
Annals of Operations Research 59(1995)45-75 45

Scenario formulation in an
algebraic modelling language

H.I. Gassmann and A.M. Ireland

School of Business Administration, Dalhousie University,
Halifax, Nova Scotia, Canada B3H 1Z5

Algebraic modelling languages have simplified management of many types of large
linear programs but have not specifically supported stochastic modelling. This paper
considers modelling language support for multistage stochastic linear recourse problems
with finite distributions. We describe basic language requirements for formulation of finite
event trees in algebraic modelling languages and show representative problems in AMPL
using three commonly used scenario types.

1. Introduction

The large mathematical programs used to solve real-world optimization problems
often require daunting efforts in initial model formulation and matrix generation. Algebraic
modelling languages have simplified these processes by providing English-like model
specifications and easily modifiable data structures, making the construction of large
models easier under the time and cost pressures that arise in business settings.

Stochastic programming models extend the scope of linear and nonlinear pro-
gramming to include probabilistic or statistical information about one or more uncertain
problem parameters. Chance-constrained programming accomplishes this by setting
reliability levels within which each constraint or group of constraints must be satisfied.
Stochastic programming models with recourse define multiple scenarios and generate
contingent solutions depending on actual observations of random events in the future.
The increased complexity of both types of models compared to deterministic models
poses an even greater barrier to their widespread use, yet research in stochastic
programming and algebraic modelling languages has not so far addressed the formulation
of stochastic models in these languages.

This paper is concerned primarily with scenario-based linear programs with
recourse (SLP). It identifies basic requirements for scenario formulation in algebraic
modelling languages and describes our formulation of representative problems in one
algebraic modelling language, AMPL. We first outline basic functional requirements

© J.C. Baltzer AG, Science Publishers

46 H.L Gassmann, A.M. Ireland, Scenario formulation

for SLP model specification. We then describe three types of scenarios used in SLP
models and show that each can be specified in the AMPL language as it now exists,
although the formulation has some artificial aspects due to limitations in the language.
This is most evident in problem formulations which attempt to capture the stochastic
elements implicitly by giving distributions as opposed to stating the full scenario tree
explicitly. Since AMPL was designed to formulate and model deterministic problems,
these difficulties should come as no surprise and point towards possible extensions
to the language. In this context we discuss related problems in scenario formulation
and management which must be addressed in comprehensive systems supporting
stochastic linear programming.

2. Algebraic modelling languages

Algebraic modelling languages such as GAMS (Bisschop and Meeraus [2],
Brooke et al. [3]) and AMPL (Fourer et al. [5]) are designed to allow modellers to
represent linear programming models in statements that closely resemble their
mathematical specifications. As described by Greenberg [7], these languages (a) are
declarative, specifying what is being computed rather than how it is done; (b) make
extensive use of domains over sets, corresponding to the indexing found in algebraic
model specifications, and (c) represent models by rows (constraints) rather than
columns (activities). In Fourer's terms, they represent a model in the "modeller's
form", subsequently translating it automatically into the "algorithm's" (computer
solvable) form, carrying out data consistency checks and automatic matrix generation
directly from the language and data specifications.

For example, a model specification in AMPL consists of definitions of index
sets, numerical parameters and decision variables, followed by objective and constraint
statements taken directly from the model's mathematical representation with changes
in syntax that translate the mathematical notation into text. This specification defines
a symbolic class of models; data sets to instantiate the model are entered separately
as text or database records, and the translation step to MPS format for solver input
is handled directly by the AMPL software. Appendix A shows the algebraic formulation,
AMPL specification and AMPL data file for a straightforward deterministic production
problem taken from Fourer et al. [5].

Algebraic modelling languages have been developed over a number of years
to handle many complexities in the formulation of large linear programs such as
management of multiple runs, network structure definitions and piecewise linear
functions (Fourer [4]). They also provide convenient extensions of the algebraic
formulation such as computed parameters, which eliminate the need, for separate
calculations to transform raw data into coefficients (Fourer et al. [5]). However, they
have not so far explicitly considered specification and management of the structures
and data required for multiple scenarios in SLPs - models which could greatly benefit
from easier ways to handle their complexity.

H.I. Gassmann, A.M. Ireland, Scenario formulation 47

3. Scenario formulation requirements

Scenario-based stochastic linear programs optimize under uncertain future
conditions by producing contingent decisions over a number of future scenarios. A
typical set of scenarios, arranged in a branching, probabilistic tree, is shown in
figure 1. Each node in the tree corresponds to a time period with an associated
problem state. At each branch point a random event occurs, and the next time period
is associated with a number of new states based on the realizations of the random
variable with the discrete distribution described by the (conditional) branch probabilities.
A scenario can be informally defined as a path through the tree from the root to a
leaf; the scenario's probability is the probability of all its events occurring.

t = l t=2 t=3 t=4

.5) p(Sl) = .25

~~ .3) (p = .5)'~'~ C) Scenario 2
p(S2) = .25

p(S3) = .3

Scenario 4
p(S4) = .12

(p = .4) Scenario 5
p(S5) = .08

No~s

O denotes a rate evenL
[] denotes a set of decisions. There are no decisions in the final period
p denotes the conditional probability of a rate event given prior events.
p(Sn),n = 1 5 denotes the scenario (path) probability.

Figure 1. Branching rate event probability tree.

Within an SLP, parameter values and decision variables are defined for each
node in the scenario tree. Because parameters and decisions are contingent on the
current problem state which includes the effects of all prior decisions, which in turn

48 H.L Gassmann, A.M. Ireland, Scenario formulation

are dependent on all prior events, the current parameters and decisions can be said
to be contingent on all prior events.

On the other hand, scenarios share information up to a point where branching
occurs. Since the events up to the branching point are insufficient to distinguish
between the scenarios, the decisions taken up to that point must also be the same.
This concept of nonanticipativity is a central theme in stochastic programming. To
illustrate these concepts, we consider an investment problem using the tree in figure 1
to describe future interest rate movements. Here earnings parameters would be defined
for each time period in each scenario, and contingent investment decisions would be
produced for each time period in each scenario. Nonanticipativity requires that all
five scenarios share the same parameter and decision values in the first period, that
scenario 2 have the same parameters and decisions as scenario 1 in periods 1 and
2, and that scenario 5 be indistinguishable from scenario 4 before period 3.

An SLP therefore differs from a deterministic LP in that parameters, decision
variables and constraints have multiple realizations for time periods beyond the first
(root) period which correspond to the multiple scenarios active at a given time.
Formulating such a model requires (a) defining its scenario structure and (b) specifying
the scenario dependencies of its coefficients, variables and constraints as modifications
of the deterministic model form.

Typically, scenarios are described in a model's algebraic formulation as sequences
of events or realizations of random variables over time. However, scenario formulation
is complicated by the fact that in many cases these realizations can be computed from
a few parameters rather than explicitly stated as model data, in the same way that
coefficients can often be computed from raw data. Our first requirement for scenario
formulation is therefore that:

RI: Scenarios should be able to be parametrically specified and computed by the
matrix generator, as well as defined explicitly when necessary.

Furthermore, both event sequences and parametric specifications include implicit
redundancies when paths overlap, as they do between the root of a scenario tree and
branch points. Because formulation and matrix generation will be more efficient if
these redundancies are eliminated, our second requirement is that:

R2: Scenario representations should be minimum representations of the problem
(the most compact possible) which fully describe scenario structure and scenario-
dependent data.

The second requirement essentially means that nonanticipativity is handled
implicitly by suppressing all decision variables, constraints and parameters that do
not correspond to existing nodes in the event tree. For computational efficiency,
especially of interior point algorithms, it is sometimes expedient to treat these
nonanticipativity constraints explicitly and introduce redundant variables (see, for
example, Lustig et al. [10]).

H.I. Gassmann, A.M. Ireland, Scenario formulation 49

For greater understanding of these requirements, we will now explain the
formulation of three types of scenarios and specify a model in AMPL for each.

4. Scenario formulation examples

We have initially identified five types of random structures used in SLP models
and have attempted to specify three of them in AMPL. We have based all specifications
on the event-sequence-based view of scenario trees, used by modellers, rather than
the node-and-arc tree representation, normally used computationally and in SLP
solvers such as MSLiP (Gassmann [6]). To eliminate redundancy, we view a scenario
tree as consisting of the following:

(a) a base scenario with problem states defined for all time periods in the planning
period, including the root (present) period,

(b) one or more additional scenarios. Each additional scenario shares at least the
root period problem state with the base scenario and branches from a parent
scenario so that it has a distinct new problem state at its start time, some time
period after the initial period.

For each time period after the start time up to this scenario's horizon - which
may differ from the horizon of the base scenario - decision variables and constraints
must then be set up, even if the parameters for future periods coincide with those
of the base scenario.

A scenario tree structure is therefore defined by specifying the number of time
periods, the scenario index set, and parent names, start time values and probabilities
for all additional scenarios. (The probabilities can be given as path probabilities or
can be conditional on prior events in the parent scenario.) Parameters, variables and
constraints are then set up for all time periods in each scenario which are not shared
with its parent scenario. (Note that this deals with nonanticipativity implicitly in a
very simple and efficient way.)

4.1. TYPE 1: ARBITRARY SCENARIO STRUCTURE WITH FIXED HORIZON

The first type of problem assumes a common fixed time horizon for all scenarios,
but otherwise allows for an arbitrary scenario structure which is explicitly stated,
along with all required data. Random variable distributions am assumed to be dependent
on both the time period and prior history, which determines the current position in
the tree. This can happen, for example, in planning problems when assumed scenarios
reflect major, unique future events.

An example of this type of problem is found in the SLP model used in the
MIDAS decision support system for debt management (Ireland [8]), shown in appendix
B. This model is designed to optimize corporate borrowing decisions over a planning

50 H.L Gassmann, A.M. Ireland, Scenario formulation

horizon by choosing from a number of debt types and investment types, denoted by
index k, issued in various time periods, denoted by index s, to meet cash requirements
in each future time period, denoted by index t. This model uses an arbitrary tree
structure reflecting projected future interest and exchange rate movements as specified
by the model 's user, a corporate debt manager. Because these rate movements are
influenced by major external events, the number and timing of branches depend on
the manager 's assumptions about future events and do not follow a predictable,
computable pattern.

In appendix B, scenarios are algebraically specified for this type of model as
event sequences ej = (ejl,ej2 ejr), for j = 1 J over a time series 1 T. This
notation does not represent the branching tree structure described above, and it does
not identify events which are shared across scenarios and should therefore be specified
only once in the modell ing language. We therefore suggest a modified form of event
sequences which leads to a nonredundant AMPL specification.

We follow the ideas put forth in Lane and Hutchinson [9]. Among all scenarios
that share data in a particular period t, we choose (arbitrarily) the one with the lowest
number and call its event ejt a representative event. Representative events are rendered
with capital letters; the sets of all representative events are denoted Et, for t = 1 T.

For example, in the tree of figure 1, we have El = {Ell }, F-a = {El2, E32, E42},
E 3 = {El3 , E23 , E33 , E43 , E53}, E 4 = {El4, E24 , E34, E44 , E54 }. For each scenario j the
representative event in period T is Ejr, but in prior periods it is possible to have other
scenario indices appearing. Each such scenario is an ancestor of scenario j. This
ancestor relationship induces a partial order on the set of scenarios, and the immediate
predecessor of a scenario is referred to as its parent scenario. In the tree of figure 1,
scenario 1 is parent to scenarios 2, 3 and 4, while scenario 5 has two ancestors, 1
and 4, with scenario 4 being the parent scenario.

We can then represent the tree as the set of event sequences:

{(Ell, EI2, El3, El4),
(Et t , E12, E23, E24),
(E l l , E32, E33, E34),
(E l l , E42, E43, E44),
(Ell, E42, E53, E54)}.

The tree structure is implicit since branches are inferred from the data for a
specific problem when event realizations are the same for multiple scenarios, as in
the overlap of Ell in all scenarios and E42 in scenarios 4 and 5. The specification is
still redundant to the extent that scenario events before branch points are duplicated
in multiple scenarios.

Our AMPL specification for the MIDAS model, and a simple instance using
a three-period tree with one branch after period 2, is given in appendix B. It is
possible to represent this model in AMPL nonredundantly if, as explained above, we

H.L Gassmann, A.M. Ireland, Scenario formulation 51

conceptualize the scenario tree as a base scenario with new scenarios branching off
below existing ones; this scenario structure is explicitly specified, and careful index
restrictions limit parameters, decision variables and constraints to time periods not
shared with previously specified periods in parent scenarios.

The following definitions are therefore added to what would have been a
deterministic model:

(a) the index set scenarios, used to index scenario-dependent model components;

(b) the parameter prob, indexed over scenarios: the path probability for each
scenario;

(c) the parameter parent, indexed over scenarios: the path from which a scenario
branches;

(d) the parameter starttime, indexed over scenarios: the first time period in which
the scenario has a problem state which differs from that of the parent scenario;

In addition to these user-specified data items, the following are computed by
AMPL to support the nonredundant model representation:

(e) The index set evenLnodes, defined as the members (j, t) of the cartesian
product scenarios x periods satisfying the relationship

t > starttime[j] ;

(f) the index set evolutions, used for triple indexing on variables such as outst and
retire which depend not only on the node when the retirement decision is made,
but also on the period when the debt was first issued, defined as follows:

evolutions := { (j , s,t) ~ scenarios x periods x periods:
s _< t arid t _> starttime[j] };

(g) the parameter previous, indexed over event_nodes to describe the way information
is inherited from the previous period, defined by

{~ arent[j] i f t = starttime[j],
previous[j, t] := otherwise.

Using this specification and the data set in appendix B, AMPL generates a
nonredundant MPS file.

4.2. TYPE 2: SCENARIO STRUCTURE WITH PERIOD-TO-PERIOD INDEPENDENCE OF DATA
VALUE DISTRIBUTIONS

This type of problem uses random variable distributions for which data values
can vary by time period but are independent of events in prior periods. The tree can

52 H.L Gassmann, A.M. Ireland, Scenario formulation

therefore be computed from specification of the distributions within each time period.
(Problems with stationary distributions throughout all time periods are a special case,
which could be computed from one set of distribution parameters alone.) This is an
important consideration for the modeller, because it can greatly reduce the redundancy
and hence the data requirements despite the obvious geometric growth in the number
of nodes in the event tree. For example, consider the four-period tree of figure 2. In
period 3 there are six nodes and in period 4 there are twelve, but data need only be
specified for three and two branches, respectively (as demonstrated in table 1). All
other parameter values can then be inferred by the program.

t= 1 t= 2 t= 3 t= 4

0 0 0

0 ~ ' 0 0 0

2 " O 1 1

" 3 3

4 4

\ 6 6 - - - - o s 5
" 0 ~ 6 6

7 7

8 8

9 9
" O ~ 10 10

11 11
Figure 2. Period-to-period independent scenario tree for forestry application.

Scenario

Table I

Distribution of loss rates for forestry example.

Time Branch Loss rate Probability

1 1 0.00 0.7
2 0.20 0.3

2 1 0.00 0.4
2 0.07 0.5
3 0.20 0.1

3 1 0.04 0.5
2 0.10 0.5

Appendix C gives an example of this problem type which arises in forest
management. The objective is to determine a harvesting sequence which maximizes

H.L Gassmann, A.M. Ireland, Scenario formulation 53

the expected total value of wood harvested from a forest over a future time period
with uncertain loss rates due to fires and other hazards. The forest is divided into age
classes (areas holding trees of given ages); as trees mature, areas move from one age
class to another, with new trees of zero age replacing trees that have been harvested.
In addition, a fire destroys a random proportion of the forest left standing after
harvesting. Trees remaining at the end of the planning period are valued and included
as part of the objective.

Here we require analysis of the scenario structure which goes well beyond the
algebraic formulation but which serves to greatly simplify the problem specification,
compared to problems of type 1 above. Although the forestry problem's algebraic
formulation merely assumes event sequences as in the problem above, the scenario
tree underlying this problem can be completely specified by the number of time
periods and the (unconditional) distribution of loss rates in each period, more precisely
the number of possible realizations one is interested in. Parent and start time parameters
can be calculated using elementary arithmetic operations if we utilize a top-to-bottom
scenario labelling scheme. We illustrate this with the following example using the
scenario tree given in figure 2.

This tree uses three loss distributions, described in table 1. These result in 12
scenarios, numbered sequentially from top to bottom starting at 0 (so as to simplify
some of the arithmetic); we use the same convention as in the previous section
regarding parent scenarios. The number above each node in the tree indicates the
scenario in which data is specified for that node.

The following parameters then define the tree structure:

(a) The number of scenario paths coinciding with a node in period t. In scenarios
of type 2, this number is constant across each period and can be denoted by
branches[t]. This is of course just the product over the number of realizations
in all time periods beyond t. In the tree of figure 2, branches[2] = 6, as each
second-period node coincides with exactly six distinct scenario paths; similarly
branches[I] = 12, branches[3] = 2, branches[4] = 1.

(b) The start time of a scenario j, calculated as follows:

starttime[j] = min{t I j - 0 (mod branches[t])}.

(c)

(If there is no such t, then we will set starttime[j] = T. In figure 2 we have
starttime[2] = 3, since 2 - 0 (mod branches[3]) but 2 ~0 (mod branches[2]).)

The parent of a scenario j, which is 0 for the base scenario and otherwise is
the largest integer multiple of the number of branches below the period prior
to the start time of scenario j less than or equal to the scenario number. For
example, the parent of scenario 4 is 0 since the start time of scenario 4 is t = 3
and there are 6 branches below period t = 2. The parent scenario can be
computed in AMPL as j - (j mod branehes[starttime[j] - 1]).

54 H.L Gassmann, A.M. Ireland, Scenario formulation

In the complete AMPL formulation (see appendix C) we define the scenario
structure using the following:

(a) the parameter realizations: the number of realizations or possible outcomes in
the random variable's distribution;

(b) the parameter loss_rate, indexed over time periods and realizations;

(c) the parameter cond_prob, indexed over time periods and realizations: the
conditional probability of each outcome in the distribution;

(d) the parameter branches, indexed over time periods: the number of branches in
the tree below a given time period;

(e) the index set scenarios, calculated as all integers between 1 and the number
of branches below time period 1;

(IF) the parameter starttime, indexed over scenarios, calculated as described above;

(g) the parameter parent indexed over scenarios computed as outlined above;

(h) the set evenLnodes and the parameter previous, indexed over evenLnodes as
explained in the section on arbitrary fixed-horizon scenarios;

(i) the parameter w_address, indexed over event_nodes, which associates with
each node in the tree the number of the realization from the relevant (marginal)
distribution and is defined by

w_address[j, t] := 1 + ((j div branches[t]) mod realizations[t-I]);

(j) the parameter path_prob, indexed over evenLnodes and defined by

path_prob[j, t]
:= product{tau in 2 . . t} cond_prob[tau-1, rv_address[j, tau]].

For example, in the tree of figure 2 the information for the node in period 3
of scenario 8 can be found using the second realization of the random variable since
1 + ((8 div branches[3]) mod realizations[2]) = 1 + ((8 div2) mod 3) = 2. The (partial)
path probability represents the probability in period 1 of finding oneself on scenario
j in period t.

Some of the indexing expressions are quite complicated and do not appear in
the formulation in appendix C in quite this form, because the version of AMPL
available to us at the time of writing did not support integer division.

4.3. TYPE 3: SCENARIOS WITH RANDOM WALK OR RANDOM WALK WITH PERIOD-
INDEPENDENT DRIFr

This type of problem uses random variables for changes in scenario data
whose distributions are independent from period to period. Realizations in each

H.L Gassmann, A.M. Ireland, Scenario formulation 55

scenario therefore depend on both the time period and prior history, although the
increments can be specified by time period alone, regardless of scenario.

We illustrate this problem type with a modification of the MIDAS model of
appendix B, using random walk distributions with drift to generate the rate movements.
This does not change the algebraic formulation, since it does not explicitly contain
the scenario structure; however, it does change the AMPL formulation, which is
given in appendix D. The explicit scenario, parent and start time parameters used in
our type 1 example are replaced by the parameters used in our type 2 illustration.
In addition, drift parameters for service cost movements, exchange rate movements
and interest earned on cash deposits are defined to give the period-to-period changes
for each coefficient.

The final changes in this formulation are found in specification of the parameters
affected by the changed distributions - debt service costs r, exchange rates p and the
cash deposit interest rate i. These are calculated in the following manner:

r~t (ej)t = r~t-1 (ej)t-I + Ar~t (ejt),

p~(ej) t = p~_l(ej)t_i + Apkt (ejt),

i t (ej)t = it-1 (ej)t-1 + Ait (ejt).

The notation Arkt (ejt) suggests that the values taken by the increments are not
dependent on what happened in the past, and that the number of realizations, the
(conditional) probabilities and the values are the same no matter what prior history
(ej)t_ 1 has been observed to date.

In AMPL, these parameter values are computed for all scenarios and time
periods by calculating current tree positions and prior movements, using arithmetic
operations similar to those found in our previous example.

The AMPL data set for a three-period problem with two-point distributions
reflects these changes. Although it does not appear shorter than our explicit representation
for such a small problem, it would be considerably shorter for larger, bushier trees
in which the advantage of specifying a distribution once per time period instead of
once per node would be apparent.

4.4. OTHER SCENARIO TYPES

We have identified at least two more scenario types: (4) scenario trees in
which random variable distributions of increments depend on prior events (e.g. interest
rate movements which are symmetrical for moderate interest levels but are skewed
upwards if the levels are very low and skewed downwards if the levels are very high),
and (5) scenario trees in which the number of decision variables depends on the
current scenario. (The most obvious example of such a scenario tree is one in which

56 H.L Gassmann, A.M. Irelana~ Scenario formulation

"coffin states" terminate paths of certain realizations.) The nonredundant, efficient
formulation of these more complex scenario types is an interesting area for further
work.

5. Concluding comments

We have shown through these examples that three common types of stochastic
linear programs can be formulated in AMPL, using either parameterized specifications
or explicit definitions of scenario structure. Viewing a scenario tree as one of branching
event sequences, the scenario structure can be specified through scenario label, parent
and start time parameters; redundancy can be eliminated by restricting time indexes
on parameters, decision variables and constraints to times greater than scenario start
times. Although this structure is not typically found in the algebraic formulations of
SLP models, it is straightforward to implement as an extension of this formulation.
In this manner we produced the full deterministic equivalent of our test problems,
which AMPL then translated into standard MPS form. Moreover, we found AMPL's
data consistency checking to be quite useful in identifying minor errors in our models
and data.

The extent to which these results transfer to other algebraic modelling languages
and LP formulation tools depends, of course, on the particular capabilities of the
tools in question.

During this exercise, we identified several areas related to management of
stochastic linear programs and other scenario-based models which bear further
consideration. First, we discussed and tentatively discarded recommendations that
AMPL provide automatic analysis of scenario structure so that scenario parameters
could be calculated by high-level operators rather than explicitly specified by the
modeller. This would bring the AMPL specification closer to the algebraic one but
seems to pose problems in terms of linking data to scenarios and nodes when the
structure is not explicitly stated beforehand. We would welcome comments on the
extent to which AMPL might be modified in this direction.

Second, it would be useful to consider whether AMPL and similar tools should
be exterided to produce output usable by the more specialized solvers now being used
to handle large SLPs. For example, the input format suggested by Birge et al. [1]
extends the MPS form to produce a nonredundant set of files which explicitly specify
the stochastic structure of these models so that they can be solved using decomposition
algorithms. It would be very difficult indeed to extract this information from an MPS
file without adding a specification of the tree structure and parameter dependencies.

Third, in our discussions we identified several "views" of scenarios, each of
which appears useful in certain modelling situations. For instance, managers tend to
view scenarios as branching paths, modellers often view them as event sequences and
computational experts treat them as special cases of networks, with node-and-arc
specifications. The extent to which these views can be interchanged by model manage-

H.L Gassmann, A.M. Ireland, Scenario formulation 57

ment systems and to which they can be used opportunistically to support model
definition, manipulation and efficient solution is a fascinating topic for further work
in management of scenario-based models.

Appendix A: A deterministic production problem (Fourer et al. [5])

ALGEBRAIC FORMULATION

Given P a set of products,

R a set of raw materials,

T> 0 the number of production periods,

M > 0 maximum total production per period;

and aij > 0 i ~ R , j ~ P: units of raw material i needed to manufacture one
unit of product j;

b i > 0 i ~ R: maximum initial stock of raw material i;

cjt j ~ P, t = 1 T: estimated profit (if > 0) or disposal cost (if < 0)
of product j in period t;

di > 0 i ~ R: storage cost per period per unit of raw material i;

3~ i ~ R: estimated residual value (if > 0) or disposal cost (if < 0)
of raw material after the last period.

Define xjt > 0 j ~ P, t = 1 T: units of product j manufactured in period t;

sit > 0 i ~ R , t = 1 T + 1: units of raw material in storage at the
beginning of period t.

Maximize ~T=I (~j~P c j t x j t - ~ i ~ R disi t) + ~ i ~ R fisi ,T+l"

total over all periods of estimated profit less storage cost, plus
value of remaining raw materials over the last period;

subject to Y-jE~, x jr < M,

t = 1 T: total production in period t must not exceed the
specified maximum;

sit < bi, i ~ R: units of raw material i on hand at the beginning of period 1
must not exceed the specified maximum;

Si.t+ 1 = Sit -- ~'jE~Paijxjt,

i ~ R , t = 1,..., T: units of raw material i on hand at the beginning
of period t + 1 must equal units on hand at the beginning of
period t less units used for production in period t.

AMPL MODEL FILE

SETS ###

set prd;
set raw;

products
ray materials

58 H.L Gassmann, A.M. Ireland, Scenario formulation

PARAMETERS ###

paramT > 0 integer;

parammax_prd > O;

paramunits { raw,prd} >= O;

param init_stock { raw} >= O;

paramprofit { prd,1..T} ;

p a r a m c o s t { raw} >= O;

paramvalue { raw} ;

number of production periods

maximum units of production per period

units[i,j] is the quantity of raw material i
needed to manufacture one unit of product j

init_stock[i] is the maximum initial stock
of raw material i

profit[j,t] is the estimated value (if >= O)
or disposal cost (if <= O) of
a unit of product j in period t

cost[i] is the storage cost
per unit per period of raw material i

value[i] is the estimated residual value
(if >= O) or disposal cost (if <= O)
of raw material i after the last period

VARIABLES ###

var Make { prd,l..T} >= O; # Make[j,t] is the number of units of product j
manufactured in period t

var Store { raw,l..T+l} >= O; # Store[i,t] is the number of units of raw mate-
rial i in storage at the beginning of period t

OBJECTIVE ###

maximize total_profit:

sum { t in I..T} (sum { j in prd} profit[j,t] * Make[j,t] -
sum { i in raw} cost[i] * Store[i,t])

+ sum { i in raw} value[i] * Store[i,T+l];

Total over all periods of estimated profit,
minus total over all periods of storage cost,
plus value of remainin E raw materials after last period

H.I. Gassmann, A.M. Ireland, Scenario formulation 59

CONSTRAINTS ###

subject to limit { t in I..T} : sum { j in prd} Make[j,t] <= max_prd;
Total production in each period must not exceed maximum

subject to start { i in raw} : Store[i,l] <= init_stock[i];

Units of each raw material in storage at beginning
of period I must not exceed initial stock

subject to balance { i in raw, t in I..T} :
StoreEi0t+13 = Store[i,t3 - sum{ j in prd} units[i,j3 * Make[j,t];

Units of each raw material in storaEe
at the beginning of any period t+l must equal
units in storage at the beginning of period t0
less units used for production in period t

AMPL DATA ~LE

d a t a ;

set prd := nuts bolts washers;
set raw := iron nickel;

param T := 4;
parammax_prd := 123.7;

paramunits : nuts bolts washers :=

iron .79 .83 .92
nickel .21 .17 .08 ;

paramprofit : I 2 3 4

nuts 1.73 1.8 1.6 2.2
bolts 1.82 1.9 1.7 2 . 5
washers 1.05 1.1 .95 1.33

param : init_stock Cost Value :=

iron 35.8 .03 .02
nickel 7.32 .025 -.01 ;

e n d ;

:=

Appendix B: MIDAS stochastic programming problem

ALGEBRAIC FORMULATION

NOTATION:

s, t = 0 T denote t ime per iods .

60 H.L Gassmann, A.M. Ireland, Scenario formulation

T
k
ej
(ej)t

E,

° . -

is the length of planning period or horizon.
1 ,K denotes an available debt type.
(ejl, ej2 ejr,), j = I J denotes a sequence of (rate) events or scenario.
indicates that a variable or parameter is contingent on the evolution of event
sequence ej up to (and including) period t.
denotes the set of all distinct event sequences (ejl, e~ ejt) which can occur
up to and including period t. (ET= {el, . . . ,ej} and El is a singleton set.)

DECISION VARIABLES:

B k (ej)t dollar amount at par of debt type k borrowed in period t.

Oks,t (ej)t dollar amount at par of debt type k borrowed in period s and outstanding
at the end of period t.

R~,t (ej)t dollar amount at par of debt type k borrowed in period s and retired in
period t.

St(ej)t dollar value of surplus cash balance at the end of period t.

PARAME'I~RS:

rkt (ej)t service cost in period t per dollar outstanding at the end of period t - 1 of

g~s,t(ej)t

v~(e j)r

p~(ej)t

it(e j),

p(ej)r
f/

G
M,

Qt
Lt
Ut

debt type k issued in period s.
(These parameters are used to handle interest payments and sinking fund
contributions.)
cash outflows per dollar for debt type k issued in period s, if retired during
period t.
(These parameters are used to handle call premiums, sinking fund withdrawals
and payments of accrued interest on retirements.)
market value (in base currency) per dollar of debt of type k borrowed in
period s and outstanding at the end of period T.
exchange rate of foreign currency per unit of base currency appropriate to
debt type k in period t.
interest paid in period t per dollar of surplus cash balance at the end of
period t - 1.
probability of event sequences % j = 1 J. (~]=l p(ej)r = 1.)
issue costs (excluding premium or discount) per dollar borrowed of debt
type k issued in period t.
cash requirement for period t. If negative, Ct indicates an operating surplus.
maximum allowable cash outflows for debt service in period t.
maximum total borrowing over all debt types in period t.
minimum borrowing of debt type k in period t.
maximum borrowing of debt type k in period t.
minimum dollar amount of debt (at par) retired in period t.
maximum dollar amount of debt (at par) retired in period t.

H.L Gassmann, A.M. Ireland, Scenario formula t ion 61

O k
o,o

So

initial amount of debt type k outstanding (borrowed before the start of the
planning period).
initial cash surplus.

OBJECTIVE:

r r vk t (e j) rOk r - S r (e j) r } rffm Y-jJ=I p (e j)1" {~,k=l E,=o (ej) r
(expected cost of retiring outstanding

debt at end of period T).

CONSTRAINTS:

Cash requirements

For (ej) t E Et and t = 1 T

Ct = ~,r=l p tk(e j) t{ (1 -- f t k)Btk(e j) t
t - I k k

-~s=0 [rs,t (ej)t O~,t-1 (ey)t-I

+g~s,t (ej)t Rk s,t (ej)t]}
+ S,_l(ej),_l
+ i~ej)tSt_l(ej)t_l

- St(ej) ,

(net new borrowing)

(interest on outstanding debt)

(cash outflows on retirement)

(surplush cash in previous period)

(interest earned on surplus cash)

(surplus cash at the end of current period)

Debt inventory by type

For (ej)t ~ Et, s = 0 t - 1, t = 1 T and k = 1,. . . ,K

O~t(e j) t - O~,_l(ej),_l + R~t(ej), = 0
0~, (ej), -Bt k (ej)t = O.

Maximum cash outflows for debt service

For (ej) t E Et and t = 1 T
K t- I k k

Os t-1 (e j) t - 1 (e j) t - I M r . ~'~k=l ~s=0 rs,t (e j) t , - i t (e j) t S t - I <--

Maximum total borrowing

For (ej)t ~ Et and t = 1 T

~K pt k (e j) t B k (e j) t < Nt k=l -- •

Maximum debt issue size

For (ej) t ~ Et, t = 1 T and k = 1 K

B~(ej)t < Qt k .

Minimum debt issue size

For (ej) t~Et, t = 1 T and k = 1 K

either Bt k (e j) t = 0 or B~ (e j) t >- qt ~ (> 0).

62 H.L Gassmann, A.M. Ireland, Scenario formulation

M a t u r i t y s m o o t h i n g

For (ej)t e E, and t = 1 T

Lt <- Y'~=I t-I Zs=O R~t (ej)t <- Vt.

Nonnegativity
For (ej)t ~ Et, s = 0 t - 1, t = 1, . . . , T and k = 1 K

B~(e j) , > O, O k s.t(ej)t > O, ok t (e j) t > O, Rkt(e j) t > O, S,(ej) , > O.

AMPL MODEL FILE

MIDAS model file

param T > O; # number of time periods

SETS ###

set periods := O..T;
set debt_types;
set scenarios;

PARAMETERS FOR SCENARIO STRUCTURE###

param prob {scenarios}; # path probability
param parent {scenarios}; # parent scenario
param starttime {scenarios} > 0 integer;

first period in which the scenario
has a node with data different
from its parent scenario

AUXILIARY SETS AND PARAMETERS ###

set event_nodes := {j in scenarios, t in I..T: t >= startt/me[j]};
set evolutions := {j in scenarios, s in O..T, t in 1..T:

s <= t and t >= s t a r t t i m e [j] } ;
param previous {(j °t) in event_nodes: t > I} :=

(if % = starttime [jS then parent [j] else j) ;

OTHER PARAMETERS ###

param svc_cost {debt_types, evolutions} >= O;
debt service cost per dollar outstanding;
includes interest per period and
sinking fund contributions

param ret_cost {debt_types, evolutions};
retirement discount/premium

param end_val {debt_types, scenarios, periods} ;
market value (in base currency)
per dollar of debt

H.L Gassmann, A.M. Ireland, Scenario formulation 63

par~mexch_rate{debt_types, event_nodes};
exchange rate of foreign currency
per unit of base currency

paramcash_int {event_nodes} >=0;
interest on surplus cash

paramissue_cost {debt_types,l..T}>=O;
paramcash_req {I..T}; # cash requirements
parammax_cost {i..T}>=O; # maximum debt cost per period
parammax_Tbor {i..T}>=O; # maximum total borrowing
parammin_bor {debt_types,1..T}>=O; # minimum borrowing of a debt type
parammax_bor {debt_types,1..T}>=O; # maximum borrowing of a debt type
parammin_ret {1..T}>=O; # minimum amount retired
parammax_ret {I..T}>=0; # maximum amount retired
paraminit_debt {debt_types} >=0; # initial outstanding debt
paraminit_cash >=0; # initial surplus cash

VARIABLES ###

varborrow {debt_types, event_nodes}>= O;
varoutst {debt_types, evolutions}>= 0;
varretire {debt_types, evolutions}>= 0;
vardelta {debt_types, event_nodes}binary; # These are used to code

minimal and maximal borrowing
but we would solve the LP
relaxation instead.

varcash {event_nodes} >= O;

OBJECTIVE ###

minimize endvalue:

sum {j in scenarios}
prob[j] * (sum {k in debt_types, s in O..T} end_val[k,j ,s] * outst [k,j ,s,T]

- cash [j,Tb);

CONSTRAINTS ###

subject to balance {(j ,t) in event_nodes}:

cash_req[t] = sum {k in debt_types}
exch_rate [k, j, t] * ((l-issue_cost [k, t]) *borrow [k, j, t]

- sum {s in 0..t-l} (svc_cost[k,j,s,t]
(i~ t = i
then init_debt [k]
else outst [k ,previous [j ,t], s ,t-l])

+ ret_cost[k,j,s,t]~retire[k,j,s,t]))
+(ift=l
then init_cash
else (I + cash_int[j,t]) • cash[previous[j ,t] ,t-l])

- cashEj,t] ;

subject to inventory {k in debt_types, (j, s, t) in evolutions} :
outst[k,j,s,t] = (if s = t

then borrow [k, j, s3
else (if t = 1

then init_debt [k] - retire [k, j, s, t]
else outst [k,previous[j,t],s,t-13 - retire[k,j,s,t])) ;

64 H.I. Gassmann, A.M. Ireland, Scenario formulation

subject to debt_cost {(j ,t) in event_nodes}:

sum ~k in debt_types, s in O..t-l}
(if t=l
then svc_cost[k,j ,s ,t] * init_debt [k] - cash_int [j ,t3*init_cash
else svc_cost [k,j ,s ,t] * outst [k,previous [j ,t] ,s ,t-l]

- cash_int [j,t] * cash [previous [j,t],t-l])
<= max_cos t It] ;

subject to market_max { (j , t) in event_nodes} :
sum {k in debt_types} (exch_rate [k, j,t] *borrow [k, j, t]) <= max_Tbor It] ;

subject to max_issue {k in debt_types, (j ,t) in event_nodes}:
borrow[k,j,t] - delta[k,j ,t] * max_bor[k,t] <=0;

subject tomin_issue{k in debt_types, (j,t) in event_nodes}:
borrow[k,j,t] -delta[k,j ,t] * min_bor[k,t3 >=0;

subject to mat_smooth ~(j ,t) in event_nodes}:
min_ret[t] <= sum {k in debt_types, s in O..t-l} retire[k,j,s,t]

<= max_ret It] ;

AMPL DATA FILE

data;

set debt_types := canSyr usSyr ;
set scenarios := 1 2 ;

param T : = 3 ; # time interval in years

param : prob parent starttime :=
1 .75 0 1
2 .25 1 3 ;

param svc_cost default 0.0 :=

[c a n S y r , 1, * , *]
0 2
1 2
0 3
1 3
2 3
3 3

[c anSyr , 2, * , "3
1 3
2 3
3 3

[u s S y r , 1, * , *]
0 2
1 2
0 3
1 3
2 3
3 3

0
11
105
11
105
10
095

0
• 105
.10
• 105

0
.095
.091
•095
.091
.087
.083

1 .11 # scenario 1: falling rates

3 .11 # scenario 2 : rise at end

1 .095

H.I. Gassmann, A.M. Ireland, Scenario formulation 65

[u s S y r , 2 , * , *] 0 3 .095
1 3 .091
2 3 .087
3 3 . 0 9 1 ;

p a r a m i s s u e _ c o s t (t r) :
1 .009 .015
2 .009 .015
3 .009 .015 ;

p a r a m r e t _ c o s t d e f a u l t 99.9 :=

[c a n 5 y r , l , * , *] 0 3 1.0

[c a n S y r , 2 , * , * 3 0 3 1.0

[us5yr,l,*,*] 0 2 1.0 ;

paramend_val default 0.0 :=

[c a n 5 y r , 1 , *] 1 1.2
2 1.1
3 1.05

[c a n 5 y r , 2 , *] 1 .95
2 .9
3 .95

[us5yr, 1,*] 1 1.2
2 1.1
3 1.05

[us5yr, 2, *] 1 i. 03
2 .95
3 . 8 ;

param exch_ ra te d e f a u l t 1 . 0 : =

[usSyr, 1, *] 1 I. 18
2 1.21
3 1.25

[u s 5 y r , 2, .3 3 1.25 ;

paramcash_int default 0.0 :=

[1 , *] 1 . 08
2 .075
3 .07

[2 , *] 3 .0735 ;

param: cash_req max_cost
1 217.0 75.0 200.0
2 296.0 100.0 200.0
3 310.0 150.0 200.0

parammax_bor (tr) : can5yr
1 250.0 250.0
2 250.0 250.0
3 250.0 250.0 ;

canSyr us5yr :=

max_ret min_ret max_Thor :=
0.0 500.0
0.0 SO0.O
0.0 SO0.O;

us5yr :=

66 H.L Gassmann, A.M. Ireland, Scenario formulation

p a r a m m i n _ b o r d e f a u l t 0 . 0 (t r) :
e a n S y r u s S y r : =

1
2
3

p a r a m i n i t _ d e b t : = c a n S y r 2 0 0 . 0

param init_cash : = 50.0 ;
end;

u s S y r 1 0 0 . 0 ;

Appendix C: Stochastic forestry model

ALGEBRAIC FORMULATION

NOTATION:

t = 1 T denote time periods.

T is the length of planning period or horizon.

k = 1 K denotes an age class.

e i : = (ejl, ej~ e jr) , j = 1 J denotes a sequence of (rate) events or scenario.

(ej)t indicates that a variable or parameter is cont ingent on the evolut ion of
event sequence ej up to (and including) period t.

Et denotes the set of all distinct event sequences (ejl, ej2 ejt) which can
occur up to and including period t. (E r = {el e j} and E l is a singleton set.)

DECISION VARIABLES:

skt (e j) t area having trees in age class k at beginning of period t.

ht ~ (e j) t area of age class k harvested during period t.

PARAMETERS:

f t k't (ej)t

Yk

Vk

a,/3

pt(ej)t

proport ion of age class k in period t that moves to age class l by
the beginning of period t + 1.

yield per unit area of trees in age class k. This is time-invariant.

value per unit area of trees in age class k left standing at the time
horizon.

discount factor.

maximal allowable change in harvest volume from one period to the
next.

initial area having trees in age class k.

probability of having realized event sequence (ej)t.

H.L Gassmann, A.M. Ireland, Scenario formulation 67

OBJECTIVE:

max Yf=! ~jGE, ~t p, (ej), Y.f=I Ykh~ (ej),

+ Zj~Er ~T+lpr(ej)T Z t¢ k=1 VkS~+I (ej)t

(expected harvest in period t)

(expected value of forest left
standing at horizon).

CONSTRAINTS:

AVAILABLILITY:

For k= 1 ,K, t= 1 , . . . T , j ~ E t,

ht k (ej)t -skt (ey)t < O.

INVENqORY:

F o r k = 2 K - l , t = 2 T + I , j ~ E t ,

skt (ej)t = ftk_.-ll'k (ej)t_l[Sk-ll(ej),_l -- h ~ l (ej)t_l].

For t = 2 T + I , j ~ E t ,

K

s~ (ej) , = ~_~ ftk~'k (ej),_~[skt21~ (ej)t_~ - htk._-ll (ej)t_l],
k=l

s f (ej)t = ftK1 l'K(ej)t-l[stK_ll(ej)t-1 - hKl l (e j) t - l]

+ftgl K (e j) t_l[s~l(e j)t-1 -- hKl(ej)t-!].

HARVEST FLOW:

For k = 1 T, t = 2 T , j ~ E t,

K K

Ot ZYkhk_l (e j) t_ l - -Zykh tk (e j) t < O,
k=l k=l

K K

fl ZYkhk_l (e j) t_ l - - Z y k h k (e j) t > O.
k=l k=l

NONNEGATIVITY:

For t = 1 T, k = 1 K , j ~ E t,

Stk+l (ej)t > 0 htk(ej)t > O.

68 H.L Gassmann, A.M. Ireland, Scenario formulation

AMPL MODEL FILE

Forestry model
@## General (deterministic) parameters

paramT > O; # number of time periods
paramK > O; # number of age classes

set ageclasses := I..K;
set periods := 1..T;

paramyield {ageclasses} >= O;
parampresval ~ageclasses} >= O;
paramstatel (ageclasses} >= O;
paramdiscount >= O;
paramflow_min >= O;

paramflow_max >= O;
parammean_loss_rate <= I;

yield per acre
value per acre at horizon

initial stand of timber
discount factor

used for flow constraints

Parameters to define the random structure

param realizations {periods} > 0 integer;
param loss_rate ~t in periods, s in I..realizations [t]} >= 0 ;
param cond_prob ~t in periods, s in I..realizations It]} <= i;

Auxiliary sets and parameters for easier manipulation of scenarios

param branches ~t in I..T+I} :=
(if t <= T then prod ~s in t..T} realizations[s]

else I) ;
set scenarios := O.. (prod ~t in periods} realizations[t] - I) ;

param starttime {j in scenarios} :=
rain ~t in i..T+I : (j mod branches It]) = O} t ;

param parent ~j in scenarios} :=
(if j = 0 thenO

else j - (j mod branches [starttime[j]-1])) ;

set event_nodes := ~j in scenarios, t in I..T+I: t >= starttime[j]};

param rv_address {(j ,t) in event_nodes: t > I} :=
(((j - (j mod branches[t])) / branches[t])rood realizations[t-l]) + 1;

param previous ~(j ,t) in event_nodes: t > I} :=
(if t = starttime[j] then parent[j] else j) ;

param path_prob {(j ,t) in event_nodes} :=
(if t = i then I

else path_prob [previous [j, t] ,t-l] *
cond_prob It-1 ,rv_address [j, t]]) ;

##@ VARIABLES

vat state {ageclasses,t in 1..T+I, s in scenarios: starttime[s] <= t} >= O;
var harvest {ageclasses,t in periods, s in scenarios: starttime[s] <= t} >= O;

H.L Gassmann, A.M. Ireland, Scenario formulation 69

O b j e c t i v e :

maximize total_yield:
sum ~k in ageclasses, (s ,t) in event_nodes}

(if t <= T
then (dis count't * yield[kJ * harvest [k,t, s] * path_prob[s, t])
else (discount't * presval[kJ * stateEk,t,sJ * path_prob[s,t])) ;

Constraints :

subject to avail 'availability of timber'
~k in ageclasses, (s,t) in event_nodes: t <= T }:
harvest[k,t,s] - state[k,t,s] <= O;

subject to inventory
~k in ageclasses, (s ,t) in event_nodes} :
state [k,t,sJ =

(i~ t = i
then statel [k3
else (if k = I
then sum {a in ageclasses}
(loss_rate [t-I ,rv_address Is ,tJJ * state [a, t-1 ,previous Is, tJ J +
(I-io s s_rat e It- I, rv_addres s Is, t] J) * harve st [a, t-l, previous Is, tJ J)

e l s e (1-1oss_rate[t-l,rv_address[s,tJJ) *
(state [k-l, t-l,previous [s,tJJ - harvest [k-1 ,t-1 ,previous Is ,t33

+ (if k =Kthen
state[k, t-l,previous[s,t]] - harvest[k, t-l,previous Is,t]])))) ;

subject to final_inventory
{k in ageclasses, s in scenarios}:
state [k,T+l, s] =
(ilk= I
then sum Ca in ageclasses}
(mean_loss_rate * state[a,T,previous[s,T+13] +
(1-me an_los s_rat e) * harve st [a, T, previous Is, T+ 1]])

else (1-mean_loss_rate) *
(state [k-1 ,T ,previous Is ,T+I]] - harvest [k-1 ,T ,previous Is ,T+IJ J

+ (if k = Kthen
state [k, T,previous Is ,T+133 - harvest [k, T,previous [s ,T+IJ]))) ;

subject to flow1 ~t in 2..T, s in scenarios: starttime[sJ <= t}:
(1-flow_min)*sum ~k in ageclasses}

yield [k3 *harvest [k,t-1 ,previous Is ,tj] -
sum ~k in ageclasses} yield[k]*harvest[k,t,s] <= O;

subject to flow2 ~t in 2..T, s in scenarios: starttime[sJ <= t}:
(l+flow_max)*sum ~k in ageclasses}

yield [k] *harvest [k, t-l,previous Is ,tJ J -
sum ~k in ageclasses} yield [kJ *harvest [k,t,s] >= 0;

70 H.A Gassmann, A.M. Ireland, Scenario formulation

AMPL DATA HLE

d a t a ;

param T := 3;
param K := 4;

param realizations : =
1 2
2 3
3 2;

param : yield presval state1 :=
1 0 330 0.366
2 62 400 3.408
3 246 520 26.153
4 302 590 64. 810 ;

param discount := 0.9;
param flow_min := 0.1;

param flow_max : = O. I ;

param mean_loss_rate := 0.07;

param loss_rate :=
E l , ,] i o.o

2 0 . 2
[2,*] 1 0.0

2 0 . 0 7
3 0.2

[3 , ,3 i 0.04
2 0 . 1 ;

param cond_prob : =
[1 , *] 1 0 . 7

2 0 .3
[2 , ,] 1 0.4

2 0 .5
3 0 .1

[3 , ,] 1 0.5
2 0 . 5 ;

end;

Appendix D: Random walk scenario model

(For algebraic formulation, see appendix B)

AMPL MODEL FILE

paramT > O;

SETS ###

set periods := O..T;
set debt_types;

number of time periods

H.I. Gassmann, A.M. Ireland, Scenario formulation 71

Parameters to define the random structure
param realizations {t in 1..T} > O integer;
param cond_prob { t in I..T, s in i..realizations[t]} <= I;

Auxiliary sets and parameters for easier manipulation of scenarios
param branches {t in 1..T}:= prod {s in t.. T} realizations Is] ;

set scenarios := O.. (prod {t in 1..T} realizations It] - 1) ;
param starttime {j in scenarios} :=

rain {t in I..T: (j rood branches[t]) = O} t;
param parent {j in scenarios} :=

(if j = O thenO
else j - (j mod branches [starttime [j] -13)) ;

set event_nodes := ~j in scenarios, t in periods: t >= starttime[j]};
set evolutions := ~j in scenarios, s in O..T, t in I..T:

s <= t and t >= starttime[j]};
param previous {(j ,t) in event_nodes: t > 1} :=

(if t -- starttime[j] then parent[j] else j) ;
paramrv_address {(j,t) in event_nodes: t > i} :=
(((j - (j mod branches It])) / branches It]) mod realizations It-l]) + 1 ;

param path_prob { (j, t) in event_nodes} : =
(if t = i then I

else path_prob [previous [j, t],t-13 *
cond_prob [t-i ,rv_address [j ,t]]) ;

param prob {j in scenarios} := path_prob[j ,T] ;

PARAMETERS #@#

param issue_cost {debt_types, I..T}>=O;
param cash_req {1..T}; # cash requirements
param max_cost {1..T}>=O; # maximum debt cost per period
param max_Thor {1..T}>=O; # maximum total borrowing
param min_bor {debt_types, I..T}>=O ; # minimum borrowing of a debt type
param max_hot {debt_types, 1..T}>=O ; # maximum borrowing of a debt type
param min_ret {I..T}>=O; # minimum amount retired
parammax_ret {1..T}>=O; # maximum amount retired
param init_debt {debt_types} >=O; # initial outstanding debt
param init_cash >=O; # initial surplus cash
param init_int {debt_types} >=O; # initial interest rates (period 1)
param prev_int {debt_types} >=0; # prior interest rates (period O)
param init_cr >=O; # initial rate for cash
param init_exc {debt_types} >=O; # initial exchange rate

The next set of parameters is used to define the drifts
param int_drift {debt_types, t in I.. T, s in i..realizations It] } ;
param exc_drift {debt_types, t in i..T, s in i..realizations[t3};
param cash_drift {t in I..T, s in I..realizations[t3};

Now the rate parameters are defined in terms of starting values and drift
param interest {k in debt_types, (j ,s ,t) in evolutions} :=
(if s = O then prev_int [k]

else (if s = I then init_int[k]
else interest [k, previous [j, t], s-1, t-13 +
int_drif t [k, t - I, rv_addres s [j, t3])) ;

72 H.L Gassmann, A.M. Ireland, Scenario formulation

interest per dollar
outstanding per period AND
sinking fund contributions

paramexch_rate{kin debt_types, (j,t) in event_nodes} :=
(if t = 1 then init_exc[k~

else exch_rate[k,previous[j,tJ,t-l] +
exc_drift[k.t-l,rv_address[j,tJJ);

exchange rate of foreign currency
per unit of base c u r r e n c y

paramcash_int {(j,t) in event_nodes} :=
(if t = 1 then init_cr

else cash_int[previous[j,tJ,t-1] +
cash_drift[t-l,rv_address[j,tjJ);

interest on surplus cash

##$ The next set of parameters should be stochastic, but they definitely do
not exhibit the same drift. In fact, they should be computed from other
data using NPV calculations.
It seems sensible to pretend they are deterministic in this test...

paramret_cost {debt_types, s in O..T, t in 1..T: s < t};
retirement discount/premium

paramend_val {debt_types, s in O..T};
market value (in base currency)
per dollar of debt

VARIABLES ###

vat borrow {debt_types. (j.t) in event_nodes}>=O;
varoutst {debt_types..(j,s,t) in evolutions}>=O;
varretire {debt_types, (j,s,t) in evolutions}>=O;
varcash {(j,t) in event_nodes}>=O;
var delta {debt_types, (j,t) in event_nodes}binary;

OBJECTIVE ###

minimize endvalue:

sum {j in scenarios}
prob[jj * (sum {k in debt_types, t in O..T}

e n d _ v a l [k . t J * o u t s t [k , j , t , T] - c a s h [j , T]) ;

CONSTRAINTS ###

subject to balance {(j ,t) in event_nodes}:

cash_req[tJ = sum ~k in debt_types}
exch_rate[k,j,t] * ((l-issue_cost[k,tJ)*borrow[k,j,tJ

- sum{s in O..t-l} (interest[k,j,s,tJ *
(ift=l
then init_debt [k]
else outst [k,previous [j ,tJ, s, t- lJ)

+ ret_cost [k,s,t]*retire[k,j,s,t]))
+ (ift=l

then init_cash
else (1 + cash_int [j ,t]) * cash[previous[j ,t] ,t-lJ)

- cash[j,t] ;

H.L Gassmann, A.M. Ireland, Scenario formulation 73

subject to inventory {k in debt_types, (j ,s ,t) in evolutions} :
outst[k,j,s,t] = (if s = t

then borrow [k, j, s]
else (if t = 1

then init_debt [kJ
else outst [k,previous [j ,t3 ,s ,t-13)

- retire [k,j ,s,t]) ;

subject to debt_cost {(j ,t) in event_nodes}:

sum ~k in debt_types, s in O..t-l}
(if t = l
then interest [k, j, s ,t] * init_debt [k] - cash_int [j ,t] *init_cash
else interest [k, j ,s ,t] * outst [k,previous [j ,t] , s,t-l]

- cash_int [j ,t3 * cash[previous [j ,t3 ,t-l])
<= max_cost It] ;

subject to market_max ~(j ,t) in event_nodes}:
sum ~k in debt_types} (exch_rate~,j ,tJ*borrow[k, j ,t3) <= max_Tbor[t3 ;

subject to max_issue {k in debt_types, (j ,t) in event_nodes}:
borrow[k,j,t] - delta[k,j,t] * max_bor[k,t] <=0;

subject to min_issue (k in debt_types, (j ,t) in event_nodes}:
borrow[k, j ,t] - delta[k,j ,t] * min_bor[k,t] >=0;

subject to delta_value(k in debt_types, (j, t) in event_nodes} :
0 <= delta[k,j,t] <= I;

subject to mat_smooth {(j ,t) in event_nodes}:
min_ret [t3 <= sum {k in debt_types, s in O..t-l} retire [k,j ,s,t3

<= max_ret [t] ;

AMPL DATA FILE

set debt_types := c~nSyr usSyr ;

pa.ram T := 3;
time interval is years

param realizations : =
1 2
2 2
3 1;

param cond_prob : =

[1 , *] 1 0 .6
2 0.4

[2 , *] 1 0 .6
2 0.4

[3 , *] 1 1.0 ;

param prev_int default 0.0 :=
[canSyr] .11
[usSyr] .09B;

74 H.I. Gassmunn, A.M. Ireland, Scenario formulation

param init_int default 0.0 :=
[canSyr] .105
[us5yr] .091;

param init_exc default 1.0 := [usSyr] 1.15;

param init_cr := .03;

param issue_cos~ (tr) : canSyr
1 . 009 . 015
2 .009 .015
3 .009 .015 ;

param ret_cost default 99.9 : =

[canSyr, *, ,3 0 3 I. 0

[u s 5 y r , * , *] 0 2 1.0 ;

param int_drift :=
[c a n 5 y r , * , *] 1 1 0 . 0 0 5

1 2 -0.001
2 1 0.005
2 2 -0.001
3 1 0.002

[us5yr,*,*] 1 1 0.004
1 2 0.002
2 1 0.006
2 2 0.000
3 1 0 .003 ;

param exc_drift default 0.0 :=
[usSyr,*,*] 1 I 0.02

1 2 -0.O2
2 1 0.02
2 2 -0.02
3 1 0.005 ;

param cash_drift default 0.0 :=
r l , ,] 1 o.oo.5

2 0.0
[2 , , 3 1 o .o05

2 o .o
[3 , ,] 1 o .o ;

p a r a m end_val default 0.0 : =

u s S y r : =

[c~5yr,*] 1 1.2
2 1.1
3 1.05

~sSyr,*] 1 1.2
2 1.1
3 1 .05 ;

param: cash_req max_cos~ m~_re~ min_ret max_Thor:=
1 217.0 75.0 200.0 0.0 500.0
2 296.0 100.0 200.0 0.0 500.0
3 310.0 150.0 200.0 0.0 500.0;

H.L Gassmann, A.M. Ireland, Scenario formulation 75

param max_bor (tr) : canSyr usSyr :=
1 250.0 250.0
2 250 .0 250 .0
3 250.0 250.0 ;

param min_bor default O. 0 (tr) :
canSyr usSyr : =

I
2
3

param init_debt : = canSyr 200.0 usSyr 100.0 ;

param init_cash : = 50.0 ;
end;

Acknowledgements

We gratefully acknowledge the support for this research by the Natural Sciences
and Engineering Research Council of Canada and by the Social Sciences and Humanities
Research Council of Canada. We thank two anonymous referees and the guest editor
for careful reading of the paper and the AMPL model files.

References

[1] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King and S.W. Wallace, A standard
input format for stochastic linear programs, COAL Newsletter 17(1987)1-20.

[2] J. Bisschop and A. Meeraus, On the development of a general algebraic modelling system in a
strategic environment, Math. Progr. Study 20(1982)I-29.

[3] A. Brooke, D. Kendrick and A. Meeraus, GAMS: A User's Guide, 2nd ed. (Scientific Press, South
San Francisco, CA, 1992).

[4] R. Fourer, New directions for algebraic modelling languages, Paper presented at the IMPS Roundtable,
University of Colorado at Denver (April, 1991).

[5] R. Fourer, D.M. Gay and B.W. Kernighan, AMPL: A Modeling Language for Mathematical Programming
(Scientific Press, South San Francisco, CA, 1993).

[6] H.I. Gassmann, MSLiP: A computer code for the multistage stochastic linear programming problem,
Math. Progr. 47(1990)407-423.

[7] H.J. Greenberg, A bibliography for the development of an intelligent mathematical programming
system, Technical Report, University of Colorado at Denver (April, 1991).

[8] A.M. Ireland, An intelligent decision suport system for debt management, unpublished Ph.D. dissertation,
Dalhousie University, Halifax, 1990.

[9] M. Lane and E Hutchinson, A model for managing a certificate of deposit portfolio under uncertainty,
in: Stochastic Programming, ed. M.A.H. Dempster (Academic Press, London, 1980).

[10] I.J. Lustig, J.M, Mulvey and T.J. Carpenter, Formulating two-stage stochastic programs for interior
point methods, Oper. Res. 39(1991)757-770.

