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The main aim of the symbolic approach in data analysis 1s to extend problems,
methods and algorithms used on classical data to more complex data called
“symbolic objects” which are well adapted to representing knowledge and which are
“generic” unlike usual observations which characterize “individual things”. We
introduce several kinds of symbolic objects: Boolean, possibilist, probabilist and
belief. We briefly present some of their qualities and properties; three theorems
show how Probability, Possibility and Evidence theories may be extended on these
objects. Finally, four kinds of data analysis problems including the symbolic
extension are illustrated by several algorithms which induce knowledge from classical
data or from a set of symbolic objects.
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1.1. Introduction

If we wish to describe the fruits produced by a village, by the fact that *“The
weight is between 300 and 400 grammes and the color is white or red and if the color
is white then the weight is lower than 350 grammes™, it is not possible to put this
kind of information in a classical data table where rows represent villages and
columns descriptors of the fruits. This is because there will not be a single value
in each cell of the table (for instance, for the weight) and also because it will not
be easy to represent rules (if. . ., then. . .) in this table. It is much easier to represent
this kind of information by a logical expression such as:

a, = [weight = [300,400]] A [color = {red, white}|
x A [if [color = white|then|weight < 350]],

where a;, associated to represent the ith village, is a mapping defined on the set of
fruits © such that for a given fruit w € Q, @, (w) = true if the weight of w belongs
to the interval [300,400], its color is red or white and if it is white then its weight
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1s less than 350 gr. Following the terminology of this paper, g; is a kind of symbolic
object; “symbolic” because «; is described by an expression which contains
operators different from those used with classical numbers. “object’™ because it is
considered to be an individual object for a statistic of a higher level unit; if we
have a set of 1000 villages represented by a set of 1000 symbolic objects ay.. . ..
ajoo0. 4N important problem is to know how to apply data analysis or statistical
methods to 1t. For instance, what is a histogram or a classification or a probability
law for such a set of objects? The aim of symbolic data analysis Diday [7.8] is to
provide tools for answering this problem.

In some fields a Boolean representation of the knowledge («, (w) = true or
false) is sufficient to get the main information. but in many cases we need to include
uncertainty to represent the real world with more efficiency. For instance. if we say
that in the ith village ""the color of the fruits is often red and seldom white™ we may
represent this information by a, = [color = often red. seldom white]. More generally,
in the case of Boolean objects or objects where frequency appears, we may write
a, = [color = ¢,) where g, 1s a characteristic function in the Boolean case, and a prob-
ability measure in the second case. More precisely. in the Boolean case. if
a, =|color = {red. white}] we have ¢, (red)=q,(white}=1 and ¢, = 0, for the other
colors; in the probabihist case. if g, = [color=0.9 red. 0.1 white] we have
qlred) =09, g, (white) =0.1. If an expert says that the fruits are red we may repre-
sent this information by a symbolic object ¢, = [color = ¢;]. where ¢, is a “*possibilist”
function in the sense of Dubois and Prade [4]: we will have, for instance, g,
(white) = 0. g,(pink) =0.5and g,(red) = 1. If an expert who has to study a represen-
tative sample of fruits from the ith village, says that 60% are red, 30% are white and
the color is unknown for 10°0 which were too rotten, we may represent this infor-
mation by «, =[color =q,) where ¢, 1s a belief function such that ¢red)=0.6
g, (white)=0.3 and ¢, (0) = l.where o 1s the set of possible colors. Depending or
the kind of mapping ¢, used. ¢, 1s called a Boolean, probabilist. possibilist o
beliet object. In all these cases «, i1s a mapping from 2 (the set of fruits) to [0,1]
Now, the problem is to know how to compute a, (w); if there is doubt about th
color of a given fruit w, for instance. if the expert says that “the color of w is rec
or pink™ then, «w may be described by a characteristic function r and represente:
by a symbolic object &' = [color =r] such that r(red) =r(pink) =1 and r=0 fo
the other colors. Depending on the kind of knowledge that the user wishes to repre
sent, r may be a probability, possibility or belief function. Having o, = [color = ¢
and &' = [color = r] to compute ¢, (w) we introduce a comparison function g suc
that u, (w)=glg,.r) measures the fit between ¢, and r. What is the meaning ¢
a, ()7 May we say that ¢, () measures a kind of probability, possibility or belic
that & belongs to the class of fruits described by g, when ¢, and r. depending o
the background knowledge. are characteristic, probability, possibility or belief func
tions respectively? To answer this question we need to extend a, (where x represen
a kind of background knowledge) to «; defined on a, a set of symbolic objects an
to define set operators OP, = {U,, N, ¢,} in a, adapted to x. If we say that classic:
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sets represent a knowledge level of order 0. probability, possibility and belief, a
knowledge level of order 1. the question was now to know if a; represents a know-
ledge level of order 2. In other words, if it is a probability of probability, a possibility
of possibility a belief of belief respectively associated with the corresponding opera-
tors OP; theorems 1. 2, 3 show that this is the case, if OP, and some functions g,
and f, are well chosen.

In probability theory. very little is said about events which are generally iden-
tified as parts of the sample space €. In computer science, object oriented languages
consider more general events called objects or “frames™ defined by intension. In
data analysis (muludimensional scaling, clustering, exploratory data analysis etc.)
more importance is given to the elementary objects which belong to the sample
than in classical statistics where attention is focused on the probability laws of €);
however, objects of data analysis are generally identified with points of R” and
hence are inadequate to treat complex objects coming for instance from large
data bases. and knowledge buses. Our aim is to define complex objects called
“symbolic objects™, inspired by those of object oriented languages in such a way
that data analysis becomes gencralized into knowledge analysis. Objects may be
defined intensionally by the properties of a generic element of the class that they
represent; we distinguish these kinds of objects rather than “elementary observed
objects” which characterize “individual things™: for instance “the customers of
my shop™ instead of “a customer of my shop™, a “species of mushroom™ instead
of “the mushroom that I have in my hand™. Symbolic objects extend classical
objects of data analysis in two ways: first, in case of “elementary objects™ which
represents individual things, by giving the possibility of introducing in their defini-
tion, structured information (see the case of *horde™ in section 2 for the description
of an image), probabilities (subjective or objective), possibilities {in case of vague-
ness and imprecision for instance). belief (in case of probabilities only known on
parts and to express ignorance); second, in case of objects which are described
intensionally, by the same possibilities as in the case of elementary objects. plus
the possibility of expressing variation for the values taken by each variable
among the member of their extension ([color = {red, white}]) and also by expressing
constraints between these values with rules (if [color = white] then [weight < 350]).

By extending data analysis methods to symbolic objects this paper makes a
bridge between several domains: “data analysis and statistics” (where limited
interest has, as yet, been shown in treating this kind of objects). “statistical data
bases™ (where symbolic objects may be considered as “metadata”™ which means data
on the data), “management of uncertainty in knowledge-based systems™ (where the
emphasis is now more on knowledge representation and reasoning then on data ana-
Iysis), “learning machine™ (where this kind of objects as input and classical methods of
data analysis has been neglected) and more generally in Al (where the results here
obtained. in theorems 1, 2, 3. concern metaknowledge or knowledge on knowledge).

We have not used the notion of ‘“predicates™ from classical logic, firstly,
because by using only mappings or functions, things seem more understandable,
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Figure 1. Any element of D, B or 4 may be considered as a symbolic object.

especially to statisticians; secondly, because they cannot be used easily in the case of
probabilist, possibilist and belief objects where uncertainty 1s present.

2. Symbolic objects
2L DEFINITION OF SYMBOLIC OBJECTS

We denote €2 a set of elementary things called “individual objects™, A a set of
possible descriptions of €2, v a mapping (2 — A (see figure 1) which associates to any
«€82 its description & = v (w): D is a set of description of subsets of €, Y, is a map-
ping P(§)) — D.where P () is the power set of €2, which associates to any ' C Qits
description d € D: Y is a mapping P () — P (A) such that Y ()=A"iff A" =1{3
(w) weS}: Yy is a mapping P(A) — D which associates to any A’ C A a description
d €D which satisfies at least the following property: Y\(A') C D; 4 is a set of
mappings §2 — L where L = {1rue, false} n this section (more generally L ={0,1]
in section 3); /1 15 a mapping D — A such that & ((d) = ¢ where a 1s the mapping
§0 -~ {true, false} such that ¢ (w)=true iff y (w) =6 € . B is the set of mappings
D — L ={true, false} such that hy(d)=h where b is the mapping A —
{true. fulse} such that b (&) = rrue Y & € d: we denote & = h(D) and B = ha(D).
Zisamapping B —d such that Z (h)y=uiffu= bhoy.

An intension of a set of individual objects ' C §) may be defined by
d=Y(V) a=h oY (), or b=hy(Y(2)). In section 2.4 we compare these
different kinds of intension. The extension of ¢ in € is a subset of ) denoted
Ext(a §2) and defined by Ext(u )= {€fda(w)=true}; the extension of b is 2
subset of A defined by Ext(h A)={6€7 b (0)=1rue}; the extension of d € D in X &
denoted Ext(d X): by definttion, we set Ext(d/€2)=Ext(a/{}) and Ext(d/A)=
Ext(h Q).

E 5 1s the mapping B — P (Q)such that £5(bh ) = Ext(b.Q), Eg 1s the mapping
ad — P(§Y) such that E(d)=Ext(a:Q). All these mappings are summarized in
figure 1.

In statistics or in classical data analysis we study a knowledge base defined by
the pair (€2, &) such that the units are pairs («,8) where w € 2 is an individual object
descrnibed by & € D.



E. Diday Probabilist, possibilist and belief objects 23]

In symbolic data analysis we study a knowledge base (W, X' ) where W is a
subset of P (£2) and X is an intension space included in D. B or d. Notice that in
probability theory. probabilities are usually defined on the set (A, P (A)).

A symbolic object is a set of properties concerning a subset of 2. Any element
of D. Bor @ may be considered as a symbolic object; in the next section we give an
example which illustrates the mappings and sets which have been defined in this
seetion.

22 THE CASE WHERE DESCRIPTIONS ARE CARTESIAN PRODUCTS

In this special case we assume that 2 is described by A =0, = ... x O, where
(), 1s a domain containing a set of possible values (the color of fruits, for instance)
and D=P(0;) x...x P(O, ). it results in the finite case. that card P(A) = card
MO ynd p =250 hence D, which is included in P(Q). is generally much
smaller than P(A).

In this case, if d=(}.....},) where }', C O, and hs(d) = b. then we denote
h=A, [X,=}F,]a. which means that if w=(x,...... Vp). b(w) = true iff the statements
v, € V, are true; if. moreover. h (d) = a we have a (w) = A, [y (w) € }', ], which may
be written a ()= A, [V ()€}, ], which is simplified toa=A, [y =1, ] o

EXAMPLE

(s a set of fruits. A is the set of all possible descriptions of the fruits by their
color and their weight: hence if O, is the set of possible weights and O is the set of
possible colors we have A = O, x O»: (2 is the set whose elements are the fruits pro-
duced by a village: Y, associates to the set of fruits Q' C Q of a village, the smallest
interval 1y of weights in which they take their values and the union of their color ¥
hence we have Y, ()=, xba=d, a=ho(d) =y, =4 A [y2=12)o and
b hatd)=[x,=¥]s A [x>= V3]s where for instance, as in the example of the
introduction: 1, = [300, 400] and }> = {red. white}: ¥ (§) is the set of descrip-
tions A’ of the fruits of the village and ¥ y(A)=d =1 x V.

E(h)=Ext (b A)is the set A" of the descriptions & such that b (¢ ) = true and
soon, such thatd € d= 17 x }>; hence. Y(§)= A" C A”; Eg(a) = Ext(a ) is the set
(" of individual objects w € €2 such that a (w) = rrue and so on, such that vy (w) € },
and ys(w) €15, hence ' C Q.

23 THE CASE WHERE DESCRIPTIONS ARE CARTESIAN PRODUCTS WITH
CONSTRAINTS

Constraints may appear in order to describe more precisely a set A'CQof
individual objects; for instance, in the example of the introduction we have added
to the description a=[y=[300,400]] A [color={red, white}] the constraint [if
[color = white ] then [weight < 350]). Other kinds of constraints may appear to avoid
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incoherences in the description of a set €' C §); for instance, if §)' is a set of mush-
rooms with or without hat and one of the descriptions concerns the color of the hat,
we must add the condition that there is no color of hat when there is no hat.

24 COMPARISONS BETWEEN THE SETS OF INTENSIONS D. 4. B. C

These comparisons depend on the choice of v and A. In order to simplify, we
assume that D C P (A). 1tis then casy to show that /15 1s a bijection (which is not the
case for iy 1f v is not bijective). If v 1s surjective it is easy to prove that Z is injective
and 1f y 15 injective that Z 1s surjective: therefore. if v is bijective Z becomes a
bijection between B and d.

Two natural choices for A are the following: the first, denoted A, is the set of
descriptions with constraints (for instance. coherent descriptions); the second.
denoted A, 1s the set of all possible (realisable or unrealisable) descriptions.
When v is bijective and A = A, Q=19 is the set of all coherent or “observable”
individual objects; when 1 is bijective and A = A, then 2=, is the set of all
“possible” (realisable or unrealisable) individual objects; §2- is called the set of
“possibilities”. In practice we have €2 = (). the set of “observed™ individual objects
which 1s not in bijection with the sets A or A, as several individual objects may
have the same description and also as some description of A, or A, may corre-
spond to no individual object of €}, : hence we have to consider also the case
where v 1s not biective. We denote C the set of l-complexes introduced by
Michalski et al. [14] which elements are logical expressions of the kind ¢ =
A, [X, =V ] where the statement {X; = 1", ] means “value of X, is one of the elements
of 1, 7" from the definition of B it results that h=A, [X; =1}, ] A is equal to ¢=
ALY, =1, 1 F A = As. The comparison between the different sets of intensions is
given in figure 2, where the sign <> means the existence of a bijection.

25 COMPLETE SYMBOLIC OBJECTS AND LATTICESON A . BAND C

When we associate to an element Q' € P (§2) a symbolic object Y (¥ )=d € D
the extension of o in € which is Eg(hg(d)) contains €2 as it is the set of w € 2 such
that y (w) €d: in other words. we have ()" C E ((a) with a = h , (Y((2')); in the parti-
cular case where ) = E ((a). we say that ¢ is a complete symbolic object; similarly.
we say that b is a complete symbolic object iff Q' = Ex(h) with b= hy( Y(£2)). We

A y is a bijection y is not a bijection
Ay A <=>8 <$>C A <> B <#>C
A2 A<=>8 <=>C A <> B <=>C

Figure 2. Companson between the sets of intensions; in any case B <> [); C is the Michalski set of

l-complexes
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denote A, (resp. B,) the set of complete symbolic objects included in & (resp. B). We
define a partial order on a set of symbolic objects by stating that a symbolic object s,
is lower than a symbolic s, iff the extension of s, is contained in the extension of s-.
We define the supremum (resp. infimum) of two symbolic objects s, s» which
description is respectively d; = 0"y x ... x O, and d;=0{x ... x Oy by d, Ud, =
0,U 0} x ... x OpU Oy (resp. d, ﬂd».-OlﬂO«x.. x O, ﬂO")

The smdllest descnpt!on of 1 C Qisthe mtersecnon of all the descriptions
d € D, such that Eq(hq(d)) =Y. It may be shown that &. A, (see Diday [7]). and B,
{sce Brito [2]) constitute a lattice.

EXAMPLE

Let €25 = {wy.wa} be described by y: 0 — O =11, } such that y(w;)=1.
y(w) = 2; therefore y(€23) = Ay = {4,.65} where ¢, = | and 4, = 2; it results also that
D=P(O)={{1}.{2}.{1.2}.0}.

We define the following symbolic objects of A4: a, =[y = l],. ax=[y =2,
ai=[y = {1.2}]o and ay = [y = ¥),,; we choose {2 = {w,}. therefore a, = a; and a, = a,.

We define also the mappings b,€B represented by the I-complex ¢, = Z,(b;):
g=[X=l1l.cx=[X=2cs=[X={1.2}]and cs=[ X =]

In this case, it is easy to see that the set of complete objects is A, = {a}.a%}
with aj =[y=1] and a5 =[y=0]. In figures 3(a). (b), (c) we represent three lattices
respectively associated to d = {a, = a;. a» = a4}, d. = {a}.a5} and |, = {c).c2.c3.C4}.

26,  CHOICE OF THE KNOWLEDGE BASE FOR A SYMBOLIC DATA ANALYSIS

We have seen in section 2.1 that a knowledge base is a pair (2.X) where X =4
or B or C: so. a natural question is to ask in which case we have touse d, Bor C, in
practice.

If we wish to take account only of the set of descriptions A, then, the best
choice to make is X = B: this happens for instance, when the descriptions of subsets
0 of Q2 (i.e. ' €Q2) have constraints and do not depend on any sample €2; this kind of
knowledge base is used when we wish to study species in biology, scenarios of

a,=2, a\cl ‘3
G €2
[
2,2, 3 >
(a) (b) (c)

Figure 3. qa). (b), (c) represent respectively the lattice of &, &, and /.. In (a) we represent the order
@ = ay < a, = a4, in (b) the order a5 < aj and In (€) €4 < €1, €4 < €2, ¢ < €3. €2 < Ca.



(2%
(FS]
E-N

E. Diday/Probabilist, possibilist and belief objects

ae d
Q > L / lYA\EA
Y h
\ / PED Aop —A—s 3
b
b. g h
€ 2
F‘k l /

A

Figure 4.

accidents in transportation, teams in a company (each species, scenario or team is
then an element of (2), independently of any sample set.

If we wish to study a set {2 described without constraints and independently of
€2 the best choice is X' = C. If we wish to take into account the statistical information
contained in €2, the best choice to make is d: moreover, d allows the possibility to
compute a more simple lattice (sce the previous example in section 2.5) and dis-
tances between symbolic objects when the descriptions vary; this may happen for
instance when several sensors give different measures on the same set €2, or when
{2 is described by variables the values of which vary with time.

If €2 1s described by two mappings 3, and v, such that v, () = A; = O,, then
the mappings g; € 4, defined by &, D, = P(0,) — &, when i varies are comparable
by using a dissimilarity (for instance s (ay,a2) = X {la; (w) — a3 (w3)//wEN} whereas
the mappings h,€ B, defined by hy,: A, — B are not comparable when i varies.

EXAMPLE

Let Q = {w).waws.wy) be a set described by two ordinal mappings v: ;, —
0,=1{1.2} and y»: @ —0,=1{1.2.3}, as given in figure 4. Let o, =[y, = 1], and
ar=[r» =1y

Considering that O, and O, are ordered sets, we may compute
s{aya)=% . ajlw)—axw) =2, whereas ¢; =[X, =1] and ¢, =[X, =1] are not
comparable as they are not defined on the same set of objects, since ¢, is defined
on A, whereas ¢, 1s defined on A-.

In this paper we focus on the knowledge base (P (1), d) because Q is the only
set which may take into account the statistical information contained in §2 when y is
not injective, and also it may take into account only the descriptions when y is
bijective.

On this issue, Brito [2] focuses on the knowledge base (§2,B) when y is not
bijective and A = A,; De Carvalho [5] focuses on the knowledge base (2,d)
when y is bijective and A = A,. In their dissertation, Lebbe and Vignes [13] focus
on (§2,D) with A = A, and y not bijective.

3. Boolean symbolic objects

In this section, descriptions are Cartesian products;so, wehave A =0, x ... x
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0, =0and D=P (Oy) x... x P(O;): let y; be a mapping €2 — O; which associates
1o « € §2its value yi(w) in the domain O;; y = (y,.... .y,) is a mapping {2 — A such
that y(w) =(y; (w)..... ¥p (w)). Boolean symbolic objects are symbolic objects con-
sidered in the case where L is Boolean (i.e. L = {true. false}). Several kinds of
Boolean symbolic objects may be defined in d: events, assertions, hordes, syn-
thesis; we define them in the following section.

3 EVENTS

Let D, =P (O,) and hj, the mapping D, — d such that hj(V,) =¢, where ¢, is
the mapping €2 — {true, false} such that e, (w) = true iff y, (w) € V,. By analogy with
the denominations used in probability theory (where an “event™ is a subset V, C 1),
the basic symbolic object e; is called an “event™. In logical terms we may write
¢, (w) =[yi (w) € V], where [y, (w) € V)], is the logical proposition which is true iff
v, () € V: to express the symbolic object e,. in order to simplify notations. instead of
writing {Vw. € () =[y, (w) € V]g} ore, () =[y, (.) € V], we write e, =[y,= Vg or
more simply e, ={y; = V;] by dropping €2 when there is no ambiguity on its choice.
For instance, if e, = [color = {red.white}]. then ejw) = true iff the color of w is red
or white. When vy, (w) is meaningless (e.g. the kind of computer used by a company
without computers) V, = ¢ and when it has a meaning but it is not known V, =0,
The extension of ¢, in € denoted by ext (e, §2) is the set of elements w € €2 such that
¢,(w) = true.

32, ASSERTIONS

An assertion is a conjunction of events; more precisely, it is defined by the
mapping hg: D=D;x ... x D, — @ such that if V=(V,.... V) where V, C O,
then hg, (V) =a such that a(w) =true iff y (w) € V.

In logical terms we may write a(w) = A, [y, (w) € V] = A, ¢, (w) 10 conformity
with the notation for an event. an assertion a is denoted a=A, [y, =V,}. For
instance. if a = [color = {red. white}] A [height =[0. 15]]. a(w) = true iff w is red or
white and its height is between 0 and 15. The extension of an assertion denoted
ext(a €2) is the set of elements of €2 such that Vi, y(w) € V,.

33 HORDES AND SYNTHESIS OBJECTS

A “horde” is a symbolic object which is used when we need to describe a
structure composed of several elements of (2 related together, for instance, when
we need to express relations between elements of a picture that we wish to describe.
It is defined by the mapping hy =D — H where H is the set of mappings 2° —
itrue, false}, such that h, (V)=H where V=(V,,..., V,) and H(u)=true where
u=(uy...., up). iff y, () € Vi such a horde is denoted H=A, [y, (u)=V].
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Notice that if we add the constraint u; =u,= ... =u, a horde becomes an asser-
tion. The extension of H in QF is Ext (H/QP) = {w € /H (w) = true}.

For instance, if 2 is a set of people in a town, H=[y(u;) = 1] A [ya(ua) =2} A
[ya(u;) =[30,35]] A [neighbour (u,, u.) = yes] means that u, is a man, uy is a woman
and both are neighbours.

A “synthesis object” is a conjunction or a semantic link between hordes
denoted in the case of conjunction by s = A, h, where each horde may be defined
on a different set €, by different descriptors. For instance §2; may be individuals,
2, location, §2; kind of job etc. All these objects are detailed in Diday [8].

EXAMPLE

2 is a set of mushrooms, described by their color and their length; they are
represented by two variables col;: @ — O, and ¢;: 2 — O, which depend upon
the time t. In order to simplify we suppose that at any time, they may take only
two colors and only two classes of length, such that O ., = {1. 2} and O, = {1, 2}.
Attime t, and t> we obtain the tables (a) and (b) given below for a set of two mush-
rooms £, = {wy, wa}: table (¢) represents the values taken by the elements of the set
of decrivable object €2 at a given time.

Let a,. a-. ¢ be three assertions where ¢ is a {-complex and ¢ a complex such that
ag = [eoly = 1Al =120 ap=[colp=1]A[ =12}
c=[X;=1]A[Xs=1.2]
By definition, a,; and a.» are mappings §2 — {true, false} such that
aylwy) = [eol(wy) € {TH A [fn(wn) € {1.2}] = true;

similarly way we obtain
aq) (wa) = false. ap(w)) = false. ap(w>) = true.

c(xy) = c(x2) = true. ¢(xy) — c(x;) = false.

6] 0, O

X 1 1
Q coly, {4 Q colp i X2 2 ]
Wy 1 | Wy 2 1 X3 1 2
ws 2 1 W 1 2 X4 2 2

Table (a) Table (b) Table (¢)
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It results that ext(a,/€2) = {w}: ext{a,» ) = {w»} and ext(c;O) = {x;. x;}.
We may also define three hordes as follows:

hl = [COlll(U|) = 1] A [[lz(ll:) = 1.2],

hy = [cola(uy)} = 1] A [fi5(us) = 1.2] where u, € §X:
he = [X (u;) = 1] A [Xs(ua) = 1.2] where u, € O'.

Therefore it 1s easy to see that Ext(h; /(1) = {{wy. wi). (Wi, w2l Ext(hs ) = Hwa, wy),
(', w':j)}l EX[(C« O) = {(Xl‘ Xi). (Xl. Xa). (Xy. X3). (X|. X4). (xi. X|). (X3, Xa), (X3, X]). (Xg.
Xa)i-

4. Modal objects

41 INTERNAL AND EXTERNAL MODAL OBJECTS

Suppose that we wish to use a symbolic object to represent individuals of a set
satisfying the following sentence: "It 1s possible that their weight be between 300 and
500 grammes and their color is often red. seldom white™; this sentence contains two
events e, = [weight =[300,500]], e-=[color = {red. white}] which lack the modes
possible, often and seldom; a new kind of events. denoted f, and f5, is needed if
we wish to introduce them: f) = possible [weight =[300.500]) and f,={[color =
(often red, seldom white}]. we can see that f, contains an external mode possible
affecting e, whereas f, contains internal modes affecting the values contained in
¢.. Hence, it is possible to describe informally the sentence by a modal assertion
object denoted a =f, A, f; where A, represents a kind of conjunction related to
the background knowledge of the domain. The case of modal assertions of the
kind a = A, f, where all the f, are events with external modes has been studied, for
instance, in Diday {7]. This paper is concerned with the case where all the f, contain
only internal modes.

42 A FORMAL DEFINITION OF INTERNAL MODAL OBJECTS

Let x be the background knowledge and

. M* 4 set of modes, for instance M”™ = {often, sometimes, seldom, never} or
M® = [0.1].
. Q. =1{ g'}, a set of mappings g from O, in M*, for instance O, = {red. yellow,

green}, M*=1[0,1] and ¢ (red)=0.1: ¢ (yellow) =0.3: g} (green)= |, where
the meaning of the values 0.1, 0.3. 1 depends on the background knowledge
(for instance q! may express a possibility, see section 5.1).

. y, is a descriptor (the color for instance); it is a mapping from §2 in Q,. Notice
that in the case of Boolean objects y, was a mapping from §2in O;, and not Q;.
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EXAMPLE

If O, and M" are chosen as in the previous example and the color of w is red
then y,(w) = r means that r € Q, be defined by a characteristic mapping r: r (red) = 1,
riyellow) =0, r (green) = ().

. OP, = {U,. M ¢ where U M, express a kind of union and intersection
between subsets of Q,. and ¢, (q,) (sometimes denoted @,)). is the complemen-
tary of q, € Q,. To gain insight into the notion of union U,.we may say that
q) Uy g1 a generalisation” of the observation ¢, g» given, for instance, by
two experts or two sensors.

We denote by Q) the smallest stable set for OP, (e.g. Q) is the set of any , or
¢, combination of elements ¢! € Q,}.

If Q, C Q. wedenote Q the mapping Q = U, {q g € Q,!. The complementary
of QyinQisc(Qu=1-Q.

EXAMPLE

Ifqle Q and Q C Q,
qiUcd; =4 447 - 4/q;

‘Ll N QS = Q;:qx: where qllq‘l(\,) = Qz](v)qs(v): Clg,) =1 -q,
Intuitively, if ¢) is the probability distribution of the words contained in a text T
then g/ q,z (v)1s the probability of getting v among two words drawn independently
onein T! and the other in T7if Py > Py itis less “general”™ to draw one word among
P, words drawn among P, texts independently, than to draw one word among P
words drawn independently in P texts.

This choice of OP, is “Archimedian™ because it satisfics a family of properties
studied by Shweizer and Sklar [18] and recalled by Dubois and Prade [10]. In section
6.2 we use these operators in order to define probabilist objects.

. gy is a “comparison” mapping from Q) x Q} in an ordered space L*. In this
paper g, will not depend on 1 and will be denoted simply g,.

EXAMPLE

L'=M'=[0.1]and g, (q'. /)= <q'. q° > the scalar product.

. fy 1s an “aggregation” mapping from P(L"). the power set, of L* in L*. For
instance, f, ({L,....L,y=Max L,

Let {y,} be a set of descriptors and {q{}, C Q. Now we are able to give the
formal definition of an internal modal object (called "im™ object). It is a symbolic
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object with D =P(Q}) x ... x P(Qp)and h(d) =a whered =({q}},..... {qp})anda
s an im assertion defined as follows:

DEFINITION

Given OP,. g, and f,. an im assertion is ¢ mapping from €2 in an ordered space
L', denoted a = Aly, = {q,/}j]. such that, if =€ Q is described for any i by
v, (82) = r, then ais given by: {Vw € Q. a{w) = f,({g.(U,q,. r)})}.

We denote by d, the set of im objects associated to background knowledge x. and
by - the mapping from €2 in A, such that S (W) == A [y, =Y, (w)].

By convention. in all this paper an event [y, = {q'}, ] may also be denoted
[v,=q'.q]...); Notice also that it results from the definition that [y, {q}, ]is equiva-
lent to the event [y, = U,,q/]: in other words. by using the preceding notation. the
event [y, = Q,] will be considered to be equivalent to [y, = Q].

The x-union of two assertions a,.a, denoted a,= A, [y, =q,] is defined by
a0 = A [ v = ql U] more generally we have Uy = Al y,=U,.q@]: hence, it
results with our convention that Ua, = Afy, = {@'},). The intersection of assertions
15 defined similarly: My a,= A [y, =My q'}. The operators OP, extended on d, will
be studied in greater depth in section 9.

There are at least two ways to define the extension of an im object a. The first
consists in considering that each element « € €2 is more or less in the extension of a
according to its weight given by a(w); in this case the extension of a denoted Ext (a,{2)
will be the set of pairs {{w. a{w)) U« € Q}. The second requires a given threshold ¢ and
then, the extension of a will be Ext (a 2, a) = {(w. a(w)) « € {1, a(w) 2 a}.

41 SEMANTICS OF IM OBJECTS

In addition to the modes, several other notions may be expressed by an im
object a:

{a)  Certainty: a(w) is not true or false as for Boolean objects but expresses a
degree of certainty.
(b)  Variation: this appears at two levels in an im object denoted a=
[y, =1{q},]: first within each q. for instance i y, is the color, q! (red)=0.5,
q, (green) = 0.3 means that a variation exists between the individual objects
which belong to the extension of a (for instance a species of mushrooms)
where some are red and others are green; second. for a given description y,
and v € O,, between the g)(v) when j varies (each q] (v) expresses for instance
the variation of the color v between different kinds of species).
{¢)  Doubt: if we say that the color of a species of mushroom is red “*or”” green, it is
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an “or’ of variation, but if we say that the color of the mushroom which is in
my hand is red “or™ green, it is an “or” of doubt.

Hence. if we describe w € 2 by p(w)=2"=A, [y, =y, (w)] where y, (w)={r}, we
express a vagueness or an imprecision in cach r and a doubt among the r! pr()vxded,
for instance. by several experts.

44. AN EXAMPLE OF BACKGROUND KNOWLEDGE EXPRESSING “INTENSITY™

Here the background knowledge x is denoted 1. for intensity. Each individual
object w € (2 is a manufactured object described by two features y,, which expresses
the degree of “roundness™ and “flatness™, and y., the “heaviness™ O, = {flat,
round}, O, = theavy}: M' = {very, quite. a little, very little, nil}.

Let a4 and .~ be defined by:

a = [y, = a linrle flat. quite rounded] A, [ya = a little heavy]

& = |y, = quite rounded] A, [y» = very heavy. quite heavy].

(The user has a doubt for w between very and quire heavy).

The problem is to know if it is acceptable to say that w belongs to the class of
manufactured objects described by a.

Hence qp (Rat) = a lirtde; q; (rounded) = quite: qé (heavy) =a little, 1} (flat) =
nil: ri(rounded) = quite: ri(heavy) = rery. r3 = (heavy) = quite. A given taxo-
nomy Tax which expresses the background knowledge on the values of M' makes it
possible to say that Tax (very, qguite) = somewhat; hence if we set r} U, r3(v) =
Tax(r>(v). r%(v)). we have r%u,rg (heavy) = Tax (very. quite) = somewhat.

We define I’ by L, = not acceptable, L, = acceptable, Ly = completely accept-
able and we suppose that the comparison mapping g, is given by a table Ty such
that gl(q, r|)~Tl_, ((a little fat, quite rounded), (nil flat, quire rounded)) = accept-
able; g(ql. rh U, r~)—Tbl (a little heavy, somewhat heavy) = not accepldble

hndlh ifwesetf({L;})=MinL and L, < L.< Ly, we obtain a{w) =1, (g, (q, r,)

g Q. by, r~)) =f (acupmble. not acceptable) = not acceptable.

Notice that more complex objects may occur when instead of only one, as in
the preceding definition, several events concern the same variable; for instance if we
have a = A, a, witha, = A, [y, =q']: in this case, it is necessary to introduce a third
mapping h from P(L") in L* such thata, (.)=h (,g(qf r ),,) hence, more generally,
ifa=A.a=A Ay, =q] then alw) = £, (a, (w)],) = ({hy ({2, (q, )t The
following example may be omitted in a first lecture, its aim is to build an assertion a,
formed by the conjunction of the events for which extension at level 1 contains a
given w € Q. )

EXAMPLE

Let M} ={0.1). O, ={v,.vo}. and Q, be the set of probability measures
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P(O,) —[0.1]:yisa mapping fromaset 2in Q,; and w € Qis described by * =y, =1]
is such that r(v,) =r(vs) = L the set of im events e, = [y = q;] such that a; (w) > 1 is
defined by the set of probability measures g, which satisfy the mequahty
(w) = f(gdq.n )>-; if f; is the mean and g, is the scalar product we get
L,(w) = Mean ({{q,.r )})— (q,.r) as there is only one variable. Henc; q; has to satisfy
the followinginequality e,(u;) = (q,.r) = qi(v))r(vy) + q,(v-)r(va) = { which is equiva-
lentto 3 q(v,)+ q,(v2) > 1 which is satisfied by any event ¢, asc%(v,)%»q(va}._lfor
any measure of probablhty q defined on O,. If a, _/\,‘ {e ,e( N2 '}; then
L () = he (el (w)},): if hy = Min then a, (w) = Min ({e] ()} =1

5. Possibilist objects
S THE POSSIBILIST APPROACH

Here we follow Dubois and Prade [10] in giving the main idea of this
approach.

DEFINITION

This is a mapping I1 from P({2) the power set of {2 in [0. 1] such that:

() IR =1 (o) =
(2) VA, BCQII(A U B) =Max (II(4). I(B))

A measure of necessity is a mapping from P(Q2) in {0. 1] such that:

(3) VYACONA =1-TI(A4).

The following properties may then be shown:

N(o)=0; N(A N B)=Min (N(A), N(B)): IT (U, A)) = Max(TI(A))):
NN, A,) = Min, (N(A)): TI(A) < TI(B) if A C B: Max (II(A), [I(A)) =
Min (N(A), N(A)) =0; TI{A) = N(A). N(A) > 0 implies [I(A) = I
M(A) < 1 implies N(A)=0: TI{A) + [I(A) | and N(A)+ N(A) < I.

EXAMPLE

We define ITg(A) (resp. Ng(A)) as the possibility (resp. the necessity) that w € A
when « € E. We say that IIg (A) =1 if this possibility is true and ITg (A) =0 if not.
Hence ITg and Ng are mappings from P(Q) in {0, 1}. It is then easy to show that
[T and Ng satisfy the three conditions of their definition.

The theory of possibility models several kinds of semantics; generally
possibilities valuate vague observations of inaccessible characteristics, for instance:

(1) The physical possibility: this expresses the material difficulty for an action to
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occur. For instance if several experts have described that an athlete has the
possibility I1({200}) = 0.8 of carrying 200kg and the possibility II({250}) =
0.5 of carrying 250kg; then, for these experts, the possibility of carrying
200 or 250kg for this athlete will be II({200}U,{250})=Max({200},
{250})=0.8.

i) The possibility as a concordance with actual knowledge: “it is possible that it
will rain or snow today™.

1)  The non-astonishment: for instance, “‘the “‘typicality” for the color of a flower
to be yellow or brown™.

5.2. A FORMAL DEFINITION OF POSSIBILIST OBJECTS

Here the background knowledge x is denoted p for possibility.

DEFINITION

A possibilist assertion denoted a,= A, [1;={q/},] is an im assertion which
takes its values in LF =[0. 1] such that

ViQ;is a set of measures of p0551b111ty

OP,: Vi. gi. ¢} € Qi q U, ¢i=Max (q]. ¢}): ¢! N, g;=Min (g}, ¢);
cplq ) =1 - g denoted also g q

gy & (ai. ¢}) =sup{Min (g} (v). g} (v))/v € O))

Jp VL C[0, 1] f, (L) =Max ({/f € L)

Notice that OP,, is deﬁned as m fuzzy sets and g, has also been proposed by Zadeh
[19]. Notice also that ¢! N p ql is not necessanly a measure of possibility.

It 1s also possible to define a “‘necessitist” assertion a, (thanks to M.O.
Menessier, D. Dubois and H. Prade, for their useful remarks which have allowed
me (o improve this point) by setting: a, = I—a, where a,=A; [yi=q;] and q; =
cp(Qi)=1-gq;

This results in a, (w) =1 —f,({g, (T;. 11)};) and then

ap(w) = 1 — Max gy(q,.r,)
= | — Max{sup{Min(q(v),r,(v)/v € O;}};
= Min{1 — {sup Min(q( v) /v € Oi}}y
= Min{inf{1 — Min(g;(v),r;(v)/v € O;}},
= Min inf {Max(q;(v), 1 —r,( ))/v € O}
and then finally a, (w) = Min g, (q;, T;).

It results that a necessitist object is defined by OP, = {U,,, Ny, ¢,} where U,, is
Np. N is Up and ¢, is ¢, g, (i, 1;) = inf{Max (g; (v), Fi(v))/v € O;} and f, = Min.
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Figure 5. (3) qyUq; = Max(q,.q.). (b} f, = | —r,.

EXAMPLE

An expert describes a class of objects by the following possibilist assertion
(restricted, to simplify, to a single event):

e, = [height={[around [12, 15], about {18}]]. An elementary object w is defined by
w’ =[height =close to 16].

The question is to find the possibility and necessity of w knowing e, in the case
where e, and w® may be written: e, = [height = q;, q2] and «* = [height =r,] where
Q:1. qa, T, are possibilist mappings from O =0, 20] in [0, 1] defined by the back-
ground knowledge in figure 5. This means that an object of height 14 (resp. 10)
has a possibility 1 (resp. 0.3). It is then possible to compute the possibility of w by

ep() = 8p(Q1 Uy G2.11) = sup{Min(q, Uy Gz(¥),r1(v))/v € O} = 08.
The necessity of w is given by:
en(W) = g4(q) U, @2, (1y), = inf {Max(q; U, q2(v), T1(v))/v € 0=04

This example shows that possibilist objects are able to represent not only certainty,
variation and doubt but also inaccuracy (around, about, close to); it is also possible
to use vagueness, in representing for instance “high” or “‘heavy™ by a measure of
possibility.

53, THE PARTICULAR CASE OF BOOLEAN OBJECTS

A Boolean object a = A, [y; = Vi] is an im object ap = A, [y; =q;} where q; is
the characteristic mapping of V,CO;, OPp= {Up,MuCp}is such that qUpQ2=
Max(q;,q2), 91Ny 92 = Min(q,, qz) and cp(q) =1 — q. There are two choices for gy
and fy: (b, fo) = (&p.fp) OF (8bufb) = (8nr fn)- If w* = Aj[yi=r1;] where r; is the charac-
teristic mapping of yi(w)C O, (there is doubt if y;(w) is not reduced to a single
element), it is then easy to show that in the possibilist choice yi(w) N Vi &
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ap (w) = | and in the necessitist choice y;(w) C V; < ay, (w) = 1. If we denote lai, the
set of elements of €2 such that a(w) = true, we have a o = Ext (ap/Q2, a)Va €]0.1]. for
both choices.

6. Probabilist objects
6.1.  THE PROBABILIST APPROACH

First we recall the well known axioms of Kolmogorov:

If C(€2) is a o-algebra on § (i.c. a set of subsets stable for countable intersection or
union and for complementation). We say that p is a measure of probability on
(Q. CEaf

(1)  pE)=1
(i) pUAI=EZpAYIfA € C()and A NA =0,

There are several semantics which follow these axioms: for instance luck in games,
frequencies, some kind of uncertainty by subjective probability. Let Q; be a set of
measures of probabilities defined on (O,.C(0O,)). We suppose that the
&= Ay =yiw)] are such that y(w)€ Q,. We recall that Qf has been defined in
section 4.1.

6.2. A FORMAL DEFINITION OF PROBABILIST OBJECTS

DEFINITION
A probabilist assertion is an im assertion which takes its values in L ={0,1]

Oy V4147 € Qi Upr 4 =41 + 47 =4, 44} e §; =41 47 Which is the mapping
which assoctate to v € O, q, { )q, { ) Cpr lg)=g=1-

gl"'. V{ql'ql}EQl Q' Qer:-‘l:)-( ‘17>:Z{l( qi 7'/“60

Jori o ({L,}) = mean of the L,

Notice that if there are some characteristic dependencies between variables,
then, an event of the form [y, = q,] may represent them: for instance, if the expert
wishes to describe the dependencies between y,,y;.y,, then this information may
be represented by the event denoted [y 37 = pr(y,.ys.y7)] where pr(y,.ys.y;) repre-
sents the joint probability of y;.yi.ys: this event is of the form [y, =q;] where
yi=Yi37 and q,=pr(y;.ys.y7). In the case where “causalities” or “influences”
among sets of variables are given by the expert to describe a symbolic object,
propagation techniques (see Pearl [15]), Lauritzen and Spiegelhalter [12] may be
used which induce other mappings g, and f.

To give an intuitive idea of the notion of union and intersection of measures
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of probabilities it is easy to see_ that if ql and ql are the measures of probabilities
associated to two dices, ql UprQ; *(v). with v € O,. is the probablhty that the event v
occurs. for one dice or (not exclusive) for the other. q! Plrq,(v) 1s the probability
that the event v occurs for both dices when the two dices are thrown indepen-
dently. This comes from the fact that if (X;, X5)is a paxr of random variables {2
— O, x O; where O; ={1.2.....6} with probability (q, q,) then the Probdbn ity
that the number j occurs in both dices thrown independently is q,N,qQ;(j) =
Pr((X,.X2) = (J.LO)N(0.)) =Pr((X.X2) = (}.)) = Pr(X, = J)Pr(Xw—J)—qr(J)q,(J)
the probability that the number j occurs in one or the other dice is: q, U pr Q)=
Pr ((X,.X2)=(;.0)) U (O J))—Pr ((X| Xw)—(JO))+Pr ((Xy, X2)=(0,)) ~
PruXIX)—K)nﬂUOn-mUMJO%HMOMAﬂ /() gi(j)=(q) +gq; -
4/ gr ).

Nouce that qlu r,,q‘ Is not a measure of probability because even if
q! prq,(v € [0.1] the sum of the q, Uprq,(x) on O, is Iarger than 1. Also, q, p‘,q, s
not a measure of probability because the sum of the q, p,q, (v)on O, may be lower
than 1. We have defined g on Q, X Q, and not on Q] x Q} as for a general im object.
because for instance, g (qlu p,q, Hq may become larger than 1: but notice that in
this case, it 1s edsy to trdnsform q; prql in a probability measure by dividing it by
the sum of the g/ Uped; *(v) on O,.

EXAMPLE

An object w is described by its color y;(w) which may be red or blue and its
roundness y-(w) which may be round or flat.

Leta=[ys =ql. q}] Apr [y2 =2l and w* =y, = 1] Ape [y2 = r2] where q; (red) = 0.9;

q; (blue)=0.1; qf(red)zO.S; qf(blue):O‘S; g2 (round)=0.2: q2(flaty=0.8. It
results that a is described by two kinds of objects: either often red and rarely
blue, or red or blue wnh equal probdblluy

By using q] =q{Up, 1 =g} +qj — qiq7 we obtain

gl(red) = 0.9+ 0.5 - 0.9 x 0.5 = 0.95.
qi(blue) = 0.1 + 0.5 - 0.1 x 0.5 = 0.55.

If ry and r» are defined as follows:

ry (red) = 1. r, (blue) =0; ry (round) = 1, r» (flat) = 0, it results that a (w) = gp,(q; rl)

AprBpr(G2.72) =(0.95 x 1 +0.55 x0)A,{0.2 x 1 + 0.8 x 0) = 0.95 A, 0.20 + £(0.95+
0.20) = 0.57., which represents the average probability that an 1 nstance of the class
of objects described by a be w and may be interpreted as a kind of membership
degree for w to the im object defined by a.
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7. Belief objects
7.1. THE BELIEF FUNCTION FORMALISM

At the origin of this theory we may mention at least the work of Choquet [4]
on “‘Capacities of order 2"* and Dempster [6] on “‘upper and lower probabilities
induced by a multivalued mapping”. The basic notions of this formalism are in
Schafer’s book [17]: **A mathematical theory of evidence™ which is **still a standard
reference for this theory™ (Schafer [16]). First a “*probability assignment’ function
m from P () (the power set of 2, supposed finite) in {0,1] is defined by: £ {m (V)/V
€ P(QY)} =1 and m (¢) = 0; then a belief function Bel: P(2) — [0,1] is defined by:

Bel (A Zm NV e P,V CA.

A “body of evidence™ is viewed as a pair (F.m) where m is a probability
assignment function and F ={V € P(Q2)/m(V)#0} is the set of “‘focal” elements.
Given a body of evidence it is possible to define exactly a belief function; it is
also possible to define a **plausibility” function Pl : P(2) — [0,1] such that:

=) {m(V)/V € P(Q).VNA # ¢}

and then we have: Bel (A) =1 — Pl(A).
It may be proved (Schafer [17]) that we have the following properties: Bel is a
belief function iff:

(i) Bel()=1
(1)  Bel (¢)=
(i) Bel (A{U...UA,) = 3",Bel (A) = > Bel (A; NA))

1<)

+...= Z (-1)"'+'Be1<nlA,)
T 1€

As a consequence of (i) we get:
PIAIN...0A, < Y PI(A) - Y PIAUA)) +
1 1<)
Given a belief function Bel, the basic probability assignment function m related to
Bel is obtained by:

VACP(Q) m(A)= Y (-1)"*"PBel(B).
BCA

Given two belief functions Bel, and Bel,, their orthogonal sum Bel,®Bel,,
also known as Dempster’s rule of combination, is defined by their associated
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probability assignments:

m® m, (A)= Z m, (V) my(Va)/ Z m (V) my(V3)

VAV =A VAV, £A

As a special case, we get a generalization of Bayes rule of conditioning, which is
known as Dempster’s conditioning:

Bel(A/B) = Bel(A UB - Bel(B)
" (1 -Bel(B))

We have the following link with probability and possibility theories: it may be
shown that if F contains only singletons then Bel is a classical probability measure.
Dempster [6] said that Pl and Bel may be viewed as upper and lower probabilities.
Schafer [17) has shown that if F contains only a nested sequence of subsets
V,CV,C ...CV, then we have: Bel (ANB)=Min(Bel(A). Bel(B)) and
PI(A U B) = Max (PI(A), PI(B)) and hence, in this case, Bel and Pl satisfy respectively
the properties of necessity and possibility measures. Given a probability measure pr,
it may be shown that there exists a possibility, necessity, belief and plausibility func-
tion respectively denoted pos, nec, bel, pl, such that nec < bel < pr < pl < pos.

The theory of evidence models several kinds of knowledge:

(i)  Probability: as said by Pearl [15]: *Belief functions result from assigning prob-
abilities to sets rather than to individual points™.

EXAMPLE

A machine is able to compute the average number of vehicles whose speeds
vary within a set of a priori given intervals for instance V,=]0,110]. Sometimes
this machine may fail to give the speed but still be able to give the number of
vehicles which pass on the road. If the machine gives for instance the following
percentage: 0.40 for speeds which belong in the interval V,, 0.50 for speeds which
belong in V.= {speed > 110} and 0.10 for unknown speeds, we may represent
this information by a belief function q with body of evidence (F,m) such that F =
(VI,V,RY}, m(V,)=040, m(V,)=0.50, m(R*)=0.10. Then we have, for
instance, bel ([0,130}) = 0.40 and P, ([0.130}) = 0.40 + 0.50 = 0.90.

(ii) Testimony: if two witnesses observe the same event A, then by using the Demp-
ster rule it may be shown that the belief in A increases. If one observes A and
the other B with A%B and A N B # ¢ then it may be shown that the belief in A
and B decreases. If A N B = ¢ the belief in A and B decreases more than in the
preceding case and the higher the belief in B, the lower the belief in A.
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EXAMPLE

After an accident observed by two witnesses, the first one is almost sure
that the speed of the vehicle was in the interval V| =1]0,100 km] and the second
witness who was further away. thinks the same thing but s less sure. Hence. each
witness may be represented by a belief function. the first one by g,. with body
of evidence {F; .m;} such that Fy=[V,.E"]. m; (V,)=0.90 and q- dcfined by
{F> .m>! such that: F> = Fy and m> (V) =0.70. Then by using the Dempster rule
we get:

qi q: (Vl): ql(Vl) + q;(Vl) = q|(V|)q:(\’|)-—"—‘ 0.90 ‘+‘070 — 063 =0.97.

72 A FORMAL DEFINITION OF "BELIEF OBJECTS”

Following Dubois and Prade [11], we define the union and intersection of two
bodies of evidence (Fymy) and (F-.ma) as follows:

vA ¢ P, my Upe m:(A): Z m,(Vl)mz(Vg);
vV, VA

MM Mo (A) = Ny v, 4 (V) ma(Va) which is consistent with Dempster’s rule
if the term my™ ma (o) (which reflects the amount of dissonance between the sources
or their independence) 1s ehminated. In the following definition we denote by q“: 4
belief function with body of evidence (F,’. m/).

DEFINITION

A belief assertion denoted ape = A ¥, =1 @'}, 1s an im assertion which
takes its values in L™= [0.1] such that:

vi, Q, 18 a set of belief functions defined on O,

OPpert Vi 41 47 € Qu 4} Unar 47 (V)= 4 v M/ Ny M} (A): q) Ot g (V) =
MNawv m, Upet m; (A): the complement is defined by cp (q)) (V) =G, 3 a-v
m/(A) where m!(A) = m/(A)).

Chet! Loel (4, ) = 3 N Dper 11 () 15CH L (B )€ Fy x Fa)
f: the mean.

Notice that the union and intersection of belief functions remain belief func-
tions (unlike 1 the case of probabilities and possibilities).

As in the case of probabilist objects, the choice of the function f may be more
genceral: we have chosen the mean in order to simplify. It is also possible to define a
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plausibilist object by

OP { Q, Up[q;(v) g_,‘\ Veo m nm (A) q1ﬂ IQI(V ZAi R mxlu mg: (A) ﬂnd
cpf (q) = q, is deﬁned asin the belief case.

ol gp{(q,. q, =Y m! (V) m] (V) VNV, #£o, (Vi.Vy) € FixFs} and
remains the mean.

The followmg propemes may then be shown: Q' Nbel G = q, q;. bccausc

4 (et @ (1) =Y acy M) Upg m; (A)-Zvuv Acym(Vs ) =) v, vy m, (V])Z\, vm;
{Val.

(' have also Ehel (qx Q1 )"/,__,\,»P m (V )QI (V;} g;’*[(Qx q\)—Z\ k2 m (V )
Pl (V) = dviokrm, (V,)pl“ (Vs )whcrg pl(VH=%\ v ol J(V): hence gpf Is sym-
metric whereas gye is not: it is also easy to show that ¥ Ae P(§) ) 4; *rel 4
(A)=1 —q,*p[q, (A).

If two experts observe the same event A and are associated to the belief
functions q'. q,: with F! = Ff = {A. O}, then it may be shown that:

q U q; =4 + 4 ~ q/q;.

Let us give a simple example.
EXAMPLE

Several transportation experts define an accident scenario between a car and
a bicycle by a belief function g, concerning the speed of the car. Knowing g, we are
able to define a belief object a = [speed = q,] where the body of evidence of q, 1s
‘Fy.m,} such that F;, = {V,.0}. where O is the set of possible speeds and V,C O
is an interval of speed (for instance.V, =[100,120] km'h). Now supposec that a
witness observes an accident and says that it is defined by a belief function q»
with body of evidence {F..m.} such that F, = {V,, O}. If we wish to know how
much a given accident defined by "= [speed = Q). satisfies the scenario defined
by a, we have to compute a(w): as a is a belief object, by definition we have:
AW =5y mp (Vg (Vi=m (V) g2 (V) +m, (0) q2(0), a (w)=m, (Vy) q2
(Vi) + m(O). Hence if V5 C V|, then a (w)=m; (V;) myV,:)+m(O) and the
higher the witness’ belief in V. the more « satisfies the scenario defined by a; if
Vi C V, then a (w) = m,(O) and the greater the ignorance of the expert who has
defined the scenario, the more w satisfies the scenario.

8. Some qualities and properties of symbolic objects
LN ORDER, UNION AND INTERSECTION BETWEEN IM OBJECTS

It is possible to define a partial preorder < ,, on the im objects by: a; <, a2
Hfvw e 0, a < ay (w) < as(w).
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We deduce from this preorder an equivalence relation R by: a, R a, iff Ext
(a,/Q1, a) =Ext (a,/Q, a) and a partial order denoted < , and called *“'symbolic
order” on the equivalence classes induced from R.

We say that a, inherits from a, or that a; is more general than a, . at the level
a, iff a; € ,a, (which implies Ext, (a,/§2, a) C Ext, (a,/), a)).

We call intension at the level a of a subset 2, C {2 the symbolic object b
defined by the conjunction of events whose extension at the level a contains 2,.
The symbolic union a; U,_, a» (resp. intersection a; N, , a>) at the level «x is the inten-
sion of Ext (a,/§2, a) U Ext (a>/€), a) (resp. Ext (a5/€Q, o) N Ext (b / Q. a)).

8.2,  SOME QUALITIES OF SYMBOLIC OBJECTS

As in the Boolean case, see Diday [7]., Brito and Diday [l], it is possible to
define different kinds of qualities of symbolic objects (refinement, simplicity, com-
pleteness etc.). For instance. we say that a symbolic object s is “‘complete’ iff the
properties which characterize its extension are exactly those whose conjunction
defines the object; in other words s is a complete symbolic object if it is the intension
of its extension. More intuitively, if I can see some white dogs and I state "'l can see
some dogs™’, my statement does not describe the dogs in a complete way, since I am
not saying that they are white.

On the other hand, the simplicity at level a of an im object is the smallest
number of elementary events whose extension at level a coincides with the exten-
sion of s at the same level.

When an operator U, has to be defined in a domain related to a specific
semantic which induces the notion of similarity between symbolic objects, it
seems natural to require that it should satisfy the following intuitive properties:

(a)  The union of two symbolic objects i1s more general than each one separately;
in other words, the extension of the union of two symbolic objects contains
the extension of each one.

(b)  The union of an object with itself has an extension which contains the exten-
sion of this object.
(c)  The more two objects are similar the less they are general.

(d)  The most opposite objects (1.e. opposite in all the variables which define them)
have a union whose extension contains every one.

(¢)  The union of two similar objects must reject, from its extension, objects which
are not similar to them.

In case of intersection, analogous “‘natural” conditions may be defined, they express
the inverse conditions, for instance: the intersection of two symbolic objects is less
general than each one.

In case of probabilist and possibilist objects, it is easy to see that condition (a)
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is satisfied, since when q; and g are two probabilist measures, we have: q; Uy,
g>=q1+q2—-q192 = qx for k=1, 2. When q, and q» are possibilist measures we
have q; Up @2=Max (q,, q2) 2 qx fork=1,2.

Ifaj=A [yi=q)) we geta, Uy ar= A, [yi= qQ, Uy qf] and Y € O w* = A, [y, =r1;] we
have:

ay Uy a2 (w) =1 ({gx (ql Uy q: h) hence
) Upr a2 (w) = Medn {3 veo, q, Upr Q;(v)r, (v)}, = Mean ! Y veo, Q (v, (V)=
(w)} with k=1,

Similarly in case of possibilities we have:

aUp as(w) = Max{de Min (qI Upr q,(v) r,(v))} = Max{MaxMin (qf‘(v), r, (V) =
ay(w) with k ='1, 2V tooveo,

It is also easy to see that the probabilist and possibilist intersection satisfies the
inverse condition.

Condition (b) is proved in case of probabilist objects, by the following argu-
ment, in the case of a probabilist assertion reduced to an event, and may be easily
generalized (by taking the mean) to the case of a conjunction of several events: let
a=[y=p). we have by definition a U, a= [y P Uy Pl=ly=2p-p ?); hence
Yo' =[y=r], we have a Uy a(w) =3 0 (2p - P~ V) r(v) = T veo PVIF(V) and so
a Up, a(w) > a(w); thereforea Uy, a 2 a.

In case of possibilist objects it is easy to see that a U, a = 4. since if q is a pos-
sibilist measure and a=[y =g, thena U, a=[y=q U, q}=[y=Max (q. g)] = a.

Conditions (c) and (e) depend on the chosen similarity: with the similarity
proposed in section 10.1 it may be shown that condition c) is not satisfied by pro-
babilist objects. It is easy to show that d) is satisfied by probabilist and possibilist
objects; let a,=[y = p;] with p, (v)) = | and therefore p, (v))=0if v, # v,. It results
that in the probabilist case we obtain U, p,=1 € Q" where 1 is lhe mapping such
that Vv, 1(v) =1, from which it results lhdl for any w* = [y =r] where r is a prob-
ability measure, U, pr & (w)=1. In the case where the p, are possnbllmes we get
also Up, =1 (which is a possibility), and so, it results also that for any ' =[y =r]

where p is a measure of possibility Uy, a, (w) = 1; therefore in both cases the union

of the most opposite objects are eéqual to (2%, the full object whose extension
contains all the elements of (2.

8.3. SOME PROPERTIES OF IM OBJECTS: LATTICE AND COMPLETENESS

It may be shown, see Diday [9] for instance, that given a level a, the set of im
objects is a lattice for the symbolic order and that the symbolic union and
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intersection define the supremum and infimum of any couple. To do so. f,. g, and h,
(see section 3.1) have to be well chosen and we introduce a *“full” and an “empty"”
(which could also be called "'top™ and “"bottom™) because they are the most and the
less general symbolic object denoted 2" and ¢ such that Vw € Q. " (w)=1 and ¢
(w) = 0: it is then easy to see that the extension of 2" contains all the elements of
{2 (c.g. it is ~“full”) and the extension of ¢ contains no one (e.g. it is “empty”).

It may also be shown that the symbolic union and intersection of complete im
objects are complete im objects and hence that the set of complete im objects is also
a latuce.

9. An extension of possibilities, probabilities and belief assertions on symbelic
objects

9.1. DUAL ASSERTIONS

Several kinds of valuations of symbolic objects can be studied. For instance,
in case of Boolean objects we obtain a valuation. by settingV A C d.a*(A)=card
A:card Ay, (in this case the O, must be finite) and a* satisfy the Kolmogorov
axioms; a* (A) may also be computed by taking into account the constraints
which may exists among the variables (see De Carvalho [5], for more details
about the constraints). Another possibility may be to consider the x-union or x-
intersection of subsets of d, by the followm% definition where *,€ {U, Ny} V A | L
Al Cae A’ x Al :‘d‘* as (@) ay) €A ‘: and then by studymg the link
between a* (A UcA D a* (A "N A D) at (A "yand a* (A x) {where, for instance
a* (A =% a*(a)ralEA\}

In thls paper. our aim 1s to extend an im assertion a = A, [y, = q,] (where g,
depends on the choice of x and may be for instance a possibility, a probability or
a belief function) to a dual im assertion denoted a* defined on subsets of A, (the
set of im assertions associated to x), and more generally, on “x,-combinations”
of such subsets of the kind Ax B where *,€ {U,.,N,} and to show that a* is itself
a kind of possibility. probability or belief function depending on x.

More precisely:

Given A, C a,.we have A, = {a acA.} and to define A = U, {a'a € A} we use the
set Q™ C QF such that QA =1q.a=A, [y=q)] € A,}: we denote: q =u, {qu
q, EQ ‘1. We define the U of im assertions by: U, {ara € A = A, [y, =q*): hence.
we h..m, A=Ay yi=qt)

We define af* a “dual™ measure of af = A, [y, =q!] by a¢" (a,) =T, ({gx (q,.

q’l)},): hence, given A' C a,, we denote A= U, {a/a € A{} and we get

£ (A =T(g. (q. q, ; more generdlly Al (A A =f({gx (q,’.q{\'*‘qf‘:)}.).
where *e {Ux. Ny} and ql =*{q,q; € Q }
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9.2,  THREE THEOREMS OF META-KNOWLEDGE

The three following results [9] prove the existence of probabilist, possibilist
and belief objects defined respectively on probabilist, possibilist and belief
objects, themselves defined on 2. The proof of theorems 1 and 2 is in the appen-
dix. the proof of theorem 3 is long and will be published elsewhere.

(a)  In the case of possibilist objects:

THEOREM |
i) a* (@) =1 a*(0). =0
i} VA;. A:Qap a* (A;Up .43):Max {a* (Al).(l' (42))

(by  In the case of probabilist objects:
THEOREM 2

(i) a* (@) =1 a*(0) =0
(it) YA, 4> C apr a* (A;UI,, A:)ZU‘ (,4;)+(l’ (,43)-(1‘(,410,,, As).

(c)  In case of belief objects:

We say that there is independence between the body of evidence of two belief
objects a, and a- iff Vi the bodies of evidence (F.. m’) associated to ¢ for j=1,2
are such that m,l Nre; M- (0) =0, (or in other words. the focal elements vl e F,"
V] € F} are such that: V,I N V? # ¢). The body of evidence of two subsets A;, A of
ape; are said to be independent iff for Vi and j = 1.2 such that Q) = U {q] /9 € Q?"}.
the body of evidence of Q! and Q,: are independent.

THEOREM 3

i) a* (Qpe) =1, a*(0) =0
(ii) 1f Vi, 4; C dpe the body of evidence of the A)s are independent. then:

. 4,) = —1p et n Ai).
a (it{‘gﬂ}hcl ,) Z (=1)""a ('elbcl

IC{1. .}
a*(A)
a*(h(4)) £
where h(B)=0Npe; {4, A,=A—-1{a,}. a,€ A B B# A}
h(A):chl {A: /A::A - {(I“ }. a; € A}

tiii) VA C Qper. m*(A) = (=1)*8 a* (h(B))
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then m* is a probability assignment function on ape (in other words: m*: P (dye) —
[0.1] is suxh that m*(¢) =0, Y Ao 4., m*(A)=1 and Y4 C QApy. a*(4)=
Zar A m*

By using m* it is then possible to extend Dempster’s rule and Dempster’s con-
ditioning on the set of belief assertions.

9.3 SEMANTIC OF a* IN CASE OF PROBABILIST OBJECTS

In case of probabilities aj (a;) represents intuitively the average probability
that the same instance ouurs in both cmilics (e.g. part of 1) described by a; and
as it wnll be h;gh iff ¥ g(q,. q:)— L9l q:(\) 1s high: more precisely, the
more q,(v) and q;(v) are high lo:ccthcr or low toguhcr and their high valucs are
concentrated on few clements v € O,, the more g(q'. g7) will be high. If g'(v) is
high when g7(v) is low for any i then g(q!. q,z) will be low. Notice also, that if we
consider that a* (A M, A>) 15 a measure of probabilist specialisation and a* (A,
Upr A2) @ measure of probabilist generalisation between A and As, then theorem
2 shows that, when a* (A))+ a* (A») is constant, the more A, and A- are specia-
hzed (c.g. a*(Ay Ny, Az) high) the less they are general (e.g. a* (A U, As) low).

9.4 SEMANTIC OF a* IN CASE OF POSSIBILIST OBJECTS

If @, and a, are possibilist objects. aj (4-) represents intuitively the “*possi-
bility™ that some individual object “'possible™ for a- be “possible™ for a;: more-
over, in the extreme case where a; and a, are Boolean assertions aj (a») measures
the possibility that an individual object satisfies simultaneously a; and 4,. More pre-
cisely. il 4 is a Boolean possibilist object, it may be written a, = A, [y, = ¢}, where ¢/
is @ characteristic mapping such that g} (v) = 1iff v € V) s0 a, may also be written as
a Boolean symbolic obju.t a=A, lv,= V’]. it results (see section 5.3) that a;
(a-) = Max(sup {Min (q, (V.gr(v)) veO,! = liffviv!n V ;é ¢ which expresses
the fact that it is possible for a value taken in V to be taken in V! Ifa, is a Boolean
necessitist object we h d\t. in the Boolean case: aj (a-) = Min(inf ‘Mu (g; (v T{v) /v
e O h=1iftwi V C V! which expresses the fact that a Value taken in V: is neces-
sarily taken in V).

Notice dlso that it1s necessary and sufficient that at least forone v € O, q, (v)
and q7(v) be high together to get a high value of g, (q,.q;) =sup xnt(q, (V). g-(v)).

EXAMPLE

We have several documents to classify, which are characterized by the
frequency of some given words.

Probabilist objects: by using the frequencies. we associate to each document d, a
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measure of probability q; and a probabilist assertion a,. It is then easy to see that
a; (a,) is the probability that the same word occurs for both documents d, and d,. it
will be high if in documents d, and d; the frequencies are concentrated on few words
and high for the same words.

Possibilist objects: some words may appear but out of context and some other,
important for some documents, may not appear: so, taking into account the con-
text, an expert associates with each word a measure of possibility; therefore each
document d, may be represented by a possibilist assertion a, and a; (a;) will be
high iff at least for one word, the possibilities are simultaneously high for both docu-
ments d, and d,.

93 SEMANTICS OF a* IN THE CASE OF BELIEF OBJECTS

The meaning of aj (a-) may be interpreted as a “belief of belief”" or the “'con-
viction” of someone. denoted E;. whose belief is represented by a, concerning the
belief of someone else, denoted E-.whose belief is represented by a..

EXAMPLE

Fori=1.2.let be a, =y = q,] where q, is a belief function O — [0.1] with body
of evidence (F,. m,) and F, = F> = {A B.O} with ANB={: then we have:

aj(a:) = gua(d1-q2) = »_ my(V)aa(V)
veF, (1)
=m,(A)m,(A) + m;(B) my(B) + m(O).

Following a classical example given by Schafer [16]. suppose that: 1 am expert E,.
Betty is expert Es, A = "a tree limb fell on my car”, B="No limb fell on my car’.
Suppose that Betty tells me a tree limb fell on my car (therefore m; (A)=1,
ms (B) = 0); knowing that my subjective probability that Betty is reliable is p = 0.9
(so. my subjective probability that she is not reliable is 1 —p =0.1). I say that her
testimony alone justifies a 0.9 degree of belief that a tree limb fell on my car (there-
fore my(A)=0.9, m;(B)=0, m;(O)=0.1); then, it results from (1) that my belief on
her beliefis aj (a») = 1; this is justified since my belief gives me no reason to reject the
belief of Betty as m(B) = 0. If I have some reason to belief in B, then m; (B) # 0 and
my belief on her belief a} (a.)=m,(A)+m;(O) becomes smaller than 1 (as
nl](A) -+ m,(B) + m|(0) =1).

Notice that “'my subjective probability that Betty is reliable™ is equal to my
belief on her belief (i.e. aj (a;)=0.9) in the two following cases: 1) m(A)=0.9,
m(B)=0.1 and ma(A)=1, ii) m(A)=1 and ma(A)=0.9, which corresponds to
intuition.
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More generally, we can see that the conviction of E; concerning the belief of
E, will be maximum (i.e. a] (a,) = 1) if E, is totally ignorant of the evidences A and B
(because in that case m; (A)=m,(B)=0and m, (O)=1) and if E, and E, totally
believe the same evidence (because m;(A)=m-(A)=1 or m;{B)=my(B)=1). If
m,(B) =0 and E, has some ignorance of A (i.e. m;(O)€] 0.1[) then, his conviction
of the belief of E> on A (ie. qa(A) ) will be greater than g» (A) (for instance if
m(A)=ma(A) =1 then m, (O)=1} 5 and the conviction of E; will be aj (a,)=0.75).
If E, totally beheves A (m(A)= 1. m;(B)=m; (O)=0) and E, totally believes B
(ms(B)=1, m, (A)=0) then,the conviction of E, of the belief of E, will be 0. If
E- is totally ignorant (i.e. m;{A)=m-(B)=0) then the conviction of E, in the
belief of E, will be low if his belief is strong (i.e. his ignorance measured by
m, (O) is low).

EXAMPLE

Several sensors, in different situations, have a belief of an event A. This
knowledge induces a belief of each sensor in the belief of the other sensors when
they are in the same situation.

In figure 6 we give 4 situations which allow four sensors to get a belief in the
belief of sensor number $: in this figure, if we denote a; = [y, = q;] the belief assertion
associated to sensor i and F, the focal element of the belief function q;, we have in
situation (a) F; = F<= {A} hence m;(A)=ms (A) =1 therefore, it results from (1)
X, =aj(as) = 1; in situation (b). F» = {A}, Fs does not contain A and so, a3(as)=0;
in situation (¢), Fa={A, IA} and Fs={A}. mi(A)=0.7, m3(lIA)=0.3, therefore
aj(as) =my (A) ms (A) + my(lA) ms (1A) + m3 (A) ms(A) + m3(0) =0.7; in situation
(d) Fs=1{A. O}. Fs={A}. my (A)=0.7, my (0)=0.3, ms (A)=1, therefore a;
(as)=my(A) ms(A)=my (O)=1. If a large majority of sensors (for instance, at
least 75%) have a belief on a given sensor lower than a given threshold a, this
sensor may be rejected for the recognition of A. In this example, if the threshold
1s d=1/2 the sensor S is not rejected; if a =0.8 it is rejected; notice that if a
sensor 1 is completely ignorant (m; (O)=1 and therefore YA, m; (A)=0) it will

X, ? X,? X3? Xy ?

E-——wEs

NN

() ( ) (©)

Figure 6. X, = a; (ay) is the belief of E, in the belief of E. computed according to (1).
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believe in any sensor whatever this sensor belief; hence, we may reject the judgement
of sensors who are much too ignorant.

Instead of using a majority rule. it is also possible 1o use Dempster’s rule (at
second level) applied to the belief of belief. concerning a set of sensors, of a given
sensor; in that way the sensor represented by as is rejected if ®;-, 4 a; (as) < a.
The belief in A, if no sensor is rejected, is measured by the classical Dempster
rule (at level 1): 6., s a; (A).

There is an analogous theorem if a, is a plausibilist assertion and a; (a-) may
be interpreted as the mutual “*non-discordance™ between what E, and E, believe.To
illustrate that, going back to the preceding example we can see that if a, is a plausibi-
list object then: aj (ax)=gn (41.92) =Y verr M(V) pla(V)=m(A) (my(A)+
m»>(0)) + my(B) (m1(B) + m»(0)) + m(O) plx(O) = m(A) my(A)+m(B) mxB) +
m,;(O) + m>(0) — m;(O) m>(O). Hence, this corresponds to intuition as we can see
(contrary to the case of conviction) that the non-discordance between what E,
and E, believe remains high when E- is totally ignorant (i.e. m»(A)=m: (B)=0)
even if the belef of E, 1s strong (i.e. m(O) =0).

Another kind of interpretation of a} (a;) may be obtained in terms of ““fit""; if
we consider the class C; (of fruits produced by a village.for instance) described by
the belief object a ;. we may say, when a, is a belief object, that aj (a.) measures
how much C, “fits” C,: when a, is a plausibilist object, we may say that a; (a,) mea-
sures the “‘non-disagreement’” between C, and C,. For instance, if y expresses the
color and if the fruits of both villages have the same color, denoted A, (ie.
m(A)=m, (A)=1.m(B)=m> (B) =0,m(0) =m, (0)=0) then aj (a;) =1 mea-
sures how much C, “fits” C, and also the “non-disagreement”, about color,
between C, and C,. If the color of the fruits of the second village is totally ignored
(i.e. ma(A)=m- (B)=0, m> (O)=1) and the color of the fruits of the first village is
A (i.e. m;(A)=1, m, (O)=0) then, when a, is a belief object, we have aj (a2)=0
which measures how much C, fits C;; when a, is a plausibilist object, we get
a} (a;) = | which measures the non-disagreement between C, and C;.

10.  Data analysis of symbolic objects
10.1. THE FOUR APPROACHES

Several studies have recently been carried out in this field: for histograms of
symbolic objects, see De Carvalho [5]; for generating rules by decision graphs on im
objects in the case of possibilist objects with typicalities as modes see Lebbe and
Vignes [13]; for generating overlapping clusters by pyramids on symbolic objects
see Brito and Diday [1).

More generally, four kinds of data analysis may roughly be defined depend-
ing on the input and output: (a) numerical analysis of classical data tables; (b) sym-
bolic analysis of classical data tables (for instance obtaining a factor analysis or a
clustering automatically interpreted by symbolic objects); (c) numerical analysis
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of symbolic objects (for instance by defining distances between objects); (d) sym-
bolic analysis of symbolic objects, i.e. the input and output of the methods are sym-
bolic objects.

To illustrate these four approaches, on a simple example, a similarity between
symbolic objects defined as follows will be used:

Leta, = A [y, = qi'] € a, be the set of im assertions. We denote a; mapping a, —
[0,1] such that aj(ay) =1, ({g« (qf, q,k)} ). then, we set: (1) s (a,ay) =3 L (aj(ay) + ag)
(as))/\/a;(as)a;); in the case where g, is symmetric (which happens when we have
probabilist, possibilist and plausibilist assertions), s may be written: s (a,.ay) =
as(ay)/\/aj(as)ay)(ax) = ay (a,)\/aj(acap)(ag).

EXAMPLES

Let a,, a> be two probabilist objects such that
al = [y =0.7v;.0.3v,].a, = [y = 0.3v,0.7v,);
we get:
0.7x03+03x0.7

) - — = 0.724.
a3(a1) v/(0.7° + 0.37)(0.3* + 0.7%)

aj(a
Vvaj(ay)

From this example. it results that probabilist objects do not satisfy condition (c)
given in section 8.2, since if we define a=[y = lv;, Ova]=[y =v,] we get a; Uy, a;
(a)=0.79 and a,U,, &, (a)=0.91; hence, a,U,, a> may not be considered more
general than a,U,, a;, even if the pair (a;, a;) may be considered more similar
than the pair (a,, a,), since s(a,, a;) = | and s(a,, a,) =0.724.

s(al,a2)

Let ay, a; be two possibilist objects such thata; =[y=1 v, xvsjand a, =[y =xv,, |
v»]. Then,

S(a,.a.) = (Max(min(1,x), min(x, 1)) _
v v/ (Max(min(I. ). min(x, x))

hence the lower x, the more a; and a are dissimilar. Hence, a,Up a; =[y = lv,, 1v]
is the full object since Va, a,Uj, a3(a) =1 and therefore, contrarily to the probabilist
case, in this example the possibilist case satisfies condition (c) in section 8.2).

We illustrate these four approaches by applying three data analysis methods:
principal components, hierarchical and pyramidal clustering.

Let T be the following data table where the set of individual objects is
2= {w),....ws} which are five companies described by two variables, y,: the
employment rate and y.: the profit. This table is represented in figure 7.
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2? Y4 Vs
1 w o,
nil
>
w {2 ,
w1y

Figure 7. Graphical representation of table T.

10.2.  NUMERICAL ANALYSIS OF CLASSICAL DATA TABLE

Principal component analysis of table T: From the covariance matrix V=

(83 8;) we deduce the eigenvalues: Ay = 1.6 and A; = 0.2 and the eigenvectors

uf = 1/\/5 (L1), ug =1/v2 (1, -1). Finally we get the principal component repre-
sentation %iven in figure 8, where the projection of w; on the axis i is given by
F, (w;) =u, .xj, where xJT = (yy(wy) = Y. y2 (wp) — Ya2)and Y, = 1. is the mean of y,;

for instance, F(w;) = l/\/i (11 (:gg .

Hierarchical and pyramidal clustering of table T:
We make the classical “‘complete link hierarchy™ based on the city-block dis-
tance defined by

d(wewr) = Y 1y;(we) = yylwr)l-
j=1
The algorithm is the following: starting from S classes C; = {wi} where w, € Q, we
merge at each step the two classes with smallest §(C,, C)):
b (C;, C;) = Max {d(w;, w)/w; € Ciuwj € C;}. When two classes are merged their ele-

ments are suppressed from the set to be classified and the process continues until
only one class remains.

Table T

(%)
—
~

Y1 -172 172
y2 -172 1/2 1 2 2
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‘axis 2
a/2 W4
Y1 ) ws .
.3a/2 -2 a2 a axis 1
-a/2
w3

Figure 8. Principal component analysis of table T whith a = 2.

To obtain a pyramid, we may use a similar algonthm where classes may be
merged twice (instead of only once in the case of hierarchies) if they respect a
common order (for more details see for instance Brito and Diday [1]).

By using these algorithms we get the hierarchy and the pyramid given in
figurc 9.

Remark: if we associate a dissimilarity o induced by the hierarchy and the pyramid
by setting: a(w,. w,) = {height of the lower level which contains w, and w;}, then, it is
casy to sec that o 1s closer to the initial distance d in the case of the pyramid than in
the case of the hierarchy: more precisely, d—o =¥ dlw;, w)) -0 (w. w)) isequal to
3 for the pyramid and to 11 for the hierarchy.

103 SYMBOLIC ANALYSIS OF A CLASSICAL DATA TABLE

The corrclations between (... . .. ws) and the first axis of the principal com-
ponent analysis are respectively (— 1, —0.707, 0.707, 0.707, 1); if we associate to each
side of the first axis the objects whose correlation is higher than 0.707 or lower than
-0.707, we obtain two classes of objects; the first class, Cy = {w,, w-}, explains the

$
'y -
I i
| ] > >
W W W W ow, W o Wo Wy oW wy
(V) (b)

Figure 9. (a) The hierarchy of table T. (b) The pvramid of table T.
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feft side of the axis and the second one C» = { w3, wy. w¢} explains the right side. By
using these classes. we get two kinds of symbolic interpretation of the first axis; by
using assertions, we may say that the left side s explained by a; =[y; = =1 2. 1 2] A
[va= —1:2,1.2]: the right side isexplained by a; = [y, = 1.2] A[y> = 1.2]. If the input
provides a taxonomy saying that the rate of employment and the profit are low
when they are lower than 1/2 and high when they are higher than 1. we may use
the assertions a; and a- to get the following explanation of the first axis: it is
explained by two opposite assertions which characterize two classes of companies:

a; = [Rate of employment = low] A [Profit = low]
4> = [Rate of employment = high] A [Profit = high]

Of course, in real examples things become much more complicated: for instance. to
get more accuracy when the two classes contain numerous objects. cach side of the
axis may be explained by a disjunction of assertions obtained by a symbolic inter-
pretation of a clustering done on each class. We may also enrich the interpretation
by adding certain properties; for instance. we may add to a, the following rules: [if
vi= —1/2then y,= —1/2) A[if y; = 1/2 then y> = 1/2] and to a, the rule [if y; =1
then y,=12}.

We may also give an interpretation of the first axis by a horde object h: h = a,
(u;) A aa (us) =[Rate of employment (u;) =low] A [Profit (u;) =low] A [Rate of
employment (u-) = high] A [Profit (u) = high] whose extension is composed of cou-
ples of companies (w,. ;) the first element of the couple. «, .being of low rate of
employment and profit and the second one, . of high rate of employment and
profit. If an external variable gives the age of the companies the horde object h
may become: h =a(u;) A as(us) A [age(u,) <age(us)].

A symbolic analysis of a classical data table may also be obtained by an auto-
matic interpretation of a clustering by symbolic objects: for instance. it is possible to
associate to each level of the hierarchy a complete symbolic object (see section 8.2).
more precisely. if we denote h; = {w1, ws} then we may associate to hy. the assertion
ay=[y; = 2] A [y> = 1.2): a, is complete. because: (i) it is defined by the intension of
h,. in other words. by the conjunction of all the events e, = [y, = V,} whose extension
contains h, and (ii) its extension is h,; in the same way hy = [wy. w2 hy = o waws)
and hy;=( may be respectively associated to the complete assertions a»=
[vi= =1/2, 1.2 A lya= =12, 12, ax=[y = 1.2] A [ya= 1.2) ag=1{y, =0 A
[v>=0,] where 0, and 0, are the scts of all the values taken by ¥y, and y- in the
data table T. Using the fact that each level is represented by a complete assertion
we deduce from any level h, = h, U h, the rule a, — a, Vv a,. Hence, from the hier-
archy we obtain the two following rules: Ry: ag — a; v ayand Rytay —ay v Wy
where Wy =[y,=1] A [y»=2] is the symbolic object associated 10 wy. All the
bottom-up rules. such as a, — as. are true because the a, and b, are complete
objects. Finally we have induced from the hierarchy given in a) a graph (see
figure 10(a)) whose nodes are assertions and rules are expressed between them by
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° D*A
)
- | y “
ba/ 7 )\
) 3 y 2 ()
be bs )
G
3 v y AT,
b1 by b3 4
(a) (b) ©)

Figure 10. Induced graph of rules between assertions (a) from the hierarchy, (b} from the pyramid,
where double headed arcs are explained by (c¢).

directions. In figure 10(c), (c,) expresses the rule r;: x — y vV z: (c2) expresses the rule
ra (y—X} A (z—x) and {c3) expresses the rule ry A 1

The same kind of symbolic interpretation may be obtained by starting from
the pyramid given in figure 10; hence, we obtain the graph given in figure 10(b); in
this way, we obtain more assertions and more rules between them. If we denote
hy={wnwj. ha={wrwl. hy={uwswsl. hy={wsws} hs={wswsws}, he=
{wa wiwsh, hy= Q wy, hg = {w; wa wi}l. hg =1, the associated complete assertions
are;

by=[yi= 172, 12] Alya= -1.2, 1.2]. b
bi=[y;=2]Alya=12 L bs=ly=1.2] A
be =[y; =122 A ly. =1:2.1.2]. by =
by=[yi= -2 122 A ly, = =172, 172, 1],

Hence we can induce the following rules:

ry: bg — bg V by ra b; — be Vv bs 1a: bg — b; vV by
4. b(, haad b: A b3 Ts! bs — b3 \% b4.

We have b; =a,, by =a,, bs =a; and bg = a4; hence, it is possible to deduce from the
rules r, given by the pyramid, the rules given by the hierarchy; to do so, we need to
use the following property: if r: b; — b, v by V b, and Ext (b;/Q2) = Ext (b,/f2), then 1
may be simplified to b; — b; v b,. Hence, for instance, from ry, r and r; we get by —
b, V(b2 V be) V bs and then by — b, v bs which is R: a4 — a; v a;_obtained from the
hierarchy (see figure 10a).

10.4. NUMERICAL ANALYSIS OF SYMBOLIC OBJECTS

The given set of symbolic objects is supposed to be the set of the five first
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symbolic objects defined by the pyramid: {b,. ba. b3, by, bs} = B. A simple way to
make a bridge with classical data analysis methods is to compute a measure of
similarity between the objects of B: having this measure it is then possible to use
multidimensional scaling, clustering etc. To do so. we may compute the similarity
s which has been defined by (1); as B is a set of symbolic objects, we have to use
the mappings fy and g» defined in section 5.3. We have, for instancc, sh
(by.ba) = b} (b2)//bj(b;)bi(b:) with b, =]y, qa; ] /\h [ya=q} ] where q. and g}
are charactensnc mappmgs such that: ql(—l/’)-q (1/2)=1 and qa (—1/2)—
q> (l/2)=1 and qj (v)=q3 (v)—O elsewhere. We have br=[y,=qi ] As [y2=93
and ql vy=1ifve {1212}, q, (v) =0 elsewhere, q« (vi=1ifve{l/2 1} and
q~ (v)=90 elsewhere. As we have (see section 7), b* (bs)= fb({gh(q,' ,qf)},)z

b1 b2 b3 by bs
b1 1 12 10 10 0
b 1 V2 |0 i
_2— ——
b3 1 1 ﬁ
2
ba N B
2
bs 1
(a)
by 7} b3 by bs
by JoO 05 J1 1 1
0 0.3 1 0.5
'%% 0 0 0.3
by 0 0.3
bs 0
(b)
by b b3 b4 bs
by }o 12 117 17 7
) o |1 17|12
b3 o Jo1 |u
by 0 1
bs 0
©

Figure 11.
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Min ((q}.qi). (4} qs))* Mm(L (qivgiviy € Oyl Sightvigstviv € O;}):
Min (q;(1/2) ql(l/l).q_(l/l)qgtl/’))— Min(1.1) = I. We have bj(b;) = Min ((q}.g}).
(q5.9))) = Min(2.2) =2 and also b3 (bs) = 2 hence. sp(b.ba) =1 V2 x2=172

By computing in the same way all the similarities sy, (b bY") we finally gc.t the
symmetric table of similarities given in figure 11 (a).

The stmilarity sy, 1s transformed into a dissimilarity d = | — s, given in figure
L(h). If we choose ¢ = Max d(b,.b)) - M where M 1s the sum of the two couples
(b.b)) of smallest dissimilarity d(b,.b)). then ¢ > Max (d(b..b)) — d(b,.b,) -
d(by.b)) and D such that D (b,.b)y =d(b,.b). D (b,,h,)_(). 15 a distance. because
Vig.k dib.b))4 ¢ <dib.by) +c+dib.b)+c Tt is casy to see that M=0+0.3
and ¢~ 1 -0.3: 1t 1s then possible to change d into a distance D such that
D(b,.b)) —d(b,.b)) + 0.7, which 1s given in figure 11(c).It is then possible to apply
many existing methods of classical data analysis by using s, d or D as input.

\)......

LS SYMBOLIC ANALYSIS OF SYMBOLIC OBJECTS

As input we have the following set of probabilist objects:

B — {b,...bs} such that b= [y, =q|] A [y2=qb] where ! is a measure of prob-
abtlity from P (O, ~ [0.1] where O, = {~1/2. 1/2. 1.2} and P (O)) is the power
set of O 1 we set by = Ay, = (q; (vi) vi. (g (v2)) va..]. then the b, are defined

as follows, where the value v, associated to ql (v,) =10 docs not appear:

b Iy = (3 - 5 ()5 A v = (3) - 5. (8) 4]
by — [y = (3) - 3. (3)2) v [y = (1) 5 ()1
by [yr = (h2) A [v2 = (91.(5)2]

by = Iy = (D1 (2] Ap fya = (12

be = Iy = (D1 (1)2) Ape b2 = (1)1.(3)2)

To treat this set of probabilist objects, we may compute, at first, the similarity
S (bb)) — b (b)) V h (b, )h (b,) and then, to use for instance. principal component

analysis or clustering muhuds interpreted by symbolic objects as has already been
done in b).

Forinstance, for the couple (by.b,). b (b)) = £, (4 gm(q, .g5)},) is computed as
follows:

b} (bs) - Mean (4 |. g i). xq q 3)): therefore:
b} (ba) — Mean (S {q (V). g ,(\) veO!. Sigav) g 5(\‘) v €0,y)).
Hence by (boy=Mean ( 1/2 %0+ 1/2x1/2 + 00 +0x1/2. 1/2x0+1/2x
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240 x 1/2 40 x0)=Mean (1/4. 1/4)=(1/4+1/4)1/2=1/4.
b (by)=Mean (1/2.1/2)=1/2: b3 (by) =Mean (1/2, 1/2)=1/2.

Finally. setting @ = /3/2 we obtain the following similarities:

b 1/2 0 0 0 105 0 0 0

I a/2 a/6 1)2 I 06 02 05
{spe(by. b))} = I 2/3 20/3 = 1 07 08
I 20/3 I08

1 l

For treating B, another way is to obtain directly from B, clusters of symbolic objects
represented by an “inheritance™ hierarchy. where each node is expressed by a com-
plete probabilist assertion a,, or an approximation of it such thatif ay =a,U (., a,
then ay >, Max (a.ay) where U,,.,, and >, have been defined in section 9.1. To do
so, we may use the following algorithm on a set of symbolic objects A:

First step: aj, = a, Uy, &y 1s computed Va, ay € A,

Second step: the ay of smaller extension constitute the first levels of the hierarchy.
their height is the cardinality of their extension.

Third step: the retained ay, at step 2 are added to A and a;, a, are suppressed
from A: then. we go back to the first step until the cardinality of A becomes equal
to 1.

In practice. how can we compute ay = a, Up,,, a7 By definition a,, is the conjunction
of the elementary events ay, = [y, =q,) such that Ext(aj §.0) contains ) = Ext(a,
O.a) U Ext(a, Q.a). Hence. for any « € §2; such that ' =A[y,=r1] we have
M(w) > a; this condition is satisfied if we have i, g(q,.r;) = because aglw) =
(!g(q,.r)},) and, by definition of f, it is the mean of numbers larger lhan a;
hunu., if we denote x; =q, (v). we have the inequality: g(qlr)—u,x T(v))
v,€0,}a; hence, we have to solve a system of card(§2;) inequalities where thc
unknowns are the x;. If this system has several solutions, for each 1 we denote
them [y, =q;}: hence. we obtain ay = A, (Aspe [y, =q']: by choosing h, = Min
(sce section 3.1) the extension of ay, at level o s (L= lwaule)=
fiMin{g(q,).r)}}, =l
To obtain the inheritance hierarchy on B given by the algorithm, the first step
consists in Lompuling the a, = b, Up,.,, by whose extension is of minimum cardinal-
ity, we choose a =3 and to compute for instance a,» = b} Up,, ba we do the follow-
ing: first we set a; -djk/\ ay where a'y =[y, =q,] is such that aja(by) = 1/2 and
a)a(ba) = 1/2. Then, forx =q,(v,) where {v,..... v = O. O.={1/2,1/2.1, 2},
we have to solve the followmg inequalities, where the x,k are the unknowns, with
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the constraint

Zq[(vj) = ij = I:
J

J

ap(b|)—g,,,(q,.r,)-Z{q[(v) rp)(v)/veO[} hence, we obtain: a}y (b, )—I/Zrl
1/2x) > 1/2; aly(by) = l/2r»+ 1/2x) > 1/2 from Wthh we deduce that x; +
X = 1, therefore (as E{x, i=1,4}=1) we get x4 0 and }h =1, x =0if i£2.
d|7(b|)—]/2\’| l/ \’7>‘1/2 ap(bz -—l/’)\'w‘%l/ﬂ’\:; 1/2, from which it
results that X's =1 and x =01if i # 2. Finally we obtain:

a2 =4l Apr aj, = [y| 1)1/2] Ape [y2=(1)1/2] (which is equivalent to the Boolean
object [y; =1/2] Ay y= =1/2)).

Similarly, we get: aly(by) = 1/2x] + 1/2x} > 1/2 and a},(b;) =x} > 1/2. This
is a contradiction because the first equation implies x; = 0. Hence, the only symbolic
object whose extension contains b; and b; is the full object Q° whose extension is .
Q° = A[y, = q;] is defined in the case of probabilist objects by functions q;: P(O;) —
{1} (which are not, of course, probabilities'), then it is easy to see that Q*(w)=1
Vw € 1. Similarly we get: ajy=a;s=a=0% an=ly —(1)7]Ap,[ya- (DH1];
415 = day; au—[y, =(1)2] Apdy2=1Q)): ass is computed as follows: als(by)=x} >
1/2 and d}s(bs)—- 1/2 A1y 1/7 1mphes xi=1 and x' =0 i i4;
ajs(by)=1/2 x1+ 1/7 x; 2 1/2 and ax5(b5 =1/2341/2x3 > 1/2; we have three
solutions (1) \;— \4— 1/2; () \;—I r =0 for 1#£3; (i1) \f,,—l x =0 for i#4;
therefore:

335‘:{YI 2(1)2} Apr {YI:(I/E)L (1/2)2] /\pr b’2:(1)1} Aprb’Z:(l)z}-
In a similar way we get:
a45=[yl =(l/2)l'(l/2)2] Npr [Yl =(l)” Npr [Yl =(l)2] Npr [y::(l)Z]

In the following table we give in the cell of the ith row and jth column the extension
of

12 3 4 5
1 b, b, Q Q Q
Ext(au/B,;‘;) _ 2 b,b;bs 0 b,b;bs
- 3 bibsbs  bsibs
4 bsbs
S

Using this table it is easy to construct the inheritance hierarchy, by merging at each
step the couple of least extension. Hence, the first couples are (by,b,),(b3,bs).(bs,bs):
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Table 2

Level Representation Extension
1 ap =y, =12y =(1H)1/]] {by,ba}

2 ays = [y, = (2] Apdy2 = ((1/2)1.01/2) DJAge [ys = (DALY = (1)2] {by.by}

3 ays =[y, = (D2A5ly2 = (2] {byby.b)
4 anas= Y- oy =) =1/2, (W12 (H1 (D2 = B

to get a hierarchy it is not possible to retain simultaneously (bs.bs) and (by,bs) there-
fore if there are no external constraints on the clusters (for instance. constraints of
geographical proximity) we have to choose one of them randomly; if we retain, for
instance, (bj,bs) the first couples to be merged are finally (b,,bs) and (b,.bs). there-
fore, we obtain the two first levels of the hierarchy characterized by a;> =b; U, »
b, and a3s=b; U, 2 ba. Hence, it remains for by to be mergcd thh (b;.bs) or
(by.bs). It is then easy to see that ajs(b)=1/2x]+ l/" x3>1/2 and
aira(bg) =1/2x3 > 1/2 which give no solution such that Z,j,‘,,x, = 1. therefore,
a;24 =€ whose extension is B. We have already seen that Ext(ais/B.1/2)=
{by.bs.bs), therefore ajss=asy: hence. the next couple to be merged will be
(bs.(b3,bs)) which gives a third level represented by ayss=as, the last level
merges (b;,b,) with (b3,bs.bs) and is represented by the full object §2°.

To summarize. we have finally obtained four levels whose representation and
extension are given in table 2.

Using the fact that the height of each level is the cardinality of the extension
of its associated probabilistic assertion, it is then easy to build the inheritance hier-
archy associated to the set B of probabilist objects, represented in figure 12

Notice that the same algorithm may be used with the probabilist, possibilist

B4s

&2 s[_

b b, by bg by

Figure 12. Inheritance hierarchy on probabilist objects
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and belief union defined respectively in sections 5, 6, 7 instead of the symbolic union
defined in section 9 which has been used herc. The advantage of the symbolic union
(see section 8.1) is that it defines the supremum of the lattice associated to the symbolic
order. The advantage of the probabilist, possibilist and belief union is that they allow
the use of theorems 1. 2, 3: in this case if the height of a level defined by ay;=a, Uas is
given by aj(a,U,a.). we get in case of probabilist objects aj(a;Upax) =aj(a))+
ay(as) —ai(a;Ny,, a2) = aj(a;) +axa,) — az(a;Npe @»): it results that the obtained
hierarchy will have no inversions (as it may be shown that a3(a:) > aj(a,) and
a3(a;) = a(a,) and the more a, and a, are “independent™ (i.e. a; Ny, a> close to
0) the more the height of a; will tend to be high.

We say that we have a rule between two probabilistic assertions a; and a; at
level (ar;.0a) denoted R: a; ' a5 when Ext(a;/B. a,) C Ext(a»/B.as); in other
words, the rule R is true if, when b is in the extension of a; at level «v;. then, it is
in the extension of a» at level o, : when o, =a.=a this rule 1s denoted a, % as.
By using this notation, it is easy to induce from the inheritance hierarchy of
figure 6, by going bottom-up, the rule: a;s 12 a4 : it is also possible to induce
top-down the following rule: € "2 4)5 v as45 which means that if b is in the
extension of 2 at level 1. it is also in the extension of a,> or aa4s, at the level 1/2:
in the same way we get also aiys '3 by V dis.

11.  Conclusion

Considering a data base (£1.A") where any individual object w €€ is described
by 6€A'CA. we have built a knowledge base (W.A) where any symbolic object
ac ACQ, describes a subset W'eW of §2; these symbolic objects may be obtained
from the meta-data given by a data analysis of ($1.A") (for instance, from a sym-
bolic interpretation of the axis of a factorial analysis or from a symbolic description
of clusters obtained by a classical clustering technique); the set A of symbolic objects
may also be obtain directly from the knowledge of an expert (for instance, from his
description of a scenario of accident or of a species of mushrooms).

Having (W A) we have given tools in order to be able to extract meta-
knowledge from A. by extending data analysis methods on symbolic objects. These
tools depend on the backgrownd knowledge of the domain of application; we have
defined several local theories by giving axioms and operators coherent with
Boolean, probabilities, possibilities and belief information. Many kinds of develop-
ments are needed in the future, by improving the basic choices given in this paper:
more precisely, operators of union U, and intersection N, may be redefined, the
mappings f, and g, may be changed depending on the kind of the semantic inherent
to any curent application: for instance, in the case of probabilist objects instead of
using the mean to compute A, by f,,; we may use the product and instead of using
the scalar product to compute the fit between two probability distributions we may use
many other classical similarities such as, for instance, Kullback, Kolmogorov etc. The
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advantage of the choices that we have made is that they are coherent on symbolic
objects with the axioms defined by each theory on individual objects; for instance,
theorem 2 shows that in case of probabilities a’ defined on ap, (the set of probabilist
objects) satisfies properties which are analogous to the classical axioms of
Kolmogorov. In order to obtain the same coherence with other choices of OP,,,, fo,
and g, we have to solve functional equations (given by the Kolmogorov axioms)
and so. many research questions remain open. in this direction.

In practice it may happen that several semantics are used simultaneously
(intensity together with probability, and possibility, for instance), an important
challenge is then, to find the best way to define symbolic objects concerned different
semantics; more precisely, how to define A,, (eg. fy) in e, A, e, where e, and ¢, are
two events representing two different kinds of semantic (for instance when e is a
probabilist and e, is a possibilist event).

If A=U, {q/qeA, C A,} is called x-set, then in the case of possibilities
(x =pos) Apos is a fuzzy set in the original sense given by Zadeh [19]; in this case
Upos 1S stable but not My, in case of probabilist objects U, and N, are not
stable. The advantage of belief objects is that Upe and Ny, are both stable. In defin-
ing new kinds of operators we will have to try to satisfy stability. Several computer
programs of symbolic data analysis have already been implemented independently,
see for instance this issue: histograms of symbolic objects (De Carvalho [5]). sym-
bolic pyramidal clustering (Brito) on decision tree on symbolic objects (Jacq),
extracting rules from a special kind of symbolic objects (Sebag). More generally
in the framework of the Esprit Il program MLT (**Machine learning toolbox™)
an interface between Makey (Lebbe and Vignes [13]) and SICLA (Celeux et al.
[3]) an interactive system of classification has been implemented and work on
X-Windows under Hypernews.

The theory of Symbolic Data Analysis (SDA) that we have developped in this
paper may be useful in the framework of vast domains of application as Data Base
Systems, Pattern recognition, Image processing. Learning Machine etc.

In Data Base Systems, SDA gives tools to define new kind of units (probabilist
and possibilist objects. for instance) and new kinds of queries, expressed by a modal
assertion a,, when the extension is composed of individual objects or by dual modal
assertion a; when the extension is computed on a set of assertions A, C a,.

In Pattern Recognition, SDA allows the representation and the analysis of
complex patterns; in “*Image Processing™ SDA may be used for instance, in order
to compare several sensors, for data fusion, or for image understanding by classifi-
cation of high level objects (houses, trees, roads,...) represented by symbolic
objects.

In Machine Learning SDA makes it possible to extend learning algorithms
(where input are usually individual objects) to symbolic objects; moreover, by defin-
ing symbolic objects on the set 2 of samples and not on the set of description A,
SDA allows a bridge between statistics and Machine Learning.

Unlike most work carried out in Artificial Intelligence, symbolic data analysis
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constitutes a “‘critique of pure reasoning’’ by giving less importance to the reasoning
and more importance to the statistical study of knowledge bases, considered as a set
of “'symbolic objects’". A wide field of research is opened by extending classical sta-
tistics to statistics of intensions and more specially by extending problems, methods
and algorithms of data analysis to symbolic objects.

Appendix*

PROOF OF THE THEOREMS | AND 2

Before giving the proof of both theorems let us remark that a’'(d,) =f, ({g,
(q.. {U;x q)7q) € Q* 1}y where. by deﬁnmon a‘ is the set of im assertions asso-
ciated to x and Q" {q, al = A, [y,=q'] € &} = Q" the set of any U, .A,. ¢, com-
bination ofelements ¢ € Q associated to x. Hence, we have a* (d,) = f; ({g. (q;. Ujx

ql e Q' )}) We set 1, =Avi=lo] where 1, (v)=1 Vv € O;,. We denote

ql =1{q/q € QM}. where A c a, and Q* 15 defined as in section 9 by Q* =
{q,/a= A |[y;=q,) € A} which means that QM is the set of the mappings q; which
define the ith event [y,=q,] of any a € A,.

We extend the operator U, on R by setting V u;€ R. Uy - o 4y =uUg us .. U
u,. where in the case of possibilities we have u,U,, u> = Max(u,.u,) and in the case of
probabilities u.upr U>=U; + U> — Uyl

We denote 12(v) the set of values taken by q, (v) when g; varies in Q™
Ia(v)={q,(v)/q, € Q,A“. See figure 13. Notice that as O;. [ (v) 1s not necessarily
countable. O

LEMMA |

If for any sequence {u,} of rational numbers dense in 1*(v). the sequence
U,=U; |, u, converges towards the same limit U, then q,’\ (vi=U

Figure 13. When q, varies in Q. q(v) = u, is repeated each time that it exists a different q € QM such
that g,(v) = q(v) = u,.

*A more complete and simpler proof may be found in a paper to be published by Diday. Rohmer and
Emilion (Ceremade report, Dauphine University, Paris).
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Proof

As the mappings q; take their values in [0,1], I (v) is bounded; it is possible to
decompose its boundaries by a partition of intervals of lenght 1/2k; we retain from
these intervals only the one which contains at least one element of I,A(v); we associ-
ate to each of these intervals a rational number r and we denote I* (v) the interval of
length 1/2* which contains it; given k and v we denote 14 (v) the set of these numbers
r. At this step O, is supposed to be a bounded subset of R, it is possible to decompose
the intervals defined by its boundaries, also by a partition of lenght 1/2%; we associ-
ate to each of these intervals which contains at least one element of O,, a rational
number from this interval. The set of these numbers is denoted Of‘ and the elements
ofO,k are denoted vy, va. . ... Vax. With ny =card O,k( < 2% as some intervals may con-
tains no elements of 0O;).

To each r,€ 15 (v,) we associate a set of ma[)pmgs q € Q* denoted C%(v,) and
constructed as follows: we consider the set 1% =15 (v;) x ... x I% (vy) and we sup-
pose that v, € {v, ..... Vo). we associatetoany r={(ry..... rnk) € Iffx where 1, is fixed
a unique qr e QP if it exists. such that for anyJ €{l..... T (v ) belongs to the
interval I (), the set of these q, 1s denoled C,,(v,) S0 we thC C,,(v,) ={q, € Q ]
r=(r;..... Fnk) € l,\ 1, fixed. g, (v)) € Ik (V). q unique, for each r, when it exists}.

We set

awm= U U

uelt(v) qeCliv)

which means that g* (v) is the x-union of all the values u belongmg to 15(v) repeated
for each u by the number of times that there exists q € C (v).

Since, given k. the sets !A (v)and C" (v) are finite, it is poss:ble to enumerate
in a finite sequence, denoted uf, the u € I (v), including their C* (v) repetition; thus,
we may define a set S* of these u, such that

k= fubelh(v)/F=1. ) card(Ci(v)}

[ e
uell(v)

Hence, we get

q:‘(v) = U, uk = UX uk where n, = Z card Ct(v)~

ufeS, f=1.n, uel‘ {vi

When k — o S* becomes dense in I (v) since for any u € I (v) ute Ik (v)
< S* such that u¥) — u. < 1/2°. Therefore, when k—~ the sequence {u})} becomes
4 3equence of rational numbers dense in lA (v) and if the assumption of the lemma is
satisfied, q, (v) converges towards U. Notlce that 1fIA (v) and O, are not finite, when
k — x,card lA (v) — + ~ and card ck olV) — +x; xflA (v) is finite and there exists
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such that O, is infinite, then 1% remains finite for any k and card C% (v) — + ~x when
k — + ~: hence. in all these cases n, — + x when k — + . The only case where
ny remains finite when k— + ~ appedrs when I (v) is finite and O, 1s also finite for
any J: in this case it is easy to see that qI (v) will converge always towards the same

finite umon:
Ue U

us le g=Cliv)

where C}' (v) 1s the finite set ofq € Q" such that g(v) = u.

As k — +>. we have [A(V) — I (v). since by construction Yu € l, (v) there
exists uy € IA (v) such that u, —u < 1,2% and therefore for any u € lI (v) there
cxists a sequence {uy} withu, € lA (v) such thatuy, — u thn k — + x.

When k — + x. we may scc in a similar way that O — O; since by the con-
struction ofO YveOQO, v e O such that vy —v < 1. "k

By the construction of 1Y (v, tor any q € C/ (v) such thatve Q;,ue I (v)
and q (v) = u, there exists for am v, € O an Llcmem I, € I,\ (v,)such that q (v )€ Ik
also by the construcuon of C* Sv) lh«.n. CXIStS Qi € C (v) such that g, (v,) € l hence
we get forany v, € O gy (v)-qtv,) <€ 1.2 2% as by construction the len%th oflhe inter-
val l“ 1s 1,2k; hence when k — + x o~ O, and g, — q. therefore C — Cl (V).

hndl]v ask — + x, we have ql," (vi— U, 1§ (v) — I* (v). Ck (v) C,u (v). 1t
follows that at the limit of the equality

qr(\'): U\ U\ u.

L “+
ucliivi e Chiv

we get:

= U Uvu=uda/m/qe Q) = gl

ueTdie g geClin

C
We recall lhdl I, and I are the mappings O; — [0.1] such that ¥v € O,
los (V) =1 and IMv) = {q(v) g, € Q™' we have also gt = {Uy q/q € QIA}.

LEMMA 2

lf\f up. u> € 0.1]. u.u u- Md\((ul u>). thenvV A, < d,andVvve O, we
have ¢ (v)=Max {uu e I (v)} andq =1 .

Proof

First we show that any sequence
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where {u,} is a sequence of rational numbers dense in I*, converges this follows
from the fact that vn U, =U, U, = U, . since uu, v > Max (u,v). and so
the sequence {U,} is increasing. as it 1s majored by 1. Second. thn sequence U, con-
verges towards U, for, if u<U was its hmit we would obtain a contradiction
hecause, since the sequence {u,} is dense in li (v). there would exist a k such that
u<uy <land Uy =Uyg U ug 2 ug > u. hence the sequence { U, } would never con-
u.rgu towards u. as it is ln(.ersmg Therefore, by applying lemma 1. we get q,’\
v} = U; hence. in thc case where l (v)={0.1] we have U=1 and so Vv € O,, qf\
\}_ 1, therefore q, =lo,.
Hence, we have proved the theorem in the case where O, 1s a bounded set of R.
Let O, Ja,.b,[. where {a,} and {b,} arc two sequences of R such that, when n —
4 X, dy — — o and b, — + x. We may say that the thecorem remains true with
=] —x.+x [ sincc when n — + x V a, b € K there exists Ny, N, large
enough such that the theorem remains true on Ja,,. by, [with a,; <a and b, >b
for (n;.n2) such that ny > Ny and n> > Na. [

Proof of theorem | (possibilist objects)
(1 a'tag)=1.a"(0)=

It is easy to see that the assumptions of lemma 2 are satisfied as

(a) Y uv €[0.1]. u U, v=Max (u.v) by definition
() \7’ ue 01l 1 y,u=1=Max(Lu=10u, 0=Max (0.0)=0: therefore V,,
q LEE=] Poe Thm.fore

a’(ay) = [,({gpq,. 1) },) = Max({sup(Min(q,(v}. 1o (v))}}}

ve(),

= Max({sup(q,(v})},) = Max({1},) as q,(O,) = L.
u;()‘

This implies the existence of veO, such that g,(v)= 1. Therefore we get finally

u'(ap) = 1. By definition

'd.(O) = fp({gp(qvol)}l) with gp(ql-‘:)l) = SUP(Min(q,(V)‘OHV)))

ve ()

= sup(o,(v)) =0 as ¢(v) = 0¥ €O,
vi-{),

Therefore a’ (o) = Max({0},) = 0.

fii) a (A|UpA )~MdX$‘d (A)).a(Al)). By definition we have: AjUpAr=Aly, =
qMu, ) with @ ={u,q qeQ™}: Since the assumptions of lemma 2
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are satisfied, g”* exists. Hence, we may write:

a.(AI Up A2) = fp({gp(qi-inl Up in: } } where gp(qi'inl UP in:)

=su(§)(Min{qi( . Max(q™ (v). g (v)}).

Since Min{a.Max(b.c)} = Max{Min(a.b). Min(a.c)}. we have:

£,(a,.9"" Uy q%) = Sup (Max{Min{q,(v), g™ (v)}. Min{q,(v),q*(v)}).

veQ,

But since

Sup (Max{a( v)}} = Max{Sup (a(v)).Sup (b(v))}
ve(, veQy veQ,

we get:

go(a™ Uy g™) = Max{Sup (Min{q,(v).q™ (v)}). Sup (Min{q;(v).q™(v)})}.

veO, veQ,

Hence, as Max({Max(a, b))} = Max(Max,({a,}), Max,({b,})} and a'(A,Up As)=
Max, ({gn(q,.q, ‘Uq, ). by definition, we get:

a’'(A, U, A,) de{Max Sup(Min{q,(v ),in‘(v)).Max Sup(Min{qi(v),q‘A:(v))}

veOn ! veOi
and finally:
a’(Ay U, Az) = Max(a’(A).a"(Ay)).

Proof of theorem 2 (probabilist objects)

It is easy to see that the assumptions of lemma 2 are satisfied in case of pro-
babilist union as:

(@)  VYuuel0lf,wehave:u, Up,uo=u;+u; —uyus 2 u;+us(l—uy) 2y
and u; +u; (1 —u2) = ua, so that uy Uy, u> > Max (uy. uy).
(b) VYug[0l], 1 Upu=l+u-u=1I;

(c) 0UL0=0.

Hence it follows from this lemma that q?"’ =lp,and VA, C 4, in‘" exists.
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Now we may prove theorem 2:
i) a'@p)=l:a"(¢)=

From qf’ =lo;we get:a'(@,) = forl{8pe(ay 10i) }i): Were gor(qi 1 0i) = S {Gi(v) 1o (V)/
veO,} =8 {qi(v) / veO;} = 1. Therefore: a @)= for({1})=1.

By definition we have a"(¢) = fo({gp(qi.®)}1)s where V veO;, ¢i(v) =
hence. gp(qi i) = £{q;(V)¢i(v)/v€O;} = 0; therefore a’(¢) = Mean ({0 },)_0.

i) v A|. Az § ax a.(AlUpr Az) = a‘(Al) + a.(A?.) - a‘(Alﬁpr AZ)
As q* exists, we may write, by definition:

""(‘ts‘luprA )“‘ pr( §pl’(qhq| lUprql )}1) With §pr(Ql q, prq;A: = <Q|v q,A' +Q:\: -
4" Npe G77) = (@) + (@G ) = (@09 e @)

As f,; is the mean, it results that:

(A;UprAa)A- Mean({(q..q,"") A(qnq, H) = (@G Npr q, 1) = Mean ({(quq]")}) +
Mean ({q;.q;}i) — Mean({ (q,,q‘ "Npr ql N)=a(A;)+a’(A,)—a (Alﬂp, As).
a
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