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Algebraic modelling languages have simplified management of many types of large 
linear programs but have not specifically supported stochastic modelling. This paper 
considers modelling language support for multistage stochastic linear recourse problems 
with finite distributions. We describe basic language requirements for formulation of finite 
event trees in algebraic modelling languages and show representative problems in AMPL 
using three commonly used scenario types. 

1. Introduction 

The large mathematical programs used to solve real-world optimization problems 
often require daunting efforts in initial model formulation and matrix generation. Algebraic 
modelling languages have simplified these processes by providing English-like model 
specifications and easily modifiable data structures, making the construction of large 
models easier under the time and cost pressures that arise in business settings. 

Stochastic programming models extend the scope of linear and nonlinear pro- 
gramming to include probabilistic or statistical information about one or more uncertain 
problem parameters. Chance-constrained programming accomplishes this by setting 
reliability levels within which each constraint or group of constraints must be satisfied. 
Stochastic programming models with recourse define multiple scenarios and generate 
contingent solutions depending on actual observations of random events in the future. 
The increased complexity of both types of models compared to deterministic models 
poses an even greater barrier to their widespread use, yet research in stochastic 
programming and algebraic modelling languages has not so far addressed the formulation 
of stochastic models in these languages. 

This paper is concerned primarily with scenario-based linear programs with 
recourse (SLP). It identifies basic requirements for scenario formulation in algebraic 
modelling languages and describes our formulation of representative problems in one 
algebraic modelling language, AMPL. We first outline basic functional requirements 
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for SLP model specification. We then describe three types of scenarios used in SLP 
models and show that each can be specified in the AMPL language as it now exists, 
although the formulation has some artificial aspects due to limitations in the language. 
This is most evident in problem formulations which attempt to capture the stochastic 
elements implicitly by giving distributions as opposed to stating the full scenario tree 
explicitly. Since AMPL was designed to formulate and model deterministic problems, 
these difficulties should come as no surprise and point towards possible extensions 
to the language. In this context we discuss related problems in scenario formulation 
and management which must be addressed in comprehensive systems supporting 
stochastic linear programming. 

2. Algebraic modelling languages 

Algebraic modelling languages such as GAMS (Bisschop and Meeraus [2], 
Brooke et al. [3]) and AMPL (Fourer et al. [5]) are designed to allow modellers to 
represent linear programming models in statements that closely resemble their 
mathematical specifications. As described by Greenberg [7], these languages (a) are 
declarative, specifying what is being computed rather than how it is done; (b) make 
extensive use of domains over sets, corresponding to the indexing found in algebraic 
model specifications, and (c) represent models by rows (constraints) rather than 
columns (activities). In Fourer's terms, they represent a model in the "modeller's 
form", subsequently translating it automatically into the "algorithm's" (computer 
solvable) form, carrying out data consistency checks and automatic matrix generation 
directly from the language and data specifications. 

For example, a model specification in AMPL consists of definitions of index 
sets, numerical parameters and decision variables, followed by objective and constraint 
statements taken directly from the model's mathematical representation with changes 
in syntax that translate the mathematical notation into text. This specification defines 
a symbolic class of models; data sets to instantiate the model are entered separately 
as text or database records, and the translation step to MPS format for solver input 
is handled directly by the AMPL software. Appendix A shows the algebraic formulation, 
AMPL specification and AMPL data file for a straightforward deterministic production 
problem taken from Fourer et al. [5]. 

Algebraic modelling languages have been developed over a number of years 
to handle many complexities in the formulation of large linear programs such as 
management of multiple runs, network structure definitions and piecewise linear 
functions (Fourer [4]). They also provide convenient extensions of the algebraic 
formulation such as computed parameters, which eliminate the need, for separate 
calculations to transform raw data into coefficients (Fourer et al. [5]). However, they 
have not so far explicitly considered specification and management of the structures 
and data required for multiple scenarios in SLPs - models which could greatly benefit 
from easier ways to handle their complexity. 
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3. Scenario formulation requirements 

Scenario-based stochastic linear programs optimize under uncertain future 
conditions by producing contingent decisions over a number of future scenarios. A 
typical set of  scenarios, arranged in a branching, probabilistic tree, is shown in 
figure 1. Each node in the tree corresponds to a time period with an associated 
problem state. At each branch point a random event occurs, and the next time period 
is associated with a number of new states based on the realizations of the random 
variable with the discrete distribution described by the (conditional) branch probabilities. 
A scenario can be informally defined as a path through the tree from the root to a 
leaf; the scenario's probability is the probability of all its events occurring. 

t = l  t=2 t=3 t=4 

.5) p(Sl) = .25 

~~ .3) (p = .5)'~'~ C) Scenario 2 
p(S2) = .25 

p(S3) = .3 

Scenario 4 
p(S4) = .12 

(p = .4) Scenario 5 
p(S5) = .08 

No~s 

O denotes a rate evenL 
[ ]  denotes a set of decisions. There are no decisions in the final period 
p denotes the conditional probability of a rate event given prior events. 
p(Sn),n = 1 ..... 5 denotes the scenario (path) probability. 

Figure 1. Branching rate event probability tree. 

Within an SLP, parameter values and decision variables are defined for each 
node in the scenario tree. Because parameters and decisions are contingent on the 
current problem state which includes the effects of  all prior decisions, which in turn 
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are dependent on all prior events, the current parameters and decisions can be said 
to be contingent on all prior events. 

On the other hand, scenarios share information up to a point where branching 
occurs. Since the events up to the branching point are insufficient to distinguish 
between the scenarios, the decisions taken up to that point must also be the same. 
This concept of nonanticipativity is a central theme in stochastic programming. To 
illustrate these concepts, we consider an investment problem using the tree in figure 1 
to describe future interest rate movements. Here earnings parameters would be defined 
for each time period in each scenario, and contingent investment decisions would be 
produced for each time period in each scenario. Nonanticipativity requires that all 
five scenarios share the same parameter and decision values in the first period, that 
scenario 2 have the same parameters and decisions as scenario 1 in periods 1 and 
2, and that scenario 5 be indistinguishable from scenario 4 before period 3. 

An SLP therefore differs from a deterministic LP in that parameters, decision 
variables and constraints have multiple realizations for time periods beyond the first 
(root) period which correspond to the multiple scenarios active at a given time. 
Formulating such a model requires (a) defining its scenario structure and (b) specifying 
the scenario dependencies of its coefficients, variables and constraints as modifications 
of the deterministic model form. 

Typically, scenarios are described in a model's algebraic formulation as sequences 
of events or realizations of random variables over time. However, scenario formulation 
is complicated by the fact that in many cases these realizations can be computed from 
a few parameters rather than explicitly stated as model data, in the same way that 
coefficients can often be computed from raw data. Our first requirement for scenario 
formulation is therefore that: 

RI: Scenarios should be able to be parametrically specified and computed by the 
matrix generator, as well as defined explicitly when necessary. 

Furthermore, both event sequences and parametric specifications include implicit 
redundancies when paths overlap, as they do between the root of a scenario tree and 
branch points. Because formulation and matrix generation will be more efficient if 
these redundancies are eliminated, our second requirement is that: 

R2: Scenario representations should be minimum representations of the problem 
(the most compact possible) which fully describe scenario structure and scenario- 
dependent data. 

The second requirement essentially means that nonanticipativity is handled 
implicitly by suppressing all decision variables, constraints and parameters that do 
not correspond to existing nodes in the event tree. For computational efficiency, 
especially of interior point algorithms, it is sometimes expedient to treat these 
nonanticipativity constraints explicitly and introduce redundant variables (see, for 
example, Lustig et al. [10]). 
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For greater understanding of these requirements, we will now explain the 
formulation of three types of scenarios and specify a model in AMPL for each. 

4. Scenario formulation examples 

We have initially identified five types of random structures used in SLP models 
and have attempted to specify three of them in AMPL. We have based all specifications 
on the event-sequence-based view of scenario trees, used by modellers, rather than 
the node-and-arc tree representation, normally used computationally and in SLP 
solvers such as MSLiP (Gassmann [6]). To eliminate redundancy, we view a scenario 
tree as consisting of the following: 

(a) a base scenario with problem states defined for all time periods in the planning 
period, including the root (present) period, 

(b) one or more additional scenarios. Each additional scenario shares at least the 
root period problem state with the base scenario and branches from a parent 
scenario so that it has a distinct new problem state at its start time, some time 
period after the initial period. 

For each time period after the start time up to this scenario's horizon - which 
may differ from the horizon of the base scenario - decision variables and constraints 
must then be set up, even if the parameters for future periods coincide with those 
of the base scenario. 

A scenario tree structure is therefore defined by specifying the number of time 
periods, the scenario index set, and parent names, start time values and probabilities 
for all additional scenarios. (The probabilities can be given as path probabilities or 
can be conditional on prior events in the parent scenario.) Parameters, variables and 
constraints are then set up for all time periods in each scenario which are not shared 
with its parent scenario. (Note that this deals with nonanticipativity implicitly in a 
very simple and efficient way.) 

4.1. TYPE 1: ARBITRARY SCENARIO STRUCTURE WITH FIXED HORIZON 

The first type of problem assumes a common fixed time horizon for all scenarios, 
but otherwise allows for an arbitrary scenario structure which is explicitly stated, 
along with all required data. Random variable distributions am assumed to be dependent 
on both the time period and prior history, which determines the current position in 
the tree. This can happen, for example, in planning problems when assumed scenarios 
reflect major, unique future events. 

An example of this type of problem is found in the SLP model used in the 
MIDAS decision support system for debt management (Ireland [8]), shown in appendix 
B. This model is designed to optimize corporate borrowing decisions over a planning 



50 H.L Gassmann, A.M. Ireland, Scenario formulation 

horizon by choosing from a number of debt types and investment types, denoted by 
index k, issued in various time periods, denoted by index s, to meet  cash requirements 
in each future time period, denoted by index t. This model  uses an arbitrary tree 
structure reflecting projected future interest and exchange rate movements  as specified 
by the model 's  user, a corporate debt manager. Because these rate movements  are 
influenced by major external events, the number  and timing of branches depend on 
the manager 's  assumptions about future events and do not follow a predictable, 
computable pattern. 

In appendix B, scenarios are algebraically specified for this type of model  as 
event sequences ej = (ejl,ej2 ..... ejr), for j = 1 ..... J over a time series 1 .. . . .  T. This 
notation does not represent the branching tree structure described above, and it does 
not identify events which are shared across scenarios and should therefore be specified 
only once in the modell ing language. We therefore suggest a modified form of event 
sequences which leads to a nonredundant AMPL specification. 

We follow the ideas put forth in Lane and Hutchinson [9]. Among  all scenarios 
that share data in a particular period t, we choose (arbitrarily) the one with the lowest 
number  and call its event ejt a representative event. Representative events are rendered 
with capital letters; the sets of all representative events are denoted Et, for t = 1 .. . . .  T. 

For example, in the tree of figure 1, we have El = {Ell }, F-a = {El2, E32, E42}, 
E 3 = {El3 , E23 , E33 , E43 , E53}, E 4 = {El4, E24 , E34, E44 , E54 }. For each scenario j the 
representative event in period T is Ejr, but in prior periods it is possible to have other 
scenario indices appearing. Each such scenario is an ancestor of scenario j.  This 
ancestor relationship induces a partial order on the set of scenarios, and the immediate 
predecessor of a scenario is referred to as its parent scenario. In the tree of  figure 1, 
scenario 1 is parent to scenarios 2, 3 and 4, while scenario 5 has two ancestors, 1 
and 4, with scenario 4 being the parent scenario. 

We can then represent the tree as the set of event sequences: 

{(Ell,  EI2, El3, El4), 
(Et t ,  E12, E23, E24), 
(E l l ,  E32, E33, E34), 
(E l l ,  E42, E43, E44), 
(Ell, E42, E53, E54)}. 

The tree structure is implicit since branches are inferred from the data for a 
specific problem when event realizations are the same for multiple scenarios, as in 
the overlap of  Ell in all scenarios and E42 in scenarios 4 and 5. The specification is 
still redundant to the extent that scenario events before branch points are duplicated 
in multiple scenarios. 

Our AMPL specification for the MIDAS model, and a simple instance using 
a three-period tree with one branch after period 2, is given in appendix B. It is 
possible to represent this model in AMPL nonredundantly if, as explained above, we 
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conceptualize the scenario tree as a base scenario with new scenarios branching off 
below existing ones; this scenario structure is explicitly specified, and careful index 
restrictions limit parameters, decision variables and constraints to time periods not 
shared with previously specified periods in parent scenarios. 

The following definitions are therefore added to what would have been a 
deterministic model: 

(a) the index set scenarios, used to index scenario-dependent model components; 

(b) the parameter prob, indexed over scenarios: the path probability for each 
scenario; 

(c) the parameter parent, indexed over scenarios: the path from which a scenario 
branches; 

(d) the parameter starttime, indexed over scenarios: the first time period in which 
the scenario has a problem state which differs from that of the parent scenario; 

In addition to these user-specified data items, the following are computed by 
AMPL to support the nonredundant model representation: 

(e) The index set evenLnodes, defined as the members (j, t) of the cartesian 
product scenarios x periods satisfying the relationship 

t > starttime[ j ] ;  

(f) the index set evolutions, used for triple indexing on variables such as outst and 
retire which depend not only on the node when the retirement decision is made, 
but also on the period when the debt was first issued, defined as follows: 

evolutions := { ( j ,  s,t) ~ scenarios x periods x periods: 
s _< t arid t _> starttime[ j ] }; 

(g) the parameter previous, indexed over event_nodes to describe the way information 
is inherited from the previous period, defined by 

{~ arent[j]  i f t  = starttime[j], 
previous[j, t] := otherwise. 

Using this specification and the data set in appendix B, AMPL generates a 
nonredundant MPS file. 

4.2. TYPE 2: SCENARIO STRUCTURE WITH PERIOD-TO-PERIOD INDEPENDENCE OF DATA 
VALUE DISTRIBUTIONS 

This type of problem uses random variable distributions for which data values 
can vary by time period but are independent of events in prior periods. The tree can 
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therefore be computed from specification of the distributions within each time period. 
(Problems with stationary distributions throughout all time periods are a special case, 
which could be computed from one set of distribution parameters alone.) This is an 
important consideration for the modeller, because it can greatly reduce the redundancy 
and hence the data requirements despite the obvious geometric growth in the number 
of nodes in the event tree. For example, consider the four-period tree of figure 2. In 
period 3 there are six nodes and in period 4 there are twelve, but data need only be 
specified for three and two branches, respectively (as demonstrated in table 1). All 
other parameter values can then be inferred by the program. 

t= 1 t= 2 t= 3 t=  4 

0 0 0 

0 ~ ' 0 0 0 

2 " O 1 1 

" 3 3 

4 4 

\ 6  6 - - - - o  s 5 
" 0 ~  6 6 

7 7 

8 8 

9 9 
" O ~  10 10 

11 11 
Figure 2. Period-to-period independent scenario tree for forestry application. 

Scenario 

Table I 

Distribution of loss rates for forestry example. 

Time Branch Loss rate Probability 

1 1 0.00 0.7 
2 0.20 0.3 

2 1 0.00 0.4 
2 0.07 0.5 
3 0.20 0.1 

3 1 0.04 0.5 
2 0.10 0.5 

Appendix C gives an example of this problem type which arises in forest 
management. The objective is to determine a harvesting sequence which maximizes 
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the expected total value of wood harvested from a forest over a future time period 
with uncertain loss rates due to fires and other hazards. The forest is divided into age 
classes (areas holding trees of given ages); as trees mature, areas move from one age 
class to another, with new trees of zero age replacing trees that have been harvested. 
In addition, a fire destroys a random proportion of the forest left standing after 
harvesting. Trees remaining at the end of the planning period are valued and included 
as part of the objective. 

Here we require analysis of the scenario structure which goes well beyond the 
algebraic formulation but which serves to greatly simplify the problem specification, 
compared to problems of  type 1 above. Although the forestry problem's algebraic 
formulation merely assumes event sequences as in the problem above, the scenario 
tree underlying this problem can be completely specified by the number of time 
periods and the (unconditional) distribution of loss rates in each period, more precisely 
the number of possible realizations one is interested in. Parent and start time parameters 
can be calculated using elementary arithmetic operations if we utilize a top-to-bottom 
scenario labelling scheme. We illustrate this with the following example using the 
scenario tree given in figure 2. 

This tree uses three loss distributions, described in table 1. These result in 12 
scenarios, numbered sequentially from top to bottom starting at 0 (so as to simplify 
some of the arithmetic); we use the same convention as in the previous section 
regarding parent scenarios. The number above each node in the tree indicates the 
scenario in which data is specified for that node. 

The following parameters then define the tree structure: 

(a) The number of scenario paths coinciding with a node in period t. In scenarios 
of type 2, this number is constant across each period and can be denoted by 
branches[t]. This is of course just the product over the number of realizations 
in all time periods beyond t. In the tree of figure 2, branches[2] = 6, as each 
second-period node coincides with exactly six distinct scenario paths; similarly 
branches[I] = 12, branches[3] = 2, branches[4] = 1. 

(b) The start time of a scenario j, calculated as follows: 

starttime[ j ]  = min{t I j - 0 (mod branches[t])}. 

(c) 

(If there is no such t, then we will set starttime[j] = T. In figure 2 we have 
starttime[2] = 3, since 2 - 0 (mod branches[3]) but 2 ~0 (mod branches[2]).) 

The parent of a scenario j,  which is 0 for the base scenario and otherwise is 
the largest integer multiple of the number of branches below the period prior 
to the start time of scenario j less than or equal to the scenario number. For 
example, the parent of scenario 4 is 0 since the start time of scenario 4 is t = 3 
and there are 6 branches below period t = 2. The parent scenario can be 
computed in AMPL as j -  ( j  mod branehes[starttime[ j ]  - 1]). 
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In the complete AMPL formulation (see appendix C) we define the scenario 
structure using the following: 

(a) the parameter realizations: the number of realizations or possible outcomes in 
the random variable's distribution; 

(b) the parameter loss_rate, indexed over time periods and realizations; 

(c) the parameter cond_prob, indexed over time periods and realizations: the 
conditional probability of each outcome in the distribution; 

(d) the parameter branches, indexed over time periods: the number of branches in 
the tree below a given time period; 

(e) the index set scenarios, calculated as all integers between 1 and the number 
of branches below time period 1; 

(IF) the parameter starttime, indexed over scenarios, calculated as described above; 

(g) the parameter parent indexed over scenarios computed as outlined above; 

(h) the set evenLnodes and the parameter previous, indexed over evenLnodes as 
explained in the section on arbitrary fixed-horizon scenarios; 

(i) the parameter w_address, indexed over event_nodes, which associates with 
each node in the tree the number of the realization from the relevant (marginal) 
distribution and is defined by 

w_address[j, t] := 1 + (( j div branches[t]) mod realizations[t-I]); 

(j) the parameter path_prob, indexed over evenLnodes and defined by 

path_prob[j, t] 
:= product{tau in 2 . .  t} cond_prob[tau-1, rv_address[j, tau]]. 

For example, in the tree of figure 2 the information for the node in period 3 
of scenario 8 can be found using the second realization of the random variable since 
1 + ((8 div branches[3]) mod realizations[2]) = 1 + ((8 div2) mod 3) = 2. The (partial) 
path probability represents the probability in period 1 of finding oneself on scenario 
j in period t. 

Some of the indexing expressions are quite complicated and do not appear in 
the formulation in appendix C in quite this form, because the version of AMPL 
available to us at the time of writing did not support integer division. 

4.3. TYPE 3: SCENARIOS WITH RANDOM WALK OR RANDOM WALK WITH PERIOD- 
INDEPENDENT DRIFr 

This type of problem uses random variables for changes in scenario data 
whose distributions are independent from period to period. Realizations in each 



H.L Gassmann, A.M. Ireland, Scenario formulation 55 

scenario therefore depend on both the time period and prior history, although the 
increments can be specified by time period alone, regardless of scenario. 

We illustrate this problem type with a modification of the MIDAS model of 
appendix B, using random walk distributions with drift to generate the rate movements. 
This does not change the algebraic formulation, since it does not explicitly contain 
the scenario structure; however, it does change the AMPL formulation, which is 
given in appendix D. The explicit scenario, parent and start time parameters used in 
our type 1 example are replaced by the parameters used in our type 2 illustration. 
In addition, drift parameters for service cost movements, exchange rate movements 
and interest earned on cash deposits are defined to give the period-to-period changes 
for each coefficient. 

The final changes in this formulation are found in specification of the parameters 
affected by the changed distributions - debt service costs r, exchange rates p and the 
cash deposit interest rate i. These are calculated in the following manner: 

r~t (ej)t = r~t-1 (ej)t-I + Ar~t (ejt), 

p~(ej) t  = p~_l(ej)t_i + Apkt (ejt), 

i t (ej)t = it-1 (ej)t-1 + Ait (ejt). 

The notation Arkt (ejt) suggests that the values taken by the increments are not 
dependent on what happened in the past, and that the number of realizations, the 
(conditional) probabilities and the values are the same no matter what prior history 
(ej)t_ 1 has been observed to date. 

In AMPL, these parameter values are computed for all scenarios and time 
periods by calculating current tree positions and prior movements, using arithmetic 
operations similar to those found in our previous example. 

The AMPL data set for a three-period problem with two-point distributions 
reflects these changes. Although it does not appear shorter than our explicit representation 
for such a small problem, it would be considerably shorter for larger, bushier trees 
in which the advantage of specifying a distribution once per time period instead of 
once per node would be apparent. 

4.4. OTHER SCENARIO TYPES 

We have identified at least two more scenario types: (4) scenario trees in 
which random variable distributions of increments depend on prior events (e.g. interest 
rate movements which are symmetrical for moderate interest levels but are skewed 
upwards if the levels are very low and skewed downwards if the levels are very high), 
and (5) scenario trees in which the number of decision variables depends on the 
current scenario. (The most obvious example of such a scenario tree is one in which 
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"coffin states" terminate paths of certain realizations.) The nonredundant, efficient 
formulation of these more complex scenario types is an interesting area for further 
work. 

5. Concluding comments 

We have shown through these examples that three common types of stochastic 
linear programs can be formulated in AMPL, using either parameterized specifications 
or explicit definitions of scenario structure. Viewing a scenario tree as one of branching 
event sequences, the scenario structure can be specified through scenario label, parent 
and start time parameters; redundancy can be eliminated by restricting time indexes 
on parameters, decision variables and constraints to times greater than scenario start 
times. Although this structure is not typically found in the algebraic formulations of 
SLP models, it is straightforward to implement as an extension of this formulation. 
In this manner we produced the full deterministic equivalent of our test problems, 
which AMPL then translated into standard MPS form. Moreover, we found AMPL's 
data consistency checking to be quite useful in identifying minor errors in our models 
and data. 

The extent to which these results transfer to other algebraic modelling languages 
and LP formulation tools depends, of course, on the particular capabilities of the 
tools in question. 

During this exercise, we identified several areas related to management of 
stochastic linear programs and other scenario-based models which bear further 
consideration. First, we discussed and tentatively discarded recommendations that 
AMPL provide automatic analysis of scenario structure so that scenario parameters 
could be calculated by high-level operators rather than explicitly specified by the 
modeller. This would bring the AMPL specification closer to the algebraic one but 
seems to pose problems in terms of linking data to scenarios and nodes when the 
structure is not explicitly stated beforehand. We would welcome comments on the 
extent to which AMPL might be modified in this direction. 

Second, it would be useful to consider whether AMPL and similar tools should 
be exterided to produce output usable by the more specialized solvers now being used 
to handle large SLPs. For example, the input format suggested by Birge et al. [1] 
extends the MPS form to produce a nonredundant set of files which explicitly specify 
the stochastic structure of these models so that they can be solved using decomposition 
algorithms. It would be very difficult indeed to extract this information from an MPS 
file without adding a specification of the tree structure and parameter dependencies. 

Third, in our discussions we identified several "views" of scenarios, each of  
which appears useful in certain modelling situations. For instance, managers tend to 
view scenarios as branching paths, modellers often view them as event sequences and 
computational experts treat them as special cases of networks, with node-and-arc 
specifications. The extent to which these views can be interchanged by model manage- 
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ment systems and to which they can be used opportunistically to support model 
definition, manipulation and efficient solution is a fascinating topic for further work 
in management of scenario-based models. 

Appendix A: A deterministic production problem (Fourer et al. [5]) 

ALGEBRAIC FORMULATION 

Given P a set of  products, 

R a set of  raw materials, 

T> 0 the number of production periods, 

M > 0 maximum total production per period; 

and aij > 0 i ~ R ,  j ~ P: units of raw material i needed to manufacture one 
unit of  product j; 

b i > 0 i ~ R:  maximum initial stock of raw material i; 

cjt j ~ P, t = 1 ..... T: estimated profit (if > 0) or disposal cost (if < 0) 
of product j in period t; 

di > 0 i ~ R:  storage cost per period per unit of  raw material i; 

3~ i ~ R:  estimated residual value (if > 0) or disposal cost (if < 0) 
of  raw material after the last period. 

Define xjt > 0 j ~ P, t = 1 ..... T: units of product j manufactured in period t; 

sit > 0 i ~ R ,  t = 1 . . . . .  T + 1: units of  raw material in storage at the 
beginning of period t. 

Maximize ~T=I (~j~P c j t x j t  - ~ i ~ R  disi t  ) + ~ i ~ R  fisi ,T+l" 

total over all periods of  estimated profit less storage cost, plus 
value of  remaining raw materials over the last period; 

subject to Y-jE~, x jr < M,  

t = 1 .... T: total production in period t must not exceed the 
specified maximum; 

sit < bi, i ~ R:  units of raw material i on hand at the beginning of period 1 
must not exceed the specified maximum; 

Si.t+ 1 = Sit -- ~'jE~Paijxjt, 

i ~ R ,  t = 1,..., T: units of  raw material i on hand at the beginning 
of period t + 1 must equal units on hand at the beginning of 
period t less units used for production in period t. 

AMPL MODEL FILE 

### SETS ### 

set prd; 
set raw; 

# products 
# ray materials 
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### PARAMETERS ### 

paramT > 0 integer; 

parammax_prd > O; 

paramunits { raw,prd} >= O; 

param init_stock { raw} >= O; 

paramprofit { prd,1..T} ; 

p a r a m  c o s t  { raw} >= O; 

paramvalue { raw} ; 

# number of production periods 

# maximum units of production per period 

# units[i,j] is the quantity of raw material i 
# needed to manufacture one unit of product j 

# init_stock[i] is the maximum initial stock 
# of raw material i 

# profit[j,t] is the estimated value (if >= O) 
# or disposal cost (if <= O) of 
# a unit of product j in period t 

# cost[i] is the storage cost 
# per unit per period of raw material i 

# value[i] is the estimated residual value 
# (if >= O) or disposal cost (if <= O) 
# of raw material i after the last period 

### VARIABLES ### 

var Make { prd,l..T} >= O; # Make[j,t] is the number of units of product j 
# manufactured in period t 

var Store { raw,l..T+l} >= O; # Store[i,t] is the number of units of raw mate- 
# rial i in storage at the beginning of period t 

### OBJECTIVE ### 

maximize total_profit: 

sum { t in I..T} ( sum { j in prd} profit[j,t] * Make[j,t] - 
sum { i in raw} cost[i] * Store[i,t] ) 

+ sum { i in raw} value[i] * Store[i,T+l]; 

# Total over all periods of estimated profit, 
# minus total over all periods of storage cost, 
# plus value of remainin E raw materials after last period 
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### CONSTRAINTS ### 

subject to limit { t in I..T} : sum { j in prd} Make[j,t] <= max_prd; 
# Total production in each period must not exceed maximum 

subject to start { i in raw} : Store[i,l] <= init_stock[i]; 

# Units of each raw material in storage at beginning 
# of period I must not exceed initial stock 

subject to balance { i in raw, t in I..T} : 
StoreEi0t+13 = Store[i,t3 - sum{ j in prd} units[i,j3 * Make[j,t]; 

# Units of each raw material in storaEe 
# at the beginning of any period t+l must equal 
# units in storage at the beginning of period t0 
# less units used for production in period t 

AMPL DATA ~LE 

d a t a ;  

set prd := nuts bolts washers; 
set raw := iron nickel; 

param T := 4; 
parammax_prd := 123.7; 

paramunits : nuts bolts washers := 

iron .79 .83 .92 
nickel .21 .17 .08 ; 

paramprofit : I 2 3 4 

nuts 1.73 1.8 1.6 2.2 
bolts 1.82 1.9 1.7 2 . 5  
washers 1.05 1.1 .95 1.33 

param : init_stock Cost Value := 

iron 35.8 .03 .02 
nickel 7.32 .025 -.01 ; 

e n d ;  

:= 

Appendix B: MIDAS stochastic programming problem 

ALGEBRAIC FORMULATION 

NOTATION: 

s, t  = 0 . . . . .  T denote t ime  per iods .  



60 H.L Gassmann, A.M. Ireland, Scenario formulation 

T 
k 
ej 
(ej)t 

E, 

° . -  

is the length of planning period or horizon. 
1 .... ,K denotes an available debt type. 
(ejl, ej2 .... .  ejr,), j = I ..... J denotes a sequence of (rate) events or scenario. 
indicates that a variable or parameter is contingent on the evolution of event 
sequence ej up to (and including) period t. 
denotes the set of all distinct event sequences (ejl, e~ ..... ejt) which can occur 
up to and including period t. (ET= {el, . . . ,ej} and El is a singleton set.) 

DECISION VARIABLES: 

B k (ej)t  dollar amount  at par of  debt type k borrowed in period t. 

Oks,t (ej)t dollar amount at par of debt type k borrowed in period s and outstanding 
at the end of period t. 

R~,t (ej)t dollar amount  at par of debt type k borrowed in period s and retired in 
period t. 

St(ej)t dollar value of surplus cash balance at the end of period t. 

PARAME'I~RS: 

rkt (ej)t service cost in period t per dollar outstanding at the end of period t - 1 of 

g~s,t(ej)t 

v~(e j )r  

p~(ej)t  

it(e j), 

p(ej)r 
f/  

G 
M, 

Qt 
Lt 
Ut 

debt type k issued in period s. 
(These parameters are used to handle interest payments and sinking fund 
contributions.) 
cash outflows per dollar for debt type k issued in period s, if retired during 
period t. 
(These parameters are used to handle call premiums, sinking fund withdrawals 
and payments of accrued interest on retirements.) 
market value (in base currency) per dollar of debt of type k borrowed in 
period s and outstanding at the end of period T. 
exchange rate of foreign currency per unit of  base currency appropriate to 
debt type k in period t. 
interest paid in period t per dollar of surplus cash balance at the end of 
period t -  1. 
probability of event sequences % j = 1 ..... J. (~]=l p(ej )r = 1.) 
issue costs (excluding premium or discount) per dollar borrowed of debt 
type k issued in period t. 
cash requirement for period t. If  negative, Ct indicates an operating surplus. 
maximum allowable cash outflows for debt service in period t. 
maximum total borrowing over all debt types in period t. 
minimum borrowing of debt type k in period t. 
maximum borrowing of debt type k in period t. 
minimum dollar amount of debt (at par) retired in period t. 
maximum dollar amount  of debt (at par) retired in period t. 
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O k 
o,o 

So 

initial amount  of debt type k outstanding (borrowed before the start of  the 
planning period). 
initial cash surplus. 

OBJECTIVE: 

r r vk t ( e j ) rOk  r - S r ( e j ) r }  rffm Y-jJ=I p (e j  )1" {~,k=l E,=o (ej ) r  
(expected cost of retiring outstanding 

debt at end of period T). 

CONSTRAINTS: 

Cash requirements 

For (ej) t E Et and t = 1 .. . . .  T 

Ct = ~,r=l p tk(e j ) t{ (1  -- f t k )Btk(e j ) t  
t - I  k k 

-~s=0  [rs,t (ej )t O~,t-1 (ey )t-I 

+g~s,t (ej )t Rk s,t (ej)t ]} 
+ S,_l(ej),_l 
+ i~ej)tSt_l(ej)t_l 

- St(ej) , 

(net new borrowing) 

(interest on outstanding debt) 

(cash outflows on retirement) 

(surplush cash in previous period) 

(interest earned on surplus cash) 

(surplus cash at the end of current period) 

Debt inventory by type 

For (ej)t ~ Et, s = 0 ..... t - 1, t = 1 ..... T and k = 1,. . . ,K 

O~t(e j ) t -  O~,_l(ej),_l + R~t(ej), = 0  
0~, (ej ), -Bt k (ej)t = O. 

Maximum cash outflows for debt service 

For (ej)  t E Et and t = 1 . . . . .  T 
K t- I  k k 

Os t-1 ( e j ) t - 1  ( e j ) t - I  M r .  ~'~k=l ~s=0 rs,t ( e j ) t  , - i t ( e j ) t  S t - I  <-- 

Maximum total borrowing 

For (ej)t ~ Et and t = 1 . . . . .  T 

~K pt k ( e j ) t B k ( e j ) t  < Nt k=l -- • 

Maximum debt issue size 

For (ej) t ~ Et, t = 1 . . . . .  T and k = 1 . . . . .  K 

B~(ej)t < Qt k . 

Minimum debt issue size 

For (ej) t~Et,  t =  1 .. . . .  T and k =  1 . . . . .  K 

either Bt k (e j ) t  = 0 or B~ (e j ) t  >- qt ~ (> 0). 
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M a t u r i t y  s m o o t h i n g  

For (ej)t e E, and t = 1 .. . . .  T 

Lt <- Y'~=I t-I Zs=O R~t (ej)t  <- Vt. 

Nonnegativity 
For (ej)t ~ Et, s = 0 . . . . .  t -  1, t = 1, . . . ,  T and k = 1 . . . . .  K 

B~(e j ) ,  > O, O k s.t(ej)t > O, ok t (e j ) t  > O, Rkt(e j ) t  > O, S,(ej) ,  > O. 

AMPL MODEL FILE 

###### MIDAS model file 

param T > O; # number of time periods 

### SETS ### 

set periods := O..T; 
set debt_types; 
set scenarios; 

### PARAMETERS FOR SCENARIO STRUCTURE### 

param prob {scenarios}; # path probability 
param parent {scenarios}; # parent scenario 
param starttime {scenarios} > 0 integer; 

# first period in which the scenario 
# has a node with data different 
# from its parent scenario 

### AUXILIARY SETS AND PARAMETERS ### 

set event_nodes := {j in scenarios, t in I..T: t >= startt/me[j]}; 
set evolutions := {j in scenarios, s in O..T, t in 1..T: 

s <= t and t >= s t a r t t i m e [ j ] } ;  
param previous {(j °t) in event_nodes: t > I} := 

(if % = starttime [jS then parent [j] else j) ; 

### OTHER PARAMETERS ### 

param svc_cost {debt_types, evolutions} >= O; 
# debt service cost per dollar outstanding; 
# includes interest per period and 
# sinking fund contributions 

param ret_cost {debt_types, evolutions}; 
# retirement discount/premium 

param end_val {debt_types, scenarios, periods} ; 
# market value (in base currency) 
# per dollar of debt 
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par~mexch_rate{debt_types, event_nodes}; 
# exchange rate of foreign currency 
# per unit of base currency 

paramcash_int {event_nodes} >=0; 
# interest on surplus cash 

paramissue_cost {debt_types,l..T}>=O; 
paramcash_req {I..T}; # cash requirements 
parammax_cost {i..T}>=O; # maximum debt cost per period 
parammax_Tbor {i..T}>=O; # maximum total borrowing 
parammin_bor {debt_types,1..T}>=O; # minimum borrowing of a debt type 
parammax_bor {debt_types,1..T}>=O; # maximum borrowing of a debt type 
parammin_ret {1..T}>=O; # minimum amount retired 
parammax_ret {I..T}>=0; # maximum amount retired 
paraminit_debt {debt_types} >=0; # initial outstanding debt 
paraminit_cash >=0; # initial surplus cash 

### VARIABLES ### 

varborrow {debt_types, event_nodes}>= O; 
varoutst {debt_types, evolutions}>= 0; 
varretire {debt_types, evolutions}>= 0; 
vardelta {debt_types, event_nodes}binary; # These are used to code 

# minimal and maximal borrowing 
# but we would solve the LP 
# relaxation instead. 

varcash {event_nodes} >= O; 

### OBJECTIVE ### 

minimize endvalue: 

sum {j in scenarios} 
prob[j] * ( sum {k in debt_types, s in O..T} end_val[k,j ,s] * outst [k,j ,s,T] 

- cash [j,Tb); 

### CONSTRAINTS ### 

subject to balance {(j ,t) in event_nodes}: 

cash_req[t] = sum {k in debt_types} 
exch_rate [k, j, t] * ( (l-issue_cost [k, t] ) *borrow [k, j, t] 

- sum {s in 0..t-l} (svc_cost[k,j,s,t] 
(i~ t = i 
then init_debt [k] 
else outst [k ,previous [j ,t], s ,t-l]) 

+ ret_cost[k,j,s,t]~retire[k,j,s,t] )) 
+(ift=l 
then init_cash 
else (I + cash_int[j,t]) • cash[previous[j ,t] ,t-l]) 

- cashEj,t] ; 

subject to inventory {k in debt_types, (j, s, t) in evolutions} : 
outst[k,j,s,t] = (if s = t 

then borrow [k, j, s3 
else (if t = 1 

then init_debt [k] - retire [k, j, s, t] 
else outst [k,previous[j,t],s,t-13 - retire[k,j,s,t])) ; 
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subject to debt_cost {(j ,t) in event_nodes}: 

sum ~k in debt_types, s in O..t-l} 
(if t=l 
then svc_cost[k,j ,s ,t] * init_debt [k] - cash_int [j ,t3*init_cash 
else svc_cost [k,j ,s ,t] * outst [k,previous [j ,t] ,s ,t-l] 

- cash_int [j,t] * cash [previous [j,t],t-l] ) 
<= max_cos t  It] ; 

subject to market_max { (j , t) in event_nodes} : 
sum {k in debt_types} (exch_rate [k, j,t] *borrow [k, j, t] ) <= max_Tbor It] ; 

subject to max_issue {k in debt_types, (j ,t) in event_nodes}: 
borrow[k,j,t] - delta[k,j ,t] * max_bor[k,t] <=0; 

subject tomin_issue{k in debt_types, (j,t) in event_nodes}: 
borrow[k,j,t] -delta[k,j ,t] * min_bor[k,t3 >=0; 

subject to mat_smooth ~(j ,t) in event_nodes}: 
min_ret[t] <= sum {k in debt_types, s in O..t-l} retire[k,j,s,t] 

<= max_ret It] ; 

AMPL DATA FILE 

data; 

set debt_types := canSyr usSyr ; 
set scenarios := 1 2 ; 

param T : = 3 ; # time interval in years 

param : prob parent starttime := 
1 .75 0 1 
2 .25 1 3 ; 

param svc_cost default 0.0 := 

[ c a n S y r ,  1, * ,  * ]  
0 2 
1 2 
0 3 
1 3 
2 3 
3 3 

[c  anSyr ,  2,  * ,  "3 
1 3 
2 3 
3 3 

[ u s S y r ,  1, * ,  * ]  
0 2 
1 2 
0 3 
1 3 
2 3 
3 3 

0 
11 
105 
11 
105 
10 
095 

0 
• 105 
.10 
• 105 

0 
.095 
.091 
•095 
.091 
.087 
.083 

1 .11 # scenario 1: falling rates 

3 .11 # scenario 2 : rise at end 

1 .095 
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[ u s S y r , 2 , * , * ]  0 3 .095 
1 3 .091 
2 3 .087 
3 3 . 0 9 1 ;  

p a r a m i s s u e _ c o s t  ( t r )  : 
1 .009 .015 
2 .009 .015 
3 .009 .015 ; 

p a r a m r e t _ c o s t  d e f a u l t  99.9 := 

[ c a n 5 y r , l , * , * ]  0 3 1.0 

[ c a n S y r , 2 , * , * 3  0 3 1.0 

[us5yr,l,*,*] 0 2 1.0 ; 

paramend_val default 0.0 := 

[ c a n 5 y r ,  1 , * ]  1 1.2 
2 1.1 
3 1.05 

[ c a n 5 y r ,  2 , * ]  1 .95 
2 .9 
3 .95 

[us5yr, 1,*] 1 1.2 
2 1.1 
3 1.05 

[us5yr, 2, *] 1 i. 03 
2 .95 
3 . 8 ;  

param exch_ ra te  d e f a u l t  1 . 0  : = 

[usSyr, 1, * ]  1 I. 18 
2 1.21 
3 1.25 

[ u s 5 y r ,  2, .3 3 1.25 ; 

paramcash_int default 0.0 := 

[ 1 ,  * ]  1 . 08  
2 .075 
3 .07 

[ 2 , * ]  3 .0735 ; 

param: cash_req max_cost 
1 217.0 75.0 200.0 
2 296.0 100.0 200.0 
3 310.0 150.0 200.0 

parammax_bor (tr) : can5yr 
1 250.0 250.0 
2 250.0 250.0 
3 250.0 250.0 ; 

canSyr us5yr := 

max_ret min_ret max_Thor := 
0.0 500.0 
0.0 SO0.O 
0.0 SO0.O; 

us5yr := 
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p a r a m  m i n _ b o r  d e f a u l t  0 . 0  ( t r )  : 
e a n S y r  u s S y r  : = 

1 
2 
3 

p a r a m  i n i t _ d e b t  : = c a n S y r  2 0 0 . 0  

param init_cash : = 50.0 ; 
end; 

u s S y r  1 0 0 . 0  ; 

Appendix C: Stochastic forestry model 

ALGEBRAIC FORMULATION 

NOTATION: 

t = 1 ..... T denote time periods.  

T is the length of planning period or horizon. 

k = 1 ..... K denotes an age class. 

e i : = (ejl, ej~ . . . . .  e jr) , j  = 1 . . . . .  J denotes a sequence of (rate) events or scenario.  

(ej)t indicates that a variable or parameter is cont ingent  on the evolut ion of  
event sequence ej up to (and including) period t. 

Et denotes the set of  all distinct event sequences (ejl, ej2 . . . . .  ejt) which can 
occur up to and including period t. ( E r =  {el . . . . .  e j} and E l is a singleton set.) 

DECISION VARIABLES: 

skt (e j ) t  area having trees in age class k at beginning of  period t. 

ht ~ (e j ) t  area of age class k harvested during period t. 

PARAMETERS: 

f t  k't (ej  )t 

Yk 

Vk 

a,/3 

pt(ej)t 

proport ion of  age class k in period t that moves to age class l by 
the beginning of  period t + 1. 

yield per unit area of trees in age class k. This is time-invariant. 

value per unit area of  trees in age class k left standing at the time 
horizon. 

discount  factor. 

maximal allowable change in harvest volume from one period to the 
next. 

initial area having trees in age class k. 

probability of  having realized event sequence (ej)t. 
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OBJECTIVE: 

max Yf=! ~jGE, ~t p, (ej ), Y.f=I Ykh~ (ej ), 

+ Zj~Er ~T+lpr(ej  )T Z t¢ k=1 VkS~+I (ej)t  

(expected harvest  in period t) 

(expected value of  forest  left  
standing at horizon). 

CONSTRAINTS: 

AVAILABLILITY: 

For  k= 1 .... ,K, t= 1 , . . . T , j ~ E  t, 

ht k (ej)t  -skt  (ey)t < O. 

INVENqORY: 

F o r k = 2  .. . . .  K - l ,  t = 2  .... T + I , j ~ E t ,  

skt (ej )t = ftk_.-ll'k (ej )t_l[Sk-ll(ej ),_l -- h ~ l  (ej )t_l ]. 

For t = 2  . . . . .  T + I ,  j ~ E t ,  

K 

s~ (ej) ,  = ~_~ ftk~'k (ej ),_~[skt21~ (ej )t_~ - htk._-ll (ej )t_l ], 
k=l 

s f  (ej)t = ftK1 l'K(ej)t-l[stK_ll(ej)t-1 - hKl l (e j ) t - l ]  

+ftgl  K (e j ) t_l[s~l(e  j )t-1 -- hKl(ej  )t-! ]. 

HARVEST FLOW: 

For  k =  1 .. . . .  T, t = 2  .... T , j ~ E  t, 

K K 

Ot ZYkhk_l (e j ) t_ l  - -Zykh tk (e j ) t  < O, 
k=l k=l 

K K 

fl ZYkhk_l (e j ) t_ l  - - Z y k h k ( e j ) t  > O. 
k=l k=l 

NONNEGATIVITY: 

For  t =  1 . . . . .  T, k =  1 . . . . .  K , j ~ E  t, 

Stk+l (ej)t  > 0 htk(ej)t > O. 
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AMPL MODEL FILE 

### Forestry model 
@## General (deterministic) parameters 

paramT > O; # number of time periods 
paramK > O; # number of age classes 

set ageclasses := I..K; 
set periods := 1..T; 

paramyield {ageclasses} >= O; 
parampresval ~ageclasses} >= O; 
paramstatel (ageclasses} >= O; 
paramdiscount >= O; 
paramflow_min >= O; 

paramflow_max >= O; 
parammean_loss_rate <= I; 

# yield per acre 
# value per acre at horizon 

# initial stand of timber 
# discount factor 

# used for flow constraints 

### Parameters to define the random structure 

param realizations {periods} > 0 integer; 
param loss_rate ~t in periods, s in I..realizations [t]} >= 0 ; 
param cond_prob ~t in periods, s in I..realizations It]} <= i; 

### Auxiliary sets and parameters for easier manipulation of scenarios 

param branches ~t in I..T+I} := 
(if t <= T then prod ~s in t..T} realizations[s] 

else I) ; 
set scenarios := O.. (prod ~t in periods} realizations[t] - I) ; 

param starttime {j in scenarios} := 
rain ~t in i..T+I : (j mod branches It]) = O} t ; 

param parent ~j in scenarios} := 
(if j = 0 thenO 

else j - (j mod branches [starttime[j]-1] ) ) ; 

set event_nodes := ~j in scenarios, t in I..T+I: t >= starttime[j]}; 

param rv_address {(j ,t) in event_nodes: t > I} := 
((( j - (j mod branches[t])) / branches[t])rood realizations[t-l]) + 1; 

param previous ~(j ,t) in event_nodes: t > I} := 
( if t = starttime[j] then parent[j] else j ) ; 

param path_prob {(j ,t) in event_nodes} := 
( if t = i then I 

else path_prob [previous [j, t] ,t-l] * 
cond_prob It-1 ,rv_address [j, t] ] ) ; 

##@ VARIABLES 

vat state {ageclasses,t in 1..T+I, s in scenarios: starttime[s] <= t} >= O; 
var harvest {ageclasses,t in periods, s in scenarios: starttime[s] <= t} >= O; 
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### O b j e c t i v e :  

maximize total_yield: 
sum ~k in ageclasses, (s ,t) in event_nodes} 

( if t <= T 
then (dis count't * yield[kJ * harvest [k,t, s] * path_prob[s, t] ) 
else (discount't * presval[kJ * stateEk,t,sJ * path_prob[s,t]) ) ; 

### Constraints : 

subject to avail 'availability of timber' 
~k in ageclasses, (s,t) in event_nodes: t <= T }: 
harvest[k,t,s] - state[k,t,s] <= O; 

subject to inventory 
~k in ageclasses, (s ,t) in event_nodes} : 
state [k,t,sJ = 

(i~ t = i 
then statel [k3 
else (if k = I 
then sum {a in ageclasses} 
(loss_rate [t-I ,rv_address Is ,tJJ * state [a, t-1 ,previous Is, tJ J + 
( I-io s s_rat e It- I, rv_addres s Is, t] J ) * harve st [a, t-l, previous Is, tJ J ) 

e l s e  (1-1oss_rate[t-l,rv_address[s,tJJ) * 
( state [k-l, t-l,previous [s,tJJ - harvest [k-1 ,t-1 ,previous Is ,t33 

+ (if k =Kthen 
state[k, t-l,previous[s,t]] - harvest[k, t-l,previous Is,t]])))) ; 

subject to final_inventory 
{k in ageclasses, s in scenarios}: 
state [k,T+l, s] = 
(ilk= I 
then sum Ca in ageclasses} 
(mean_loss_rate * state[a,T,previous[s,T+13] + 
( 1-me an_los s_rat e) * harve st [a, T, previous Is, T+ 1] ] ) 

else (1-mean_loss_rate) * 
( state [k-1 ,T ,previous Is ,T+I]] - harvest [k-1 ,T ,previous Is ,T+IJ J 

+ (if k = Kthen 
state [k, T,previous Is ,T+133 - harvest [k, T,previous [s ,T+IJ] ) ) ) ; 

subject to flow1 ~t in 2..T, s in scenarios: starttime[sJ <= t}: 
(1-flow_min)*sum ~k in ageclasses} 

yield [k3 *harvest [k,t-1 ,previous Is ,tj] - 
sum ~k in ageclasses} yield[k]*harvest[k,t,s] <= O; 

subject to flow2 ~t in 2..T, s in scenarios: starttime[sJ <= t}: 
(l+flow_max)*sum ~k in ageclasses} 

yield [k] *harvest [k, t-l,previous Is ,tJ J - 
sum ~k in ageclasses} yield [kJ *harvest [k,t,s] >= 0; 
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AMPL DATA HLE 

d a t a ;  

param T := 3;  
param K := 4; 

param realizations : = 
1 2 
2 3 
3 2; 

param : yield presval state1 := 
1 0 330 0.366 
2 62 400 3.408 
3 246 520 26.153 
4 302 590 64. 810 ; 

param discount := 0.9; 
param flow_min := 0.1; 

param flow_max : = O. I ; 

param mean_loss_rate := 0.07; 

param loss_rate := 
E l , , ]  i o.o 

2 0 . 2  
[2,*] 1 0.0 

2 0 . 0 7  
3 0.2 

[3 , ,3 i 0.04 
2 0 . 1 ;  

param cond_prob  : = 
[ 1 , * ]  1 0 . 7  

2 0 .3  
[ 2 , , ]  1 0.4 

2 0 .5  
3 0 .1  

[ 3 , , ]  1 0.5 
2 0 . 5 ;  

end;  

Appendix D: Random walk scenario model 

(For algebraic formulation, see appendix B) 

AMPL MODEL FILE 

paramT > O; 

### SETS ### 

set periods := O..T; 
set debt_types; 

# number of time periods 
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### Parameters to define the random structure 
param realizations {t in 1..T} > O integer; 
param cond_prob { t in I..T, s in i..realizations[t]} <= I; 

### Auxiliary sets and parameters for easier manipulation of scenarios 
param branches {t in 1..T}:= prod {s in t.. T} realizations Is] ; 

set scenarios := O.. (prod {t in 1..T} realizations It] - 1) ; 
param starttime {j in scenarios} := 

rain {t in I..T: (j rood branches[t]) = O} t; 
param parent {j in scenarios} := 

(if j = O thenO 
else j - (j mod branches [starttime [j] -13) ) ; 

set event_nodes := ~j in scenarios, t in periods: t >= starttime[j]}; 
set evolutions := ~j in scenarios, s in O..T, t in I..T: 

s <= t and t >= starttime[j]}; 
param previous {(j ,t) in event_nodes: t > 1} := 

(if t -- starttime[j] then parent[j] else j) ; 
paramrv_address {(j,t) in event_nodes: t > i} := 
( ( ( j - (j mod branches It] ) ) / branches It] ) mod realizations It-l] ) + 1 ; 

param path_prob { (j, t) in event_nodes} : = 
( if t = i then I 

else path_prob [previous [j, t],t-13 * 
cond_prob [t-i ,rv_address [j ,t]] ) ; 

param prob {j in scenarios} := path_prob[j ,T] ; 

### PARAMETERS #@# 

param issue_cost {debt_types, I..T}>=O; 
param cash_req {1..T}; # cash requirements 
param max_cost {1..T}>=O; # maximum debt cost per period 
param max_Thor {1..T}>=O; # maximum total borrowing 
param min_bor {debt_types, I..T}>=O ; # minimum borrowing of a debt type 
param max_hot {debt_types, 1..T}>=O ; # maximum borrowing of a debt type 
param min_ret {I..T}>=O; # minimum amount retired 
parammax_ret {1..T}>=O; # maximum amount retired 
param init_debt {debt_types} >=O; # initial outstanding debt 
param init_cash >=O; # initial surplus cash 
param init_int {debt_types} >=O; # initial interest rates (period 1) 
param prev_int {debt_types} >=0; # prior interest rates (period O) 
param init_cr >=O; # initial rate for cash 
param init_exc {debt_types} >=O; # initial exchange rate 

### The next set of parameters is used to define the drifts 
param int_drift {debt_types, t in I.. T, s in i..realizations It] } ; 
param exc_drift {debt_types, t in i..T, s in i..realizations[t3}; 
param cash_drift {t in I..T, s in I..realizations[t3}; 

# Now the rate parameters are defined in terms of starting values and drift 
param interest {k in debt_types, (j ,s ,t) in evolutions} := 
( if s = O then prev_int [k] 

else (if s = I then init_int[k] 
else interest [k, previous [j, t], s-1, t-13 + 
int_drif t [k, t - I, rv_addres s [j, t3 ] ) ) ; 
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# interest per dollar 
# outstanding per period AND 
# sinking fund contributions 

paramexch_rate{kin debt_types, (j,t) in event_nodes} := 
( if t = 1 then init_exc[k~ 

else exch_rate[k,previous[j,tJ,t-l] + 
exc_drift[k.t-l,rv_address[j,tJJ ); 

# exchange rate of foreign currency 
# per unit of base c u r r e n c y  

paramcash_int {(j,t) in event_nodes} := 
( if t = 1 then init_cr 

else cash_int[previous[j,tJ,t-1] + 
cash_drift[t-l,rv_address[j,tjJ ); 

# interest on surplus cash 

##$ The next set of parameters should be stochastic, but they definitely do 
### not exhibit the same drift. In fact, they should be computed from other 
### data using NPV calculations. 
### It seems sensible to pretend they are deterministic in this test... 

paramret_cost {debt_types, s in O..T, t in 1..T: s < t}; 
# retirement discount/premium 

paramend_val {debt_types, s in O..T}; 
# market value (in base currency) 
# per dollar of debt 

### VARIABLES ### 

vat borrow {debt_types. (j.t) in event_nodes}>=O; 
varoutst {debt_types..(j,s,t) in evolutions}>=O; 
varretire {debt_types, (j,s,t) in evolutions}>=O; 
varcash {(j,t) in event_nodes}>=O; 
var delta {debt_types, (j,t) in event_nodes}binary; 

### OBJECTIVE ### 

minimize endvalue: 

sum {j in scenarios} 
prob[jj * ( sum {k in debt_types, t in O..T} 

e n d _ v a l [ k . t J  * o u t s t  [ k , j , t , T ]  - c a s h  [ j , T ] ) ;  

### CONSTRAINTS ### 

subject to balance {(j ,t) in event_nodes}: 

cash_req[tJ = sum ~k in debt_types} 
exch_rate[k,j,t] * ( (l-issue_cost[k,tJ)*borrow[k,j,tJ 

- sum{s in O..t-l} ( interest[k,j,s,tJ * 
(ift=l 
then init_debt [k] 
else outst [k,previous [j ,tJ, s, t- lJ ) 

+ ret_cost [k,s,t]*retire[k,j,s,t] )) 
+ (ift=l 

then init_cash 
else (1 + cash_int [j ,t]) * cash[previous[j ,t] ,t-lJ) 

- cash[j,t] ; 
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subject to inventory {k in debt_types, (j ,s ,t) in evolutions} : 
outst[k,j,s,t] = (if s = t 

then borrow [k, j, s] 
else (if t = 1 

then init_debt [kJ 
else outst [k,previous [j ,t3 ,s ,t-13 ) 

- retire [k,j ,s,t]) ; 

subject to debt_cost {(j ,t) in event_nodes}: 

sum ~k in debt_types, s in O..t-l} 
(if t = l  
then interest [k, j, s ,t] * init_debt [k] - cash_int [j ,t] *init_cash 
else interest [k, j ,s ,t] * outst [k,previous [j ,t] , s,t-l] 

- cash_int [j ,t3 * cash[previous [j ,t3 ,t-l] ) 
<= max_cost  It] ; 

subject to market_max ~(j ,t) in event_nodes}: 
sum ~k in debt_types} (exch_rate~,j ,tJ*borrow[k, j ,t3) <= max_Tbor[t3 ; 

subject to max_issue {k in debt_types, (j ,t) in event_nodes}: 
borrow[k,j,t] - delta[k,j,t] * max_bor[k,t] <=0; 

subject to min_issue (k in debt_types, (j ,t) in event_nodes}: 
borrow[k, j ,t] - delta[k,j ,t] * min_bor[k,t] >=0; 

subject to delta_value(k in debt_types, (j, t) in event_nodes} : 
0 <= delta[k,j,t] <= I; 

subject to mat_smooth {(j ,t) in event_nodes}: 
min_ret [t3 <= sum {k in debt_types, s in O..t-l} retire [k,j ,s,t3 

<= max_ret [t] ; 

AMPL DATA FILE 

set debt_types := c~nSyr usSyr  ; 

pa.ram T := 3; 
# time interval is years 

param realizations : = 
1 2 
2 2 
3 1; 

param cond_prob : = 

[ 1 , * ]  1 0 .6  
2 0.4 

[ 2 , * ]  1 0 .6  
2 0.4 

[ 3 , * ]  1 1.0 ; 

param prev_int default 0.0 := 
[canSyr] .11 
[usSyr] .09B; 
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param init_int default 0.0 := 
[canSyr] .105 
[us5yr] .091; 

param init_exc default 1.0 := [usSyr] 1.15; 

param init_cr := .03; 

param issue_cos~ (tr) : canSyr 
1 . 009  . 015  
2 .009 .015 
3 .009 .015 ; 

param ret_cost default 99.9 : = 

[canSyr, *, ,3 0 3 I. 0 

[ u s 5 y r , * , * ]  0 2 1.0 ; 

param int_drift := 
[ c a n 5 y r , * , * ]  1 1 0 . 0 0 5  

1 2 -0.001 
2 1 0.005 
2 2 -0.001 
3 1 0.002 

[us5yr,*,*] 1 1 0.004 
1 2 0.002 
2 1 0.006 
2 2 0.000 
3 1 0 .003  ; 

param exc_drift default 0.0 := 
[usSyr,*,*] 1 I 0.02 

1 2 -0.O2 
2 1 0.02 
2 2 -0.02 
3 1 0.005 ; 

param cash_drift default 0.0 := 
r l , , ]  1 o.oo.5 

2 0.0 
[ 2 , , 3  1 o .o05  

2 o .o  
[ 3 , , ]  1 o .o  ; 

p a r a m  end_val default 0.0 : = 

u s S y r  : = 

[c~5yr,*] 1 1.2 
2 1.1 
3 1.05 

~sSyr,*] 1 1.2 
2 1.1 
3 1 .05 ;  

param: cash_req max_cos~ m~_re~ min_ret max_Thor:= 
1 217.0 75.0 200.0 0.0 500.0 
2 296.0 100.0 200.0 0.0 500.0 
3 310.0 150.0 200.0 0.0 500.0; 
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param max_bor (tr) : canSyr usSyr := 
1 250.0 250.0 
2 250 .0  250 .0  
3 250.0 250.0 ; 

param min_bor default O. 0 (tr) : 
canSyr usSyr : = 

I 
2 
3 

param init_debt : = canSyr 200.0 usSyr 100.0 ; 

param init_cash : = 50.0 ; 
end; 
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