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The main aim of the symbolic approach in data analysis is to extend problems. 
methods and algorithms used on classical data to more complex data called 
"symbolic objects" which are well adapted to representing knowledge and which are 
"generic" unlike usual observations which characterize "'individual things". We 
introduce several kinds of symbolic objects: Boolean, possibilist, probabilist and 
belief. We briefly present some of their qualities and properties; three theorems 
show how Probability, Possibility and Evidence theories may be extended on these 
objects. Finally, four kinds of data analysis problems including the symbolic 
extension are illustrated by several algorithms which induce knowledge from classical 
data or from a set of symbolic objects. 
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1.1. Introduction 

If we wish to describe the fruits produced by a village, by the fact that "The  
weight is between 300 and 400 grammes and the color is white or red and if the color 
is white then the weight is lower than 350 grammes" ,  it is not possible to put this 
kind of informat ion in a classical data table where rows represent villages and 
columns descriptors of  the fruits. This is because there will not be a single value 
in each cell of  the table (for instance, for the weight) and also because it will not 
be easy to represent rules (if . . . .  then . . . )  in this table. It is much easier to represent 
this kind of  informat ion by a logical expression such as: 

a, = [weight = [300,400]] A [color = {red, white}] 

× A [if [color = white]then[weight <<. 350]], 

where a,, associated to represent the ith village, is a mapping  defined on the set of  
fruits ~2 such that  for a given fruit ~ E 9/, a, (~) = true if the weight of  ~ belongs 
to the interval [300,400], its color is red or white and if it is white then its weight 
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is less than 350 gr. Following the terminology of  this paper, ai is a kind of  symbolic 
object: " 'symbolic" because a, is described by an expression which contains 
operators  different from those used with classical numbers.  " 'object" because it is 
considered to be an individual object for a statistic of  a higher level unit; if we 
have a set of  1000 villages represented by a set of  1000 symbolic objects a~ . . . . .  
a~.¢~, an important  problem is to know how to apply data analysis or statistical 
methods to it. For instance, what is a histogram or a classification or a p robabi l i ty  
law for such a set of  objects'? The aim of symbolic data analysis Diday [7.8] is to 
provide tools for answering this problem. 

in some fields a Boolean representation of  the knowledge (a, ( , : )=  true or 
false) is sufficient to get the main information, but in many cases we need to include 
uncertainty to represent the real world with more efficiency. For  instance, if we say 
that in the ith village "the color of  the fruits is often red and seldom white" we may 
represent this information by a, = [color = o/?en red. sehhml white]. More generally, 
in the case of  Boolean objects or objects where frequency appears, we may write 
a, -- [col,r = q, ] where q, is a characteristic function in the Boolean case, and a prob- 
ability measure in the second case. More precisely, in the Boolean case. if 
a,=[coh;r= {red. white}] we have q, tred)= q,(white)= 1 and q, = 0. for the other 
colors; in the probabilist  case. if a, = [cob ; r=0 .9  re~L 0.1 white] we have 
q,(redj = 0.9. q, (white) = 0.1. If an expert says that the fruits are red we may repre- 
sent this inlbrmation by a symbolic object a, = [color = q, ]. where q, is a "'possibilist'" 
function in the sense of  Dubois  and Prade [4]: we will have. for instance, q~ 
(white) - O. q,(pink) = 0.5 and q,(red) = I. If an expert who has to study a represen- 
tative sample of  fruits from the ith village, says that 60% are red. 30% are white and 
the color is unknown for 10°o which were too rotten, we may represent this infor. 
marion by a,--[coh~r = q,] where q, is a belief function such that q,(red)= 0.6 
q,(whitc) = 0.3 and q, ( o ) =  l.where ~ is the set of  possible colors. Depending or 
the kind of  mapping q, used. a, is called a Boolean. probabilist ,  possibilist o~ 
belief object. In all these cases a, is a mapping from ~ (the set of  fruits) to [0,1] 
Now. the problem is to know how to compute  a, (,:): if there is doubt  about  th4 
color of  a given fruit ~'. for instance, if the expert says that "'the color of  ~,., is re~ 
or pink" then. ~' may be described bv a characteristic function r and represente~ 
by a symbolic object ~. '= [color= r] such that r(red)=r(pink)= 1 and r = 0  fo 
the other colors. Depending on the kind of  knowledge that the user wishes to repre 
sent. r may be a probability, possibility or belief function. Having a, = [coh;r = q 
and ,?  - [color = r] to compute  a, (.,.') we introduce a comparison function g suc 
that a, (~,)=g(q,.r) measures the lit between q, and r. What is the meaning c 
a,t~')? May we say that a, (~') measures a kind of  probability, possibility or belk 
that ~, belongs to the class of  fruits described by a, when q, and r. depending o 
the background knowledge, are characteristic, probability,  possibility or belief rum 
lions respectively? To answer this question we need to extend a, (where x represen~ 
a kind of  background knowledge) to a] defined on a,  a set of  symbolic objects an 
to define set operators  OP, = {u,, N,. c,} in a, adapted to x. If we say that classic; 
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sets represent a knowledge level of order O: probability, possibility and belieL a 
knowledge level of order 1, the question was now to know if a] represents a know- 
ledge level of order 2. In other words, if it is a probability ofprobability, a possibility 
of possibility a belief of belief respectively associated with the corresponding opera- 
tors OP,: theorems I, 2, 3 show that this is the case, if OP, and some functions g~ 
and 1, are well chosen. 

In probability theory, very little is said about events which are generally iden- 
tified as parts of the sample space ~ L in computer science, object oriented languages 
consider more general events called objects or "'frames" defined by intcnsion. In 
data analysis (multidimensional scaling, clustering, exploratory data analysis etc.) 
more importance is given to the elementary, objects which belong to the sample ~] 
than in classical statistics where attention is focused on the probability laws of ~L 
however, objects of data analysis are generally identified with points of Rt' and 
hence are inadequate to treat complex objects coming for instance from large 
data bases, and knowledge bases. Our aim is to definc complex objects called 
"'symbolic objects", inspired by those of object oriented languages in such a way 
that data analysis becomes generalized into knowledge analysis. Objects may be 
defined intensionally by the properties of a generic element of the class that they 
represent: we distinguish these kinds of objects rather than "'elementary observed 
objects" which characterize "'individual things": for instance "'the customers of 
mv shop" instead of "'a customer of mv shop", a "'species of mushroom" instead 
of "the mushroom that I have in my hand". Symbolic objects extend classical 
objects of data analysis in two ways: first, in case of "'elementary objects" which 
represents individual things, by giving the possibility of introducing in their defini- 
tion, structured information (see the case of "horde" in section 2 for the description 
of an image), probabilities (subjective or objective), possibilities (in case of vague- 
hess and imprecision for instanceL belief (in case of probabilities only known on 
parts and to express ignorance): second, in case of objects which are described 
intensionally, by the same possibilities as in the case of elementary objects, plus 
the possibility of expressing variation for the values taken by each variable 
among the member of their extension ([coh~r = {red. white}]) and also by expressing 
constraints between these values with rules (if [color = white] then [weight <~ 350]). 

By extending data analysis methods to symbolic objects this paper makes a 
bridge between several domains: "'data analysis and statistics" (where limited 
interest has, as yet, been shown in treating this kind of objects), "statistical data 
ba~s'" (where symbolic objects may be considered as "'metadata'" which means data 
on the data), "'management of uncertainty in knowledge-based systems" (where the 
emphasis is now more on knowledge representation and reasoning then on data ana- 
lysis), "'learning machine" (where this kind of objects as input and classical methods of 
data analysis has been neglected) and more generally in AI (where the results here 
obtained, in theorems 1, 2, 3, concern metaknowledge or knowledge on knowledge). 

We have not used the notion of "predicates" from classical logic, firstly, 
because by using only mappings or functions, things seem more understandable, 
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F~gure I, Any element of D, B or a ma)  be considered as a symbolic object. 

especially to statisticians: secondly, because they cannot  be used easily in the case of 
probabilist, possibilist and belief objects where uncertainty is present. 

2. Symbolic objects 

2.1. I ) E H N I T I O N  OF S Y M B O L I ( '  OBJECTS 

We denote ~ a set of  elementary things called "'individual objects", A a set of 
possible descriptions of~L v a mapping ~ ~ A (see figure 1 ) which associates to an) 
~'E~ its description b = v {~t: D is a set of  description of  subsets of~L Y~ is a map- 
ping P(~ ~) ~ D. where P (~ ~)is the power set of  ~L which associates to any ~~' C_ 9t its 
description d E D: Y is a mapping P (~) ~ P ( A )  such that Y ( ~ ' ) =  A' iff A ' =  {) 
(..,) . , , ~ ' }  Ya is a mapping p(A) ~ D which associates to any A' C_ A a description 
d ED which satisfies at least the following property: Y..x(A') C_ D; A is a set of 
mappings ~ ~ L where L = {true,/alse} in this section (more generally L=[0,1] 
in section 3): h ~ is a mapping D ~ .4 such that h ~(d)=  a where a is the mapping 
~ ~ {true, lid,w} such that a (~')= true i f f y  (~')= h E d: B is the set of  mappings 
D ~ L = I t r u c ,  /~dsc} such that h6Id)=h where h is the mapping A ~  
{true,/idse} such that h (1'1 = true iff ?' E d; we denote a =/q~(D)  and B = hx(D): 
Z i s a m a p p i n g B - ~ a s u c h t h a t Z ( h ) = a i f f u =  b o y .  

An intension of  a set of  individual objects ~2' C_ ~ may be defined b) 
d =  )'~(~'), a = h  ~t( Y ~t(~')), or h=h~(Y~(~]')). In section 2.4 we compare these 
different kinds of  intension. The extension of a in ~ is a subset of  ~ denoted 
Ext(a  ~)  and defined by Ext(a  ~ 1 =  {~.'E~L'a(~'j=true}; the extension of  h is a 
subset of A defined by Ext (h A ) =  {OEA h (h)= true}; the extension of d E D in X is 
denoted Ext(d,U): by definition, we set Ext(d~)=Ext(a , '~])  and E x t ( d / A ) =  
Ext (h ,..X ), 

E..s is the mapping B - ,  PC,A) such that Ea(h ) = Ext (b,~),  E~ is the mapping 
a ~ P ( ~ )  such that E ~ ( a ) = E x t ( a ~ ) .  All these mappings are summarized in 
tigure 1. 

In statistics or in classical data analysis we study a knowledge base defined by 
the pair (~L A) such that the units are pairs (~',h) where ,~ E ~ is an individual objecl 
described by ~s E D. 
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In symbol ic  da ta  analysis we s tudy a knowledge  base ( W, .V ) where  14' is a 
subset o f  P (~1 and X is an intension space included in D. B or  a .  Not ice  that in 
probabi l i ty  theory,  probabi l i t ies  are usually defined on the set (A, P (A)I. 

A symbol ic  object  is a set o f  proper t ies  concerning a subset  of~]. Any  element  
of D. B or  a may  be cons idered  as a symbol ic  object:  in the next section we give an 
example which illustrates the mappings  and sets which have been defined in this 

section. 

2 2 THE CASE WHERE DESCRIPTIONS ARE CARTESIAN PRODUCTS 

In this special case we assume that ~ is descr ibed by A = Ot , . . .  × Op where 
(), is a d o m a i n  conta in ing  a set o f  possible values {the color  of  fruits, for instancel  
and D = P (O~)  × . . .  x P (O v ): it results in the finite case. that card P{~} = c a r d  
2 ~1''"~°' and D = 2'~'~rd°': hence D. which is included in P[A).  is generally much 

smaller than P(A).  
In this case, if d = { | ' ~  ..... I" e) where I', C_ O, and h x ( d ) =  h. then we denote  

h =/~, [X, = V, ]._x. which means  that if ~., = (xt . . . . . .  vp}. h(.~'l = true iff the s ta tements  
v, ¢ V, are true: if. moreover ,  h ~(d} = a we have a (~.') = ,'~, [y I-.'} E I', ]s, which may  
be writ ten a ( . ) =  A, [.v(.IE l', ]s~. which is simplified to a = A, [ .v= t', ] ~. 

t!XAMPLE 

~ is a set o f  fruits, A is the set o f  all possible  descr ipt ions  of  the fruits by their 
color and their weight: hence it O~ is the set of  possible weights and O, is the set o f  
possible colors  we have A = O~ × 0 5  ~ is the set whose  elements are the fruits pro- 
duced by a village: Yst associates  to the set o f  fruits ~-~' C_ ~ of  a village, the smallest 
interval 1"~ of  weights  in which they take their values and the union of  their color  V,: 
hence we have }'~ ( ~ ' ) =  I'L × 1"2 =d, a=h~:(d)=[.vl = ll]~: A [y_,--l'_,1~ and 
t , -  h , , I d ) =  [.x~ = l'~]._x /x Ix2= l"2]._x where  for instance, as in the example  of  the 
introduct ion:  l'j = [300, 400] and I', = {red, white}: Y (~]'1 is the set o f  descrip- 
tions A' o f  the fruits o f  the village and 1," ._s(A'} = d = l'l × V.,. 

E~(h) = Ext ( h A l  is the set A" o f  the descr ip t ions  b such that h (/s) = true and 
so on. such that ,~ E d =  I'~ × l'_,: hence, )'(~]'1 = A' C_ A"; E~(a) = Ext (a ~]~ is the set 
~- .~" of  individual  objects  ~' E ~ such that a (~') = true and so on, such that .vt (,,.'} E Vj 
and .v_,(,,.') E | ' 2 ,  hence ~ '  c_ ~".  

b THE CASE WHERE DES(RIPTIONS ARE ( 'ARTESIAN PR()DUCTS WITH 

CONSTRAINTS 

Cons t ra in t s  may  appea r  in order  to describe more  precisely a set ~ ' C  ~ o f  
individual objects;  for instance, in the example  of  the in t roduct ion  we have added  
to the descr ipt ion a = [ y = [ 3 0 0 , 4 0 0 ] ]  A [color= {red, white}] the const ra int  [if 
[c,,Ior = white ] then [wei.~ht <<, 350]]. Other  kinds o f  cons t ra in ts  may  appear  to avoid  
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incoherences  in the descr ip t ion o f  a set ~ '  C_ ~;  for instance,  if f]' is a set o f  mush- 
rooms  with or  wi thout  hat and one o f  the descr ip t ions  concerns  the color  o f  the hat, 
we must  add  the condi t ion  that  there is no co lor  o f  hat when there is no hat. 

2.4. C O M P A R I S O N S  B E T W E E N  T H E  SETS OF  I N T E N S I O N S  D. a .  B. c 

These compa r i sons  depend  on the choice o f  v and A. in order  to simplify, we 
assume that D C_ P (AI, it is then easy to show that h~ is a bi jection (which is not  the 
case for h :t if t' is not bijective), if  v is surjective it is easy to p rove  that Z is injective 
and if v is injective that  Z is surjective: therefore,  if v is bijective Z becomes  a 
bijection be tween B and a .  

T w o  natural  choices for A are the following: the first, deno ted  At ,  is the set of 
descr ip t ions  with cons t ra in ts  Ifor instance, coheren t  descript ions):  the second. 
deno ted  A2, is the set o f  all possible  Irealisable or  unreal isable)  descriptions.  
When  v is bijective and A - -  A~. ~ = l ~ j  is the set o f  all coheren t  or  " 'observable"  
individual  objects:  when v is bijective and A = A 2, then ~] = ~2 is the set o f  all 
" 'possible" (realisable or unreal isable)  individual  objects:  ~Z2 is called the set of 
" 'possibilities". in practice we have ~Z = 1~o. the set o f  " 'observed"  individual  objects 
which is not in bijection with the sets A~ or A2 as several individual  objects  may 
have the same descr ipt ion and also as some descr ip t ion o f  A~ or A2 may  corre- 
spond to no individual  object  o f  ~ .  • hence we have to cons ider  also the case 
where v is not bijective. We deno te  C the set o f  l -complexes  in t roduced  by 
Michalski  et al. [14] which elements  are logical express ions  of  the kind c =  
A, [X, = V,] where  the s ta tement  [),',-- 1", ] means  "'value of  .¥, is one  o f  the elements 
of  1', '" f rom the definition of  B it results that  /5 = A, [X,-- i.'; ] 2, is equal  to c =  
A, [X,-- 1, ] iff A = A 2. The c o m p a r i s o n  between the different  sets o f  intensions is 
given in figure 2, where the sign ¢ ,  means  the existence of  a bijection. 

2.5. C ( ) M i ' L E T E  S Y M B O L I C  OBJECTS A N D  L A T T I C E S  ON a , B A N D  ( '  

When  we associate  to an element [~' E P (~)  a symbol ic  object  Y~I([~') = d E D 
the extension o f  d i n  [~ which is E~(h~(d)) conta ins  [~' as it is the set of. , ,  E [~ such 
that y (,-9 Ed: in o ther  words ,  we have [~' C E~(a) with a =/1 ~ ( Y~(~')): in the parti- 
cular  case where ~ '  = E ~(a). we say that a is a comple te  symbol ic  object :  similarly. 
we say that h is a comple te  symbol ic  object  iff ~ '  = E_x(h) with b = h_x(Y~(~]')). We 

A 

AI 

A2 

y is a bijection y is not a bijection 

a < = ,  B < # , c  a <#> B < # : , c  

a <=> B < = > ¢  a <#> B < = > c  

Figure 2. Comparison between the sets of  intensions: in an,,' case B ¢:~ l); (" is the Michalski set of 
l-complexes 
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denote a , .  (resp. B,-) the set o f c o m p l e t e  symbolic  objects included in a (resp. B ). We 
define a part ial  order  on a set o f  symbolic  objects by s tat ing that  a symbolic  object sj 
is lower than  a symbol ic  s2 iff the extension ofs~ is conta ined  in the extension o f  s2. 
We define the s u p r e m u m  (resp. inf imum) of  two symbolic  objects s~, s2 which 
description is respectively dl = O ' l  x . . .  x O'p and d~ = 0 ' ( ×  . . .  x O~ by d I u d 2  = 
O',u O': x . . .  x O'pu Op" (resp. d, r i d 2 0 ' 1  nO'2 x ..'. x O o' n Op"). " 

The smallest description of [~' C_ [] is the intersection of all the descriptions 
d ¢_ D, such that E~(h~(d)) = [~'. It may be shown that a, a ,  (see Diday [7]), and B,. 
(see Brito [2]) constitute a lattice. 

I!XAMPLE 

Let Q~ = {~t,,~'2} be described by y: ~ l ~ -  O =  {I,2} such that  y { ~ l ) =  I, 
Y(-,,'2)=2: therefore y ( ~ ) =  A3 = {bj,b2} where bj = 1 and b, = 2; it results also that  
D= P{O)= {{I},{2},{I,2},0}. 

We define the following symbolic objects of A: a t = [y = l]~, a2 =[y = 2]~, 
a~ =[y = {l,2}]~and a4 =[y =0]i~; wechoose~= {wl}. therefore a, =a3 and a2 =a4. 

We define also the mappings biEB rcprescnted by the l-complex ci = Zl(bi): 
cl = I X  = 1], c 2 = [ X  = 2], c3 = [ X  = {1,2}] and c a = [ X = O ] .  

In this case, it is easy to see that  the set o f  complete  objects is a,  = {al,a2~¢ ~' 
with a~' = [y = 1] and  a~ = [y = 0]. In figures 3(a), (b), {c) we represent three lattices 
respectively associated to a = {al = a3, a_, = a4}, a~ = {a~,a~} and lc = {cl,c2,c3,c4}. 

2¢-, CHOICE OF THE KNOWLEDGE BASE FOR A SYMBOLIC DATA ANALYSIS 

We have seen in section 2.1 that  a knowledge  base is a pair ('ILX) where X = a 
or B or C: so, a na tura l  quest ion is to ask in which case we have to use a ,  B or C, in 
practice. 

If  we wish to take account  only  o f  the set o f  descriptions A2 then, the best 
choice to make  is Y = B: this happens  for instance, when the descriptions of  subsets 
¢..)' of~~ (i.e. f~ 'E~) have cons t ra in ts  and  do not  depend on any  sample ~~; this kind of  
knowledge base is used when we wish to s tudy species in biology, scenarios o f  

C 

a i = a  3 a I 

C 

a2= a 4 a2 

(a)  (b)  

c 3 

C n 

(c) 

c 2 

ilgure 3. (a). (b), (c) represent respectively the lattice of a, ;~ and/,. In (a) we represent the order 
• • and in (c) c4 < cl. c4 < c,, c~ < c3. c, < c3, al : a.s < al = a~; in {b) the order a 3 < al _ . 
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accidents in transportat ion,  teams in a company  (each species, scenario or team is 
then an element of  ~}, independently of  any sample set. 

l fwe  wish to study a set ~'~ described without constraints and independently of 
~ the best choice is X = C. If we wish to take into account  the statistical information 
contained in ~L the best choice to make is a ;  moreover,  a allows the possibility to 
compute  a more simple lattice (see the previous example in section 2.5) and dis- 
tances between symbolic objects when the descriptions vary: this may happen for 
instance when several sensors give different measures on the same set ~, or  when 
~ is described by variables the values of  which vary with time. 

If ~ is described by two mappings )'t and y ,  such that 3', (f~) = A, = O~, then 
the mappings a, E a ,  defined by tq~: D, = P ( 0 3  ~ a~ when i varies are comparable 
by using a dissimilarity (for instance s ( a l , a : )=  Z {!al (,~) - a2 (~2)1/,~E~2} whereas 
the mappings h,EB, defined by ha.: A, ~ B ,  are not comparable  when i varies. 

EXAMPLE 

Let ~] = {,Jt.~':,~3,~'4} be a set described by two ordinal mappings yj: ~j  
O1 = {12} and Y2: ~] ~ O_, = {1,2,3}, as given in figure 4. Let al = [y l  = 1]n and 
a, = [.1'2 -- 1]~ 

Considering that Oj and 02 are ordered sets, we may compute 
s(al,az} = E . ~  at(-~')- a,{,~') = 2, whereas cl = [Xt = I] and c2 = [X2 = 1] are not 
comparable  as they are not defined on the same set of  objects, since ct is defined 
on Ai whereas c2 is defined on A2. 

In this paper we focus on the knowledge base (P ([~), a}  because a is the only 
set which may take into account the statistical information contained in ~ when y is 
not injective, and also it may take into account only the descriptions when y is 
bijective. 

On this issue, Brito [2] focuses on the knowledge base {[LB) when y is not 
bijective and A = A2; De Carvalho [5] focuses on the knowledge base ( ~ , a l  
when y is bijective and A = At. In their dissertation, Lebbe and Vignes [13] focus 
on ([LD} with A = A t and y not bijective. 

3. Boolean symbolic objects 

In this section, descriptions are Cartesian products:  so, we have A = Ot x . . .  × 
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Op = 0  and D = P (Oi)  × . . .  x P(Op); let Yi be a mapp ing  fl - - . 0 ,  which associa tes  
to ~ E ~] its value y i (~)  in the d o m a i n  Oi; y = (Yl . . . . .  ypt is a mapp ing  ~ --. A such 
that y(~') = (y~ (-.') . . . . .  yp (,~)). Boolean  symbol ic  objects  are symbol ic  objects  con-  
sidered in the case where  L is Boolean (i.e. L =  {true. false}). Several kinds of  
Boolean symbol ic  objects  may  be defined in a :  events,  assert ions,  hordes,  syn- 
thesis; we define them in the fol lowing section. 

3 1 EVENTS 

Let D, = P (O,) and h's~ the mapp ing  D, --. a such that h'tt(V,) = e, where e, is 
the mapp ing  ~ ---. {true. false} such that e, (~) = true i f fy,  (,~') E V,. By ana logy  with 
the denomina t i ons  used in p robabi l i ty  theory  (where an " 'event" is a subset  V, c ~]). 
the basic symbol ic  object  ei is called an " 'event". In logical terms we may write 
c, (~,) = [y, (~) E V,]s~ where  [y, (~) E V,]~ is the logical p ropos i t ion  which is true iff 
y, (..,:) E V; to express  the symbol ic  object  e,. in order  to simplify nota t ions ,  instead o f  
writing {V~'. el (-:) = [y, (,.J) E V]~} or  e, ( . ) =  [y, (.) E V]~ we write el = [Y, = Vi]~ or  
more s imply e, = [y, = Vi] by d ropp ing  ~ when there is no ambigui ty  on its choice. 
For instance, if ei = [color = {red.white}]. then ei(~) = true iff the color  of  ,~ is red 
or white. When  y, (,.,) is meaningless  (e.g. the kind o f  c o m p u t e r  used by a c o m p a n y  
without  compu te r s )  V, = o and when it has a meaning  but  it is not known  V, = Ol. 
The extension o f  e, in ~ deno ted  by ext (e, '~h is the set o f  e lements  ,,.; E ~ such that 

e,(~'l = true. 

3 2, ASSERTIONS 

An asser t ion is a con junc t ion  of  events;  more  precisely, it is defined by the 
mapping h~: D - -  D l ×  . . .  × D o --' a such that if V = ( V l  . . . . .  Vp) where V, c_ O, 
then h~ (V) = a such that a(.,.') = true iff y Iw) E V. 

In logical terms we may  write  at~') = A, [y, (.,.') E V,] = A, e, (,,.'h in confo rmi ty  
with the no ta t ion  for an event ,  an assert ion a is deno ted  a = A, [y, = V,]. For  
instance, if a = [color = {red. white}] A [height = [0. 15]]. a (~ ' )=  true iff ,,3 is red or  
white and its height is be tween  0 and 15. The  extension o f  an assert ion deno ted  
cxtla ~ I  is the set o f  e lements  o f~ ]  such that Vi. y,(~') E V,. 

3 3 HORDES AND SYNTHESIS OBJECI'S 

A " 'horde"  is a symbol ic  object  which is used when we need to descr ibe a 
structure c o m p o s e d  of  several e lements  of  ~-~ related together,  for instance, when 
we need to express relat ions be tween  elements  o f  a pic ture  that  we wish to describe. 
It is defined by the mapp ing  hl~ = D ---. H where  H is the set o f  mappings  F/p --, 
',true, false}, such that h~ ( V ) =  H where  V = (V~ . . . . .  Vp) and  H ( u ) =  true where  
u = ( u l  . . . . .  up), iff Y, (ui) E V4 such a horde  is deno ted  H = A i  [Y, ( u J = V t ] .  
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Not ice  that  if we add  the cons t ra in t  u~ = u:, . . . . .  up a horde  becomes  an asser- 
tion. The  extens ion o f  H in f~P is Ext (H/~] p) = {,.,., C ~]r/H (,;) = true}. 

For  instance,  if~2 is a set o f  people  in a town.  H = [yl(ul)  = 1] A [y-,(u-,) = 2] A 
[y3(u~)=[30,35]] A [ne ighbour  (ut. u : ) =  yes] means  that  ul is a man.  u:, is a woman  
and both  are neighbours .  

A "synthesis object'" is a con junc t ion  or  a semant ic  link be tween hordes 
deno ted  in the case o f  con junc t ion  by s = A, h, where  each horde  may  be defined 
on a different  set ~, by different  descr iptors .  Fo r  instance ~]l may  be individuals.  
~], locat ion,  ~h kind o f  j o b  etc. All these objec ts  are detai led in D iday  [8]. 

EXAMPLE 

~ is a set o f  m u s h r o o m s ,  descr ibed  by their co lo r  and their length; they are 
represented by two var iables  c o l t :  ~] - ~  O c and  tt: ~] ---, O~ which depend  upon 
the time t. In o rder  to simplify we suppose  that  at any  time. they may  take only 
two colors  and only two classes o f  length, such that  Oc,, l= {1, 2} and Oc = {1, 2}. 
At time t~ and t2 we obta in  the tables (a) and (b) given below for a set o f t w o  mush- 
rooms  ~]~ = {,.,~. ,z:}: table (c) represents  the values taken by the elements  o f  the set 
o f  decr ivable  object  ~] at a given time. 

Let a~. a2. c be three asser t ions  where  c is a ,(-complex and c a complex  such that 

a , ,  : [ co l , ,  : t] ,", {t,, : 1.21: a , :  : [ co l , :  : 1] A I t , :  : 1 . ' ] :  

c : I x ,  : I] A I x ,  : 1 , 2 1  

By delinit ion, art and at2 are mappings  ~ --, {true. false} such that 

ata(~' 1 ) = [coltl(~' I ) ¢ { l} j / ' ,  [ttt(,.,.' I ) E {1.2}J = true; 

similarly way wc ob ta in  

atl (-:2) = fidse, at2(,~' I ) = false, at2(~'2) = true. 

c(xl )  = c(x: )  = true. c(x2) - c ( x t )  = false. 

0 Oi O: 

Table  (a) Tab le  (b) Table  (c) 

x~ 1 1 

[~ colt1 [t~ ~ colt., It_, x~ 2 1 

~1 ! 1 ~ l  2 1 x3 1 2 

,>, 2 1 ,.,,,-, 1 2 x4 2 2 
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It results that  ext(atl/~'~)= {~l }: ext(at2 ~ ) =  1~..} and ex t (c /O)= {xl. x~}. 
We may also define three hordes as follows: 

hi = [ co l t l (u l )=  11A [[t2(U2)= 1.2], 

h: = [colt2(ul) = 1] A [[,2(u.,) = 1.2] where u, E S-I: 

h,: = [Xl(ul)  = 1] A [X2(uz) = 1,2] where u, E O 1. 

Therefore it is easy to see that  Ext(hm:]~t = {(,.,:l, -.'l ). (-21. ,,:-,)}. Ext(h-,/~j = {(,.'2. ,,,'l ), 
1~.'2. ,,.'2)}: Ext(c. O) = {(xl. xl). (xl. x_,). [x~. xs). (x,. . 'qL (xs. xl). (x3. x-,). (xs. x3). ix4. 
x~t',. 

4. Modal objects 

41, INTERNAL AND EXTERNAL MODAL OBJECTS 

Suppose  that we wish to use a symbolic object to represent individuals of  a set 
satisfying the following sentence: "'It is possible that their weight be between 300 and 
500 grammes  and their color is often red. seldom white"; this sentence contains two 
events el = [weight =[300.500]], e2 = [co lor=  {red. white}] which lack the modes  
possible, often and seldom; a new kind of  events, denoted fl and f2. is needed if 
we wish to introduce them: fl =possible [weight =[300.500]] and f 2 = [ c o l o r =  
',q/?en red. seldom white}]: we can see that f~ contains an external mode  possible 
affecting el whereas f2 contains internal modes affecting the values contained in 
% Hence, it is possible to describe informally the sentence by a modal  assertion 
object denoted  a = f~ A,, f2 where /~,, represents a kind of conjunction related to 
the background  knowledge of  the domain.  The case of  modal  assertions of  the 
kind a = A, f, where all the f, are events with external modes has been studied, for 
instance, in Diday [7]. This paper  is concerned with the case where all the f, contain 
only internal modes.  

42. A FORMAL DEFINITION OF INTERNAL MODAL OBJECTS 

Let x be the background  knowledge and 

M ~ a set of  modes,  for instance M" = {often, sometimes,  seldom, neverl or 
M" = [0,11. 

Q, = { q~}j a set of  mappings  qJ, from O, in M' ,  for instance O, = {red. yellow, 
green}. M~ =[0,11 and ~ ( r ed )=0 .1 ;  ~ (ye l low)=0.3;  ~ (green)= 1, where 
the meaning of  the values 0.1, 0.3. 1 depends on the background knowledge 
(for instance ql may express a possibility, see section 5.1). 
y, is a descriptor  (the color for instance); it is a mapp ing  from ~ in Q,. Notice 
that in the case o f  Boolean objects Yi was a mapping  from ~-] in Oi, and not Qi. 
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EXAMPLE 

l fO,  and M ~ are chosen as in the previous example and the color of.,.' is red 
then y,¢~'} = r means that r ~ Q, be detined by a characteristic mapping  r: r {red} = I. 
r(yellow) = O, r (green) = O. 

• OP,  = {~J,. c~,. c~} where L&.Q express a kind of  union and intersection 
between subsets of Q,. and c~ (q,) (sometimes denoted  q,)). is the complemen-  
tary of q, E Q,. To gain insight into the not ion of  union u~.we may say that 
q j to, qe is a "'generalisation'" of the observat ion q~, q_, given, for instance, by 
two experts or two sensors. 

We denote  by Q~ the smallest stable set l\)r OP,  (e.g. Q,~ is the set of  any .~ or 
c, combina t ion  of  elements q{ E Q,}. 

It 'Q, c Q~. we denote Q the mapping  Q = u ,  {q q < Q,', 
o f Q ,  inQ~ i s c ( Q , ) = l  - Q .  

The complementary  

EXAMPLE 

lfqJ ~ Q, and Q~ c Q, 

q l u ,  q,' + - q,'q  

q,J ~,,q~ = q~q~ , ,here q l q ~ ( v ) =  q,l(vtq~(v}: c,(q, = 1 - q ,  

Intuitively. if qJ is the probabili ty distr ibution of  the words conta ined in a text T{. 
then ql q~ (v} is the probability of getting v among  two words drawn independently 
one in T I and the other in T~:ifPe > PI, it is less "'general" to draw one word among 
P~ words drawn among  P~ texts independently,  than to draw one word among  P: 
words drawn independent ly in P2 texts. 

This choice of  OP,  is " 'Archimedian'" because it satisfies a family of  properties 
studied by Shweizer and Sklar [18] and recalled by Dubois  and Prade [10]. In section 
6.2 we use these operators  in order to deline probabilist objects. 

• g'~ is a " 'comparison" mapping  from Q~ × Q~ in an ordered space LL In this 
paper g', will not depend on i and will be denoted simply g~. 

EXAMPLE 

L'  = M '  = [0,1] and g~ (ql, q~l = < ql, q; > the scalar product .  

• f, is an "aggregat ion"  mapping  from P(L~), the power set, of  L ~ in L ~. For 
instance, f~ ({Li . . . . .  Ln}t=  Max L,. 

Let {y,} be a set of  descriptors and {c¢,,}j c Q~'. Now we are able to give the 
formal delinition of  an internal modal  object (called "'im'" object). It is a symbolic 
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object with D = P(Q~) × . . . .  P(Q~,)and h ( d ) =  a w h e r e d  =({qJ~}7 . . . . .  {qJp},)and a 
~s an im assertion defined as follows: 

I)f{I:INITION 

Given OP,,. g,, and f,. an im assertion is a mapping from ~ in an ordered space 
L'. denoted a = A[y, = {q/}i].  such that. if ~'E ~ is described for any i by 
~,II.~) -- r, then a is given by: {V.,.' E ~L a(~.') =.f,({g,(%,q,' .  r,)}i)}. 

Wc denote  by a~ the set of  im objects associated to background knowledge x. and 
by ,.- the mapp ing  from ~ in a ,  such that ,,: (.,.,)-- .,.," = i,,~, [y, = y, I.,.')]. 

By convent ion,  in all this paper an event [y, = {qJ,}l ] may also be denoted 
[.~, ...... q,~. q~...]; Notice also that it results from the definition that [y, {~ }, ]is equiva- 
lent to the event [ y, = UDq~]; in other words, by using the preceding notation,  the 
c~ent [ y, = Q~] will be considered to be equivalent to [y, = Q]. 

The x-union of  two assertions al,a2 denoted a ,=  A,, [y, =q~] is defined by 
a~,_J~az = A,~ [y, = q~U,q~]: more generally wc have Uj~aj = A,~[y, = U ~ ] ;  hence, it 
results with our convention that %~aj = A,[ y, = {q{, }j]. The in ter .~t ion of assertions 
is defined similarly: Aj~ aj = A,[ y, = nj~ q{,]. The operators OPx extended on ax  will 
be studied in greater depth in section 9. 

There are at least two ways to define the extension of an im object a. The first 
consists in considering that each element ,: E ~ is more or less in the extension of a 
according to its weight given by a(~'); in this case the extension of a denoted Ext (a/~) 
~ill be the set of  pairs {(~. a(~)) U ..c E ~]}. The .second requires a given threshold ~ and 
then, the extension of a will be Ext (a ~L ~}=  {(.,.'. a(,,.'))..,: E {L a(~') /> ~}. 

4 t SEMANTICS OF 1M OBJECTS 

object 

t,t) 

It) 

In addi t ion to the modes,  several other notions may be expressed by an im 
a: 

Certainty: a{w) is not true or false as for Boolean objects but expresses a 
degree of  certainty. 
l'ariation: this appears at two levels in an im object denoted a =  
Alx [y, = {qJ, }j ]; first within each qJ,, for instance if y, is the color, q~ (red) = 0.5, 
q, (g reen)=  0.3 means that  a variation exists between the individual objects 
which belong to the extension of  a (for instance a species of mushrooms)  
where some are red and others are green; second, for a given description y, 
and v E O,, between the ~(v)  when j  varies (each ~ (v) expresses for instance 
the variation of  the color v between different kinds of  species). 
Doubt: i fwe say that the color of a species of  m u s h r o o m  is red "or"  green, it is 
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an "or"  of  variation, but if we say that the color of  the m u s h r o o m  which is in 
my hand is red "'or" green, it is an "or"  of  doubt .  

Hence. if we describe .,z E ~ by , ; ( w ) = . ? =  Aj [y, = y, (-.9] where y, (.~)= {rl} J we 
express a vagueness or an imprecision in each ?, and a doubt  among  the ?, provided,  
for instance• by several experts. 

4.4. AN EXAMPLE OF BACKGROUND KNOWLEDGE EXPRESSING "'INTENSITY" 

Here the background  knowledge x is denoted i. for intensity. Each individual 
object ,.v E ~ is a manufac tured  object described by two features Yl, which expresses 
the degree of  "roundness"  and "'flatness". and Y2. the "'heaviness": Ol = {flat. 
round}.  O.  = {heavy}: M ' =  {very. quite, a little, very litth', nil}. 

Let a and ,.,.'~ be defined by: 

a = [yj = a litth' flat. quite rounded] A, [Yz = a little heavy] 

~" = [Yl = quite rounded] A, {Yz = t'erv heavy, quite heavy]. 

(The user has a doubt  for ~.' between very and quite heavy). 
The problem is to know if it is acceptable to say that ~., belongs to the class of 

manufac tured  objects described bv a. 
Hence q', ( f lat)= a litth': qt ( r o u n d e d ) =  quite: q! (heavy)=  a little, rl ( f la t )= 

nil: r l l (rounded)=qui te:  r!(hea ' ,3 ' )= ~'erv. r~ = ( h e a v y ) = q u i t e .  A given taxo- 
nomy Tax which expresses the background knowledge on the values of M ~ makes it 
possible to say that Tax (very, quite)= somewhat: hence if we set rll Ui r~(v) = 
Tax(r~(v). r g(v)), we have rzu,r ~ (hea~3')= Tax (very. quite) = somewhat. 

We define U by L~ = not acceptable. L. = acceptable. L~ = completely accept- 
able and we suppose that the comparison mapping g, is given by a table Tg~ such 
that g,(q].rll)= Tg, ((a litth' flat. quite rounded). (nil flat. quite rounded) )=  accept- 
able: g,(q~, r! u, r i) = Tg, (a litth, heavy, somewhat heavy)=  not acceptable. 

Finally ifwe set f({ Lj}) = Min Lj and LI < L.<  L~. we obtain a(~') = f, (g, (q] r] ). 
g, (q!. r! u, r~)) = f, (acceptable. not acceptable) = not acceptable. 

Notice that more complex objects may occur when instead of only one, as in 
the preceding definition, several events concern the same variable; for instance if we 
have a = A, a, with a, =/~, ,  [y, = ql]: in this case. it is necessary to introduce a third 
mapping  h from P( L ~) in L ~ such that a, (.,:) = h ({g(ql. r,)}, ). hence, more  generally, 
if a -/ '~,, a, =/~.~, A,, [y, = q',] then a(~')= f~ ({a, (..')1,)= f~ ({h~ ({g~ (q~. r,)}~)},). The 
following example may be omit ted in a first lecture, its aim is to build an assertion a, 
formed by the conjunct ion of  the events for which extension at level ~ contains  a 
given ,.,., E ~]. 

EXAMPLE 

Let M~ =10,1], O, = {vl,v2}, and Q, be the set of  probabil i ty measures 
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P(O,) -" [0,1]; y is a mapping from a set ~] in Qi and ~, E ~~ is described by ,~'~ = [y, = r] 
is such that r (v l )=  r (v , )=  !: the set of im events e, = [y = qi] such that ai (w)/> t is 
defined by the set of  probability measures qt which satisfy the inequality 
e,(~')= f, dgx(q,.r)). • >t -.~" if fx is the mean and gx is the scalar product we get 
e,(~') = Mean ({ (q,.r)'}) = (q,,r) as there is only one variable. Hence qi has to satisfy 
the following inequality: e, (~,) = (q,.r) = q,(vl )r(vl) + q,(v_,)r(vz) >t ~ which is equiva- 
lcnt to ~ q,(vl) + ~ q,lv2)/> ~. which is satisfied by any event e,. as q(v t ) + q(v,) = 1 for 

? 
tiny measure ol ~ probabiiity q defined on O,. If a ,=Ae ,  {e , /e , (~)~  !}~ then 
a, (~') = h~ ({e~(~,)}~): if h~ = Min then a, (~,)= Min {{e( 1~)}~.)= ~. 

5. Possibilist objects 

5 1 THE POSSIBILIST APPROACH 

Here we follow Dubois and Prade [10] in giving the main idea of this 
approach. 

DEFINITION 

This is a mapping H from P(~]) the power set o f ~  in [0. 1] such that: 

(1) II(~)  = I FI(o) = 0  
(2) VA. B c_ ~ H(A U B) = Max (I-I(A). I-I(B)) 

A measure of necessity is a mapping from P(f~) in [0. 1] such that: 

(3) VA C_ ~ N ( A ) =  I - 1-I(A). 

The following properties may then be shown: 

N(O)=0;  N(A N B)=  Min (N(A), N(B)); H (W, A,)= Max,(li(A,)); 
NN, A, )=  Min, (N(A,)): H(A) ~< H(B) i fA  C_ B; Max (H(A), l i (A))=  !: 

Min (N(A), N ( A ) ) = 0 :  FI(A) >~ N(A); N(A) > 0 implies l i (A)=  I: 
1-I(A) < 1 i m p l i e s N ( A ) = 0 : H ( A ) + H ( A )  1 a n d N ( A ) + N ( A )  ~< I. 

EXAMPLE 

We define HE(A) (resp. NE(A)) as the possibility (resp. the necessity) that ¢ E A 
when ~' E E. We say that HE (A)=  1 if this possibility is true and lie (A)= 0 if not. 
Hence lie and NE are mappings from P(f~) in {0, I}. It is then easy to show that 
Ill. and NE satisfy the three conditions of their definition. 

The theory of possibility models several kinds of semantics; generally 
possibilities valuate vague observations of inaccessible characteristics, for instance: 

ti) The physical possibility: this expresses the material difficulty for an action to 
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ii) 

iii) 

occur. For  instance if several experts have described that  an athlete has the 
possibility 1-I({200})=0.8 of  carrying 200kg and the possibility I-I({250})= 
0.5 of  carrying 250kg; then, for these experts, the possibility of  carrying 
200 or 250kg for this athlete will be FI({200}Up{250})=Max({200}, 
{250}) = 0.8. 
The possibility as a concordance  with actual knowledge: "it is possible that  it 
will rain or snow today".  
The non-as tonishment :  for instance, " the  "'typicality" for the color of  a flower 
to be yellow or brown".  

5.2. A FORMAL DEFINITION OF POSSIBILIST OBJECTS 

Here the background  knowledge x is denoted p for possibility. 

DEFINITION 

A possibilist assertion denoted ap 
takes its values in LP=[0 .  i] such that 

= A, [Yi = {~ }A is an im assertion which 

• Vi Q, is a set of  measures of  possibility. 
• OPp: Vi, q~. q~ E Qi q~ up q~=Max (q), q~): q~ Ap q ~ = M i n  (q~, q~); 

Cp(q) = 1 - q  denoted also ~. 
• gp: gp (ql. q~)=sup{Min (q~ (v), q~ (v)) /vE O,} 
• .It,: VL C_ [0, l ] f  t, (L) = Max ( t / t  E L) 

Notice that OP r, is defined as in fuzzy sets and gp has also been proposed  by Zadeh  
[19]. Notice also that q~ n o q~ is not necessarily a measure of  possibility. 

It is also possible to define a "necessitist" assertion an ( thanks to M.O. 
Menessier, D. Dubois  and H. Prade, for their useful remarks  which have allowed 
me to improve this point) by setting: an = 1 - ~ p  where ~p = Alp [Yi = qi] and qi = 
C p ( q i )  = I - qi. 

This results in an (w) = 1 - fp({gp (qi, ri)}i) and then 

an(W) = 1 - Max gp(ch, r,) 
I 

= 1 - Max{sup{Min(~l(v) , r , (v) /v  E Oi}}i 

= Min{l  - {sup M i n ( q ( v ) , q ( v ) ) / v  E Oi}}, 

= Min{inf{ 1 - Min(f:h(V), r i(v)/v E Oi}}i 

= Min inf{Max(qi(v) ,  ! - r i (v)) /v E Oi} 

and then finally a ,  (,~) = Min gn (q ,  ?i). 
It results that a necessitist object is defined by OPn = {Un, Nn, Cn} where Un is 

rip. n ,  is Up and Cn is Cp, gn (qi, ri) = inf{Max (qi (v), ?i(v))/v E Oi} and f, = Min. 
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10 12 15 16 18 12 15 16 18 

(a) (b) 

F i g u r e  5. (a )  q l u q 2  = M a x ( q l , q 2 ) ,  (b )  f, = I - r,. 

EXAMPLE 

An expert describes a class of  objects by the following possibilist assertion 
(restricted, to simplify, to a single event): 

ep = [height = [around [12, 15], about {18}]]. An elementary object ~ is defined by 
s = [height = close to 16]. 

The question is to find the possibility and necessity of  ~ knowing %, in the case 
where ep and w s may be written: ep = [height = ql, q2] and ~ = [height = rm] where 
ql, q2, rl are possibilist mappings from O =  [0, 20] in [0, I] defined by the back- 
ground knowledge in figure 5. This means that an object of height 14 (resp, 10) 
has a possibility 1 (resp. 0.3). It is then possible to compute the possibility o f w  by 

ep(w) = gp(ql tap q2, rl) = sup{Min(qt up q2(v), rt (v))/v E O} = 0.8. 

The necessity of  o; is given by: 

%(w) = gn(ql Up q2, ( r l ) , =  inf{Max(ql  Up q2(v),~l(v))/v E O = 0.4. 

This example shows that possibilist objects are able to represent not only certainty, 
variation and doubt  but also inaccuracy (around, about, close to); it is also possible 
to use vagueness, in representing for instance "high" or "heavy" by a measure of 
possibility. 

5.3.  THE PARTICULAR CASE OF BOOLEAN OBJECTS 

A Boolean object a = Ai [ Yi = Vi] is an im object ab = Ai [ Y, = qi ] where qi is 
the characteristic mapping of  ViC_Oi, OPb={Ub,Nb,Cb}iS such that qlUbq2 = 
Max(ql,q2), qlfqb q2 = Min(ql,  q2) and cb(q)= 1 --q. There are two choices for gb 
and fb: (gb, fb) = (gp,fp) or (gb,fb) = (g,, f,). If tv ~ = Ai[ Yi = ri ] where ri is the charac- 
teristic mapping of  yi(w)C_ Oi, (there is doubt  if yi(tv) is not reduced to a single 
element), it is then easy to show that in the possibilist choice yi(tv) n Vi :/: ~ ¢* 
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ah (,~') = 1 and in the necessitist choice Yi(~) c_ Vi ,~ ab ( ~ )  = 1. If we denote  ia~  the 
set of  elements o f f l  such that a(,~) = true, we have a~-~ = Ext (ab/[~t. ¢~) V a E ]0, 1]. for 
both choices. 

6. Probabilist objects 

6.1. T H E  P R O B A B I L I S T  A P P R O A C H  

First we recall the well known axioms of Kolmogorov:  

If C(~) is a a-algebra on ~ (i.e. a set of  subsets stable for countable intersection or 
union and for complementat ion) .We say that p is a measure of  probability on 
(~L C(~)) if 

(i) p (~ )  = I 
(ii) p (u, A,) = Z p(A,) if A, E C(~]) and A, n Aj = O. 

There are several semantics which follow these axioms: for instance luck in games, 
frequencies, some kind of  uncertainty by subjective probability. Let Qi be a set of  
measures of  probabilities defined on (O,, C (O,)). We suppose that the 
~,~= A,[v,. = ~,v (~,~l,j are such that y,(~)E Q,- We recall that Q~ has been defined in 
section 4. I. 

6.2. A F O R M A L  D E F I N I T I O N  O F  P R O B A B I L I S T  O B J E C T S  

D E F I N I T I O N  

A probabilist assertion is an im assertion which takes its values in Lpr= [0,1 ] 

O Pp•" 

gpr .' 

[pr" 

V ,11. q, E Q, ql upr q7 = ql + q7 - q~ q?. ql chpr q, = q) q7 which is the mapping 

' q lq , . q , }  E Q, x Q, gp~(q,. ( q , . q T ) = E  {q] (,,)q7 ( , , ) /uEOi}.  
/),~ ( { L,} ) = mean of the L,. 

Notice that if there are some characteristic dependencies between variables, 
then. an event of  the form [y, = q,] may represent them: for instance, if the expert 
wishes to describe the dependencies between Yl,Y3.Y7, then this information may 
be represented by the event denoted [Y137 = pr(yl,y3,yT)] where pr(yi.Y3,yv) repre- 
sents the joint probability of  Yl,Y~,Y7; this event is of  the form [y,=q,]  where 
Y,=YI~v and q,=pr(yl.y~,y7).  In the case where "causalities" or "influences" 
among sets of  variables are given by the expert to describe a symbolic object, 
propagation techniques (see Pearl [15]), Lauritzen and Spiegelhalter [12] may be 
used which induce other mappings gr, r and fr, r. 

To give an intuitive idea of  the notion of  union and intersection of  measures 
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of probabilities it is easy to see that if ql and q~ are the measures of probabilities 
associated to two dices, q~Up~q~(v), with v E O,. is the probability that the event v 
occurs, for one dice or (not exclusive) for the other, qi np~q;(v) is the probability 
that the event v occurs for both dices when the two dices are thrown indepen- 
dently. This comes from the fact that  if (X| ,  Xz) is a pair of  random variables ~ 
-" Oi × Oi where Oi = {1,2 . . . . .  6} with probablhty  (qiq~'). then the probablhty 
that the number  j occurs in both  dices thrown independently is q~n~,~q;lj)= 

. . . . . .  I .  2 , .  Pr((XI,X_,) = ( j , O )  f " l ( O , j ) )  = Pr({XI.X,) = ( J , J ) )  = Pr(X| =J l  Pr(X_, = j ) =  q, ( J J q i  ( J ) ,  

the probabili ty that the number  j occurs in one or the other dice is: q~up~ q~( j )=  
Pr ((XI,X_,)=(j ,O,) u ( O i . j ) ) = P r  ((Xl, X , ) = ( j , O t ) ) + P r  ((Xl, X , ) = ( O , , j j ! -  
Pr ({XI, X : ) = { O i , j ) o ( j , O i ) ) = q l { j ) q ? ( O 0 + q i ( O , ) q ? ( J ) - q l { J )  q?(j) '=(ql  +q?  

qlq~)(J). 
1 2 Notice that qlUprqi  is not a measure of  probability because even if 

q,  (qprqi is q, Up,q?(v) E [0.1] the sum of  the q, Up,q?(v) on O, is larger than 1. Also, i . 
not a measure  of  probabil i ty because the sum of  the q~ C'iprq~ (v) on Oi may be lower 
than 1. We have defined g on Q~ x Q~' and not on Q~ x Q X as for a general im object, 

I "~ because for instance, g (qi Up,q?, c_J, jqJ~) may become larger than 1: but notice that in 
this case, it is easy to t ransform q ;up ,q ,  in a probability measure by dividing it by 
the sum of  the qlup~q~(v) on O,. 

E X A M P L E  

An object ~, is described by its color  YI(,~') which may be red or blue and its 
roundness  Y2(,~') which may be round or flat. 

Let a = [y, = qll, q~l Apr [Y2 = q2l and ,,,'~ = [y, = r,] Apt [y~ = rzl where q[ (red) = 0.9; 

q t~(b lue)=0 .1  q~( red )=0 .5 ;  q~(b lue )=0 .5 ;  q 2 ( r o u n d ) = 0 . 2 :  q2(f la t )=0.8 ,  it 
results that  a is described by two kinds of  objects: either often red and rarely 
blue, or red or blue with equal probabili ty.  

-~ ~ | 

By using q~ = qi|Up~ qi = q|i + qi  - q i q T  we obtain 

q~(red) = 0.9 + 0.5 - 0.9 × 0.5 = 0.95. 

q~(blue) = 0.1 + 0.5 - 0. I × 0.5 = 0.55. 

If rl and r2 are defined as follows: 

rl (red) = 1, r~ (blue) = 0; r2 ( round)  = 1, r2 (flat) = 0, it results that a {,~1 = gpr (q~, r l )  
Ap~gvr(q2,r 2} =(0.95 × 1 + 0.55 x0)Arr(0.2 x 1 + 0.8 × 0) = 0.95 Apt 0.20 + ~{0.95 + 
0.20) = 0.57, which represents the average probabili ty that an instance of  the class 
of objects described by a be w and may be interpreted as a kind of  membership  
degree for ~ to the im object defined by a. 
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7. Belief objects 

7.1. THE BELIEF FUNCTION FORMALISM 

At the origin of this theory we may mention at least the work of Choquet [4] 
on "Capacities of order 2" and Dempster [6] on "upper and lower probabilities 
induced by a multivalued mapping". The basic notions of this formalism are in 
Schafer's book [I 7]: "A mathematical theory of evidence" which is "still a standard 
reference for this theory" (Schafer [16]). First a "probability assignment" function 
m from P (f~) (the power set offL supposed finite) in [0,1] is defined by: E {m (V)/V 
C P(~)} = I and m (0)=  0; then a belief function Bel: P(f~) ~ [0,1] is defined by: 

Bel (A) = ~ ,,1( V)/V E P(f~), V C_ A. 

A "body of evidence" is viewed as a pair (F,m) where m is a probability 
assignment function and F =  {V E P(f~)/m(V)¢0} is the set of "focal" elements. 
Given a body of evidence it is possible to define exactly a belief function; it is 
also possible to define a "plausibility" function PI : P(gt) ---, [0,1] such that: 

PI(A) = Z { m ( V ) / V  E P(gt),V N A -¢ O} 

D 

and then we have: Bel (A)= 1 - PI(A). 
It may be proved (Schafer [17]) that we have the following properties: Bel is a 

belief function iff: 

(i) 
(ii) 
(iii) 

Bel (~2)= ! 
Bel (0) = 0 
Bel ( A I u . . . u A n ) / >  ~-~,Bel (A , ) -  Z Bel (Ai NAj) 

t<j 

+ . . . .  Z ( -  I) l l '+ 'Bel(n AI)  
I~11 nJ \ i 6 1  

As a consequence of (iii) we get: 

PI(A, n . . .  G An -%< Z PI(A,) - Z PI(Ai U Aj) + . . .  
I i<j 

Given a belief function Bel, the basic probability assignment function m related to 
Bel is obtained by: 

VAC_P(9) m ( A ) =  Z( - I ) IA-BIBei (B) .  
BCA 

Given two belief functions Bel~ and Bel2, their orthogonal sum Bel~OBel2, 
also known as Dempster's rule of combination, is defined by their associated 
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probability assignments: 

mlq~ m2 (A)= ~ ml(Vl) m2(V2)/ E ml(Vl) m2(V2) 
VjnV: =A VInV:#A 

As a special case, we get a generalization of Bayes rule of conditioning, which is 
known as Dempster's conditioning: 

BeI(A/B) = 
BeI(A U B - Bel(B) 

( 1  - Bei(B)) 

We have the following link with probability and possibility theories: it may be 
shown that if F contains only singletons then Bel is a classical probability measure. 
Dempster [6] said that P1 and Bel may be viewed as upper and lower probabilities. 
Schafer [17] has shown that if F contains only a nested sequence of subsets 
V)CV,C .. .C_V, then we have: Bel (AAB)=Min(BeI(A),  BeI(B)) and 
PI(A u B) = Max (PI(A), PI(B)) and hence, in this case, Bel and PI satisfy respectively 
the properties of necessity and possibility measures. Given a probability measure pr, 
it may be shown that there exists a possibility, necessity, belief and plausibility func- 
tion respectively denoted pos, nec, bel, pl, such that nec ~< bel ~< pr ~< pl ~< pos. 

The theory of evidence models several kinds of knowledge: 

(i) Probability: as said by Pearl [15]: "Belief functions result from assigning prob- 
abilities to sets rather than to individual points". 

E X A M P L E  

A machine is able to compute the average number of vehicles whose speeds 
vary within a set of a priori given intervals for instance V~ =]0,110]. Sometimes 
this machine may fail to give the speed but still be able to give the number of 
vehicles which pass on the road. If the machine gives for instance the following 
percentage: 0.40 for speeds which belong in the interval VI, 0.50 for speeds which 
belong in V2={speed > 110} and 0.10 for unknown speeds, we may represent 
this information by a belief function q with body of evidence (F,m) such that F = 
{VI,V2,R+}, m(Vl)=0.40,  m(V2)=0.50, m(R+)=0.10. Then we have, for 
instance, bel ([0,130]) = 0.40 and Pt ([0,130]) = 0.40 + 0.50 = 0.90. 

(ii) Testimony: if two witnesses observe the same event A, then by using the Demp- 
ster rule it may be shown that the belief in A increases. If one observes A and 
the other B with A # B  and A n B ¢- O then it may be shown that the belief in A 
and B decreases. If A N B = O the belief in A and B decreases more than in the 
preceding case and the higher the belief in B, the lower the belief in A. 
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E X A M P L E  

After an accident observed by two witnesses, the first one is almost  sure 
thai the speed of  the vehicle was in the interval Vi =]0,100 km] and the second 
witness ,xho was further away, thinks the same thing but is less sure. Hence, each 
witness may be represented by a belief function,  the first one by q~, with body 
of evidence ',Fi .roll such that F R = [ V I , R ' ] ,  ml ( V i ) = 0 . 9 0  and q_, defined by 
{F, .m_,l such that: F: = F~ and m,  (V~) -0 .70 .  Then bv using the Dempster  rule 
~,,,c get: 

q i '!' q.~ (Vl) = q I(Vl) + q z ( V i )  - q i ( V i  ) q : ( V i )  = 0 . 9 0  + 0.70 - 0.63 = 0.97. 

, _ ,,~ I : ( )RMAL I ) F . H N I T I O N  Ot- "'Bt-~LIEI: O B J E C T S "  

Follmving Dubois and Prade [11], we define the union and intersection of  two 
bodies of  evidence ( F i , m i )  ;.lnd (Fz,m:) as follows: 

c P(!~). m I o t ,  imz(A)  = ~ '  ml(Vi)m2(V2):  ~ A 
"l V,  .,% 

MiF~lhcl nl 2 (A) ~ ,  ~,, .t nil(Vii m,(V:) which is consistent with Dempster ' s  rule 
if lhc term In~F-~ me (:,) (~vhich reflects the amoun t  of dissonance between the sources 
or their independence) is eliminated. In the following definition we denote  by qJ a 
belief function with body of  evidence ( F  I. ml). 

1 ) i - I  1 S l l  I()N 

A belief assertion denoted a k . i - A ,  kl[.,,,, = { qJ,',~] is an im assertion which 
takes its values in L m l̀ -- [0.1] such t h a t  

vi. Q, is a set of belief functions defined on O, 
()Phci: Vi. q,I q~ ~_ Q, ql ub.., q~ {V)= V'. x v m , l ~ l  ,n~ (A); q,I 7/~i qi (V)=  
.~£...x v m~u~, m~ (A); the complement  is defined by c~, ( q ~ ) ( V ) = q , ~ A : v  
m,~(A ) where m, ~ ( A ) = m I (A)). 

l,tl. xC c l _-t i . c  J,. ( j , .  F, ,< & }  
Ii' t h e  n l e a n .  

Notice that the union and intersection of belief functions remain belief func- 
tions (unlike m the case of probabilities and possibilities). 

As in the case of  probabilist  objects, the choice of  the function f may be more 
general: we have chosen the mean in order  to simplify. It is also possible to define a 
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plausibilist object by 

t ' = m~Ytm~(A): q~C'lptCq~(V)= Y'~A, V,~, m~Um~ (A) and OPpt': q l top q,(V) ~_,A, v.,:, 

cpt (el,)=q, is defined as in the belief case. 
gpS- gpt(q,, q~)=~-~ ' I .tm, (V,) m; (V2) V, NV_. ¢o .  (V,.V2) E F,xF..} and f 

remains the mean. 

The following properties may then be shown: q~Nt,~, q~ = q~ q~. because 
q,i r-, i~,q~(1") =ZA<V ml Ul~, m~(A)=Zv , ,  ,v.-A,_-v mi(V_,) =V'v, v m,i(v, IZv:,  vm~ 
iV.). 

We have also gl~i (q,t q;.)= ~x'~v,~_l-i m) IV l ) q; (Vii; gptlq~, q ; ) =  ~v..~i.2 m; (V.) 
n/,i(v_ ") = Z v i ,  i~, m~(Vl)pt'] IV_.)where ptJ(V,)= Z v  v,.,.,q',(V): hence grdiis sym: 
metric whereas ~t.i is not: it is also easy to show that V AE: Pill) q,*b~i q. 
(A) = 1 - q i.p[q~. (~1. 

If two experts observe the same event A and are associated to the belief 
,'unctions ql. q~ with FI = F~ = {A. 0}.  then it may be shown that: 

" ' 1 2 
q ~ U ~ i q ,  =q~ + q7 - q,q,.  

Let us give a simple example. 

E X A M P L E  

Several transportation experts define an accident scenario between a car and 
a bicycle by a belief function q, concerning the speed of the car. Knowing q, we are 
able to define a belief object a = [speed = q , ]  where the body of evidence of q, is 
IFl.m,} such tha t  F, = {Vl.O}. where O is the set of possible speeds and ViC_ O 
is tin interval of speed (for ins tanceN,  =[100.120] kmh) .  Now suppose that a 
witness observes an accident and says that it is defined by a belief function q2 
with body of  evidence {F2.m2} such that F2=  {V2, O}. If we wish to know how 
,ntich a given accident defined by ,.,?= [speed = q.]. satisfies the scenario defined 
by a, we have to compute a(.,.'): as a is a belief object, by definition we have: 
a (..c) = ~V.:l-I m, (V) q2 (V) = m, (V,) qz (V,) + m, (O) q2 (O), a (..') = m, (V,) q2 
i V , ) + m , I O ) .  Hence if V_~ C_ V,. then a (,.,.,)=m, (V,) m2lV: )+m, (O)  arid the 
higher the witness' belief in V. the more ~ satisfies the scenario defined by a; if 
V, c V-, then a (-.9 = m,(O) and the greater the ignorance of the expert who has 
defined the scenario, the more .,., satisfies the scenario. 

8. Some qualities and properties of symbolic objects 

I, O R D E R ,  U N I O N  A N D  I N T E R S E C T I O N  B E T W E E N  IM O B J E C T S  

It is possible to define a partial preorder ~< <, on the im objects by: a, ~< ,, a... 
ilT'v',.,.,' E l l , ( t  ~<al (-:) ~< a2 (~). 
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We deduce from this preorder  an equivalence relation R by: al R a2 iff Ext 
(a~/f~, c~) = Ext (a2/f~, a)  and a partial order  denoted  ~< ,, and called "'symbolic 
order"  on the equivalence classes induced from R. 

We say that at inherits from a2 or that  a2 is more  general than a t ,  at the level 
c~, i f fa l  ~< ,a2 (which implies Ext,, (al/9/, c,) C_ Exta (a2/fL cO). 

We call intension at the level o of  a subset 9/i c ~~ the symbolic object b 
defined by the conjunct ion of  events whose extension at the level a contains  9/). 
The  symbolic union aj u, .  a a2 (resp. intersection a~ n,.,, a2) at the level a is the inten- 
sion of  Ext (al/~'2, c,) U Ext (a:/~L o) (resp. Ext (a,19/, ~) n Ext (b / f/, c,)). 

8.2. SOME QUALITIES OF SYMBOLIC OBJECTS 

As in the Boolean case, see Diday [7], Brito and Diday [!], it is possible to 
define different kinds of  qualities of  symbolic objects (refinement,  simplicity, com- 
pleteness etc.). For  instance, we say that a symbolic object s is "comple te"  iff the 
propert ies which characterize its extension are exactly those whose conjunct ion  
defines the object; in other words s is a complete  symbolic object if it is the intension 
of  its extension. More  intuitively, if I can see some white dogs and I state "'I can see 
some dogs",  my statement  does not describe the dogs in a complete  way, since I am 
not saying that they are white. 

On the other  hand,  the simplicity at level a of  an im object is the smallest 
number  of  elementary events whose extension at level a coincides with the exten- 
sion of  s at the same level. 

When an opera tor  U~ has to be defined in a domain  related to a specific 
semantic which induces the not ion of  similarity between symbolic objects, it 
seems natural to require that it should satisfy the following intuitive properties: 

(a) The union of  two symbolic objects is more  general than each one separately; 
in other words, the extension of  the union of  two symbolic objects contains  
the extension of  each one. 

(b) The  union of  an object with itself has an extension which contains  the exten- 
sion of  this object. 

(c) The more two objects are similar the less they are general. 

(d) The most  opposi te  objects (i.e. opposi te  in all the variables which define them) 
have a union whose extension contains  every one. 

(e) The  union of  two similar objects must  reject, f rom its extension, objects which 
are not similar to them. 

In case of  intersection, analogous  "na tura l "  condi t ions  may be defined, they express 
the inverse condit ions,  for instance: the intersection of  two symbolic objects is less 
general than each one. 

In case of  probabilist  and possibilist objects, it is easy to see that  condi t ion  (a) 



E. Diday/Probabilist. possibilist and belief oblects 251 

is satisfied, since when qt and q:  are two probabilist measures, we have: qt Up~ 
q 2 = q l  + q 2 -  qlq2 >I qk for k = 1, 2. When qs and q2 are possibilist measures we 
haveql  u p q . , = M a x ( q l ,  q_,) /> qk for k =  l, 2- 

If aj = A, [y, = qJ,] we get al U~ a_, = A, [Yi = q l U~ q~] and V,~ E ~: ,~s = A, [y, = ri] we 
have: 

al U~ a2 ( ~ ) =  f~ ({gx (q~ U~ q~. r,)}i); hence. 
a ~ U p ~ a 2 ( ~ ) = M e a n { ~ w o ,  qlUp~q~(v) r,(v)}, >~Mean'~z...v._o, q~(v) r ,{v)},=ak 
(,~)} with k = I, 2. 

Similarly in case o f  possibilities we have: 

a,Up a2(w)= Max{Max Min (qlUpr q~tv), r,(v))} >i Max{MaxMin (q~(v), r, {v))} = 
ak(.,') with k ='1, 2. ~ ° '  , ,,~_o, 

It is also easy to see that the probabilist and possibilist intersection satisfies the 
inverse condition. 

Condit ion (b) is proved in case of  probabilist objects, by the following argu- 
ment, in the case of  a probabilist assertion reduced to an event, and may be easily 
generalized (by taking the mean) to the case of  a conjunction of  several events: let 
a = [y = p]; we have by definition a Ur, r a = [y = p  us, r p] = [y  = 2 p -  p"]; hence 
V,,,"* = [y = r], we have a Upr a(w) = ~ , .~o (2p - p2}(v) r{v} t> Y'~,.;.o p(v)r(v) and so 
a Ur,~ a(w) >/a(w); therefore a Upr a >/a. 

In case of  possibilist objects it is easy to see that a up a = a. since i fq is a pos- 
sibilist measure and a = [y = q], then a up a = [y = q up q] = [y = Max (q, q)] = a. 

Conditions (c) and (e) depend on the chosen similarity: with the similarity 
proposed in section 10.1 it may be shown that condition c) is not satisfied by pro- 
babilist objects. It is easy to show that d) is satisfied by probabilist and possibilist 
objects: let a, = [y = Pi] with p, (v , )= 1 and therefore p, (vj)= 0 if v, # v r It results 
that in the probabilist case we obtain u, Ps = 1 E Q pr where 1 is the mapping such 
that Vv, l ( v ) =  1, from which it results that for any w ~= [y = r] where r is a prob- 
ability measure, U,p, a1 (,.v)= 1. In the case where the p, are possibilities we get 
also upi = 1 (which is a possibility), and so, it results also that for any ,.,;' = [y = r] 

wher~ p is a measure of  possibility up ai (~) = l; therefore in both cases the union 

of the most opposite objects are ~qual to ~~, the full object whose extension 
contains all the elements of  ft. 

8.3. SOME PROPERTIES OF IM OBJECTS: LATTICE AND COMPLETENESS 

It may be shown, see Diday [9] for instance, that given a level a,  the set of  im 
objects is a lattice for the symbolic order  and that the symbolic union and 
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intersection define the sup remum and infimum of  any couple. To  do so. fx. g,¢ and hx 
(see section 3.1) have to be well chosen and we introduce a "full" and an " emp ty"  
(which could also be called "'top'" and " b o t t o m " )  because they are the most  and the 
less general symbolic object denoted  ~ and O such that V.~, E ~L [P (..9 = 1 and O 
1-.'1 = 0: it is then easy to see that  the extension of  ~ contains  all the elements of 
[~ (e.g. it is "'full-) and the extension of  O contains  no one (e.g. it is " 'empty").  

It may  also be shown that the symbolic union and intersection of  complete  im 
objects are complete  im objects and hence that  the set of  complete  im objects is also 
a lattice. 

. An extension of  possibilities, probabilities and belief assertions on symbolic 
objects 

9, I. D U A L  A S S E R T I O N S  

Several kinds of valuations of  symbolic objects can be studied. For  instance. 
in case of Boolean objects we obtain a valuation,  by setting V A c_ ab ,a*(A)  = card 
A/card at,. (in this case the O, must  be finite) and a* satisfy the Ko lmogorov  
axioms: a* (A) may also be computed  by taking into account  the constraints  
which may exists among  the variables (see De Carvalho [5], for more  details 
about  the constraintsL Another  possibility may be to consider the x-union or x- 
intersection of  subsets of  by the following definition where *~E {U~, n~} V A I 

" ' " '" " '" • a,) E AI~A~} and then by s tudying the link A ,  c a,. A~ *,t A~=~al*~a2(a l  _ 
between a* tA ~, u,~ A ~). a* IA ~, N, A ;1. a* tA ~) and a* (A ~) (where. for instance 
a * ( A x ) = Z  { a * ( a , ) a , E  A,I) .  

In this paper,  our  aim is to extend an im assertion a = A,,~ [y, = q,] (where q, 
depends  on the choice of  x and may be for instance a possibility, a probabil i ty or 
a belief function) to a dual im assertion denoted  a* defined on subsets of  a ,  (the 
set of  im assertions associated to x), and more  generally, on - .~-combinat ions '"  
of  such subsets of  the kind A.~B where *~E {U,,N~} and to show that a* is itself 
a kind of  possibility, probabil i ty or belief function depending  on x. 

More precisely: 

Given A~ C a~. we have A,  = {a aEA,} and to define A = U~ {a'a E Ax} we use the 
set QA~ C_ O~ such that Q A , = . , , q , a = A ,  [yj=qj] E A,~I: we denote: q~X = u x  {q,,,' 

• J { 
q,EQA'}. We define the u ,  o f i m  asseruons by: U, a a  E A~} = A,x [y, =qA]: hence. 
we have A = A,~ [yi = qfX]. 

We define at" a "'dual'" measure of  at = A,~ [y,= ~ " t q , ] b y a t  l a j ) = f x ( { g x ( q , .  
qJ, I},): hence, given A~ c_ a,. we denote  Ak = U, {a/a E A~} and we get 
at  (Ak)=fd{gx  (q,. q, ; more  generally at'" (Al*xA2)=fx({gx (q,.qi *xq, )},), 
where *x~ {u~. n~} and q ~  =.~{q, /qi  E Q~X.}. 
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9.2, THREE THEOREMS OF META-KNOWLEDGE 

The three following results [9] prove the existence of probabilist, possibilist 
and belief objects defined respectively on probabilist, possibilist and belief 
objects, themselves defined on ~. The proof of theorems I and 2 is in the appen- 
dix, the proof of theorem 3 is long and will be published el~where. 

tal In the case of possibilist objects: 

THEOREM I 

: i ) a* ( ap )=  1 
:ii: VAj, A2 C_ ap  

a*(o), =0  
a* (A1 Up A2)= Max (a* (A l). a* (A2)L 

(bl In the case of probabilist objects: 

THEOREM 2 

( i ) a* (apt)= 1 
:ii) VAI, ,42 C a t ,  

a*(O)  = 0  
a* (Ai U?r .42)=a* ( .4t)+a* ( .42)-a*(Al  Ap, .42). 

Ic} In case of belief objects: 

We say that there is independence between the body of evidence of two belief 
objects al and a2 iff Vi the bodies of evidence (FJ,. rn~,t associated to ~ for j =  1,2 
are such that m, nb~l m? (O)~ 0. (or m other words, the focal elements V~ E F~, 
V? E F? are such that: V, n V? ¢ o). The body of evidence of two subsets A~, A, of 
av~, are said to be independent iff for Vi and j = 1.2 such that ~ = U~,, {~/qJ, E Q,~'}. 
the body of evidence of QI and Q~ are independent. 

THEOREM 3 

i) a* ( a ~ l ) =  1. a*(o) = o 
ii) lf'v'i. Ai C_ the body of evidence of the A',s are independent, then: 

iii: 

a* (,~ttU ,,1 ~:j 

IfVA C_ a,,,1, m*(A)  

where 

z , 
It{l. .n} 16l 

a*(A) ~ ( - l )  An a* (h(B)) 
a*(h(A)) ~c 

h(B) =Nb,:t {Ai .A,= A - {a, }. a, E A B. B ¢ A} 
h(A) =U~l  {A,/A,=A - {ai }. ai E A} 
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then m* is a probabil i ty assignment  function on at+,<+.l (in other  words: m*: P - 
[0.1] is such that m * ( o ) = 0 .  ~ A  a+, m ' C A ) =  I and VA C_ a t ,  el, a * ( A ) =  
EIaV A m*(B)). 

By using m* it is then possible to extend Dempsler ' s  rule and Dempster ' s  con- 
di t ioning on the set of  belief assertions. 

9.3 SEMANTIC OF a* IN CASE OF PROBABILIST OBJECTS 

In case of  probabilit ies a~ (a_~} represents intuitively the average probabili ty 
that the same instance occurs in both entities {e.g. part of  ~)  described by a~ and 
a:: it will be high iff Vi g{q,~, q;)= ~ ,  ql{v} q;Iv)is high: more  precisely, the 
more  q,l{v) lind q~{v) are high together or low together  and their high values are 

:,( i " concentra ted on few elements v ~ O,, the more g q,.  q ; l  will be high. If q,l{v) is 
high when q~{v) is low for any i then g{ql, q~} will be low. Notice also, that if we 
consider that a* {At (-ix A2} iS a measure of  probabilist  specialisation and a* {A~ 
LJpr A2) a measure of  probabilist  generalisation between Aj and A> then theorem 
2 shows thai,  when a* (A~t+ a* {A_,I is constant ,  the more  A~ and A: are specia- 
lized (e.g. a*{A~ c~p, Az} high) the less they are general (e.g. a* {A~ Upr A2) low}. 

94. SEMANTI(" {)F a* IN CASE OF POSSIBILIST OBJECTS 

If al lind a2 are possibilist objects, a] (a2) represents intuitively the "'possi- 
bility" that some indMdua t  object "'possible" for a2 be "'possible" for a s  more- 
over. in the extreme case where a~ and a+, are Boolean assertions a~ (a 2} measures 
the possibility that an indMdua l  object satisfies s imultaneously ai and a2. More  pre- 
cisely, if a3 is a Boolean possibilisl object, it may be written a~ = A, [y, = q{], where q{ 
is a characteristic mapping  such that qJ, {v)= I i ffv EVJ: so aj may also be written as 
a Boolean symbolic object: aa= A, [y,=VJ]; it results (see section 5.3) that al 
(a2)- Max,(sup { Min (ql {v). q[{v)} v E O,} = I it't'Vi V, I O V~ ¢ O which expresses 
the fact that it is possible for a value taken in V~ to be taken in VI. l f a l  is a Boolean 
necessitisI object we have in the Boolean case: a; {a:} = Min{inf {Max {% (v}. ?i(v)/v 

O,}} = 1 iffVi V~ C V~ which expresses the fact that a ~,'alue taken in V~ is neces- 
sarily taken in VI. 

Notice also. that it is necessary and sufficient that at least for one v E O,, q~ (v) 
and q;(v} be high together to get a high value of  gp,,, {ql. q;) = sup inf{ql{v}, q,{v)). 

EXAMPLI! 

W e  have several documents  to classiC,, which are characterized by the 
frequency of  some given words, 

Prohahilist oh/cots: by using the frequencies, we associate to each document  d, a 
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measure of  probabil i ty qi and a probabilist  assertion a,. It is then easy to see that 
a~ (aj i is the probabil i ty that  the same word occurs for both documents  d, and dj. it 
will be high if in document s  d, and dj the frequencies are concentrated on few words 
and high for the same words. 

Passihilist objects: some words may appear  but out of  context and some other, 
important  for some documents ,  may not appear:  so, taking into account the con- 
text, an expert associates with each word a measure of  possibility; therefore each 
document  d, may be represented by a possibilist assertion a1 and a~ (aj) will be 
high iffat  least for one word, the possibilities are s imultaneously high for both docu- 
ments d~ and dr. 

~ 5 SEMANTICS OF a* IN THE CASE OF BELIEF OBJECTS 

The meaning ofa~ (a2) may be interpreted as a "'belief of belief" or the "'con- 
viction" of  someone,  denoted  E~, whose belief is represented by a~. concerning the 
belief of  someone  else, denoted E2,whose belief is represented by a2. 

t-XAMPLE 

For  i = 1,2, let be a, = [y = q,] where q, is a belief function O ~ [0,1] with body 
of evidence (F,, m,) and FI = F2 = {A,B,O} with A n B = f :  then we have: 

a;(az) = gbcl(ql,q2) = Z ml(V)q2(V) 
V~Ft 

= ml(A)  m_,(A) + ml(B) m,(B)  + ml(O).  

(i) 

Following a classical example given by Schafer [16], suppose that: 1 am expert El, 
Betty is expert E2, A = "a tree limb fell on my car",  B = "No  limb fell on my car". 
Suppose that Betty tells me a tree limb fell on my car (therefore m2 (A)=  i, 
m2 I B ) =  0); knowing that my subjective probability that Betty is reliable is p = 0.9 
tso, my subjective probabili ty that she is not reliable is I - p  =0.1),  I say that her 
test imony alone justifies a 0.9 degree of  belief that a tree limb fell on my car (there- 
l\~re m l ( A ) =  0.9, ml(B)=O,  mt(O) =0.1):  then, it results from (1) that my belief on 
her belief is a~ (a2) = 1; this is justified since my belief gives me no reason to reject the 
belief of Betty as m(B) = 0. If I have some reason to belief in B, then m~ (B) ¢ 0 and 
my belief on her belief a~ ( a 2 ) = m l ( A ) + m l ( O )  becomes smaller than i (as 
m~(A) + m~(B)+ m~(O)= I). 

Notice that "'my subjective probabili ty that Betty is reliable" is equal to my 
belief on her belief (i.e. a] ( a , ) =  0.9) in the two following cases: i) m l ( A ) =  0.9, 
mf fB)=0 .1  and m2(A)=  i, ii) m~(A)= I and m : ( A ) = 0 . 9 ,  which corresponds to 
intuition. 
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More generally, we can see that the conviction of Et concerning the belief of 
E2 will be maximum (i.e. a~ (a2) = 1 ) if E~ is totally ignorant of the evidences A and B 
(because in that case ml ( A ) = m l ( B ) = 0  and ml (O7= !) and if E~ and E2 totally 
believe the same evidence (because m t ( A ) = m , ( A ) =  1 or ml (B)=m2(B)=  1). If 
m l ( B ) = 0  and E~ has some ignorance of A (i.e. ml(O)E] 0,1D then, his conviction 
of the belief of E2 on A (i.e. q2(A)) will be greater than q2 (At (for instance if 
ml(A) = m,(A)=½ then ml (O)= ~ and the conviction of El will be a~ (a2)= 0.75). 
If E1 totally believes A ( m l ( A ) = ] ,  m~(B)=ml (O)=0)  and E2 totally believes B 
(m,(B) = I, ml (A)=  0) then,the conviction of E~ of the belief of E2 will be 0. If 
E~ is totally ignorant (i.e. m~(A)= m2(B)=0) then the conviction of E~ in the 
belief of E2 will be low if his belief is strong (i.e. his ignorance measured by 
ml CO)is low). 

E X A M P L E  

Several sensors, in different situations, have a belief of an event A. This 
knowledge induces a belief of each sensor in the belief of the other sensors when 
they are in the same situation. 

In figure 6 we give 4 situations which allow four sensors to get a belief in the 
belief of sensor number 5; in this figure, if we denote ai = [Yi = qi] the belief assertion 
associated to sensor i and F, the focal element of the belief function qi, we have in 
situation (a) F~ = Fs=  {A} hence mt (A)=m5 (A)= 1 therefore, it results from (1) 
Xl = a](a~) = 1; in situation (b), F2 = {A}, F5 does not contain A and so, a~(as) =0;  
in situation (c), F3= {A, 1A} and F s =  {A}, m3(A)=0.7, m3(IA)=0.3, therefore 
a~(as) = m3 (A) ms CA) + m3(IA) m5 (IA) + m3 (A) ms(A) + m3(O) = 0.7; in situation 
(d) F4= {A, O}, F s =  {A}, rn4 (A)=0.7 ,  m4 (0 )=0 .3 ,  m5 (A)=  1, therefore a,] 
(as) = m4(A) ms(A)= m4 (O)= 1. If a large majority of sensors (for instance, at 
least 75%) have a belief on a given sensor lower than a given threshold c~, this 
sensor may be rejected for the recognition of A. In this example, if the threshold 
is d =  1/2 the sensor 5 is not rejected; if c~ =0.8 it is rejected; notice that if a 
sensor i is completely ignorant (mi (O)= 1 and therefore VA, mi (A)=  0) it will 

X 1 ? X27 

E I .= E 5 E" 2 ~ E 5 ,\/, ,\/o 
A A 

(a) (b) 

x 3 ? x 4 ? 

E 3 ,~, E 5 E4 _- E 5 

IA A 0 A 

(c) (d) 

Figure 6. X, = a, (a~) is the belief of E, in the belief of E~. computed according to (I). 
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believe in any sensor whatever this sensor belief; hence, we may reject the judgement 
of sensors who are much too ignorant. 

Instead of using a majority rule, it is also possible to use Dempster's rule (at 
second level) applied to the belief of belief, concerning a set of sensors, of a given 
sensor; in that way the sensor represented by a5 is rejected if ~i ~ 1.4 ai (as) < a. 
The belief in A, if no sensor is rejected, is measured by the classical Dempster 
rule (at level 1): @i ~ ~.5 ai (A). 

There is an analogous theorem if al is a plausibilist assertion and a[ (a2) may 
be interpreted as the mutual "'non-discordance" between what El and E2 believe.To 
illustrate that, going back to the preceding example we can see that if al is a plausibi- 
list object then: a] (a2)=gpl (q l , q2 )=~v~v l  mr(V) pl . (V)=ml(A) (m2(A)+ 
m2(O)) + ml(B) (m2(B) + m2(O)) + ml(O) pl_qO) = mr(A) m:(A) + mtlB) m2(B) + 
m~(O) + me(O) - ml(O) m2(O). Hence, this corresponds to intuition as we can see 
tcontrary to the case of conviction) that the non-discordance between what El 
and E2 believe remains high when E,, is totally ignorant (i.e. m:(A)= m.., (B)= 0) 
even if the belief of El is strong (i.e. m~(O) =0). 

Another kind of interpretation ofa]  (a2) may be obtained in terms of"fit"; if 
we consider the class Ci (of fruits produced by a village,for instance) described by 
the belief object a ,, we may say, when at is a belief object, that a; (a:) measures 
how much C2 "fits" C1: when al is a plausibilist object, we may say that a~ (a?.) mea- 
sures the "non-disagreement" between Cj and C2. For instance, if y expresses the 
color and if the fruits of both villages have the same color, denoted A, (i.e. 
m~(A)=m-, (A)=  l , m t ( B ) = m .  ~, (B)=O,ml(O)=m2 (O)=0)  then a; (a,)= 1 mea- 
sures how much C. "'fits" C~ and also the "non-disagreement", about color, 
between C~ and C:,. If the color of the fruits of the second village is totally ignored 
t i.e. m2(A) = m ~, (B) = O, m2 (O) = 1 ) and the color of the fruits of the first village is 
A (i.e. ml(A)= 1, ml (O)=0)  then, when al is a belief object, we have a; (a : )=0 
which measures how much C-, fits CI; when al is a plausibilist object, we get 
a] (a2)= i which measures the non-disagreement between C~ and C-,. 

10. Data analysis of symbolic objects 

10.1, THE FOUR APPROACHES 

Several studies have recently been carried out in this field: for histograms of 
symbolic objects, see De Carvalho [5]; for generating rules by decision graphs on im 
objects in the case of possibilist objects with typicalities as modes see Lebbe and 
Vignes [13]; for generating overlapping clusters by pyramids on symbolic objects 
see Brito and Diday [1]. 

More generally, four kinds of data analysis may roughly be defined depend- 
ing on the input and output: (a) numerical analysis of classical data tables; (b) sym- 
bolic analysis of classical data tables (for instance obtaining a factor analysis or a 
clustering automatically interpreted by symbolic objects); (c) numerical analysis 
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of symbolic objects (for instance by defining distances between objects); (d) sym- 
bolic analysis of symbolic objects, i.e. the input and output  of the methods are sym- 
bolic objects. 

To illustrate these four approaches,  on a simple example, a similarity between 
symbolic objects defined as follows will be used: 

Let at = Ai [ Yi = q~] E ax be the set of im assertions. We denote a~ mapping a~ ---, 
I 0, i] such that aT(ak) = f~ ({g~ (q~, q,k)}0; then, we set: ( i )  s (at,ak) = ½ (aT(ak) + a~) 
(at))/v/a't(at)a[); in the case where g~ is symmetric (which happens when we have 
probabilist, possibilist and plausibilist assertions), s may be written: s (ae,ak)= 

at(ak)/x/a~(at)a[)(ak) = a~ (at)v/a~(ata[)(ak). 

EXAMPLES 

we get: 

Let a~, a., be two probabilist objects such that 

al = [y = 0.7vt,0.3v2],a _, = [y = 0.3vl,0.7v2]; 

al(a2) 0.7 × 0.3 + 0.3 x 0.7 
s (a l ,a2)  v/a;(al)a'2(a2) v/( 0.7' + 0.3")( 0.32 + 0.7') 

= 0.724. 

From this example, it results that probabilist objects do not satisfy condition (c) 
given in section 8.2, since if we define a = [y = ivt, Ov,] = [y = vl] we get aj Upr a2 
( a )=0 .79  and atUpr al (a)=0.91:  hence, alUor a2 may not be considered more 
general than a~up~ al, even if the pair (a~, a2) may be considered more similar 
than the pair (al, at), since s(al, a l ) =  1 and s(at, a2)=0.724.  

Let al, a2 be two possibilist objects such that at = [ y =  1 vl, xv2] and a 2 = [ y  =xv l ,  1 
v2]. Then, 

(Max(min( i ,  x), min(x, t)) 
s(a),a2) = = x; 

v/(Max(min( !, 1), min(x, x)) 

hence the lower x, the more al and a2 are dissimilar. Hence, alUp a2 = [y = lvt, Iv2] 
is the full object since 'v'a, atUp a;(a) = 1 and therefore, contrarily to the probabilist 
case, in this example the possibilist case satisfies condition (c) in section 8.2). 

We illustrate these four approaches by applying three data analysis methods: 
principal components,  hierarchical and pyramidal clustering. 

Let T be the following data table where the set of individual objects is 
~ =  {~m . . . . .  9'5} which are five companies described by two variables, Yt' the 
employment  rate and Y2: the profit. This table is represented in figure 7. 
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m L  
W '  

w 4 w 5 

q 
v 

Figure 7. Graphical representation of table T. 

10.2. NUMERICAL ANALYSIS OF CLASSICAL DATA TABLE 

Principal component  analysis of  table T: From the covariance matrix V = 

( 0 .7)  0.9 0.2 0.7 0.9 we deduce the eigenvalues: A~ = 1.6 and A2 = and the eigenvectors 

u T = l /v '~  (I,1), u2 T = l /v /2  (1 , -1 ) .  Finally we get the principal component repre- 
sentation given in figure 8, where the projection of wj on the axis i is given by 
F, (~]) = u,' .xj. where x T = (yl(wl) -- Yt, Y2 (t~2) - Y2) and Y, = I, is the mean of y,; 

for instance, Fl(~ol)= l / v ' 2  (1 1) - 3 / 2  " 

Hierarchical and pyramidal clustering of table T: 
We make the classical "complete link hierarchy" based on the city-block dis- 

tance defined by 

d ( ~ t , ~ )  = ~ lyj(~r) - Yj(~k)l. 
j = l  

The algorithm is the following: starting from 5 classes C, = {~i} where ~, E f t ,  we 
merge at each step the two classes with smallest 6(C,, Cj): 

/~ (Ci, Cj) = Max {d(wi, %)/~i E C,,wj E Cj}. When two classes are merged their ele- 
ments are suppressed from the set to be classified and the process continues until 
only one class remains. 

Table T 

I ~ ~ 3  ~J4 ~J5 

Yl - I / 2  I/2 2 I 2 
y: - I /2 I/2 I 2 2 
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w I w2 
1( ....... I¢ 

-3a/2 -a12 

-a/2 

axis 2 

w 4 

a/2 

w 3 

w 5 
v 

axis 1 a 

Figure 8 Principal component  anal)sis of  table T ,xhith a = 2. 

To obtain a pyramid, we may use a similar algorithm where classes may bc 
merged twicc (instead of  only once in the case of hierarchies) if they respect a 
common order (for more details see for instancc Brito and Diday [I]). 

By using these algorithms we get the hierarchy and the pyramid given in 
tigurc 9. 

Remark: if we associate a dissimilarity cr induced by the hierarchy and the pyramid 
by setting: cr(~,,. ~.,~) = {height of  the lower level which contains ,.,.,, and ,.,,,j}, then. it is 
easy to see that cr is closer to the initial distance d in the case of  the pyramid than in 
the case of  the hierarchy: more precisely, d-or  = Z d [~ ,  ~'j) -or C,-'i. ~j) is equal to 
3 for the pyramid and to 11 for the hierarchy. 

10.3 S Y M B O L I ( '  A N A L Y S I S  OF A C L A S S I ( ' A L  D A T A  T A B L E  

The corrclations between (,.,.,~ . . . . .  ~5) and the first axis of  the principal com- 
poncnt analysis are respectively ( - 1, -0.707, 0.707, 0.707, 1); if we associate to each 
side of  the first axis the objects whose correlation is higher than 0.707 or lower than 
-0.707, wc obtain two classes of  objects; the first class, CI = {*'l, *'2}, explains the 

I 

wl w2 ~ * ~  *4 
(,0 

I 
W 1 W 2 W 3 W 5 W 4  

(b) 

Figure 9. la) The hierarch,, of  table T. (b) The pyramid of table T. 

v 
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left side of the axis and the second one C_, = {w> w4. ws} explains the right side. By 
using these classes, we get two kinds of symbolic interpretation of the first axis: by 
using assertions, we may say that the left side is explained by: al = [Yl = - 1 2. I 2] A 
[y, = -1 ,2 .  12]: the right side is explained b y a ,  =[.vl = 1.2] A[y :  = 1,2]. I f the input  
provides a taxonomy saying that the rate of employment and the profit are low 
when they are lower than 1/2 and high when they are higher than I. we may use 
the assertions al and a_, to get the following explanation of the first axis: it is 
explained by two opposite assertions which characterize two classes of  companies: 

al = IRa te  of employment  = low] A [Profit = low] 
a, = [Rate of  employment  = high] A. [Prolit = high] 

Of course, in real examples things become much more complicated: for instance, to 
get more accuracy when the two classes contain numerous objects, each side of the 
axis may be explained by a disjunction of  assertions obtained by a symbolic inter- 
pretation of  a clustering done on each class. We may also enrich the interpretation 
by adding certain properties: for instance, we may add to al the following rules: [if 
y l=  - 1 / 2  then y2 = - 1 / 2 ]  A [ifyl = I /2  then Y2 = 1/2] and to a2 the rule [ifyl = I 
then Y2 = 2]. 

We may also give an interpretation of the first axis by a horde object h: h = a~ 
~u~) A a2 (u2)=[Ra te  of employment  (u~)= low] /', [Profit [u t )=  1o~,'] /', [Rate of 
employment  (u2)= high] A [Profit (u:) = high] whose extension is composed of cou- 
pies of  companies {~',..,.'j) the first element of  the couple..,.', .being of low rate of 
employment and profit and the second one..,.'j, of  high rate of employment and 
profit. If an external variable gives the age of the companies the horde object h 
may become: h = al(ul)  A az(u2)/~, [age(u~) < ageIu2)]. 

A symbolic analysis of  a classical data table may also be obtained by an auto- 
matic interpretation of  a clustering by symbolic objects: for instance, it is possible to 
associate to each level of  the hierarchy a complete symbolic object (see section 8.2); 
more precisely, if we denote ht = {,,~'~, ,~'5} then we may associate to ha. the assertion 
al = [Yl = 2] A [Y2 = 1.2]; al is complete, because: (iJ it is defined by the intension of 
hi, in other words, by the conjunction of all the events e, = [y, = V,] whose extension 
contains h~ and (ii)its extension is hi: in the same way h2 = {-,-'l..,.'2}. h~ = ', ~.' ~. .,.'4, .,.' ~ ', 

and h 4 = ~  may be respectively associated to the complete assertions az=  
[y~= - 1 / 2 .  1.2] A [y2= - 1 2 ,  12]. a 3 = [ y l = 1 , 2 ]  A [y := l .2 ] .  a a = [ y l = 0 1 ]  /~. 
[Y2 = 02] where 0~ and 02 are the sets of  all the values taken by Yl and Y2 in the 
data table T. Using the fact that each level is represented by a complete assertion 
we deduce from any level h; = h, U hk the rule at ~ a, v at. Hence, from the hier- 
archy we obtain the two following rules: R l  a4 ~ a2 v a~ and Re: a~ ~ al v.,,,.~ 
where .,.,)=[yl = I] A [y2=2] is the symbolic object associated to -.'4. All the 
bottom-up rules, such as aj ~ a3. are true because the a, and b, are complete 
objects. Finally we have induced from the hierarchy given in a} a graph {see 
figure 10(a)) whose nodes are assertions and rules are expressed between them by 
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y z %) 
b 1 b2 b 3 4 

(a) (b) (c) 

Figure I0. Induced graph of rules between assertions (a) from the hierarchy, (b) from the pyramid. 
where double headed arcs are explained by (c). 

directions. In figure 10(c), (cl) expresses the rule r~: x --, y v z: (c2) expresses the rule 
r2 (y - .x )  A ( z ~ x )  and (c3) expresses the rule r~ A r2 

The same kind of symbolic interpretation may be obtained by starting from 
the pyramid given in figure 10: hence, we obtain the graph given in figure 10(b); in 
this way, we obtain more assertions and more rules between them. If we denote 

h. = {~,,~'2}, h2 = {~'2,,~3}, h3 = {~'3,,,,'.s}, ha = {~4, w5} h5 = {~3, W4,~5}, h6 = 
{w2,-:3,-;5 }, h7 = ~ ~1, hs = {w l, ~2, w3 }, h,~ = ~L the associated complete assertions 
are: 

- 2, 1 / 2 ] , b 2  [Yl ~,2]A[y. ,  ~ , 1 ] ,  b j = [ y j =  1;2, l , , '2]A[y:= - !  = =_ = -  
b3 =-[yl = 2] A [Y2 = 1,2]. b4 =[yl  = 1,21 A [Y2 = 2], bs=[y~ = 1,2] A [Y2 = 1,2], 
b~,= [y~ = 1/2,2] A [y~ = 1'2,1,21, bv=[y~ = 1/2,1,2] A [Y2 = 1/2,1,2], 
bs---[yl = - ! / 2 ,  I/2,2] A [Y2 = -1/2 ,  1/2, 1], bq=[y j  =01] A [Y2 =02]. 

Hence we can induce the following rules: 

rl: b,~ --. b8 v b7 r2: b7 ---* b6 v bs r3: bE ---, bl v b2 
r 4 : b 6  ---, b_, v b3 r~: b~ ---* b 3 V b4. 

We have b~ = a_,, b3 = at, b~ = as and b9 = a4; hence, it is possible to deduce from the 
rules r, given by the pyramid, the rules given by the hierarchy; to do so, we need to 
use the following property: if r: b, ---, bj v bl, v bt and Ext (bfift) = Ext (br/f~), then r 
may be simplified to bi --. bj v bt. Hence, for instance, from rt, r2 and r3 we get b9 ---, 
b~ v (b: v b6) v b5 and then b9 ---* bl v b5 which is Rt: a4 --. a2 v a3. obtained from the 
hierarchy (see figure 10a). 

10.4. NUMERICAL ANALYSIS OF SYMBOLIC OBJECTS 

The given set of  symbolic objects is supposed to be the set of  the five first 



E. Diday/ Probabilist. possibilist and belief objects 263 

symbolic objects defined by the pyramid: {bin, b2, b3, b4, bs} = B. A simple way to 
make a bridge with classical data analysis methods is to compute a measure of 
similarity between the objects of B: having this measure it is then possible to use 
multidimensional scaling, clustering etc. To do so, we may compute the similarity 
s which has been defined by (1): as B is a set of symbolic objects, we have to use 
the mappings fb and gb defined in section 5.3. We have, for instance, st, 
tb~,b2)= b] (bz)/x,/b~(bl)b;(b2) with b, =[~,', = q l  I ] A b [Y2:q~ ]where  qJl and q! 
are characteristic mappings such that: q l ( - i / 2 ) = q l j ( l / 2 ) = l  and q ~ ( - i / 2 ) =  
q~(l/2) = 1 and ql Iv)=O elsewhere. We have b2=[y, =q~ ] Ah [y2=qi  ] 
and q~ (v)=  i i fv  E {1/2 1/'2}, q~ ( v ) = 0  elsewhere, qi (v)= I i fv  E {1/2, !} and 
qi ( v ) = 0  elsewhere. As we have (see section 7), b*l (bz)=fb({gdq~,q~)},)= 

iiii, 
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~,~ - 0 2  = Min ( (ql .q i ) .  (q~.q '_ ' ) l=Min(Z~ql(v lq i (v)  'v E OI1. l " ~q2(v )q2 (v ) /v  E }) 
Min ( q ] ( I / 2 ) q i ( I / 2 ) . q ~ ( I / 2 ) q ~ ( I / 2 ) ) =  M i n ( I . I ) =  I. We have b~(b , )=  Min ((qtt,q~l). 
(q~ .q! ) )=  Min (2.2) = Z and also b_; (b2) = 2: hence,  s t , (b~.b2)=l  x/2-2x 2 = 1 2 .  

By compu t ing  in the same way all the similarities st, (b('L b U~) we tinally get the 
symmetr ic  table o f  similarities given in ligure I 1 (a). 

The  similari ty st, is t r ans fo rmed  into a dissimilari ty d = 1 - st, given in figure 
l l(b). If we choose  c = Max d(b,.b~) - M where  M is the sum o f  the two couples 
(b,.b,) of  smallest dissimilari ty d(b,.b~), then c t> Max ( d ( b , . b 0 - d ( b , . b k ) -  
d(bk.b,)) and D such thai D (b,.b~)--d(b,.b~). D (b , .b , )=0 ,  is a distance,  because 
Vi.j.k d(b,.b~) s c ~< d(b,.bk) + c +  d(bk.b~)+c.  It is easy to see that M = 0 + 0 . 3  
and c - I  -0.3. it is then possible to change  d into a d is tance D such that 
l)(b,.b~) ..... d(b,.b~) + ().7. which is given in tigure II(c) . I t  is then possible to apply 
llll;iny existing me thods  o f  classical da ta  analysis  by using s. d or  D as input.  

I "~ S Y M B ( ) I . I (  A N A L ~ f S I S  ()1- S Y M B ( ) L I ( '  ( ) B J | - ( ' T S  

As input xvc have the fol lowing set o f  probabil ist  objects: 

B - ', b l ..... bs', such that b3 = [Yl = q't] :~p, [Y-" = q~] where  qJ is a measure  o f  prob- 
ability from P (()~) ~ [().1] where  O , = ' , - 1 / 2 .  I /2 .  1.2} and P (Oj ) i s  the power  
set of  (),. If ~e  set b,--/ ' ,[y, - (ql (v])) vl. (q~, (v2)) v_, .... ]. then the b i are defined 
;is follo~vs, where the valiuc v, associated to ql (v,) - 0 does not  appear :  

b i h 

b ,  - 

b 4 - -  

b~ 

(!) - !. (9  !] .%, iy_, : (!) - (9  !] 

I:, [,,: (!) l .  (!)2] 

To Ire;it this set of  probabilist  objects, we may  compute ,  at first, the similarity 

(b,.b~) ..... b[(bj) \/b[(b,)b~(bj) and then, to use l\~r instance, principal Spl c o m p o n e n t  

analysis or cluslering me thods  interpreted by symbolic  objects as has a l ready been 
d o l l e  i l l  b ) .  

For  instance, tbr the couple  (b~.bz). b] (b~) = fp~ ({gp~ (ql.q~)},)is c o m p u t e d  as 
/'ollo~vs: 

b~ (b.) ..... Mean  ((q I. q i), (q _'. q _;)): therefore:  

b~ ( b : ) -  Mean  (S :q {(v). q i(v) v ¢O,',. S ',q ~(v). q !(v) v ¢O, ' , ) .  

Hence b~ ( b , J = M e a n  ( 1/2 x 0 + 1 / 2  × 1/2 + Ox  0 + 0  × I /2 .  1/2 x O +  1 / 2 x  
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1 ,2+0  x 1/2 + O x 0 ) = M e a n ( I / 4 .  1 / 4 1 = 1 1 / 4 + 1 / 4 )  1 / 2 = 1 / 4 .  
bl (b~)= Mean ( I /2 .  I /2)  = 1/2: b_; ( b : ) =  Mean 11/2. 1/21= I/2. 

Finally. setting ~ = x/3-3/2 we obtain the following similarities: 

{ sp~(b,, b~ ) } = 

I I /2  0 0 0 1 0.5 0 0 0 

I <~/2 <~/6 I /2  1 0.6 0.2 0 5  

1 2/3 2,t113 = l 0.7 0.8 

i 2, t /3 I 0.8 

I 1 

For treating B. another  way is to obtain directly from B. clusters of symbolic objects 
represented by an "'inheritance" hierarchy, where each node is expressed by a com- 
plete probabilist  assertion ajk. or an approximat ion  of it such that ifa~k = aj u ,.., at 
then ajk > , ,Max  (a~.ak) where rapt.,, and >,, have been defined in section 9. I. To do 
so. we may use the following algori thm on a set of  symbolic objects A: 

First step: ajk = aj ux.,, a~, is computed  'v'aj. at E A. 
Second step: the ajk of  smaller extension consti tute the first levels of the hierarchy. 
thcir height is the cardinality of  their extension. 
Third step: the retained art at step 2 are added to A and a r, a k are suppressed 
from A: then. we go back to the first step until the cardinality of  A becomes equal 
to I. 

In practice, how can we compute  ajk = aj Up,,,, ak'? By definition ajk is the conjunction 
I of the elementary events a,k = [.v, = q,] such that Ext(a~t ~.~)  contains ~l = Ext(ar. 

~.l.,~) U Ext(ak ~L~). Hence. for any ..' E ~l such that ~"=/ ' , , [y,= r,] we have 
i.llk(O.,' ) >¢1,: this condi t ion is satisfied if we have 'v'i. glq,.r,) ~>~ because ark(..') = 
f(',g(q.r,)},) and. by definition of  f, it is the mean of numbers larger than n: 

i f hence, if we denote  xj =q ,  (vr). we have the inequality: g(q,.r,)=E{xr.r,(v fl 
v~cOr}~: hence, we have to solve a system of  card(~l)  inequalities where the 
unknowns  are the x I. If this system has several solutions, for each i we denote 
them [Y,=ql]: hence, we obtain aj~= A,p, (Atpr[y,=ql]):  by choosing h p , = M i n  
(see section 3.1) the extension of  art at level ~ is ~ . =  {..' ajk(.,.')= 
f( Min{g(ql ).r,)} }, ~>~}. 

' To  obtain the inheritance hierarchy on B given by the algorithm, the first step 
consists in comput ing  the ajk = b r I.-)pr., , b k whose extension is of minimum cardinal- 
it>-, we choose ~ = ~ and to compute  for instance az2 = bl up,,,, b2 we do the follow- 

,. - J ' ' " ' / 2  alz(bl) t> ing: first v,e set ajk =arkAaj" t where ark =[yt  = q t  ] is such that ! and 
a],(b2) >/ I /2.  Then,  for xj = qt(vj) where {vl . . . . .  v4t = O i  = O ,  = {I/2, 1/2, 1, ~} 
we have to solve the following inequalities, where the x;k are the unknowns,  with 
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the constraint 

Z q t ( v i  ) = Z x ~ =  1" 
J J 

a~,(b,)=gr,,.(qt,r~)= E{qt(v0 r~2)(v0/v,¢Ot}; hence, we obtain: a l2(b,)= l /2xl  + 
1~/'24x{ >1 1/2;  a ] z ( b 2 ) =  l / 2 x ~  + 1 / 2 x ]  >1 1 /2  f rom which  we deduce  that xl + 

x{= i, therefore (as E{x~i = 1", 4} = I )we  get x ~ = 0  and x~= 1, x~ = 0  if ig:2. 
a~2(b~) = l /2x~ + 1/,.x;. ~>t 1/2;. at2(b2)= l/2x~ + l/2x~ >1 1/2, from which it 
results that x:, = ! and x? = 0 ff i ~- 2. Finally we obtain: 

al2 = aJj2 Apt a~2 = [Yt =(1)1/2] A w [y2 =(1)1/2] (which is equivalent to the Boolean 
object [Yl = 1/2] Ab [Y2 = 1/2]). 

Similarly, we get: a]3(bl)= I/2xll + l/2x{ >/ I /2  and a]3(b3)=x4 ~ /> 1/2. This 
is a contradiction because the first equation implies ~ = 0. Hence, the only symbolic 
object whose extension contains bl and b3 is the full object ~s whose extension is fE 
f?  = At[y, = q,] is defined in the case of probabilist objects by functions qi: P(Oi) --' 
{ 1 } (which are not, of  course, probabilities!), then it is easy to see that f~s(aj) = 1 
V~,¢~L Similarly we get: a 1 4 = a l s = a 2 4 = 9 / ;  a23=[y j= ( l ) . ]Apr [Y2=  (1)1]; 
a,s = a,a; a~4 = [Yl = (1)2] Apdy, = 1(2)]; aa5 is computed as follows: a~5(b3) = x~ 1> 

- , ,  " 1 1 -  7~ t>_ -; - • 1 1 . • 1/ .  and a ~ ( b s ) = l / 2 x ~ + l / . x 4  ~- 1/,- lmphes x 4 = l  and x i = 0  ff 1:~4; 
a]~(b~) = i/,.x~ + 1 /2 .q  /> 1 / .  and a~5(bs) = 1/2 x~ + 1/2 x~ >/ 1/2; we have three 

" : - ~ 2  . 2  . . .  . 2  " 2 • . " "  2 2 - . soluUons 0) xs = x4 = 1/2, (n) -x3 = 1, x, = 0 for 1-¢3, (m) x4 = 1, x i = 0  for 1¢4, 
therefore: 

a35 =[Yl =(1)21 Apt [y: =(1 /2)1 .  (1/2)2] Apt [Y2 =(1)1] Aptly-, = (1)2]. 

In a similar way we get: 

a4.s = [Yl = (I /2)1,( i /2)2]  Apt [y~ = (I)11/xpr [yl = (I)2] A w [y: = (1)2]. 

In the following table we give in the cell of the ith row and jth column the extension 
of 

= 2 

2 3 4 5 

bib2 Q Q 

b2b3b5 ~ b2b3b5 

b3b4b5 b3b5 

b4b5 

Using this table it is easy to construct the inheritance hierarchy, by merging at each 
step the couple of least extension. Hence, the first couples are (bbb2),(b3,bs),(b4,bs); 
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Table 2 

Level Represen ta t ion  Extension 

1 a l :  =[Yl =(I)l/2]Ap,[y,=(l)l/2] {bl,b.,} 

2 a.~5 = [yt =(I)2]A~,r[y,=((I/2)l,(I/2) 2)JAr, r D'~ = ( I ) l ]Apdy,  = (I)2] {ba,b4} 

3 a~5  = [Yl = ( 1 )2]Am[y2 = ( I )21 {b~,b+,b~} 

4 a t_++~.~+~ = ~-~+.-t,.,[y, = ( I ) - I / 2 , ( I ) 1 / 2 , ( I ) 1 . ( I ) 2 ] = 1 " t "  B 

to get a hierarchy it is not possible to retain simultaneously (b~,b~) and (b4,bs) there- 
tore if there are no external constraints on the clusters (for instance, constraints of 
geographical proximity) we have to choose one of them randomly; if we retain, for 
instance, (b3,bs) the first couples to be merged are finally (bl,b2) and (b~,bs); there- 
tbre, we obtain the two first levels of the hierarchy characterized by al2 = bl t3p,.~ 2 
b2 and a35 = b3 Upr.! 2 b2. Hence, it remains for ba to be merged with (bl,b2) or 
(b3,bs). It is then easy to see that a~24(b,)=l/2x~+l/2x~>~ I/2 and 
ai24(b4) = l / 2x  4 >1 !/2 which give no solution such that E,: ~,4x~ = I: therefore, 
al~4=Q s whose extension is B. We have already seen that Ext(a~a/B.l/2)= 
.Ib3,ba,bs}, therefore a.~45=a34; hence, the next couple to be merged will be 
(ba,(b3,b5)) which gives a third level represented by a+4~=a34: the last level 
merges (b!,b2) with (b3,b4,bs) and is represented by the full object ~~". 

To summarize, we have finally obtained four levels whose representation and 
extension are given in table 2. 

Using the fact that the height of each level is the cardinality of the extension 
of its associated probabilistic assertion, it is then easy to build the inheritance hier- 
archy associated to the set B of probabilist objects, represented in figure 12. 

Notice that the same algorithm may be used with the probabilist, possibilist 

,21+ 
IL 

Figure  12. Inher i t ance  hierarchy on  probabi l is t  objects 

S 
... . .  

k 

b 3 b 5 b4 
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and belief union defined respectively in sections 5, 6, 7 instead of the symbolic union 
defined in section 9 which has been used here. The advantage of the symbolic union 
(see section 8.1) is that it defines the supremum of the lattice associated to the symbolic 
order. The advantage of the probabilist, possibilist and belief union is that they allow 
the use of theorems 1.2. 3: in this case if the height of a level defined by a~ = a l U~a2 is 
given by a:](alu~a2), we get in ca~  of  probabilist objects a;(alUp,.a,J=a~(a,)+ 
a~(a2)-a:~(alnp~ a2)> /a~(a l )+a2(a2) -  a~(alNpr a~}: it results that the obtained 
hierarchy will have no inversions (as it may be shown that a;(a3)>/a~(al) and 
a;(a~) >I a_;(a2} and the more al and a: are "'independent" (i.e. ai Np~ a2 close to 
0) the more the height of  a3 will tend to be high. 

We say that we have a rule between two probabilistic assertions a, and a2 at 
level (c~lJ~2) denoted R: a~ ~ a2 when ExtIal/B, t~l) C ExtIa2/B,¢~2): in other 
words, the rule R is true if, when b is in the extension of al at level ¢~, then, it is 
in the extension of a2 at level ~2 " when (~t = ~ , = ~  this rule is denoted al --* a2. 
By using this notation, it is easy to induce from the inheritance hierarchy of 

1,2 figure 6, by going bottom-up, the rule: a~s . a345 ' it is also possible to induce 
top-down the following rule: ~F ~l,l,,,2~ al2 v a345 which means that if b is in the 
extension of ~}~ at level I, it is also in the extension of al2 or a345, at the level 1/2: 
in the same way we get also a345 _£ b 4 V a35. 

! 1. Conclusion 

Considering a data base t~LA') where any individual object ~, E~ is described 
by ~EA'C_A, we have built a knowledge base (W,A) where any symbolic object 
acAc_a~ describes a subset W'EW of ~}; these symbolic objects may be obtained 
from the meta-data given by a data analysis of (~LA') (for instance, from a sym- 
bolic interpretation of the axis of  a factorial analysis or from a symbolic description 
of clusters obtained by a classical clustering technique): the set A of symbolic objects 
may also be obtain directly from the knowledge of an expert (for instance, from his 
description of a scenario of  accident or of a species of  mushrooms). 

Having (W,A) we have given tools in order to be able to extract meta- 
knowledge from A. by extending data analysis methods on symbolic objects. These 
tools depend on the backgrownd knowledge of the domain of application: we have 
defined several local theories by giving axioms and operators coherent with 
Boolean, probabilities, possibilities and belief information. Many kinds of develop- 
ments are needed in the future, by improving the basic choices given in this paper: 
more precisely, operators of union U~ and intersection n~ may be redefined, the 
mappings f, and g~ may be changed depending on the kind of the semantic inherent 
to any curent application: for instance, in the case of probabilist objects instead of 
using the mean to compute Apt by fw we may use the product and instead of using 
the ~alar  product to compute the fit between two probability distributions we may use 
many other classical similarities such as, for instance, Kuilback, Koimogorov etc. The 
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advantage of the choices that we have made is that they are coherent on symbolic 
objects with the axioms defined by each theory on individual objects: for instance, 
theorem 2 shows that in case of probabilities a ° defined on apt (the set of probabilist 
objects) satisfies properties which are analogous to the classical axioms of 
Kolmogorov, In order to obtain the same coherence with other choices of OPrr, fpr 
and got we have to solve functional equations (given by the Koimogorov axioms) 
and so, many research questions remain open, in this direction. 

In practice it may happen that several semantics are used simultaneously 
lintensity together with probability, and possibility, for instance), an important 
challenge is then, to find the best way to define symbolic objects concerned different 
semantics; more precisely, how to define At: (eg. f~y) in et At: e; where e~ and ey are 
two events representing two different kinds of semantic (for instance when et is a 
probabilist and ey is a possibilist event). 

If A=U,~ {q/qEAt C_ ax} is called x-set, then in the case of possibilities 
(x =-pos) Apos is a fuzzy set in the original sense given by Zadeh [19]; in this case 
upo~ is stable but not npos: in case of probabilist objects Wor and Nor are not 
stable. The advantage of belief objects is that u~l and n ~  are both stable. In defin- 
ing new kinds of operators we will have to try to satisfy stability. Several computer 
programs of symbolic data analysis have already been implemented independently, 
see for instance this issue: histograms of symbolic objects (De Carvalho [5]), sym- 
bolic pyramidal clustering (Brito) on decision tree on symbolic objects (Jacq), 
cxtracting rules from a special kind of symbolic objects (Sebag). More generally 
in the framework of the Esprit II program MLT ("Machine learning toolbox") 
tin interface between Makey (Lebbe and Vignes [13]) and SICLA (Celeux et al. 
[3]) an interactive system of classification has been implemented and work on 
X-Windows under Hypernews. 

The theory of Symbolic Data Analysis (SDA) that we have developped in this 
paper may be useful in the framework of vast domains of application as Data Base 
Systems, Pattern recognition, Image processing, Learning Machine etc. 

In Data Base Systems, SDA gives tools to define new kind of units (probabilist 
and possibilist objects, for instance) and new kinds of queries, expressed by a modal 
assertion at, when the extension is composed of individual objects or by dual modal 
as~rtion a~ when the extension is computed on a set of assertions A~ c_ a~. 

In Pattern Recognition, SDA allows the representation and the analysis of 
complex patterns: in -Image Processing" SDA may be used for instance, in order 
to compare several sensors, for data fusion, or for image understanding by classifi- 
cation of high level objects (houses, trees, roads . . . .  ) represented by symbolic 
objects. 

In Machine Learning SDA makes it possible to extend learning algorithms 
(where input are usually individual objects) to symbolic objects; moreover, by defin- 
ing symbolic objects on the set ~ of samples and not on the set of description A 
SDA allows a bridge between statistics and Machine Learning. 

Unlike most work carried out in Artificial Intelligence, symbolic data analysis 
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constitutes a "critique of  pure reasoning" by giving less importance to the reasoning 
and more importance to the statistical study of  knowledge bases, considered as a set 
of  "'symbolic objects". A wide field o f  research is opened by extending classical sta- 
tistics to statistics of intensions and more specially by extending problems, methods 
and algorithms of  data analysis to symbolic objects. 

Appendix*  

PROOF OF THE THEOREMS I AND 2 

Before giving the proof  of  both theorems let us remark that a'(ax)= f,, ({g~ 
Oj/O J a ,  (% {Uj,~ - , ~ i  • Q, }1},): where, by definition, ax  is the set of  im assertions asso- 

t ,  
ciated to x and Q~' = {q, :at = A, [y, =q(]  E a,~} =Q~ the set of  any u~ .Ax. cx com- 
bination of  elements qJ, E Q, associated to x. Hence. we have a* (a .o  = f~ ({gx (qi, Ujx 

/ q ,  c Q;~)}~). We set I,, = A,[y, = lo,] where lo, I v ) =  I Vv ~ O,. We denot~ 
= {q/q e QA }, where A~ c_ and QA is defined as in section 9 by QA = 

{q,/a = A j[yj =qj] E A~} which means that QI x is the set of  the mappings qi which 
deline the ith event [y,=q,] of  any a E A~. 

We extend the opera toru~  on R by settingV ujE R. Uxj- ~.n u j=  U~Ux u , . . . U ,  
un. where in the case of  possibilities we have u lu  r u~ = Max(u~,u2) and in the case of 
probabilities u~up~ u_, = ul + uz - utu_-. 

We denote IA(v) the set of  values taken by q, (v) when qi varies in QAx so 
IA(V) = {q,(v)q, E Q,Ax}. See tigure 13. Notice that as Oi. IA (V) is not necessarily 
countable. [] 

LEMMA I 

If for any sequence "~unj' ~ of  rational numbers dense in I~(v). the sequence 
U,, = ur I.n ut converges towards the same limit U. then qA (v) = U. 

t 

(5 i v 
j v 

Figure 13. When q, varies in Q A~. q4vl = u~ is repeated each time that it exists a different t h ~ Q~" such 
that qj{v) = q,lvl = u~. 

*A more complete and simpler proof may be found in a paper to be published by Diday. Rohmer and 
Emilion (Ceremade report, Dauphine University, Pansl. 
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Proof 

As the mappings qi take their values in [0,1], I, a (v) is bounded; it is possible to 
decompose its boundaries  by a partition of  intervals of  lenght 1/2k; we retain from 
these intervals only the one which contains at least one element of l,a{v); we associ- 
ate to each of  these intervals a rational number r and we denote I} (v) the interval of  
length 1/2 k which contains it; given k and v we denote lk(v) the set of  these numbers 
r. At this step O, is supposed to be a bounded subset of  R. it is possible to decompose 
the intervals defined by its boundaries, also by a partition of  lenght I/2k; we associ- 
ate to each of  these intervals which contains at least one element of  O,. a rational 
number from this interval. The set of  these numbers is denoted O} and the elements 
of O~ are denoted vl, v2 . . . . .  vnk, with nk = card Ok( ~< 2 k a s  some intervals may con- 
tains no elements of  O0. 

To each r,E lk(vt) we associate a set of  mappings q E Q A denoted C}t(v,) and 
constructed as follows: we consider the set I k = I~ {vl} x . . ,  x lka (V.k)and we sup- 
pose that vt E {vi . . . . .  Vnk}: we associate to any r = {rl . . . . .  r,k) E Ika where rt is fixed 
a uniquekq~ E Qi a if it exists, such that for a n y j  E {I . . . . .  nk}. q~ (V i) belongs to the 
interval It, (vj); the set of  these q~ is denoted C~t{v~): so we have: C}~(vt)= {q~ E Q~"/ 
r (ri rnk) EIk,,. re fixed, q, (vj) E I k = , . . . .  ~, (vj), q~ unique, for each r, when it exists}. 

We set 

q, iv): U, 13, u 
uEI~ (v) qEC~+v) 

which means that qi k (v) is the x-union of  all the values u belonging to l}~(v) repeated 
for each u by the number  of times that there exists q E ck, (v). 

Since, given k. the sets I~ (v) and ctu (v) are finite, it is possible to enumerate 
in a finite sequence, denoted u~ i, the u E lka (V), including their C k (v) repetition; thus. 
wc may define a set S k of  these ut such that 

S k = {U~ E IkA(v)ft = l, ~ card(Ck~(v))} 

Hence, we get 

q  vl= U, U, where nk: card C (vl 
ut'ESt t= l,nk uEl~tv) 

When k ---, + zc, S k becomes dense in I, a (v) since for any u E I, a (v), u~E 1~ (v) 
S k such that .u k) - u~ ~< 1/2 k. Therefore, when k---,~c the sequence {utt)} becomes 

a sequence of  rational numbers dense in I, a (v) and if the assumption of the iemma is 
satisfied, qk (v) converges towards U. Notice that if I, A (v) and Oi are not finite, when 
k ~ zc, card I~ (v) --, + ~ and card Ck(v) --. + ~ ;  ifl ,  a (v) is finite and there existsj 
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such that Oj is infinite, then lkA remains  finite for any k and card Cku (v) --, + ~c when 
k - .  + • :  hence, in all these cases nk --" + ",c when k --, + ",,c. The  only case where 
nk remains  finite when k--. + ~c appea r s  when I A (v) is finite and Oj is also finite for 
any j: in this case it is easy to see that  q} (v) will converge  a lways  t owards  the same 
finite union: 

U =  U ,  U , u  

where  C~' Iv) is the finite set o f  q E Q~X such that q(v) = u. 
As k --, + . ,  we have lkA(v) ~ 1A (v), since by cons t ruc t ion  Vu E 1A (v) there 

- 2 k and therefore  for any u E I A (v) there exists Uk E lkA (v) such that Uk U ~ 1/ 
exists a sequence  {Uk} with Uk E ikA (V) such that Uk --' U when k --. + :v.. 

When  k - ,  + ",x_. we may  see in a similar way  that O~--, O, since by the con- 
s t ruct ion o f O ~ . V v E  O,.Vk E O}. such that Vk--V ~< 1.2k. 

By the cons t ruc t ion  ofl~,  (v,). for any q E C, ~ (v) such that v E Q , ,  u E I, A (v) 
and q (v) = u, there exists for any v, E O}. an element  r, E lkA (v , )such that  q (v,)  E I~k,: 
also by the cons t ruc t ion  o f  Cku(v) there exists qk E C~ (v) such that qk (v,) E Irk,; hence 
we get for any v, E O} qk (V,)- q{v,) ~< 1 2  k as by construct ion the len{th o f t h e  inter- 
,,al I}, is 1,2k: hence when k ~ + x O~- -  O, and qk ---" q. therefore C~ (v) --. C, ~ (vl. 

Finally,  as k - -  + x ,  we have q k (v) --. U. 1~ Iv) --, I; a' (v), C~ (v) ---, C, ~ (v), it 
fol lows that at the limit o f  the equal i ty  

q } ( v ) =  U '  U' u. 

we get: 

U - -  U '  U '  u = U , { q / ( v ) / q E  QIx} = q f f ( v ) .  

t 

E 
We recall that Io, and Ii x are the mappings  Oi --' [0.1] such that Vv E O,. 

Io, (v) 1 and IA{v} = {q,{v) q, E Q~X,. we have also q,A = {U, q/q E QA}. 

LEMMA 2 

l f 'v 'u l ,  u 2 E [ 0 . 1 ] . U l U ,  U2 >/ M a x ( u l . u , ) . t h e n ' v ' A ~  ~< a ~ a n d V v E O , , w e  

have ql x ( v ) =  Max  {u u E Ii x (v)} and q~l, = 1 o,. 

Proof 

First we show that any sequence  

Wn= U / 2  n 
t= l.n 
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~vhere {un} is a sequence of  rational numbers dense in i; a, converges: this follows 
from the fact that Vn U,  = Un ,u,u,,  1> U,, ,. since uu ,  v/> Max (u.v). and so 
the sequence {U,,} is increasing, as it is majored by 1. Second. the sequence U,  con- 
verges towards U. for. if u < U was its limit we would obtain a contradiction 
because, since the sequence ' ~ is dense in I~" ,unj (v). there would exist a k such that 
U < U k < l a n d U k = U k  ,U, Uk >~ Uk > U. hence the sequence { Un} would never con- 
verge towards u. as it is increasing. Therefore. by applying lemma I. we get q~" 
lv )=  U; hence, in the case where 1(' (v)=[0 .1]  we have U = 1 and so Vv E O,. qA 
iv )=  1. therefore qA = lo,. 

Hence. we have proved the theorem in the case where O, is a bounded set of  R. 
Let O, ]an.bn[. where {an} and {bn} are two sequences of  R such that. when n --. 
+ ~ .  a ,  ~ - 9c and b ,  ~ + , .  We may say that the theorem remains true with 
O, = ]  - ~ .  + ~ [ since when n ~ +-x_ x/ a. b E R there exists N,. N, large 
enough such that the theorem remains true on ]anl. bnl. [with a,,, < a and b,., > b 
t\~r (n,.nz) such that n, > N, and n_, > N:. [] 

Proof of  theorem 1 ( possibilist objects) 

¢i) a'(ap) = 1. a ' (o)  = 0. 

It is easy to see that the assumptions of  lemma 2 are satisfied as 

¢a) V u,v E[0,1], u up v = M a x  (u,v)  by definition 
fb) V u E  [0.1]. 1 up u =  I = Max ( l . u ) =  1:0 up 0 = M a x  10.0)=0: therefore V,. 

lip 
q, = lo i .  Therefore 

a ' (ap) =fp({gp(q , . lo , )} , )  = Max({sup(Min(q,(v) .  lo,(v)))},} 
'. ,..: O,  

= Max({sup(q,(v))},)  = Max({I},)  as q,(O,) = 1. 
',~0, 

This implies the existence of  vEO, such that q , (v)= I. Therefore we get finally 

a'(ap) = 1. By definition 

a ' (o )  = fp({gp(q,.ol)}~) with gp(q~.ol) = sup(Min(q, (v) .o l (v)) )  
'*~O, 

= sup(O, Iv)) = 0 as o , (v)  = 0Vv c O,. 

Therefore a ' (o )  = Max({0},) = 0. 

¢iij a ' (AiUpA2)=Max(a ' (Al ) . a ' (A2) ) .  By definition we have: AtUr,A2=A[Y, = 
q,&Up q~:] with q& = { U j p ~  ~EQA'};  Since the assumptions of  temma "~ 
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are satisfied, qA exists. Hence, we may write: 

a ' (A, Up A2)=  fp({gp(qi,q A' up qA:)},} where gp(qi,q A' up qA:) 

= Sup (Min{qi(v), Max(q,A'(v), qA:(v))}). 
v60, 

Since Min{a.Max(b.c)} = Max{Min(a.b). Min(a.c)}. we have: 

gp(q,,qA, Up q,A:)= Sup (Max{Min{q,(v), q,A'(V)}, Min{qi(v),q~:(v)}). 
v,~O, 

But since 

Sup (Max{a(v). b(v)} = Max{Sup (a(v)), Sup (b(v))} 
v¢-O, s,~O, vEO, 

we get: 

gp(q~' up q ~ : ) =  Max{Sup (Min{q,(v).q~'(v)}). Sup (Min{qi(v),q~:(v)})}. 
",'~ O, vEO, 

Hence. as Max,({Max(a,.b,)} =Max(Maxt({a,}). Max,({b,})} and a ' (Aiup A2)= 
AI A, Max, ({gp(q,.q, Uq, "). by definition, we get: 

a ' (A, Up A2) = Max{Max Sup(Min{q,(v),q~'(v)). Max Sup(Min{qi(v),q,A:(v))} 
I ~ O i  ~ vEOi 

and finally: 

a ' (Ai up A2) = Max(a '(Ai) ,a ' (A2)) .  

[] 

Proof of  theorem 2 (probabilist objects) 

It is easy to see that the assumptions of lemma 2 are satisfied in case of pro- 
babilist union as: 

(a) 

(b) 

(c) 

V ul. u2 E ]0,1[, we have: um Upr u2=ui  + u2 - ul u2 t> ul + u2 (1 - ul) i> ul, 
a n d u 2 + u l ( l - u 2 )  />u2, s o t h a t u l U p r u 2  >t Max(ul ,  u2). 

V u E[O,I], 1 Upr u = l + u - u = l ;  

0 Ux 0=0 .  

Alx Hence it follows from this lemma that q~" = 1o, and VApr C apt, qi exists. 
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Now we may prove theorem 2: 

, i )  a'tap,)= i; a'(~)=O. 

From q~" = l oi we get: a ' (apr )  = fp , ( {gp jq ,  l oi)}i); were gpr(qi, lo i)  = S {qdv) 1o, (v)/ 
vEO,} = S {qi(v) / vEOi}  = 1. Therefore: a ' ( a p , ) =  fp,({ I } i ) =  I. 

By definition we have a '(~) = fpr({gpr(qi,~i)}i), where V vEOi, ~i(v) = 0; 
hence, gpr(qi.~i) = E{%(v)~i(v)/vEOi} = 0; therefore a '(~) = Mean ({0}0 = 0 

l i i )  V Ai. A2 C_ ax  a'(AiUpr A2) = a*(Ai) + a'(A2) - a'(AjApr A2). 

As qAt exists, we may write, by definition: 

• A 
a ( A I U p r A 2 ) =  fpr({gpr(qi,qi 'UprqA:)}i) wi th  & A, ~pdq,,q, Up,q, " = (qi, q,& + q~: - 
qla" APr q~' :)= (qi'q & ) + (qi'q A:) - (qi'q,A' f)Pr qi :) 

As for is the mean, it results that: 

" A~ A ,  A I A ,  A 
a ( A i U p r A 2 ) = M e a n ( { ( q , q , )  + (q,,qi ") - (q,,q, f'Ip r q , : } , )  = M e a n  ( { ( q i , q , ) } , ) +  
Mean ({q~.qA" h) -- Mean({(q~,qA'rqp, qA:},)=a ( A , ) + a  (A2) - a (A,np, A , )  

[] 
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