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SEPARATED INYISCID GAS FLOW PAST A DISK AND
A BODY WITH MAXIMUM CRI'T'ICAL MACH NUMBERS
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The problem of the separated axisymmetric subsonic flow of an inviscid perfect gas with the specific heat ti 1 . past a disk in
accordance with the Riabouchinsky scheme is solved using the method developed in [2] . Formulas relating the main parameters with
the base pressure coefficient and the Mach number at the free boundary are presented . Formulas which make it possible to determine
the shape of the body of rewlution giving the maximum critical Mach numbers are also derived .

1. Various schemes of steady inviscid fluid jet flow with a constant pressure in the separation zone may be used
to analyze separated gas flows at high Reynolds numbers [2] . In what follows, the separated axisymimetric gas flow past
a disk is examined using the Riabouchinsky scheme . According to this scheme, the free boundary shed from the disk
is matched smoothly with a second, "fictitious", disk, coaxial to the first and of the same magnitude . Thus, the flow is
symmetric about a certain plane normal to the freestream velocity.

We will consider the steady subsonic axisymmetric potential isentropic flow of an inviscid perfect gas past a disk
in accordance with the Riabouchmsky scheme. The gasdynamic parameters in the flow under consideration are related
by the well-known formulas:
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The following notation is used: A, reduced velocity, M, Mach number ; p, pressure; p, density; a, speed of sound ;
k, specific heat ratio; p o and P D, the stagnation values of p and p . In what follows, the inviscid perfect gas with k= 14
will be called the air-like gas .

Let p„ p°, M0, and a° be the freestream values ofp, p, M, and a; V, is the freestream velocity, p~ and M~ are the
values ofp and M at the free boundary, X is the disk drag, L is the length of the separation zone, R is the radius of the
section of the separation zone by the plane of symmetry, and R o is the disk radius (R0=1). The drag coefficient C,, and
the pressure coefficient in the separation zone (the base pressure coefficient) Q are determined from the formulas

Cz =2X/(a p 0VaRa),
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Rewriting the latter expression in terms of (U) yields
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An efficient numerical-analytic method for the calculation of the compressible flow past a circular cone in
accordance with the Riabouchinsky scheme was developed in [1] for any arbitrarily preassigned relationships M(A) and
v(A), v=p/p o. In the case of a disk in an incompressible flow (M,=M~=O), the main flow parameters, which will be
given the superscript "°", can be computed on the range 015 s Q s 1 from the formulas [1]

Cs =0.72084 + 0.11178(1 + Q) - t + 0.92960Q

R° =0.96034 + 0.08936Q -t In Q + 0.42422Q-t

	

(13)

L°=0.20970 - 0.60585Q-l hiQ + 1.78362Q -t
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Fig. 1

The Q-dependence of the parameters Cx , L°, and R° is plotted in Fig. 1 (curves 1-3 correspond to the quantities
C,~ , R ° ,and 01L°) .

The separated flow of air-like gas past a disk was calculated for Q=0 .25, 0 .3, 0 .4, 0.5, and 0.6 and M~ =0 .2, 0 .4, 0.6,
0.8, and 1 using the method of [1] . The calculations were carried out on a 50 x 50 grid ; the value of the freestream
Mach number M, corresponding to given Q and M~ can be determined from (12) . From the results thus obtained the
following approximate formulas for C=, L, and R were constructed using the method of least squares :

C1 =aCs, L=~L°, R=SR°
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d =d1 + d2Q-i In Q + d3 Q-1 ,

	

d=f, g, h,

	

d~ =f, 8,, h~

Here, C°, L°, and R° are functions of Q given by the formulas (13) . The values of the coefficients fr g,, and h,
in the approximating formulas (L4) are given in Table 1, together with the values of the maximum relative
approximation errors e . The M~ -dependence of the parameters a, [i, and b is presented in Fig. 2, the curves 1-3
corresponding to Q=0 .25, 0 .4, and 0.6 .

The formulas (1.3) and (L4), together with the data 47 Table 1, make it possible to determine the quantities C„
L, and R on the range 0.25 s Q s 0 .6; 0 s M~ s 1. Note that for all the cases considered the radius of the separation
zone cross-section increases monotonically from the disk to the plane of symmetry of the flow, while the absolute value
of the curvature of the free boundary arc in a meridional plane decreases monotonically .

2. An important characteristic of a body in an inviscid gas flow is the critical Mach number M ., i.e., the minimum
value of the freestream Mach number M ° for which the flow velocity attains the critical value somewhere on the body
surface. The bodies achieving the greatest possible M . within a class of bodies satisfying certain geometrical restrictions
can be of practical interest .

Consider axisymmetric inviscid flow past bodies of revolution which satisfy one of the following conditions :

R/L s r0 ,

	

S/LZ z sa ,

	

W/L3 t wa

	

(2.1)

where L is the body length, R is the mid-section radius, S is the cross-sectional area in a meridional half-plane, W is
the body volume, and r 0 , s o, and wo are given constants. The bodies of revolution with the maximum value of M. within
the above-mentioned class are those formed by two coaxial disks of equal magnitude transverse to the freestream and
the free boundary connecting them, at every point of which the gas velocity is critical [3] (mix M . is attained if the strict
equality in (21) is fulfilled) .

Thus, the shape of a body of revolution with the properties mentioned above (for brevity, we shall call such bodies
optimum) can be determined from the solution of the problem of the flow past a disk in accordance with the
Riabourhinsky scheme, with the critical velocity on the free boundary. Although this fact has been known for a fairly
long time, the shape of the optimum body has not yet been determined because a suitable technique for solving the
problem has not been developed .

We calculated axisymmetric potential isentropic flows of perfect gas with the specific heat ratio k=L4 past a disk
of radius Ro in accordance with the Riabouchinsky scheme, subject to the condition M~=1, for M,=M .=0.5, 0.55, 0 .6,
0.65, 0 .7, 0 .75, 0 .8, 0 .83, 0.85, and 0.87. From the above it appears that the configurations thus obtained are the optimum
bodies for an air-like gas .
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The contours of the optimum bodies obtained are plotted in Fig. 3 in the meridional half-plane (x, r) to the left
of the plane of symmetryx=0 for M.=0.87, 0.85, 0 .8, 0 .7, and 0 .6 (curves 1-5, respectively; R0= 1) . The main geometric
characteristics of the optimum bodies together with the values of the pressure coefficient Q on their lateral surfaces are
presented in Table 2. In this table 0 = (W/(aL3))"2, while the coefficient Q is determined, in accordance with (L2), from
the formula

L
2 	+ k - 1 Mz tm-1>~

Q=---1-(
z
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Obviously, conditions of the form M. s F1(R/L), M. s F2(S/L2), M. s F3(~) hold for an arbitrary body of
revolution in an air-like gas stream ; here, F1i F2, and F3 are monotone decreasing functions of their arguments, the strict
equality being fulfilled only in the case of optimum bodies . By approximating the data of Table 2, bearing in mind that
F1(0) =F2(0) =F3(0) =1, the following formulas were constructed :
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TABLE 1

µ I d~

	

l j=1 I

	

2 I 3 I e 10°

f

	

-010521

	

0.06738 017566
a g1

	

0.24632

	

-0.07326 -019309 5
h~

	

-016489

	

0.03909 012627

f

	

0 .20163

	

0.01268 0.04005
g~

	

-0.05491

	

0.00202 0.00625 15
h~

	

-0.08536

	

0.06838 014857

1

	

0.03122

	

0.02190 0.01362
8 g1

	

-011785

	

-0.02330 0.09410 11
h~

	

0.04666

	

0.03428 -0.04260



480

TABLE 2

F1 =(1 - 0.54152r 1 + 1.70875ri - 0.34186r -1 ,

	

r1 =(R/L)'t3

F2 (1 - 0.48238s1 + 1.69462si - 0.35413sf-1 ,

	

s 1 =(S/L 2)

F2 =(1 - 0.49209w1 + 1.70871wi - 0.35938wf -1 ,

	

w 1 =(Q)u3

The error in approximating the calculated data by the formulas (2 .2) does not exceed 011% for F 1 and 0.07% for
FZ and F3 for F 1, F2, F3 z 0.4 .

Let BC be the disk generator and CD the optimum-body lateral-surface generator in the meridional half-plane (x,
r) (see Fig . 3). Let 0 be the inclination of the velocity to the axis of symmetry x and 6 o = n /2 be the value of 9 on BC.
It was shown in [1] that the curvature of the arc CD increases without bound as the point C is approached. A more
detailed analysis shows that the following estimates hold in the vicinity of the point C of the arc CD:

x/x~ + 1=0(0 3),

	

r/r~ - 1=0(02)

	

(a - 0)

	

(23)

where a=0 c - 0,x~ and r~ are the values of x and rat the point C (x~=-L/2, r~=R 0 ) . We introduce a parametric variable
t by setting x/x. =cost on CD. Let t=n - w; then, in accordance with (2.3), we have

o =0(w), r/r~ - 1=0(a) (~ -0)

On the basis of the above considerations and the calculated results, approximating formulas allowing the
determination of the shape of the optimum body generator, were constructed :

X = b cost,

	

b = .L,

	

t e [0, a] ,

	

T =1 +

	

aksin (2k - 1)t

	

(2.4)
Rc

	

2Rc
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x-1

M. Q

	

i L/(2o) R/L S/LZ 0

OS 21334 0.4633 12999 1 .2450 1.2462

055 1 .6583 0.6390 0.9868 0.9361 0.9375

0.6 1 .2943 0.8811 0.7549 0.7086 0.7102

0.65 1 .0085 1 .2216 05797 03378 03395
0.7 0.7791 1.7223 0.4426 0.4053 0.4071

0 .75 05912 2.4773 0 .3356 0.3031 0.3049
0.8 0.4346 3.6926 0.2499 0.2222 0.2240

0 .83 0 .3526 4.8283 0.2059 0.1813 01830
0 .85 0.3020 5.8485 0.1793 01569 01585

0.87 0 .2544 7.2425 01541 01338 01354
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The values of the coefficients a,,, obtained by means of a Fourier analysis are given in Table 3 together with the
values of 8 1 , the maximum relative error in approximating the quantity r, and £2, the maximum error in approximating
the quantity 0 : s 2= ~0 - tan t (r,/x,) I .

Additional calculations carried out for intermediate values of M . showed that using the formulas (2.4) to
approximate the coefficients b and a k from Tables 2 and 3 by splines usually results in an increase in s,, though by no
more than an order of magnitude, while the value of E2 varies only slightly .

Thus, the data presented make it possible to design optimum bodies of revolution in an air-like gas on the range
OS s M. s 0 .87. The method [1] can also be applied when M a < 0.5; however, when Ma exceeds 0.87, the calculation
errors grow quickly (the technique for checking the calculation accuracy is described in [1]) ; then the iteration procedure,
used in solving the problem, no longer converges .

The authors wish to thank G . Yu. Stepanav for his interest in the work and useful advice .
The work was carried out with the support of the Russian Foundation for Fundamental Research (project No . 94-

01-01763) .

REFERENCES

1 .

	

L. M. Zigangareeva and O . M. Kiselev, "Calculation of compressible subsonic cavitation flow past a circular cone," Prikl. Mar. Mekh, S8 93
(1994).

2.

	

L. V Gogish and G. Yu. Stepanov, Separation and Cavitation Flows [in Russian], Nauka, Moscow (1990) .
3.

	

D. Gilbarg and M . Shiffman, "On bodies achieving extreme values of the critical Mach number" 1. Ration. Mech. Analysis, 3, 209 (1954) .

482


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6

