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For every integrable allocation (XI, X2 . . . . .  X,) of a random endowment 
Y = ~-~=l Xi among n agents, there is another allocation (XI',X~ .... ,X;,) such 
that for every 1 < i < n, Xi" is a nondecreasing function of Y (or, (XI*, X2* . . . . .  X,*) 
are co-monotone) and Xi* dominates Xi by Second Degree Dominance. 

If (XI*, X2*,... ,X,*) is a co-monotone allocation of Y = ~7=1Xi', then for every 
1 < i < n, Y is more dispersed than Xi* in the sense of the Bickel and Lehmann 
stochastic order. 

To illustrate the potential use of this concept in economics, consider insurance 
markets, It follows that unless the uninsured position is Bickel and Lehmann more 
dispersed than the insured position, the existing contract can be improved so as to 
raise the expected utility of both parties, regardless of their (concave) utility functions. 
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1. Introduction 

It is well k n o w n  tha t  if  an a l locat ion X = ( X I , X 2 , . . .  ,X , )  o f  a r a n d o m  
e n d o w m e n t  Y a m o n g  n agents  wi th  prespecified nondecreas ing  and  concave  uti l i ty 
func t ions  is Pare to  opt imal ,  then X is co-monotone, i.e., each Xi is a nondecreas ing  
func t ion  o f  Y = ~ = 1  Xi (see Borch [5] and  Wilson [21]). It  fol lows tha t  for  every 
a l locat ion  which is no t  c o - m o n o t o n e  and  every n-tuple (U1, U2,. • •, U,,) o f  concave  
utilities there is a c o - m o n o t o n e  a l locat ion  X* o f  Y = ~_,Xi = ~ X~ such tha t  

EUi(Xi*) > EUi(Xi) for  all 1 < i < n. 
The  sho r t coming  o f  this i m p o r t a n t  result, appl ied by m a n y  au tho r s  in the 

con tex t  o f  risk shar ing  p rograms ,  is the dependence  o f  X* on  the specific utilities 
(Ui)~'_--l, since in practice utilities are ha rd ly  ever known.  Insurance  companies  
(see Raviv  [14]), o ther  en t repreneurs  (see Pra t t  a n d  Zeckhause r  [13]) or  designers 
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of financial assets who wish to reach wide markets with a small number of  financial 
instruments may find little comfort  in knowing how to design securities or other risk 
sharing contracts for agents with prespecified utility functions. It is only natural to 
investigate whether there exist allocations which are preferred to other allocations 
by all risk averse agents. 

Being able to extend the properties of  efficient allocations without the need 
to restrict attention to prespecified utility functions should be of significant 
importance. For example, financial instruments such as contingent claims may be 
contingent on primitives inducing income streams which are not co-monotone.  
Should such a situation be discerned, "co-monotonizing" contingent claims 
should be desired by all risk averse agents who hold the primitive assets. In real 
life, it may not be easy to identify such situations. However, if these arbitrage 
opportunities are identified, we should expect that income streams held by agents 
be co-monotone.  This conclusion does not follow from "utility specific" co- 
monotonicity. 

We prove by a constructive algorithm (proposition l(i)) that for every 
allocation X which is not co-monotone there exists a co-monotone one, X*, such 
that EU(Xi+) >_ EU(Xi) for all 1 < i < 17 and all concave, nondecreasing U. We 
should add that for prespecified utilities not all co-monotone allocations are 
Pareto optimal but, as we further prove, there is no co-monotone allocation to 
which some other allocation is preferred by all risk averters (proposition l(ii)). 

The concept of co-monotoniciO, has been applied earlier. Schmeidler [18, 19] 
established the concept of co-monotonic independence which he applied in the 
context of  decision making under uncertainty. Yaari [22] applied it in the context 
of  designing the Dual Theory. Wakker [20] used it to characterize the concepts of  
Pessimism and Optimism. The concept of co-monotonicity applied in this paper 
is very similar to the one used by Yaari. The fact that variants of what is basically 
the same concept were successfully applied in providing characterizations of  
different theoretical problems can serve as an indication of  its potential use in 
other, as yet unexplored, problems. 

Co-monotone allocations induce an interesting stochastic dominance relation 
between the total amount  Y to be allocated and the amount  X i allocated to the ith 
agent: the latter is less dispersed in the sense of  the Bickel-Lehmann (Bickel and 
Lehmann [3, 4]) dispersion order. This order, well known to statisticians, seems 
not to have been applied yet in economics. As an illustration of a possible appli- 
cation of this order note that as long as the marginal income tax is between 0 and 
1, net income and tax revenues are co-monotone.  Under  these conditions, net 
income is Bickel-Lehmann less dispersed than gross income. This order is stronger 
than Second Degree Dominance, whose relation with the elasticity of  income after 
tax with respect to income before tax has been investigated by Jacobsson [8]. 

We note that the Bickel-Lehmann dispersion order is also useful in analyzing 
behavior under risk. Ross [15] raised the issue that in environments where full 
insurance is not available the Arrow-Prat t  measure or risk aversion (Arrow [1], 
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Pratt [12]) does not necessarily yield the nice and intuitively appealing results 
rendered in situations where all risk can be eliminated. The reductions in risk 
considered by Ross and others have the Rothschild-Stiglitz structure (Mean 
Preserving Increases in Risk, Rothschild and Stiglitz [16]). In an insurance setting, 
this structure is induced by allocations between insurer and insured in which the 
amount allocated to the insurer is "noise" with respect to the amount allocated 
to the insured. We prove elsewhere (see Landsberger and Meilijson [11]) that the 
Bickel-Lehmann reductions in risk are the ones compatible with the Arrow-Pratt  
index in the class of all nondecreasing utilities. 

This result extends results by Jewitt [9] who developed an order, weaker than 
Bickel-Lehmann Dispersion and stronger than Mean Preserving Increase in Risk, 
compatible with the Arrow-Pratt  index in the class of all concave nondecreasing 
utilities. 

2. Co-monotone allocations 

We use throughout the paper the terms allocation, dominance, co- 
monotonicity. We define these terms formally and summarize some of their basic 
properties. 

An allocation of an integrable random variable Y (defined on some probabil- 
ity space (~, B, P)) between n agents is an n-tuple X = (X1, X2, . . . ,  Xn) of integrable 
random variables on that space, such that ~ =  l Xi = Y almost surely. 

The allocation X* = (Xl, X ~ , . . . ,  X,, ) of Y dominates X if every risk averse 
agent (weakly) prefers Xi* to X i, for all 1 < i < n. It is easy to see that if X* 
dominates X, then E(Xi*) = E(Xi)  for all 1 < i < n. 

Random variables (Xl, X2, . . . ,  X,) are co-monotone if any of the following 
equivalent conditions hold. For proofs, see Dellacherie [6]. 

(i) For all (xl ,  x 2 , . . . ,  x,,) E IR", 

P(Xl  _< xl, X? < X 2 , . . .  , X n (Xn)  : min P(Xi  <_ xi). 
1 < i < n  

(ii) There exist non-decreasing functions f. : R ~ N, 1 < i < n, and a random 
variable W such that for all 1 < i < n, X i = f i ( W )  almost surely. 

(iii) There exist non-decreasing functionsf. : R ~ I~, 1 < i < n, such that for all 
1 < i < n, Xi = f.(}-~= i X  j) almost surely. 

Condition (i) implies that there is one and only one co-monotone joint distri- 
bution with given marginal distributions FI ,F2 , . . . ,Fn .  To build co-monotone 
random variables with these marginals, let W be uniformly distributed in the unit 
interval and define, for 1 < i < n, Xi = Fi-1( W).  This canonical construction of 
co-monotone random variables with given marginals is one of those postulated 
by condition (ii). Condition (iii) stipulates that a co-monotone allocation assigns 
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to each agent an amount  which is a nondecreasing function of  the total amount  to 
be allocated. 

As mentioned in the introduction, Pareto optimal allocations between agents 
with specific concave utilities are well known to be co-monotone.  Thus, for every 
allocation X and every n-tuple { Ui}']= l of concave utility functions, there is a co- 
monotone allocation X* (typically dependent on {U i}) which every agent prefers. 
This does not imply the existence of  a co-monotone X* which dominates X. The 
following proposition claims that such an X* exists and its proof  shows how to 
construct it. 

P R O P O S I T I O N  I 

(i) Every allocation is dominated by some co-monotone allocation. 
(ii) Given two co-monotone allocations (XI,X2) and (X ' I ,X~)  of Y = 

Xt + Xz = X'I + X~, if every risk averter prefers Xl to X'I then every risk averter 
prefers X~, to X> 

Proo f  

(i) We first show that every allocation X of  a random asset Y is dominated by 
another, which allocates to each agent an amount  determined by Y = ~j__IXj.  
Plainly, the dominating allocation may be taken to be X'  = ( X 1 , X 2 , . . :  ' ,X~);  
with X'i = E(Xi[ Y): X'  is clearly an allocation, and every risk averter gladly gives 
up any integrable random variable in favor of its conditional expectation given 
any other random variable. Hence, without loss of  generality, we may assume 
that all coordinates of  the allocation X are functions of  Y. In what follows we 
restrict the proof  to the case n = 2; the generalization to n > 2 is straightforward. 
We further restrict the proof  to Y supported by a finite set. The limiting argument 
for the general case is omitted. Let Yi > Y2 > - - -  > Ym, with probabilities Pl > 0, 
P2 > 0 , . . .  ,Pro > 0, be the values of  Y, and let (Xl ,Zl)  , (X2,Z2), . . .  , (Xm,Z,,,), with 
x i + z i = y; for all 1 < i < m be the allocation X. If X is not  co-monotone then 
for some 1 < i < tn, x I >_x2 > _ . . . >  xi and zl > Zz >_. . .>_z i  but the point 
(xi+ l, zi+ l) does not belong to the Southwestern quadrant  {(x, z) Ix < xi, z < zi} 
(see figure 1). The line with slope - 1  through (xk,zk)  is "fiber" k. Since 
(xi+l,zi+l)  is not in the above quadrant,  it can be in sections I or III of  fiber 
i +  1. Without loss of  generality, let it be in section I. There is a minimal 
1 _<j < i such that zi+l > Zj. Slide (Xi+l,Zi+l) by an amount  a in the South- 
eastern direction and slide (Xi, Z i ) , ( X i _ l , z i _ l ) , . . . , ( x j ,  zj) by an amount  /3 in 
the Northwestern direction (with a and /3  related so as to preserve the expecta- 
tions of  both coordinates of the allocation) until the points in fibers i + 1 and j 
have the same z-value. The new allocation dominates the old one because each 
of  the two coordinates has experienced a decrease in risk of  the Diamond and 
Stiglitz [7] single-crossing type. It should now be clear that this algorithm will 
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Fig. 1. 

terminate with a co-monotone allocation in at most m ( m - 1 ) / 2  sliding 
operations of this kind. For the sake of completeness and programming, in 
the general step described above, xi+l moves to the right by 

- - z  i i+1 (zi+l J)Y'~4Pk/)-'~j Pk and each Xk, j < k <  i, moves to the left by 
(Zi'F I -- zj)Pi+ I/ E~ + I Pk" 

(ii) Assume that X1 dominates X'I by Second Degree Stochastic Dominance. 
The proof relies on an alternative characterization of SSD, in terms of 

Lorenz curves (see Atkinson [2]) according to which F dominates G if and 
only if for all u E (0,1), .[~)G-I(v)dv< f~)F-I(v)dv. To see this, observe that 
(1/u)y~F-l(v)dv, the conditional expectation of an F-distributed random 
variable given that it belongs to the lower u-bracket of F, may be geometrically 
identified as the intercept on the x-axis of the linear function with slope u which 
is tangent to ~oF(.)= f_ooF(y)dy. Clearly, pointwise inequality between these 
intercepts is equivalent to pointwise inequality between the ~p-functions, 
tp6(t) >_ qoF(t), Vt, and the latter is the well-known integral characterization of 
SSD. 

Since the joint distribution of co-monotone random variables (X1,X2) 
is equal to that of Fx:(U), Fx,:(U) for U ~ U [ 0 , 1 ] ,  if Y = X I + X 2  then 
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F~71 = F.~;,I + F ~  1 because the equality F{I(U) = Fx, I (U)+ Fx, I(U) holds almost  
everywhere and these three inverse functions are r ight-continuous.  We thus get 
that  F.~' + F~:,' = F~:' = Fx! + F.~!, f rom which it follows that  

J Fx2' (v) dv - Fj:! (v) dv = - F~,' (v) dv - f~! (v) dt 

o o o 

_>0, 

which completes the proof.  [ ]  

As far as the economic  literature is concerned,  Atk inson  [2] was the first to 
notice the equivalence between ranking distr ibutions by SSD and the Lorenz 
criterion. Atk inson elaborated more  on the case where the distr ibutions have 
equal means but  it is clear, upon  reading his paper  (see pp. 246-47), that  he was 
aware that  the equivalence holds in the more  general case when means are not  
necessarily equal. 

Proposi t ion l(ii) claims that  no co -mono tone  allocation may be improved 
for the benefit of  all risk averse agents. This does not preclude the existence of  
co -mono tone  allocations which are preferred to other co -mono tone  allocations 
by some risk averters. Not  only are there co -mono tone  allocations which are not  
Pareto opt imal  but in fact for every co -mono tone  allocation there exist {Ui}~=1 
for which the allocation is not Pareto optimal.  This fact may  be inferred directly 
f rom the Wilson [21] characterizat ion of  Pareto opt imahty.  We provide a direct 
proof.  

L E M M A  1 

Let X = (Xl, X 2 , . . . ,  X,,) be a co -mono tone  allocation of  Y such that  some 
Xi is not constant .  Then there exist {Ui}'i'=l concave, nondecreasing,  and a co- 
m o n o t o n e  allocation X* such that  EUi(X~*) > EUi(Xi) for all I < i < n. 

Proof 

Suppose X~ is not constant .  Let UI be any strictly concave utility. Then  the 
first agent strictly prefers (E(XI) + Xj ) /2 to X1. Hence, for some c > 0, s/he strictly 
prefers Xf  = -~  + (E(XI) + X1 ) /2  to X1. Split the excess X1 - X f  (whose mean  is 
c > 0) evenly between all other  agents. If  these are risk neutral  or nearly so, 
they will strictly prefer the new amoun t s  Xi* = Xi + (X1 - X{) / (n  - 1) allocated to 
them. []  

The following example contrasts  co -mono tone  allocations with those which 
eliminate "noise".  
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Table 1 

Stock pays $2 Stock pays zero Stock pays $2 Stock pays zero 
Situation house intact house intact house - total loss house - total loss 

Uninsured wealth 
position Y 13 I l 3 1 

Probability 0.45 0.45 0.05 0.05 

E X A M P L E  l 

Consider a risk averse agent who owns a house worth $10. The house is 
susceptible to a total loss with probability 1/10. The agent also owns $1 in cash 
and a source of random income (stock) which pays $2 or nothing with probabilities 
1/2 each. Uninsured wealth positions are summarized in table 1. 

Assume that fair insurance of the house is available but uncertainty 
associated with capital (stock) income is retained. Under  fair insurance, the 
wealth position X of the insured is $10 or $12 with equal probabilities and the 
insurer gets Z which takes the values - 9  with probability 1/10 and 1 with probabil- 
ity 9/10. X and Z are independent and X + Z = Y. Risk averse agents welcome 
such a program, which eliminates one source of risk. 

Wealth positions of  the insured and the insurer are given in table 2. 

Table 2 

Stock pays $2 Stock pays zero Stock pays $2 Stock pays zero 
Situation house intact house intact" house - total loss house - total loss 

Insured's wealth 
position X 12 10 12 10 

Insurer 's  wealth 
position Z 1 1 - 9  - 9  

Probabili ty 0.45 0.45 0.05 0.05 

Table 3 

Stock pays $2 Stock pays zero Stock pays $2 Stock pays zero 
Situation house intact house intact house - total loss house - total loss 

Insured's  wealth 
position X* 12 10.2 10.2 10 

Insurer 's  wealth 
position Z* 1 0.80 - 7 . 2  - 9  

Probabili ty 0.45 0.45 0.05 0.05 



104 M. Landsberger, L Meilijson/Co-monotone allocations 

The allocation (X,Z)  is obviously not co-monotone;  therefore, it can be 
improved to the benefit of all risk averse agents. To achieve a co-monotone 
reduction in risk proceed as in the proof  of proposition l(i). The new insurance 
program given in table 3, is co-monotone and dominates the one presented in 
table 2. 

3. The Bickel-Lehmann dispersion order 

DEFINITION (Bickel and Lehmann [3, 4]) 

The distribution F is less dispersed than the distribution G if for every 
0 < u < v < l  

F - l ( v )  - F - t (u )  <_ G-I(v) - G-I(u).  (1) 

This inequality says that the interval between the u-quantile and the v- 
quantile of G is at least as long as the corresponding interval for F. Inequality (1) 
can be rewritten as 

G-l(v)  _ F - l ( v )  >_ G-l(u)  _ F- l (u ) .  (2) 

which means that F is less dispersed than G if and only if G -1 - F -l is a non- 
decreasing function on (0, 1). 

A useful implication of  the above is that for every real c, F (x  - c) and G(x) 
cross at most once and if they cross, F(x  - c) lies below G to the left of  the crossing. 
To see this, note that the horizontal distance between F ( .  - c )  and G(-)  differs 
from the horizontal distance G - 1 -  F -~ between F and G, by the constant c. 
Hence, horizontal distances are monotone  for all c or for none. 

In particular, if - o c  < ~x d G(x )  <_ [ x d F ( x )  < oc and F is less dispersed 
than G, then F dominates G by Second Degree Stochastic Dominance,  or, every 
risk averter prefers F to G. This is so, because the single-crossing property between 
mean-ordered distributions implies second degree dominance,  as proved by 
Diamond and Stiglitz [7]. The following proposition, which somewhat generalizes 
theorem 1 in Bickel and Lehmann [4], identifies as dispersion the relation between 
the distribution of  a random variable co-monotonically allocated to a number  of 
agents, and the distribution of  the amount  allocated to any one of them. 

PROPOSITION 2 

A distribution F is less dispersed than a distribution G if and only if there 
exist on some probability space two co-monotone random variables X and Z 
such that X ,-~ F and X + Z ,.o G. 
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Proof 

Suppose that  F is less dispersed than  G. Then,  by virtue of  (2), G -  1 - F -  l is 
nondecreasing,  as is F - l .  Hence,  X = F-l (U)  and Z = G-I(U) - F- l (U)  are co- 
mono tone .  To  prove the other  direction let X and Z be co -monotone ,  X -,~ F and 
Z ,-., H,  and let Y = X + Z. Since co-monotonic i ty  uniquely determines the jo int  
dis tr ibut ion of  X and Z which in turn uniquely determines the distr ibut ion of  
X + Z ,  we may  assume that  X and Z are realized as X = F - l ( U )  and 
Z = H-I(U)  for U ~ U[0, 1]. Now,  letting Y = X + Z  = F-I(U) + H- t (U) ,  if 
we denote  F-J(U) + H-I (U)  by T(U), then T(U) ~ G. But the essentially only 
nondecreas ing funct ion on (0, 1) with a prescribed distr ibut ion is the inverse of  
the distribution.  Hence,  T = G-1 a.e. and G- l  _ F - I  = T - F - I  = H - l  is non-  
decreasing, which, by (2), implies that  F is less dispersed. [ ]  

Proposi t ion  2 characterizes B icke l -Lehmann  dispersions as the addi t ion of  
a co -mono tone  variable. This is close in spirit to the characterizat ion of  
Rothschi ld-St igl i tz  Increase in Risk as the addi t ion of  "noise" .  We provided in 
the in t roduct ion  a conceptual  i l lustration of  B icke l -Lehmann  dispersion, the 
relation between gross and net income. We now provide a technical illustration, 
which appears  in the economic  literature as an il lustration of  Rothschi ld-St igl i tz  
Increase in Risk. 

EXAMPLE 2: "Stre tches"  of  distr ibutions are more  dispersed. 

G is a stretch of  F (Arrow [1], Sandmo  [17]) if there exist c~ > 1 and x such 
that  for X ,-~ F, x + c~(X - x) ~ G. Since x + a ( X  - x) = X + (a  - 1)(X - x) is a 
sum of  two c o - m o n o t o n e  r a n d o m  variables one of  which is X, G is more  dispersed 
than  F. 

In particular,  normal ,  exponential  and un i form families of  dis tr ibut ions are 
dispers ion-ordered by their variances. 

We remark  that  the p roo f  of  the lemma in section 2 was based on a 
stretch. 

Ano the r  impor tan t  use of  the B icke l -Lehmann  order  is in characterizing 
behavior  under  risk. As noted  by Ross [15] and Kih l s t rom et al. [10], under  partial  
insurance the A r r o w - P r a t t  measure  of  risk aversion does not  assure that  more  
risk averse agents are willing to pay more  for the e l iminat ion of  some risk. The  
authors  proved in Landsberger  and Meilijson [11] that  this shor tcoming  of  the 
A r r o w - P r a t t  measure  does not  apply to B icke l -Lehmann  risk reductions,  
namely,  in the class o f  all agents with nondecreas ing  utility functions,  more-  
risk-averse agents pay a higher  (not  necessarily non-negat ive)  risk p r e m i u m  for 
a reduct ion in risk if and  only if the less risky dis t r ibut ion is B icke l -Lehmann  
less dispersed. Jewitt [9] established a risk concept ,  Location Independent Risk, 
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and  p roved  that  agents  with concave ,  nondec reas ing  uti l i ty func t ions  w h o  are 
more  risk averse,  are willing to pay  a h igher  p r e m i u m  for  a r educ t ion  in this risk. 
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