of the
terrain points form a clique, and are indistinguishable
with respect to elimination from the start. The same
holds for the coordinates of the principal point together
with the rotation parameters of the camera.

The original or 'natural' ordering for the bundle-block
adjustment is: 1. the terrain points per row perpendicu­
lar to the direction of flight; 2. the photos in increasing
order per strip. The internal order of the x-, y- and z­
coordinate within a point is arbitrary, as is the internal
order of the x-, y- and z-coordinate, and w, t>., and ¢
within a photo.

Secondly, a matrix which originates from the adjust­
ment with independent models (INMO). Unknown pa­
rameters are again x-, y- and z-coordinates of terrain
points, and there are 7 nuisance parameters per model.

For the photogrammetric networks we also considered
only free networks; so rank deficiency is 7.

I number of: INMO BU 3*7 BU 3*21

points 196 49 147
models/photos 41 21 63
unknowns 881 273 819

BU 7*21

315
147

1827

Table 3: Some characteristics for the photogrammetric
networks

Special ordering techniques for geodetic
networks

Since the initial degree of the scale factor in a terrestrial
network is very high compared to the degree of all other
nodes, we expected it to be ordered last when applying
minimum degree. Inspection of several ordering results
confirmed this; the scale factor is part of the last ordered
set of indistinguishable nodes.

As the scale factor is connected to a majority of the
nodes in the initial graph, a substantial part of the time
needed to update the successive elimination graphs can

302

be attributed to this unknown. If we exclude it from
the graph and order it manually as last, a considerable
decrease of cpu time was found, as expected; in the cases
we have investigated, also a decrease of fill-in has been
observed.

A decrease in cpu time and a decrease of elements in
the envelope was also observed when this was applied
to the banker's algorithms. The decrease in cpu time is
again explained by the fact that the scale factor has such
a high degree; it is involved in almost every updating
cycle of the algorithm.

For the reverse Cuthill-McKee and Gibbs-King algo­
rithm besides the decrease of cpu time a large decrease
of elements in the envelope was observed. This is ex­
plained by the fact that these algorithms are based on
a rooted level structure. For good results this structure
should have many small levels (a level structure of small
width). If the scale factor is included in the graph, the
scale factor will inevitably appear in one of the first lev­
els due to its high degree. The next level will contain
all coordinates of points which are involved in a distance
measurement and which have not already been placed
in a level: thus causing a wide level structure. This is
prevented by putting the scale factor at the end of the
ordering, i.e. leaving it out the level structure.

Generally all global instrumental parameters should
be handled this way: for instance in a bundle-block ad­
justment the camera constant (in our examples this pa­
rameter was not modelled).

Other adaptations of the algorithms to the specific
structure of geodetic networks is the notion of indis­
tinguishability before the ordering is started. Hereby
the size of the graph, i.e. the number of nodes and the
number of edges is reduced by introducing super nodes.
Besides, since the order 0 of the computation time is
a function of the number of nodes and the number of
edges, it is reduced too. Until now this has only be ac­
complished for the LMD and LMDF algorithms, but it
can be applied to all orderings described in this paper.

Results for the terrestrial networks

The timing results for the two surveying networks are
given in table 5 and 6. Table 4 contains the legend for
tables 5,6,7,8,9 and 10. For the average sized networks
(see table 5) one of the minimum degree algorithms, fol­
lowed by a nonzero factorization, is the best choice, with
the linked lists minimum degree the fastest of the two.
The nonzero factorization is superior, even despite the
additional overhead due to its more complicated data
structure.

If one wants to use an envelope factorization scheme
(which is easier to program than the true nonzero factor­
ization scheme), reverse Cuthill-McKee, Snay's banker's
or Gibbs-King should be chosen. We prefer to use Snay's

name
'NAME' 1
'NAME' 2
'NAME' 3
INz(.)l

lEnv(.)l

order
fact
spinv
total

A_f_l

name of the ordering algorithm
scale unknown(s) forced to be last
a priori formation of super nodes
combination of 1 and 2
number of nonzero elements of a
triangle stored matrix
number of elements within the
envelope of a matrix
cpu time for ordering
cpu time for Cholesky factorization
cpu time for sparse inverse
'order' + 'fact' + 'spinv' + cpu time
for permutation of the normal matrix
partial normal matrix; only rows/columns
between f and l are included

Table 4: Legend for tables 5-10.

banker's since this ordering gives also good results if
there are one or more nodes with a high degree.

For large networks (see table 6) only minimum degree
schemes can be used: on the VAX-751 it was not possible
to compute the Cholesky factor using any of the other
orderings.

Ordering the scale factor(s) manually as last reduces
ordering time considerably, and sometimes also improves
the results. If one uses reverse Cuthill-McKee or Gibbs­
King one is obliged to do this since otherwise very dis­
appointing results can be expected.

Especially for large networks it is recommended to
combine the x- and y-coordinate into super nodes be­
forehand.

Results for the photogrammetric net­
works

For an adjustment with independent models (see table 7)
the linked lists minimum degree algorithm is the best
choice. Both quotient minimum degree and Gibbs-King
are surprisingly slow for this type of matrix. Somewhat
surprising are the results of Snay's banker's followed by
a nonzero factorization: it gives far better results than
the envelope factorization.

Again it is recommended to combine indistinguishable
nodes into super nodes before the ordering starts (LMD
2).

For a bundle-block adjustment (see table 8-10) the
best ordering method depends on the size and the struc­
ture ofthe network, and the number of iterations needed
to get convergence, i.e. the number of times one need to
compute the Cholesky factor. In table 11 one can find
which ordering gives the lowest total cpu time for one
iteration as well for three iterations.

So depending on the size and structure of the block
and the number of iterations, one should use reverse

303

I name jNz(L)i I order fact spinv total I As one can see in table 8 1 the minimum deficiency

NAT 39799 0.00 65.44 152.25 217.69
QMD 5753 13.73 2.22 4.37 20.92
QMD1 5557 4.69 2.08 4.08 11.45
LMD 5639 2.71 2.12 4.16 9.63
LMD 1 5565 1.89 2.02 4.15 8.67
LMD3 5574 0.96 2.07 4.21 7.84
LMDF3 5382 6.04 1.90 4.06 12.64
ND 7425 1.39 3.24 6.44 11.59
ND 1 7612 1.20 3.36 6.41 11.59

I name I IEnv(L)i I order fact spmv total I

NAT 78203 0.00 127.65 330.31 457.96
RCM 91549 0.80 - - -
RCMI 11663 0.43 3.16 6.29 10.47
KING 12594 0.70 3.74 7.66 12.67
KING I 12581 0.60 3.64 7.49 12.27
SNAY 15935 1.13 5.36 11.81 18.81
SNAY1 11389 0.68 3.02 6.14 10.43
LEVY 15028 1.19 5.04 10.77 17.58
LEVY I 11557 1.03 3.12 6.27 11.01
GK 77571 3.53 - - -
GK 1 10460 1.08 2.54 5.01 9.15

Table 5: ZK85, 1Nz(A_5_509)I : 3341 (2.61 %).

I name I jNz(L)I I order fact spinv total I

NAT 6609427 0.00 - - -
QMD 69343 800.37 - - -
QMD 1 68515 84.01 40.58 245.95 379.21
LMD 68963 174.41 - - -
LMD 1 68831 107.82 40.39 245.85 402.56
LMD3 68689 52.65 40.05 247.32 348.51
ND 1 126924 19.24 - - -

I name I jEnv(L)i I order fact spmv total I

NAT 9519599 0.00 - - -
RCM1 634947 5.34 - - -
KING 1 390271 8.66 - - -
SNAY1 333195 11.71 - - -
LEVY I 593758 82.57 - - -
GK 1 568777 17.22 - - -

Table 6: OMAN, 1Nz(A_5_6370)I : 35956 (.18 %).

Cuthill-McKee1 Snay's banker's or Gibbs-King followed
by an envelope factorization, or the natural ordering fol­
lowed by a nonzero factorization.

The minimum degree algorithms perform very badly
on larger blocks. Generally the number of nonzeros in
the Cholesky factor exceeds the number of nonzeros in
it when natural ordered, which indicates the quality of
this a priori ordering.

algorithm may cause a larger amount of fill-in than the
minimum degree algorithm.

I name I jNz(L)I I order fact spinv total I

NAT 39680 0.00 67.87 124.69 192.56
QMD 23461 83.91 17.84 29.74 134.14
LMD 23265 8.76 17.72 29.33 58.52
LMD 2 23069 0.55 17.38 27.58 48.10
LMDF2 22979 5.32 17.48 27.30 52.63
ND 40608 4.34 47.23 92.74 146.83
SNAY 27881 3.71 25.71 39.94 72.04

I name I IEnv(L)I I order fact spmv total I

NAT 170629 0.00 - - -
RCM 123158 2.00 188.03 487.15 679.76
KING 61235 2.93 43.03 104.61 152.87
SNAY 54949 3.87 33.46 81.76 121.68
LEVY 58981 4.99 37.54 93.79 138.66
GK 86295 80.46 85.46 221.84 390.26

Table 7: INMO, 1Nz(A_8J!81)1: 12705 (3.32 %).

I name jNz(L)i I order fact spinv total I

NAT 7770 0.00 5.85 8.41 14.26
QMD 6162 7.39 3.43 5.27 16.72
LMD 6171 1.53 3.43 5.50 11.10
LMD 2 6162 0.17 3.42 5.60 9.82
LMDF2 6168 0.90 3.37 5.40 10.30
ND 8553 0.74 6.49 10.82 18.67

I name I IEnv(L)I I order fact spmv total I

NAT 20280 0.00 16.43 43.71 60.14
RCM 10674 0.43 4.29 10.39 15.70
KIN 8445 0.60 2.74 6.44 10.34
SNAY 7410 0.73 2.09 4.79 8.23
LEVY 7779 0.75 2.33 5.35 9.03
GK 10551 1.58 3.96 9.54 15.68

Table 8: BU 3*7, INz(A-8...273)1 : 3702 (10.42 %).

I name jNz(L)i I order fact spinv total I

I NAT 261241 0.00 21.73 31.20 "·"I I name I IEnv(L)I I order fact spinv total I

NAT 165012 0.00 501.64 - -
RCM 34509 1.42 14.19 32.71 50.28
SNAY 46059 2.93 26.60 64.64 96.19

Table 9: BU 3*21, 1Nz(A_8_819)1 : 11976 {3.63 %).

304

7 Conclusions

• Ordering of unknowns is important if one wants to
reduce storage and time needed for Cholesky factor- 1 name
ization and computation of the sparse inverse.

INz(L)I I order total \ fact spinv

• The minimum degree algorithm is generally the best
choice if the factorization is based on a nonzero stor­
age scheme.

• Snay's banker's algorithm is generally the best
choice if the factorization is based on an envelope
storage scheme.

NAT 101256 0.00

I name I IEnv(L)I I order

NAT 849696 0.00
RCM 171261 3.53
SNAY 124827 7.30

166.75 242.74 409.49

fact spmv total I

- - -
152.95 393.43 555.58

82.24 202.49 297.72

• Excluding nodes with high degree (instrumental pa- Table 10: BU 7*21, 1Nz(A_8_1827)1 : 27924 (1.69 %).
rameters) from the graph, and combining indis-
tinguishable nodes (coordinates) into super nodes
(points) reduces the time needed for ordering the
unknowns considerably.

Figure 2: BU 3*7, (a) natural ordering, (b) m1mmum
degree (LMD), (c) reverse Cuthill-McKee, (d) Snay's
banker's. In the lower triangle the normal matrix, in the

number
of photos
in a strip

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

1 2

s -

s s
s s
s s
s s
s s
s s
s R
s R
s R
s R
s R
s R
s R
s R
s R
s R
s R
s R
s R
s R
s R
s R

number of strips

3 4 5 6 7J

- - - - -
- - - - -

s - - - -
s s - - -

s s s - -
s s s s -
s s s s s
s s s s s
s s s s s
s s s s s
s s s s s
N (G) s s s s
N (G) s s s s
N (G) s s s s
N (G) N (S) s s s
R {G) N (G) s s s
R (G) N (G) s s s
R (G) N (G) N (S) s s
R (G) N (G) N (S) s s
R (G) N (G) N (G) s s
R (G) N (G) N (G) s s
R (G) N (G) N (G) N (S) s
R (G) N (G) N (G) N (S) s

upper triangle the resulting Cholesky factor is depicted. Table 11: Fastest method for the bundle-block adjust-
ment (ordering+ permutation+ factorization+ sparse
inverse). Between brackets the result if three factor­
izations are computed (only displayed if it differs from
one iteration). N =natural ordering, S=Snay's banker's,
R=reverse Cuthill-McKee, G=Gibbs-King.

References

Cuthill, E., McKee, J. (1969) Reducing the bandwidth
of sparse symmetric matrices. In Proceedings 24th
National Conference A CM. ACM publication no. P-
69, Brandon Systems Press, NJ.

Dongarra, J .J ., Grosse, E. (1987) Distribution of math­
ematical software via electronic mail. In Comm.
A CM 30, pp. 403-407.

George, A., Liu, J.W.H. (1979) An implementation of a
pseudo-peripheral node finder. In A CM Trans. on
Math. Softw., Vol. 5, pp. 286-295.

George, A., Liu, J.W.H. {1980) A fast implementation
of the minimum degree algorithm using quotient
graphs. In ACM Trans. on Math. Softw., Vol. 6,
No. 3, pp. 337-358.

George, A., Liu, J.W. (1981) Computer solution of large
sparse positive definite systems, Prentice-Hall, En­
glewood Cliffs, NJ.

George, A., Liu, J.W. (1989) The evolution of the min­
imum degree ordering algorithm. In SIAM Review,
Vol. 31, No. 1, pp. 1-19.

Gibbs, N.E. (1976) A hybrid profile reduction algo­
rithm. In ACM Trans. on Math. Softw., Vol. 2,
No. 4, pp. 378-387.

Gibbs, N.E., Poole, W.G., Stockmeyer, P.K. (1976) An
algorithm for reducing the bandwidth and profile of
a sparse matrix. In SIAM J. Numer. Anal., Vol.
13, No. 2, pp. 236-250.

305

Jonge de, P.J. (1987) On the ordering of the unknowns
during the Hipparcos reduction on circles. Graduate
thesis Department of Geodesy, Delft University of
Technology.

Jonge de, P.J. (1991) An analysis of ordering schemes
for the unknowns during the solving of geodetic least
squares systems, Reports of the Faculty of Geodetic
Engineering/Dept. of Mathematical and Physical
Geodesy, Delft University of Technology, 91.4.

King, I.P. (1970) An automatic reordering scheme for
simultaneous equations derived from network sys­
tems. In Int. J. Numer. Meth. Eng., Vol. 2, pp.
497-509.

Levy, R. (1971} Restructuring of the structural stiffness
matrix to improve computational efficiency. In Jet
Propulsion Laboratory Technical Review. 1, pp. 61-
70.

Mare!, van der, H. (1988) On the "great circle reduc­
tion" in the data analysis for the astrometric satel­
lite Hipparcos. Netherlands Geodetic Commission,
Publications on Geodesy New Series, Vol. 8(2).

Parter, S. (1961} The use of linear graphs in Gauss
elimination. In SIAM Review, Vol. 3, No. 2, pp.
119-130.

Pissanetzky, S. (1984) Sparse matriz technology. Aca­
demic Press, London.

Snay, R.A. (1976) Reducing the profile of sparse sym­
metric matrices. In Bulletin Geodesique, Vol. 50,
pp. 341-352.

