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PLANE VISCOPLASTIC FLOW IN NARROW CHANNELS
WITH DEFORMABLE WALLS
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The equations of motion of a continuum in a thin layer are derived for a given functional dependence of the stress tensor on the strain
rate tensor The general problem of viscoplastic flow is considered in the thin-layer approximation for boundary surface material points
travelling in the lateral direction in a predetermined fashion .

The projections of the continuum point velocity, pressure, flow rate through a cross-section of the channel, and the power of
external forces are expressed as functions of the boundary deformation law. The problem of determining the channel boundary
deformation law is formulated for a given boundary pressure distribution . The expressions for the continuum flow rate and pressure
and the power of external forces written as functionals of the channel width allow formulation of the problems of controlling viscoplastic
flows in thin layers and optimizing the processes .

A method for analyzing viscoplastic flows subject to complex boundary conditions was discussed in [1] . It is based
on the notion of equivalent viscosity whose analytic determination justifies passage from the Hencky to the Navier-Stokes
equations in analyzing viscoplastic flows at relatively low Saint-Venant numbers. Plane viscoplastic flows subject to
various boundary conditions have been analyzed in a number of papers [3, 4] .

In this paper we consider an alternative method for solving the problems of viscoplastic flow in thin layers under
complex boundary conditions. The method is based on the replacement of the accurate Hencky equations [2] by
approximate equations at an arbitrary Saint-Venant number.

L Let us consider a thin viscoplastic layer bounded by a deformable surface and single out an element whose
characteristic dimensions 1 - 1 1 - 1v 13 << 1, Fig. L We introduce the following characteristic parameters : flow velocity
V in planes parallel to the plane xy which touches the layer surface ; the flow velocity along the z-axis, U, which is
perpendicular to the layer surface ; the stress at continuum points 9, pressure drop Ap, and time T.
The flow equations written in stresses are rewritten in nondimensional variables . For this we use the formulas

x=1x', Y=1y', z=13z', t=7Y, v1 =Vu z ,

v y =Vuy , vZ =UuZ , z y =-GPP'6y 9sy' (i, I=1, 2, 3),

	

(1.1)

6 v =O

	

bo =1

where the primes mark the nondimensional coordinates, time, pressure, and stresses, and u, uy, and u_ are the
nondimensional projections of the continuum point velocity .

Assuming that the continuum is incompressible and the form of the nondimensional compressibility equation is the
same as that of the dimensional one, from the latter we get :

v/1- U/13 , U c V

	

(1.2)

Let us substitute relations (U) and (L2) in the equations of motion written in stresses, assuming that

13c1,
PUZt cl, PU2 c1, ~P>1, ~P> pU13

1
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Discarding the terms whose coefficients are small quantities, we arrive at the following equations of continuum
motion in a thin layer :
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az'
au= + our + au, _ 0
ax'

	

ay,

	

az,

Putting pUl/TA << 1 in the first two equations (L3), we get the equations of stationary/quasi-stationary flow in
a thin layer :

APl3 P, _ aT Z '

	

Ep 13 ap' _ &r 3;

8 1 ax' - az' ' 9 I ay ,

=0
az'
au= + ou r + au, =0

ax ,

	

ay,

	

az'

If an isotropic continuum flows, for instance, parallel to a plane, then s~ =0 and T..= 0 and Eqs . (L4) become

Op ap'
= 0

	

aP = aP =0
au. + au, =0

	

(1.5)
6 ax,

	

3c' ' ay , az ,

	

ax'

	

az,

Equations (L3), (1.4), and (L5) are analogous to the Reynolds equations [5, 6] for a viscous fluid .
2. Consider viscoplastic flow in a thin layer between two material deformable shells described by the equations

z=h,(x, t) and z=h z (x, t) for z e [h„ h 2], Fig. 1. If the conditions

ah. 13

ax
- 1 cl, h2 -hl - 13 cI (i=1,2)

hold, then, after returning to the dimensional variables with the help of (U), we can use Eqs . (1 .5) in the form

p=at.
aP=ap=O,

av=
+ avZ =0

ax az ' ay az

	

ax

	

az

Since 13 << 1, the tangential stress component

av

	

av
TII= µ

	

+ -c 0 sign
ax

	

az

A'
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Fig. 1 Fig . 2

pUI au= _ AP13 13 aP c1Ta+ Pe r _ _ OP aP , + aTn,_
719 at' 6 1 ax, az' ' 719 at'

	

9 1 ay'

	

az'

0 = OW (1 .3)



Let us assume that the boundary material points determined by equations z=h 1 (x, t) and z=h2 (x, t) travel exactly
along the z-axis, i .e . vx=0 on the boundary.

This boundary condition may be validated, if the boundary shell z=h2(x, t) is inextensible and the coordinate x=0
is fixed. If the above thin-layer conditions are met, then the length of the upper-boundary shell arc is

Stt)

	

s(r) (a }2
s- f

J1
+ (ah2 /ax) 2 dx =x(t) + f2 Ia I dr

Taking into account the inextensibility condition ds/dt=0, the estimate h2/3t - 13/1 << 1, and the mean-value
theorem, we can write:

Here, 4r (x, z, t) is the stream function, i =1, 2; p 1 and p2 are the pressures in the cross-sections x=x 1 and x 2 respectively,
and Q(x 1 , t) is the continuum flow rate in cross-section x=x1 .

From the second boundary condition (23) we get the expression for stream functions 4r1 and 4r2 on the boundaries
z=h 1 (x, t) and z=h 2 (x, t) respectively, and for the flow rate Q(x, t)=4'2 - 4' through the cross-section at point x -

S

	

Z

~i=-fh1 dx, U2 = Q(x1, t) - fh2dx
Z1

	

I 1

S

Q=Q(x1 , t) - 2 fhdx

h = 2(h2 - h 1 )

	

(2.7)

Here, Q(x 1 , t) is the flow rate in the cross-sectionx=x1 and the arbitrary constant is chosen subject to the condition
4r(x1 , h 1)=0. Then, the tangential stress z=, defined by expression (2 .2), becomes

tR = µ ~ + t o sign z

	

(2.8)

According to Eqs. (21), ap/& is independent of z and hence t= is a linear function of z . Introducing the
quasirigid region boundaries z=h 1 (x, t) and z=h 2(x, t), where the function r~(x, z, t) assumes the limiting absolute value
t 0, we get

sR =sign Q	° (2z - z 1 - z 2 )

	

( 2 .9)
z 1 - z2

From the first equation (2.1) and Eq. (2 .9) we find the pressure gradient

= s ign Q	2io

	

(2.10)
ax

	

z1 - z2

Since the function 4r(x, z) is continuous in the layer z e [h 1 , h 2] and the strain rate intensity is zero inside the
quasirigid region, Eqs . (2.8), (2 .9), and boundary conditions (2.5) yield for the stream function
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z=h.(x, r) : vj =

	

=0, vz --

	

_a

	

at (2.3)

x =x 1 : p =p 1 or Q (x1 , t) = Qo (t)

x =x2 : p =p 2
(2 .4)
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(x - z2)3 - (h ° - z) zo ,

i si

+ 2µ(h~~ -(h
° - z)za,

-
3

(z - z 1 )3 - (h° - z)za,

4 ° = l/2(4r + 4'2), h° =1/2(h1 + h 2), z l - h r =h2 - z2 =z°

According to (2.9), quasirigid boundaries z 1 and z 2 lie at equal distances from the domain boundaries, Fig . 1 .
Calculating the stream function 4r on the flow boundaries, 4rz=yr(x, h 2 ) and i4i 1 =yr(x, h 1 ), from (2 .11), taking (2.5) into
account, and subtracting the second value from the first, we arrive at the equation for the quasirigid region boundary
z0, which may be written in the nondimensional form :

Thus, the nondimensional distance Zo of the quasirigid region boundary from the flow domain boundary depends
only on the nondimensional parameter a, which is the reciprocal of the Saint-Venant number. For any a z 0 Eq . (2 .15)
has a single root that satisfies the condition 0 s Z o s 1, for which the following asymptotic expansions can be obtained :

a__(a+ 1)1+ O(Q), a .1

l

	

(2.15)

3a + O(a 3n),

	

a d 1

Expressing the pressure gradient in (210) via Z 0(a) with the help of Eqs. (2.14) and (2.12), we get

aP = _ sign Qs °

ax

	

h(1 - Z°(a))

Then, integrating between the limits [z 1, x], we arrive at the following expression for the pressure drop Ap on the
interval [x1 , x] :

ap _ -1 signQ		 (2.17)
z°

	

z, h

	

1-Z
0

(a)

In the thin-layer approximation the projection of the total stress p~ onto the z-axis reduces to per = p . Therefore,
relation (219) can also be used for calculating at any moment of time t the x-distribution of the external pressure acting
on the channel walls, which ensures that the wall deforms according to a given law. In order to derive the dependence
of the pressure gradient on the wall deformation law, we express Z0(a) in terms of ap/ax from (2.18) and substitute
it in Eq . (215) :

a 2
(h

	

+ s° l
2
(2h

	

- .r°)=-3µ IQI(~)

?II + 1 =a + i, II=- h aP
3

	

3172

	

s ° sign Q ax

(2.11)

(2 .12)

(2 .16)

(2 .18)

(2 .19)

For any a z 0 Eq . (2.21) has three roots : II, < 113 < 113 . The first root is negative, the other two are positive . The
greatest root corresponds to asymptotic solution (217) . The asymptotics for the greatest root II(a) can be obtained by

18 1

Zo(1 - 3Z°)=a(1 - Z°) (2 .13)

µ~QIa= Z = ?o
° h

(2.14)
t °h2



substituting (217) in (218) :

1 82

	 2		1	 \s-(a+1)-	 +O(-

	

, awl
2

	

9(a+1)2

	

a+1

+f +?a+O(a3n),

	

a< 1
3

Thus, for a known deformation law h(x, t), the function II and pressure gradient 3p/&x are found either from
simple algebraic equations (2.21) and (2.20) or, approximately, from asymptotic expansions (2 .22) .

The flow rate Q is readily found from Eq . (2.20) as a function of h and &p/ax . Then, for a given pressure
distribution the deformation law is found from the equation

ah _ 1 a

	

dp
at

	

2 ax Q (h' ax

The external force power spent on taking the continuum from point x, to point x is determined by the expression

w=
j T°~Q1	dx	

(221)
~ h 1 -Z0(a)

Analytic expressions (2 .6), (215), (219)-(2 .23) yield the mathematical formulation of the optimal control problem .
The function h(x, t) may be viewed as a control function, and the flow rate Q, pressure drop Op, and power W as the
functionals to be optimized . Using Eqs. (2 .20) and (2 .21), we can optimize functionals Q and W, viewing function p(x,
t) as the control function .

3 . Let us determine the work done by the external forces in forcing out a given volume of viscoplastic continuum
through a slot with an impermeable left wall .

Suppose that, at the start, we have a thin rectangular layer 0 s x s 1, 0 s z s h o filled with a viscoplastic continuum .
The left-hand wall x=0 is rigid and impermeable and the right-hand slot x=1 is open. The viscoplastic continuum is
forced out through the right-hand slot with the layer boundary deforming continuously according to the law

=f(x', t'),

	

x' = X
'

	

t' = t

	

(3.1)
l

	

T

where T is the deformation time. The volume V forced out in time T is given by the formula

V' = v =1 - ff (x', r ) dr' ,

	

V0 =2h01
V°

	

o

The work A done in time T is found by integrating (2 .23) with respect to time:

A

	

11 ~ft~dx'~'

	

a z
A'=-=ff		J=_ff(x', t')dx',

	

A°=2V°Iy

	

(3.3)
A° o 0 f(1 - Zo(a}} '

	

c?t o

Equations (2 .6), (216), (31), and (33) allow the parameter a and flow rate Q in the cross-section x' to be
expressed via nondimensional functions f and f, :

Q= -2h°I fl(x', r),

	

a=
2fZ

,

	

s= T°h°T

	

(3.4)
T

	

f2s

	

µl

Here, S is the Saint-Venant number .
Let us consider two examples of the extrusion of a viscoplastic continuum .

Example 1 . Extrusion according to an exponential law

Fxnmple 2. Extrusion with the help o£ parallel plates moving according to the law

(2.20)
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It can readily be shown (see Eq . (3 .2)) that in both cases the same volume

V = 1(e - ° - 1 + a)

	

(3.7)
a

of viscoplastic continuum is forced out in time T.
The work done on forcing out the volume is calculated numerically using formulas (33) .
Figure 2 compares the work A' done in forcing out volume V for deformation laws (3 .5) and (3 .6) respectively.

Curves 1 and 3 correspond to (3.5) with S=0.5 and 2 and curves 2 and 4 to (3.6) with S=OS and 2 respectively .
According to Fig . 2, there is a value V. such that when V < V.(S) the exponential method of deformation is more

economical. Conversely, when V > V.(S) the other method is preferable .
Thus, in the initial stage of extrusion the simplest method involving a pair of plates is less economical . The larger

the Saint-Venant number the longer the stage .
4. Consider the problem of asymmetric extrusion of a viscoplastic continuum from a narrow channel with the help

of parallel plates for 0p=p 1 - pv Fig . 3 . The problem of symmetric extrusion was solved in [7] by assuming that h/1 <<
1 and S >> 1, the solution for viscoplastic flow being sought as a correction to the known Prandtl solution for fully
plastic flow.

Let the plate be 1 long, the distance between the plates 2h, the velocity with which the plates approach each other
U= ~2h I, and the pressure at points x1 and x2p 1 and p z respectively. To be definite, we assume that p 1 Z p, . The origin
is placed in the zero-flow-rate cross-section . Then, in cross-sections x 1 and x2 the flow rates Q(t, x) are found from (2.6),
the local reciprocal Saint-Venant numbers a; (i=1, 2) from (217), and the pressures P i and p 2 from (219). Thus, we
get

Let us solve this system of equations, and then the problem as a whole, for a o >> 1 when (4.2) and (217) allow
the nondimensional function P(a) to be represented in the form of the expansion

P(a) _ a2

	

~+ ~ a. -
9

+ O ( a l

	

( 4.4)

Using Eqs . (4.4), (4 .1), and (4.2), we can reduce (4.3) to the nondi
l

me

J

nsional form
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Q (t, x;) =Q, _ -21ix 1 ,

	

a~=ap I aa = µ U1 (4.1)
T~h2

p (x;) =P; =Pa -

	

P(a;),

	

P(a1)
hao

(4 .2)
a 1 - Z0 (a)

The coordinates of the plate ends x 1 and x2 should be found from the system of equations

p (x 1) - P(x2)=4P,

	

x2 -x~=1 (4 .3)



x2 =-,

4
(a2 - ai) + 2 (a2 - a 1) = 110a0

- AphIIo Tol

where the inequalities for I[ and ao correspond to a zero-flow-rate cross-section x = 0 lying inside and outside the (x„
x2) segment respectively. It may readily be shown that the solution of system (4.5) has the form :

3
' IIo s qa

2

	

3(ao + 2)
o

3 IIo - 1 + 2ao , IIo 2 4ao

Using (41), the coordinates of the slot ends x, and x 2 and coordinate x can be represented in the form

1(a2
- a

l)
x 1 =

	

,

	

x =x1 + d
ao

	

ao

where d is the distance from the left-hand edge of the slot . The local reciprocal Saint-Venant number

ao ~x~

1
a=

Formulas (211), (217), and (219) permit the stream function, the flow velocity field, the quasirigid-core region,
and the pressure to be expressed through the parameter a in cross-section x :

p =p0 - -P (a)
0

Equations (4.6)-(4 .9) allow calculation of the force exerted on the plate by the continuum being extruded,

F= Jp dx
= 1

Integrating by parts and passing to the nondimensional pressure and coordinate a
respectively), we get

F =p2x2 - p1xi + Fo

3
2

3
2
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Fo =-Jx dx=
z

	

2h3

In the case of viscoplastic continuum symmetric outflow P i =P 2 ]1 =0, and from (411) and the upper inequality
(412) we have

µ Ul 3

+ 3

	

4IIo(ao + 1)

	

s 3
+

(a + 2)o
4ao

	

3(ao + 2)2

	

4

IIo z
4

(ao + 2)

(4 .10)

(see Eqs. (4.9) and (4.8)

(4.11)

(4 .12)

0 1 + a2 =ao , 11 s 3ao + 3o
4

	

2
(4.5)

3

	

3
a2 - ai =ao , 110z 4-a0+ -2



As a s -. W (viscous fluid) Eq. (412) becomes

3
ao + 3

Fa
=µ
U

8h3
Co

1 + 40p 2 h 6 ~ph 3

	

3
4

	

2µ2U3 14' µU12 S 4

If inequalities (411) and (414) are replaced with the exact equalities, then the expressions for F o from the upper
and lower equalities (411) and (414) coincide .

The above results enable us to conclude that the proposed method for analyzing plane viscoplastic flows in channels
and cavities whose walls deform in an arbitrary fashion is quite efficient . It permits the determination of all the
parameters characterizing viscoplastic flow in a thin layer, namely, the flow velocity and pressure fields, the quasirigid
region boundary, the flow rate through any cross-section, the pressure drop between cross-sections, the force exerted
by the continuum on the wall, the power of the external forces, and certain other parameters .

The method can be extended to solve analogous problems of the thin-layer flow of a wide class of non-Newtonian
fluids whose stress and strain tensors are related to each other in a variety of nonlinear ways . All the problems reduce
to the solution of one and the same general system of equations of motion (L5) .

Moreover, the above-derived expressions for the continuum flow rate, the pressure, and the power of the external
forces, written in the form of functionals of the distance between the channel walls, make it possible to formulate the
problems of controlling viscoplastic flows in thin layers and optimizing the processes .

Formulas (3.2) and (3.3) enable the energy spent on extruding a continuum to be compared for various boundary
deformation laws.
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