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A multiple-objective hierarchical production planning and scheduling model is
developed that integrates aggregate type decisions, family disaggregate decisions, lot-
sizing and scheduling of the jobs. It is assumed that demand and production failure are
subject to uncertainties. Stochastic programming with recourse using a constraint sample
approximation method is used to incorporate random demand and production failure
into the model. The model evaluates final production plans, updates the demand forecasts
and proceeds on a rolling horizon manner. Experimental results show that it is sufficient
to generate and incorporate into the aggregate type model a small sample of the stochastic
constraints from an infinite set of scenarios. A heuristic scheduling algorithm provides
detailed information regarding the progress of jobs through work centers. This information
is extremely useful in resolving infeasibilities during the production process. Other
features of the model are also reported.
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1. Introduction

Production planning in a typical manufacturing organization is a sequence of
complex decisions. The complexity depends on a number of factors such as: number
of products, product complexity, internal and external constraints, and the length of
the planning horizon. During the last two decades, hierarchical production planning
(HPP) methods have been used for solving such large production planning problems.
The main idea in HPP is to decompose large problems into smaller subproblems,
solve individual subproblems, and then link the results in a coordinated manner. To
coordinate, decisions obtained at the higher levels impose constraints on the lower level
decisions, and the decisions are often made on a rolling horizon basis (Baker [1]).
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Hax and Meal [13], Bitran and Hax [5], Hax and Golovin [12], and Bitran et
al. [3,4] are major contributors to the theory and applications of HPP models. In the
above works, the hierarchical structure consists of decision making at three levels.
The first decision is made at the aggregate type level, then these decisions are
disaggregated into families, and family decisions are disaggregated further into items.
Applications of HPP models have been reported for a number of cases. Oliff and
Burch [21] employed a three-level hierarchical model for production planning at
Owen-Corning Fiberglass. They reported that implementation of the model has
resulted in significant savings during the first two years operation. Liberatore and
Miller [18] also applied the HPP model for planning at the American Olean Tile
Company. Other applications of HPP models are also reported in [8] and [17].

Although successful applications of HPP methods have been reported for a
number of cases, the methods have not been widely accepted by practitioners. The
key factor contributing to the lack of acceptance of HPP models is that researchers
are concerned with the generalities of modeling and often fail to address details that
are critical for successful applications. Omission or ineffective treatment of the
random variables, such as demand and production failure and inability to develop
detailed schedules that are feasible with the aggregate plans and also practical for
implementation, are two important problems with HPP models. Treatment of these
problems is the focus of this study.

In this paper, demand and production failure are assumed to be random variables
with known distribution. These random elements are incorporated into the aggregate
type planning problem by modeling the problem as a two-stage decision model, also
known as a stochastic program with recourse (SPWR). The two-stage model is a
reasonable choice for modeling the stochastic aggregate planning problem because
in the first stage a decision is made on the optimal production levels using mathematical
programming models, and in the second stage decision analysis is used to determine
the inventory or shortage levels as recourse quantities. For a good review of SPWR,
interested readers may refer to Hansotia [11]. The infeasibility between aggregate
and disaggregate decisions is addressed by incorporating a simple heuristic scheduling
algorithm and implementing the decisions in a rolling horizon method.

Since its beginning in the mid-fifties, the main difficulty with SPWR has been
the problem size, which grows rapidly as a function of the number of stochastic
elements. For this reason, research on computational improvement has been a major
focus. Strazicky [26] developed a special formulation of the two-stage recourse
problem when the random right-hand side vector has a finite number of possible
values. Strazicky solved the dual of this linear problem and showed that solving the
dual of the linear program enables one to solve stochastic problems with a large
number of possible values of the random vector. Bienstock and Shapiro [2] applied
SPWR to strategic planning decisions regarding resource acquisition for an electric
utility company. They constructed and solved a prototype model using Benders’
decomposition method. Borison et al. [7] developed a stochastic programming model
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for purchasing decisions in the face of uncertainties in fuel and operating costs. Their
objective was to minimize total discounted costs. They used Lagrangian multiplier
techniques to decompose the stochastic model into a series of deterministic models.
Modiano [20] used SPWR models to analyze the impact of demand uncertainties in
electric utility capacity planning.

Jagannathan [14] developed a deterministic equivalent for some inventory
replenishment problems. However, his model is restricted to inventory replenishment
problems, not complete production planning problems. Somlyody and Wets [25] used
linear and nonlinear stochastic optimization models for lake management. The stochastic
elements are modeled by a discrete distribution using random sampling.

A deterministic approximation to the capacitated stochastic production planning
problem is presented by Bitran and Yanasse [6]. In this work, the authors showed that
for most commonly used probability distributions of demands, the relative errors of
demand estimates tend to be small. Chakravarty and Martin [9] used an item grouping
procedure for coordinating period replenishment under stochastic demand. They showed
the existence of some simplifying properties which enable them to model the grouping
as a shortest path problem.

Saad [24] and Ershler et al. [10] addressed the infeasibility issue between
aggregate and disaggregate decisions of the HPP models. Saad proposed a goal
programming model at the family disaggregation level, and Ershler et al. developed
the necessary and sufficient conditions for achieving consistency between the aggregate
plan and the disaggregate schedules.

The HPP model considered in this paper integrates aggregate type decisions,
family disaggregate decisions, lot-sizing and scheduling of the jobs. The model
incorporates random demand and production failure into the aggregate type model
(ATM). To solve ATM, our sampling technique generates a small sample from an
infinite set of scenarios. The lot-sizing and scheduling component of the model
considers not only feasibility among the aggregate and disaggregate plans, but also
available capacity and required capacity.

2. The HPP model

As in Bitran et al. [3], the product structure in this study consists of the
following three levels:

(1) Items are the specific final products to be shipped to the customers. A given
product may generate a large number of items differing in characteristics such
as color, package, size, etc.

(2) Families are groups of items with common manufacturing set-up costs.
Economically, it is desirable to manufacture jointly items belonging to the
same family.
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Figure 1. Hierarchical production planning system. ATM: aggregate type model;
IADF: initial aggregate demand forecast; FDM: family disaggregation model;
LSM: lot-sizing and scheduling model; PFS: production failure simulator;
EVAS: evaluation simulator; DG: demand generator; REGM: regression model;
ADM: aggregate demand model; ADFG: aggregate demand forecast generator.
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(3) Types are groups of families with similar costs per unit of production and
similar seasonal demand patterns.

The hierarchical production planning and scheduling model is shown in figure 1.

Given aggregate demand forecast and other input requirements, the process
starts by solving the aggregate type model (ATM). After solving ATM, the aggregate
production levels for the first quarter are selected for further disaggregation. Decisions
on family production levels are obtained using the family disaggregation model
(FDM). Using a lot-sizing and scheduling heuristic, aggregate family production
levels are further disaggregated into the item production levels. After accounting for
production failure through the production failure simulator (PFS), a final weekly
production level for each item is evaluated against randomly generated demand. At
the end of each quarter, demand equations are updated by fitting regression lines to
the past data. Using information on inventory or shortage at the end of each quarter,
aggregate demand for product types are updated and the process is repeated for the
next quarter.

2.1. AGGREGATE TYPE MODEL (ATM)

This is the highest level of production planning in an HPP system. Production
decisions at this level provide an overall guideline for planning. They are concerned
with finding the aggregate production quantity, size of the work force and inventory/
shortage levels necessary to respond to future demands. The planning horizon for
ATM is a full year and production decisions are made on quatterly time periods.

It is assumed that minimization of total costs, work force stability and customer
service are important criteria. The multiple-objective problem is formulated as a goal
programming (GP) model. The goals in the order of priority are:

Goal 1: Minimization of total costs

The costs include inventory holding costs, shortage costs, overtime labor
costs, and subcontracting costs. For simplicity, other costs, such as employee
payrolls and costs due to regular utilization of production facilities, are
assumed to be fixed and hence eliminated from the model.

Goal 2: Work force stability
This is interpreted as the minimization of changes in the work force level
from one period to the next.

Goal 3: Maximization of customer service

Customer service is defined as the percentage of demand satisfied from the
stock on hand. This goal is incorporated into the ATM indirectly by requiring
an aggregate ending inventory target for any period to be equal to a proportion
of the expected demand for the next period.
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MODEL VARIABLES AND PARAMETERS

N = number of product types,

T = number of periods in the planning horizon (i.e. four quarters),
WC = total number of work centers,

K = number of realizations of random parameters (i.e. scenarios),
X;, = production of type i in quarter ¢,

Y, = subcontracting of type i in quarter ¢,

I;x = inventory of type i at the end of quarter ¢ for the kth scenario,
S;« = shortage of type i at the end of quarter ¢ for the kth scenario,
= regular labor time (labor-day) used in quarter ¢,

= overtime labor(-day) used in quarter ¢,

= hiring level (labor-day) in quarter ¢,

= firing level (labor-day) in quarter ¢,

= regular machine time (machine-day) used at work center j in quarter ¢,
= overtime machine (machine-day) used at work center j in quarter ¢,
= total regular labor (labor-day) available in quarter ¢,

-

THTOX

=

=L

-

= demand of type i in quarter ¢ for the kth scenario,

= percentage of regular labor time allowed for overtime,

a, = percentage of regular machine time allowed for overtime,

a3 = percentage of in-house production allowed for subcontracting,

R &
bl

= regular machine time (machine-day) available at work center j in quarter z,

B = minimum ending inventory (as the percentage of demand in quarter ¢+ 1)

required at the end of quarter ¢ to satisfy demand in quarter 7 + 1,

Yux = fraction of production failure of type i in quarter ¢ for the kth scenario,

a; = labor time (man-day) required to produce one unit of type i,

m; = machine time (machine-day) required to produce one unit of type i,
pr = probability of the kth scenario,

P, = priority for goal j, j=1,2,3,

d; = underachievement of goal 1,

d{ = overachievement of goal 1,

d3;; = underachievement of goal 3 for type i at the end of quarter ¢,

d3;, = overachievement of goal 3 for type i at the end of quarter ¢,

¢; = inventory holding costs (dollar/unit/quarter) of type i,
s; = shortage costs (dollar/unit/quarter) of type i,
o, = overtime labor costs (labor-day) for quarter ¢,

b;; = unit subcontracting costs of type i in quarter ¢,
desired level of total costs.

9
!
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In (P1), (1) is the goal objective function; (2), (3) and (4) are goal (soft) constraints;
and (5) through (15) are real (hard) constraints. Constraint (2) and the first term in
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the objective function correspond to the first goal where overachievement of the total
costs from a target level of G, is minimized. Goal constraint (3) is a work force
balance equation. This constraint and the second term in the objective function
represent the second goal of work force stability by minimizing the amount of hiring
and firing at any period. The third goal of maximizing customer service is defined
as the expected inventory at the end of each period to be close to a certain proportion
of the expected demand in the next period. Goal constraint (4) and the third term in
the objective function represent this goal by minimizing any underachievement of
the expected inventory from this target level. An alternative representation of
equation (4) would be:

L +doig — doin = ﬂdit+lk’ i=1L,..,N, t=1..,T, k=1,.. K.

However, this would increase the number of constraints by the order of K. Since
actual customer service is computed after complete disaggregation of production
plans at the item level (i.e. EVAS simulator) and disaggregation is carried out in a
rolling horizon manner, equation (4) is a reasonable representation of customer service
at the aggregate level.

Constraint (5) is an inventory balance equation. In this equation, the parameters
y and d are random variables; X and Y are the first-stage decision variables, and /
and S are the second-stage (i.e. recourse) variables. Other constraints of the model
are:

(6), (9) Limit on the use of work force and machines;

(7), (10) Limit on the availability of work force and machines;
(8), (11) Limit on the use of overtime work force and machines;
(12) Limit on subcontracting units;

(13), (14), (15) Non-negativity constraints.

2.3. FAMILY DISAGGREGATION MODEL (FDM)

FDM disaggregates type production decisions into family production decisions
using a rolling horizon method (Baker [1]).

Feasibility between family production levels and the aggregate type production
level is the main condition to be satisfied. That is, the sum of the production of the
families belonging to a product type must be equal to the production level of the
product type. Family production levels are obtained using the following formula:

E,ld;]
Y= |2 lx,+ Y1, -1, 16
j {Zjej(i)gq[dj}}( jezlj(i)f} j (16)

where
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X; = production level of type i (obtained at the aggregate level),
E,[d;] = expected quarterly demand for family j,

J(i) = set of family j in type i,

I; = inventory of family j,

Y; = total production level of family j.

Equation (16) is a simple model in which aggregate production level by type
is disaggregated into its families based on the proportion of the expected demand and
the initial inventory of each family.

24. LOT-SIZING AND SCHEDULING MODEL (LSM)

Given aggregate family production levels, the next task is to find a detailed
schedule of the family lot-sizes on work centers. The objective of the scheduling step
is to generate a production plan which is feasible in terms of available machine
capacities and family production decisions. That is, the sum of the production of the
items belonging to a family must be equal to the production level of that family.
Feasibility must be maintained while minimizing shortage costs, inventory holding
costs, and set-up costs. An important characteristic of the scheduling model is the
relatively short-term horizon of the plan. While aggregate decisions are made on
quarterly time periods, scheduling is done in a much smaller time period (weekly or
daily). In this paper, quarterly periods were used for aggregate type decisions, monthly
periods for family decisions, and daily periods for scheduling decisions.

2.5. LSM ASSUMPTIONS

It is assumed that production of the items in a product type occurs in the same
department, a production process similar to a group technology flow layout. Also, it
is assumed the production of the items requires only a single-stage operation. The
single-stage operation can be justified by the existence of many real products which
require only a single operation or the existence of a single bottleneck work center
for which sequencing and scheduling is necessary. Other assumptions of the heuristic
sequencing and scheduling are:

(1) Only a single-product family can be processed on a machine at a time.

(2) A set-up cost occurs whenever production changes from one product family
to another.

(3) There is no set-up cost among the items within a family.

(4) Changeover from one product family to another causes no or negligible set-
up time. The justification for this assumption is that the existence of buffer
capacity does not cause the shutdown of the production process, or that set-
ups are prepared by NC machines or other basic techniques.
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(5) Family production levels are disaggregated into items based on the equalization
of the run out times (ROT) [15].

(6) Limited machine capacities are available in each quarter.

(7) Minimization of shortage (tardiness) has the highest priority. This is followed
by minimization of the inventory holding costs and set-up costs.

Notations

i = product type index,

J = product family index,

k = product item index,

N = number of product types,

J(@i) = set of families in type i,

K(j) = set of items in family j,

WC(i) = set of machines in work center i,

m = machine index,

Y» = current production level of family
s; = set-up costs of family j,

Q; = lot-size of family j,

h; = holding costs of family j (unit/period),
b; = shortage costs of family j (unit/period),
E,ld;]= expected monthly demand for family j,

—
i

= initial inventory of item &k,
S5y = safety stock of item k,

E[d,] = expected demand of item k,

ROT, = run out time of item &,

ROT; = run out item of family j,

j* = family index with minimum ROT that should be produced first,
n, = number of days in month ¢,

T; = production cycle of family j,

p = production cycle index,
LFT;, = temporary lot-size for family j in cycle p,
LF;, = lot-size of family j in cycle p.

2.6. FAMILY LOT-SIZE

Since set-up costs occur when production is changed from one family to
another, the problem of family lot-sizing becomes important. There are mixed results
about the performance of singe-stage lot-sizing models. Wemmerlov [27] studied the
behavior of various lot-sizing models in the presence of demand forecast error, and
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he ranked the part period balancing (PPB) procedure at the top under stochastic
demand and the EOQ model as one of the six most cost-effective methods under the
same conditions. However, as Orlicky [22] pointed out, there is no guarantee that
PPB performs better than any other lot-sizing method. In this paper, 2 modified EOQ
model which allows incorporation of shortage cost in addition to expected demand,
holding cost and set-up cost is used for the lot-sizing of the families. In addition to
Wemmerlov’s study, the use of this model is reasonable in a random demand environment
because EOQ changes in proportion to the square root of the changes in demand.
The modified EOQ model has the following formulas [23]:

j_\/ W 5 an
and 0
_ 9

= B a®

where Tj is the production cycle time for family j. 7; is used for further scheduling
computations in the heuristic scheduling model.

2.7. HEURISTIC SCHEDULING MODEL"Y

The progress of the heuristic scheduling model can be summarized in the
following broad steps:

For each product type i:

Step 1. Find a family j € J(i) that must be scheduled first. This is done by computing
the earliest run out time (ROT) for the families:

. [1, -5S,
ROT; = . el 3 19
J kénig(]j)[ E[d;] } (19)
and
ROT;» = min(ROT;). (20)
J

The concept of earliest ROT is consistent with the earliest due date (EDD) rule in
sequencing and scheduling. Ties are broken according to the shortest processing time
(SPT) rule.

Step 2. If machine capacity is feasible, find a machine candidate m € WC(i) for
processing family j°.

D Due to space limitations, the detailed heuristic scheduling algorithm is not included. The algorithm
is available from the authors upon request.
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(1) If a machine m € WC(i) is idle before family j* € J(i) runs out, load
family j* on machine m.

(2) If machine m € WC(i) is not idle at the time family j* € J(i) runs out,
push preceding jobs on this machine backward until family ;* can be
loaded on time.

(3) If by pushing preceding jobs on machine m backward family j* still can
not be loaded on time, then family j* is tardy.

Step 3. Determine temporary family production lot. The temporary family production
quantity is equal to the sum of the net requirement of the items in a family.
That is, temporary production takes into consideration the initial inventory
of the items in a family. The temporary family production quantity is computed
using equation (21):

LFTj, = Y (Tj - ROTy) [E@] (21)
keK(j*) &
Step 4. Using equation (22), find the actual family production lot:
LFj», = min(LFTjp-Y;+). (22)

In equation (22), Y« is updated at each production cycle.

2.8. PRODUCTION FAILURE SIMULATOR (PFS)

PES takes the weekly production plans from LSM and generates non-defective
weekly production plans. Non-defective production plans are computed using the
following relationship:

Xu = 1= 8) X, (23)
where
X;, = actual production plan for item k in week ¢ (output from LSM),
{, = production failure (fraction) of item k, 0< (<1,
X, = non-defective production level for item k in week ¢.

In (23), it is assumed that {; is normally distributed with mean g, and standard
deviation of o;. For each X,, {, is generated using the modified Box and Muller
procedure [16]. To prevent possible negative failures, generated negative production
failures are truncated to zero.

2.9. EVALUATE SIMULATOR (EVAS)

EVAS takes the non-defective weekly production plan X, from PFS, weekly
demand, initial inventory, unit holding costs and unit shortage costs for each item and
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computes ending inventory or shortage (i.e. negative inventory) at the end of each
week using the inventory balance equation (24):

Iy = Iy + Xpy — dpes (24)
where

I, = inventory or shortage of item k at the end of week ¢,
X, = non-defective production level for item k in week ¢,
d,, = generated random demand for item k in week ¢.

The inventory or shortage at the end of week 13 is the inventory at the end
of the quarter. These ending inventories are used to update the aggregate demand
forecast for the next quarter. The EVAS also computes inventory and shortage costs
for each week and cumulative costs for the quarter.

2.10. REGRESSION MODEL (REGM)

At the end of each quarter, the REGM module updates the demand equation
for each item by fitting regression lines to the past data using a least-squares method.
These updated demand equations are used to generate future demand forecasts.

2.11. AGGREGATE DEMAND MODEL (ADM)

Using the estimated demand equation for each item, ADM computes the aggregate
demand equation for each product type. The aggregation is performed over product
items and over time periods.

3. The experiments

A number of experiments were conducted to examine the performance of the
HPP model under various input conditions. On solving aggregate production planning
problems with random demand and production failure, Meybodi [19] concluded that
stochastic programming with recourse (SPWR) usig sample constraint scenarios is
a reasonable approach for solving practical stochastic production planning problems.
Depending on the variability of the random variables, the solutions with sample sized
of 45 to 60 were within 3 to S percent of the true optimum.

The objective of the experiments conducted in this study was to examine if
there are differences between the performance of the HPP model when ATM is solved
using:

1. (a) the expected value of the random variables,
(b) SPWR and a set of 45 constraint blocks in the first quarter;

2.  (a) SPWR and a set of 45 contraint blocks in the first quarter,
(b) SPWR and a set of 60 contraint blocks in the first quarter;
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3. (a) SPWR and a set of 45 constraint blocks in the first quarter,
(b) SPWR and a set of 45 constraint blocks in each of the first two quarters;

4. (a) SPWR and a set of 60 constraint blocks in the first quarter,
(b) SPWR and a set of 60 constraint blocks in each of the first two quarters.

The experimental problem involves production planning of twelve product
items over the next four quarters. Items are aggregated into eight families and four
product types. The aggregation levels for the problem are shown in figure 2.

E{]

IT" I‘FGI [Tl LTBJ
[(»] [ [m] [

Figure 2. Aggregation levels for the experimental problem.
T = type; F = family; I = item.

3.1. DEMAND GENERATION

The weekly demand for product items is generated using the following equations:

dy, =30+ 0.3t + 24,
dy, = 60 + 0.6t + z,,
ds, =54 + 0.5t + z3,
dsy, =38+ 0.361 + z4,
ds, =108 -t + zs,
dg, = 85-0.8¢ + zg,
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dy, = 54 + 27sin(27t/52) + 27,
dg, = 62+ 31sin(27/52) + z5,

dg; =38 + 29,
dior =23+ 240,
d“, =46+Zn,

diz; = 61.5+ 74,
where
d;, = weekly demand for item i in week 1, 1=1,...,52, i=1,...,12,

z; = forecast error for item I, i=1,...,12.

It was assumed that z; is distributed as normal with mean zero and standard
deviation which is computed as (uy)(CV), where 1, is the mean of the demand
random variable and CV is assumed to be either 0.33 or 0.67, representing moderate
and high variations. z; was generated using the modified Box and Muller method [16).
Given weekly demand for product items, ADM generates aggregate quarterly demand
for each product type.

3.2.  INITIAL INVENTORY

Initial inventory for each product item is generated uniformly between zero
and 1.2 of the expected demand in the first quarter. Generated initial inventories for
the twelve product times are, respectively, 192, 275, 385, 706, 238, 257, 538, 209,
317, 194, 382, and 511. Aggregation over items and families results in an initial
inventory of 1558, 498, 747, and 1404 units for each product type, respectively.

3.3. PRODUCTION FAILURE

Production failure for each product type is assumed to be normally distributed
with respective means of 7.5%, 10%, 12.5%, and 15%. The standard deviation for
each product type is computes as 6= (4)(CV), where U is the mean and CV is the
coefficient of variation.

3.4. COST COMPONENTS

Family set-up costs are assumed to be 100, 50, 200, 150, 50, 50, 100, and 100
dollars, respectively. Other cost components for the product items are:

shortage costs = $65/unit/quarter ($5/unit/week),
holdling costs = $6.5/unit/quarter ($0.5/unit/week),
subcontracting costs = $200/unit,

overtime costs = $30/hour.
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3.5. LABOR AND MACHINE CAPACITY

Regular labor capacity for each quarter is assumed to be 875, 975, 975, and
1040 of labor days at eight hours per day. Also, regular machine capacity for each
quarter is assumed to be 65 machine days at earch work center. Labor and machine
productivities are given in table 1.

Table 1

Labor and machine productivities.

Labor productivity factor Work center productivity factor

Product type  Labor-day/unit =~ Work center Machine-day/unit

1 0.125 1 0.022
2 0.100 2 0.040
3 0.125 3 0.045
4 0.062 4 0.030

The experiments were implemented in the following manner:

Step 1. A FortraN program generates normal random variables for demand and
production failure using the modified Box and Muller method.

Step 2. Using generated data in step 1 and other known parameters, a FORTRAN
program calls prewritten LiNpo subroutines and generates the linear program-
ming model (ATM).

Step 3. The mainframe LiNpo optimization package solves the linear programming
model generated in step 2.

Step 4. Other components of the model, such as FDM, LSM, PFS, EVAS, REGM
and ADM, are written in FORTRAN.

Due to the unavailability of goal programming software, a sequential linear
programming method was used to solve the goal programming model in step 3.

Four sets of experiments were conducted to answer the questions stated earlier.
The objective of the first experiment was to evaluate the performance of the model
when expected values were substituted for the random variables versus the first
period modeled stochastically using a sample of 45 constraint blocks. In the second,
third and fourth experiments, the objective was to analyze the impact of different
levels of incorporating uncertainty (i.e. number of scenarios). The impact of 45
versus 60 constraint samples in the first quarter was studied in the second experiment.
Single period versus two periods modeled stochastically with sample sizes of 45 and
60 were studied in the third and fourth experiments.
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Table 2

Summary of the experimental results for expected total costs, work
force fluctuations and customer service’.

Expected total Hiring and firing Customer

Model Quarter cost ($) (labor-day) service (%)
1 36353 0.0 904
2 140420 1774 73.0
Expected 3 380889 208.2 54.8
4 833042 280.0 29.6
Total 1390704 665.6 62.0
1 31019 0.0 95.0
2 121800 130.4 80.6
45 p, 3 322440 154.4 70.0
4 626574 2132 57.2
Total 1101833 498.0 75.7
1 26913 0.0 954
2 118004 122.2 81.8
60 p, 3 311229 143.4 71.4
4 601471 203.2 59.0
Total 1057617 468.8 76.9
1 27035 0.0 96.0
2 113261 116.0 84.6
45 p,y 3 297061 138.6 75.4
4 568547 1924 63.0
Total 1005904 4470 79.8
1 25800 0.0 96.4
2 111316 109.0 85.0
60 py 3 291002 1332 75.8
4 555105 177.8 64.0
Total 983223 420.0 80.3

* Expected = ATM with expected value of the random variables. np; = ATM with a
sample of n constraints in the first quarter. np, = ATM with a sample of n constraints
in the first and second quarters.

In all experiments, a coefficient of variation of 0.67 was used for both demand
and production failure. Each problem was repeated for five replications. A summary
of the average of five replications for the expected total costs, hiring and firing of
the work force, and customer service is shown in table 2.
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From table 2, it is clear that SPWR with 45 sets of constraint samples outperforms
the expected value approach. There is an improvement of 25% in the expected total
costs, 25% in labor fluctuations, and a 22% improvement in customer service. Table 2
also shows that by modeling the first quarter with 60 constraint samples, there was
an improvement of 4% in the expected total costs, 6% in labor fluctuations, and a
1.5% improvement in customer service over 45 constraint samples. The same small
improvement is also true for the two-period stochastic modeling with sample sizes
of 45 and 60 constraint sets. Table 2 also indicates that the expected total costs as
well as labor fluctuations increase, and customer service declines from quarter 1 to
quarter 4. This trend is due to initial inventory, a bottleneck at work centers 2 and 3,
compounded forecast errors, and the fact that stochasticity in the last two quarters
is not considered.

A set of statistical tests was applied to study the differences among the expected
total costs, work force fluctuations, and customer service for each model. The test
of hypotheses and the significant level from SAS output are summarized in table 3.

Table 3
Summary of the test of hypotheses.

Test no. Hy H, H, rejected?
1 He—Hespr =0 He~ Haspy >0 Yes (0.0004)°
2 8, — 851 =0 8, - Bysp1 > 0 Yes (0.0381)
3 Auspr = A =0 Agspt = A >0 Yes (0.0002)
4 Haspr — Heop1 =0 Haspt — Meop1 > 0 No (0.3710)
5 Busp1 — Boop1 = 0 Busp1 — Bsgpt > 0 No (0.6460)
6 Agopt — Aasp1 = 0 Asop — gyt > 0 No (0.4677)
7 Hasp) — Hasp2 =0 Haspt — Hasp2 > 0 No (0.0514)
8 B5p1 — Baspr =0 Ousp1 — Buspr > 0 No (0.4210)
9 Ausps = hasp1 = 0 Aaspr = Aasp1 >0 No (0.0756)

10 Heop1 — Heop2 = 0 Heop1 — Heopz > 0 No (0.0792)
1 Byt — Bhp2 = 0 Betp1 — Bsopz > 0 No (0.3962)
12 Astpz — Agop =0 Aetp2 — Aegp1 > 0 No (0.1086)

* (Significant level from SAS output.)
1 = expected total costs; 6= work force fluctuation; A = service level.

From table 3, the null hypothesis for the first three tests was rejected at the
0.05 significance level, which shows that the expected value approach was inferior
in all criteria to the SPWR modeling. The null hypothesis for tests 4, 5, and 6 was
not rejected at a significance level of 0.05, suggesting that the advantages gained by
extending the number of samples from 45 to 60 in the first quarter is insignificant.
Single period versus two-period stochastic models with 45 and 60 sample constraint
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blocks were examined in tests 7 through 12. The null hypotheses for the expected
total costs and customer service were not rejected at 0.05; however, they were
rejected at the 0.10 significance level. This suggests that two-period stochastic modeling
is better than single-period modeling. However, the number of samples in each period
is not significant.

3.6. ANALYSIS OF VARIANCE (ANGOVA)

A two-factor model was tested on each of the three criteria. The objective was
to study if there is any interaction effect between the two factors of sample size and
the number of stochastic periods. The factors were: 1 or 2 periods modeled stochastically
and 45 or 60 constraint samples drawn from the constraint space. Tables 4, 5 and 6
show a summary of the ANOVA results for the three goals. In tables 4-6, SZ is the
sample size and NP is the number of periods.

Table 4

ANOVA results for total costs.

Source DF F value PR>F

Sz 1 1.36 0.2601

NP 1 9.27 0.0077

(SZ) (NP) 1 0.12 0.7355
Table 5

ANOVA results for hiring.

Source DF F value PR>F
kY4 1 0.52 0.4824
NP 1 7.40 0.0152
(SZ) (NP) 1 0.00* 0.9960

* = truncated at two decimal points.

Table 4

ANOVA results for customer service.

Source DF F value PR>F
SZ i 0.51 0.4864
NP 1 7.40 0.0152
(SZ) (NP) 1 0.03 0.8749

From the above tables, there were no interaction effects between the two
factors, and modeling two periods improved the expected total costs and the customer
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service. Comparing this with the results of table 2, there is a marginal improvement
in two-period modeling of about 5-8%. It is unlikely that extending the stochastic
period beyond the two periods would give any significant improvement.

4, Conclusions

In this paper, a hierarchical production planning (HPP) and scheduling model
was developed that integrates aggregate type decisions, family disaggregate decisions,
lot-sizing and scheduling of the jobs. The model evaluates final production plans,
updates the forecasts and proceeds on a rolling horizon basis. Random demand and
production failure were explicitly incorporated into the aggregate type model. The
incorporation of a simple heuristic scheduling algorithm is an important feature of
the paper. The algorithm shows the actual progress of jobs through work centers and
provides information regarding job tardiness, bottleneck work centers, and number
of set-ups for each family. This information is useful for resolving production and
capacity infeasibilities during the production process.

Incorporation of three criteria into the aggregate type problem is considered
to be necessary for balancing the interests of the various decision-making functions
in the organization. These criteria are: minimization of the total costs, minimization
of the fluctuations in the level of work force, and maximization of the customer
service. The aggregate problem is modeled as a goal program and solved using a
sequential linear programming method.

A number of experiments were conducted to examine the performance of the
HPP model. The primary objective of the experiments was to compare the performance
of the constraint sample approximation method under different modeling complexities:
(1) planning with 45 or 60 samples of constraint blocks in the aggregate type model;
(2) one-period stochastic model or two-period stochastic model. Statistical ¢-tests and
analysis of variance were used to study the differences among the different modeling
procedures. The analysis of results indicated the following findings:

(1) The expected total cost associated with the expected value model is significantly
greater than the expected total cost of the SPWR using the constraint sample
approximation method. The main reason for the large difference is that the
expected value approach basically neglects the distribution of the random
variables and the magnitude of the competing costs.

(2) For the same reasons as in (1), the expected customer service for SPWR using
the constraint sample approximation method is significantly greater than that
obtained with the expected value model.

(3) The second objective of minimizing fluctuations in the level of work force is
less sensitive to different policies than the other two objectives. The primary
reason is mainly due to taking this objective directly from the aggregate goal
program, while the other two objectives were computed after evaluation of the
final disaggregate plans.
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(4) Extending the number of samples of the stochastic constraints from 45 to 60
sets in the first quarter did not lead significantly (at the 0.05 level) to better
production plans. This is mainly due to the normality assumption of the random
variables, which suggests a set of 45 generated random vectors will likely
estimate the complex possible scenarios in the future.

(5) The two-period stochastic model is significantly better than the single-period
stochastic model, but there is no significant difference between the 45 or 60
sets of constraints.

(6) A large portion of the total costs is due to the bottleneck operations at work
centers 2 and 3. Adding sufficient capacity to these work centers will greatly
reduce the total costs and improve customer service.
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