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Abstract. We study a theory of short range forces in terms of local observable 
quantities ; among the superselection structure determined by the algebra of all 
local observables, to each additive independent charge we associate local 
observables having a meaning analogous to the regularized integrals of charge 
density fields over a finite volume. Among other assumptions, we require that 
parastatistics are absent from the theories considered. 

1. Introduction 

The central role of the principle of locality in quantum field theory has long been 
stressed by Haag [-1]. As formulated in [2] by this principle it is meaningful to 
consider (the algebra generated by) all the observables in a given theory that can 
be measured within a fixed bounded space-time region; moreover the cor- 
respondence so obtained 

O~I((~) (1.1) 

between regions and algebras of observables should contain all the physical 
information about the theory. In other words, the relevant specification on local 
observables is their spacetime localization and not their particular interpretation 
[1, 23. 

This point of view proved to be extremely fruitful over the years, in analyzing 
matters of principles and the general structure of quantum field thedry. In 
particular it has been possible to see how important features of a theory, that are 
usually described in terms of non-observable quantities like charged fields, are 
actually determined by the correspondence (1.1) alone. 

We refer e.g. to the features of particle statistics and superselection structure. 
The superselection quantum numbers appear as labels of the equivalence classes of 
special irreducible representations of the algebra of all local observables, and are 
global data; they can be viewed as eigenvalues of "charge" operators Q, a 
posteriori determined by the algebra of quasilocal observables but not belonging 
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to it. These charge operators are the generators of gauge transformations of the 
first kind, which leave pointwise invariant the algebra of observables but act on the 
field algebra determined by it [3-5]. 

In Lagrangian field theory, an internal symmetry leaving the Lagrangian 
invariant determines a conserved current j u  by Noether's theorem and considering 
the regularized integral o f j o  over a finite volume 

Jo(fR9~) = ~J0( x, t) JR(x) 9~(t)d3xdt (1.2) 

[where j~, g0 are nonnegative smooth functions with compact support, fa(x)= 1 
for Jxl---<R and g~(t)=0 for ItJ>=6, .fg~(t)dt= 1], we obtain local charge operators 
which as R ~  ~ ,  approach the global charge (2 in the sense that 

QFY2= lim [jo(f~g~),F]f2, (1.3) 

where ~2 denotes the vacuum state vector and F is any quasilocal field operator. 
Equation (1.3) is a simple consequence of the basic property of the operators (1.2): 
if ~p is a field operator localized near the origin and destroying n units of the charge 
considered, then jo(fRgo)t¢- ~Jo(fRg~) = - nip, or equivalently 

exp(iOjo(fRo~))~p exp( - iOjo(fRga)) = e-i"°Ip. (1.4) 

By Eq. (1.4) the operator (1.2) is a generator of a unitary group inducing gauge 
transformations of the first kind on a specific local field algebra. 

In this paper we propose to associate to the global superselection quantum 
numbers ~ determined by a local quantum theory (9~9.I((9) local observables J¢ 
having the same properties (1.3) and (1.4) of the operators (1.2). By this procedure 
one proves the existence of local measurements with specific physical interpre- 
tation 1. This is a step on the way to proving the existence of local Wightman fields 
So(X) having the meaning of charge density for the superselection quantum 
number 4. 

In a Lagrangian theory the operator (1.2) is an observable only if the gauge 
group is abelian; accordingly we will assume that no superselection sector obeys a 
parastatistics [4, 6]. Then to each additive independent charge there will be 
operators J~ and we show that they can be chosen to commute with one another; a 
simultaneous measurement of all of them is possible, determining the charge 
contained in a region (91 by a measurement in a larger region (92. 

In a theory of strictly localizable charges with parastatistics a similar 
discussion should be possible; since the gauge group would not be abelian, the 
operators Jk would not be observables, but should generate a local current 
algebra. 

We will need several assumptions described in detail below. The most severe 
restriction from the physical point of view is the limitation to strictly localizable 
charges, described in [3, 4]. The present scheme is not applicable to abelian gauge 
theories or theories with massless particles. In a massive nonabelian gauge theory 
it is possible that charges enjoy a poorer localizability property [5]. An example of 

1 There is an obvious duality between these measurements and the operations defined by charge 
transfer observables [4, I, Sect. 3] 
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our charges would be the baryon number in the old meson theory (and 
presumably also in QCD). However we feel that the restricted framework of this 
paper is the natural case to study first. 

The local charge operators J¢ are located in the relative commutant 96((9) = of 
92((9) in the C*-algebra 96 generated by all local observables. The subalgebra 96(0') 
generated by the observables spacelike separated from (9 is dense in 96((9) = 
[assumption (1) below3 but J¢ is not in 96((9'). Actually under a natural conjecture 
(Sect. 5) it follows that 92((9)~ is generated by 96((9') and the de This is in agreement 
with a proposal made long ago by Haag [7] that gauge theories (of the second 
kind) should have as a characteristic feature 9.I((9)~= 96((9'). By [3, I, Sect. 5] this 
condition amounts to absence of superselection rules associated to localizable 
charges. 

As mentioned at the beginning our main postulate is locality: there is an 
inclusion preserving correspondence 

(9-*96(e) (1.5) 

between (9 ~ JY~ (the set of all double cones in Minkowski space; (P e o~ if (9 = x 
-F/+~y+ V+, x - y e V  +) and von Neumann algebras acting on a separable 
Hilbert space ~o  (the vacuum Hilbert space). The algebra 96((9) is generated by 
local observables in (9 and the quasilocal algebra 92 is the C*-algebra generated by 
the union of 96((9), (ge J('. 

For the sake of extending the correspondence (1.5) to arbitrary regions we 
introduce on 9£[ a topology ~- which we regard as the natural one for dealing with 
local normality. ~-- is the strongest among the locally convex topologies on 921 
which are weaker than the norm topology and weaker than the inductive limit of 
the ultraweak topologies of 92((9), (gs3f  2. For any SCIR 4 define 

F 

92(S) = V {92((9)/(9e ~ ,  (9 C S}, (1.6) 

where ~/M~ means the Y--closed subalgebra of 92 generated by M~ C 96. 
~Our assumptions on the correspondence (1.5) are the following 

(i) Duality: 92((9)=9.I((9')', ( g e ~ ,  which embodies Einstein causality and 
maximality of the net 92((9) ((9' is the open set of all points spacelike to (9). 

(ii) Additivity: if (9, (91, ...,(9,EJY" and (PC U (9i, then 
W* i = i~ ...,~ tl 

92((9)c V 92(G). 
i =  1 , . . . ,  n 

(iii) 71me Slice Axiom [1, 9] : if S = {xelR4/x.~l"e(a, b)} with t/~lR 4 timelike and 
a < b, then 

92(S) = 92. 

(iv) Translation Covariance and Spectrum Condition: there is a continuous 
unitary representation q/o of IR 4 on d~ o, a unit vector f2~ 2400, such that a(q/o)C V+, 
q/o(a)f2= f2, a~lR 4 and for each ( 9 ~ ,  a~lR 4 

q/o(a) 92((9) q/o(a)- ~ = 92((9 + a), (1.7) 

2 Cf. [8, 3.14 and 3.15] ; properties of the topology 9 will be discussed elsewhere 
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i.e. Ok~o(a ) induces the translation automorphisms % on 92[. The vector state co o 
induced by g? on 9.i (vacuum state) is the only c~-invariant normal state, i.e. 92[ is 
irreducible. 

As described by [3, 4] in our case the superselection structure is desca'ibed by 
covariant localized morphisms of 9.1. A localized morphism ~ leads to a sector 
obeying the ordinary Bose or Fermi statistics iff ~ is an automorphism. 

We restrict to theories for which: 
a) All localized morphisms are covariant and can be localized in any double cone 

by a unitary equivalence. 
b) There is no sector obeying a parastatistics. 
c) There are countably many superselection sectors. 
By a) our charges are transportable and carry no minimal length preventing 

their localization in small regions. Point b) says that the set of superselection 
sectors is the dual ~ of a compact abelian gauge group ~ ; by c) (¢ is separable. 

To 9/ we can associate a normal field group i f ,  unique up to equivalence, 
which determines a net (9 ~ ~((9), of field algebras fulfilling normal commutation 
relations at spacelike distances [3, II]. By assumption a) we have for each (9e2(  
the twisted duality property [3, II, Proposition 6.2] 

~((9)'-- ~'((9')-. (1.S) 

Our last assumption is more technical, and is related to a conjecture of 
Borchers : 

(v) I f  (9 t, (92e l  "°, (91CInterior ((gz), there is a type I factor 91 such that 

~((9 ,) c 91 c ~((9 ~) . 

This property is known to hold for free fields [10-12]. It is elementary (cf. Sect. 5) 
that it implies the analogous property for the net of observables : 

(v') I f  (91, (92 e2/f , (91CInterior ((92), there is a type I factor ~ such that 

~((9~) c ~ c ~((9~). 

Unlike our other assumptions we will specify when we use (v) or (v'); we feel that 
our results should be freed from these technical assumptions. 

Assumption (v) is tightly connected with local implementation of symmetries. 
It is implied by the local implementability of the flip l~l@lP2---)l~2@l~l in the 
theory ~ ® ~ [12] and implies that any isomorphism a of ~((91) onto ~((92), (91, 
(92eY, is implemented by a unitary in some ~((9o), by the implementation 
theorem [15, Chap. III, Sect. 8, Corollary 8] (see e.g. [10]). Specifically if 
(91 CInterior ((92) to each gauge transformation ge.ff, there is a unitary V0E ~((92) 
such that 

Ad~t~((9~)=~g, i.e. ~tpVg-~=<~,g)~,  (1.9) 

for each field operator ~pe ~((91) destroying the charge ~ (~e (~, ge (¢-~ <~, g< is the 
duality between ~ and (~). 

Our problem is first to show that we can choose V 0 gauge invariant, i.e. 
V 0 e 9/((92); furthermore, if we have continuous homomorphisms 
OslR-~e~°~f~goE~, we have to choose Voo to be a continuous one parameter 
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group. Then by the Stone theorem Vo0 = e u° and J is the desired local charge 
operator. 

By using the powerful results of [16] we can even choose V 0 to be a strongly 
continuous representation of (¢ so that, by such a special choice the operator J has 
pure point spectrum, the integers; this is different from the operator (1.2). 

If the operators V o belong to ~I(@2) by (1.9) we have 

Yg E ,~[((91 )' ("~ .~((9 2) , IpStD -1 = ~ , g )  Vg (t .10) 

for each unitary field operator ~0e ~((91) destroying the charge ~. 
In view of Eq. (1.10) we have to study the action on 9i((gl)'ngA((92) of the 

automorphisms of 9i localized in (91. It is easily seen that this action factors 
through an action z of the group (~ = F / J  of superselection sectors [3, II]. This fact 
is discussed in Sect. 2. Existence of a unitary V 0 fulfilling (1.10) for each ge~¢ is a 
strong property of z called dominance by Connes and Takesaki [16]. In Sect. 3 we 
show that z is dominant if (v) holds. In Sect. 4 we discuss the properties of local 
charge operators when T is dominant. In Sect. 5 we comment upon the 
assumptions (v), (v') and interpret some of our results as Galois relations. 

2. The Action z of the Group of Superseleetion Sectors 

Denote by F((9) (respectively 3((9)) the group of automorphisms (respectively inner 
automorphisms) 7 of ~l localized in (9, i.e. 71N((9')=identity; let J =  ,o~ J((9), 

F =  ~ F((9). By assumption a) in the Introduction, for each (9~Yg we have a 
0eN(' 

section 

~ ~ = F / Y - * 7 ~  r((9) , (2.1) 

then for each pair ~, ~ ' e F / d  there is o-¢,¢,sJ((9) such that 

and setting 

(2.2) 

(2.3) 

we get a (section independent) homomorphism r ~ of the commutative discrete 
group ~ into Aut(21((9)% 

2.1. Remark. If (91, (92e ~ have nonempty common interiors, r ~q and ~02 coincide 
on ~I((9 y c~9~((gz)t 

It suffices to define z *~ and ~2 using a section (2.1) with -Q localized in (9oE : f ,  
~0 C ~ 1 C ~ 2  • 

2.2. Notation. With (91, (92~-Y~ we write (9 t C C(92 if (91CInterior ((92). For each 
xelR ~ call I x the set of pairs w=((gw, (~), (9~, (9~s.3f', such that (gwC CO~ and 
x~Interior ((9~). If u, w~I~  we write u < w  if (gwC C(9,,C C(9~,C C(~w. 
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To each point x~lR 4 we associate a C*-algebra 96~ generated by a net of von 
Neumann algebras {~R w ;welx}  setting 

~R~¢ = 96(Cw)'m N(d3,~.); (2.4) 

9~x= {~x~w}-n°rm. ( 2 . 5 )  

By the Remark 2.1, the actions (2.3) define an action ~x of ~ on N~ leaving each 
~R~,, w~I~, globally stable. 

By translation covariance we have for each a~ IR 4 

~o(96;) = 96; + o; c ~ o ~ 2 1  = . .  + o. (2.6) 

With 96~C96x the C*-algebra generated by 92[((9'), (ge,~, xeInterior ((9), we 
have 96x C (96~)~x, the ~x-fixed points. Since c~ {9,I((9)/(9 e J{', x e Interior ((9)} = 117. I by 
[17], 96~ and 96~ are irreducible. 

Whenever confusion is not possible we will write r for , t  

2.3. Proposition 3. Assume (v'). Then for any w e t  x we have 

Kernelz I ~lw = {e}. (2.7) 

Proof Let uelx, u < w  and 9Jt,, 931 2 type I factors such that 

96((9,) C ~ C 96(g,) C ~ C 96(CJ. (2.8) 

With ),eF((9~,), ~196((gJn96(CT,~.)=identify we have to show 7 e J .  We first show 
~ ( 9 ~ i ) = ~ , .  

If Aegfl,, y(A)E96((gu)CgJ~ 2. Since 96((gw)C96((9,)cgJ~p ' - 9J~l c~ 96((9w) C 9t w and 
~19]l'i c~ 96((9w)= identity. Then 

y(A) C (9~R'1 m96(Cw))'n93~ 2 C (032' 1 ('3 ~f~2) '  ("3~fJ~ 2 = ~fJ~l • 

Hence y(9~i)C93/, and replacing 3~ by 7-1 we have ),(93~)=93/1. Then there is a 
unitary Ueg"5/~ such that, setting ~/: r/(A)= UA U-~, A Eg, I, we have 

7(A) = t/(A), AeiFg,. (2.9) 

By (2.9), ~/19.I((9~)'~!1)11 =identity and Ue(96((gw)'c~YJ~l)'c~OJ~ ~ = 96((9w). Therefore 
7=t/  on 96((9,)C~ 1 and y=q=iden t i t y  on 96((9"). By the following remark we 
have y = r / o n  96 and ~o¢ .  

2.4. Remark. If (9 l, (92 e J~, (9, C C (92 and ~, t/are endomorphisms of 96 coinciding 
on 96((92) and 96((9'1), then O=t/. 

Note that ~, t/ are locally normal [20] and isometric, then ~ - 1 / i s  a linear 
bounded map from 96 to ~3(~ao) whose restriction to each 96((9) is ultraweakly 
continuous. By [8, 3.14 and 3.15] 0 - t / i s  continuous from (96, ~-) to {~3UCfo), aw*}. 
Since ~, t/are morphisms, ff - r/vanishes on the subalgebra generated by 96((9~) and 
96((9'1), which is f - d e n s e  by (ii) and (iii); hence O=t/. []  

The following facts will be of frequent use. 

3 Compare [3, I, Sect. 5] ; see also [18] 
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2.5. Remark. The fixed point  algebra 9t~, welx,  is properly infinite. 
In fact if (9~ ~ ,  (9 C (gwC~(gw, then 9/((9)C 9~  and 9/((9) is properly infinite [22]. 

2.6 Proposition. Let EE ~R~ be a nonzero projection and w <uE Ix; then 

E ~  Imodg l ; .  (2.10) 

Proof This is a special case of a theorem of Borchers [14], which applies here since 
the relative commutant of 9t~ in 9t; includes 9/((9) if (9~ X ,  (9 C (9',c~(9 w, and since 
for some neighbourhood ~2(0) of O in IR 4 we have by (2.6) ~/o(a)~flJ/0(a)~ - 1 C9t,, 
aCY(O). [] 

The reader will note that the foregoing discussion would also apply with a 
trivial change in Proposition 2.3 in the presence of parastatistics. 

As discussed in the Introduction, our basic problem is the following: given any 
w~I  x, to each ge(¢ does there exist a unitary V o~9t w such that 

z~(V0)=(~,g)V~; ~ ,  and g ~ .  (2.11) 

According to Connes and Takesaki [16] a continuous action of a separable locally 
compact abelian group on a v o n  Neumann algebra is called dominant if it has the 
above property (2.11) and the fixed point subalgebra is properly infinite (cf. 
Remark 2.5). Such actions have the following properties. 

2.7. Proposition [16]. Let z be dominant; then 
(i) ~Rw is generated as a yon Neumann algebra by the fixed points ~R~, and any 

collection of unitaries {V g; g ef¢} fulfilling (2.11). 
(ii) There is a choice 4fg, g6f¢ of solutions of (2.11) such that g~fC~'Ug is a 

strongly continuous unitary representation of f~. 

[Condition (ii) is equivalent to the assertion that {~Rw, z } is isomorphic to 
{93~ × f¢, 0}, the w* crossed product of a yon Neumann algebra 93l by f¢ equipped 
with the dual action; 9J~ can be identified with 9~  and Og with AdzV0.] 

We briefly discuss the freedom in the choice of the representation ~ of 
Proposition 2.7, (ii), when z is dominant. We define an action 0 o f ~  on 9t~ by Og(T) 

= ~i~T~ 0-1 g~ f¢, T~ 9~;  then (see [16, III.3] and [13]) {~R~, 0} --- {9t~x ~f~, ~} and 
0 is dominant since ~R w is properly infinite. With g~fC~U~' another continuous 
unitary representation in 9t~ fulfilling (2.1 1), we have that ~g = ~U~Yf 0-1 ~ 9t~ is a 
0-cocycle and 0'g= Ad~gOg. By [16, Corollary 2.4] there is a unitary ~¢~ 9~  such 
that 0~ = Ad~#0o ADO-//- 1 (2.12) 

Since ~¢e9~, w(g)='~0'q/~g- ~ -~ belongs to 9t~ and by (2.12) also to (9~)'. It 
follows that all choices ~0 induce the same action 0o on the center 9t~c~(9t~)' ; any 
two choices ~ ,  ~ '  are related by 

~U0' = w(g)qPKJ/- ~, g e ~  (2.13) 

with ~ a unitary in 9~  and g ~ w ( g )  a unitary 0o-COCycle in the center of ~ .  
If the ~ are factors [which would fotlow from a) 9/((9) is a factor, and b) 

F ( z ) = ~  or equivalently 0 o is trivial] Eq. (2.13) simplifies to 

= (40, g)~%~u-1, 
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where multiplying by a fixed character amounts to adding a constant to the local 
charge operators. 

3. When is the Action z Dominant? 

In this section we show that z is dominant if ~ is finite under assumption (v') and 
for any countable ~ under assumption (v). 

3.1. Definition. For weir, ge~, define 

J/w(g) = {Be 91w/ze(B ) = ( ~, g) B, ~e (~}, (3.1) 

H~ = {g ~ (~/J4~(g) =l= {0} }. (3.2) 

3.2. Lemma. Let u, weir, u < w ; with fC(H~) the subgroup of (~ generated by H~, for 
each g~N(tt,) there is a unitary element in ~ ( g ) .  

Proof If B~Jg,(g), z~(B*B)=B*B and ze(BB*)=BB*, ~ef¢; hence if W[B[ is the 
polar decomposition of B, we have [B[~9~ and W ~ , ( g ) .  Since also W'W,, 
WW*e~t~, by Proposition 2.6 there are isometries V 1, V2egt ~ with final pro- 
jections equal to WW*, W* W respectively; then the operator V~ WV 2 is a unitary 
in J//t~(g). Since obviously ~(g)~//~(g')C~g~(gg') and Jg~(g)*=~f~(g-t),  the 
assertion follows. ~ .  

3.3. Proposition. I f  (~ is finite and we assume (v') then z is dominant. 

Proof. By Fourier analysis 9t~ is the linear span of J~,~(g), gef¢. Hence ~oe(~, 
(~o,g) l =  for each geH~ implies zeo -- identity on 9l~ and by Proposition 2.3 

±__ 4o = e. In other words, H ~ - { e }  and N(Hw)=N. By Lemma 3.2, for any u > w, 
H,  = N and each ~,(g)  contains a unitary, i.e. z is dominant. Since w was arbitrary 

is dominant on any ~tt,. [] 

3.4. Proposition. Assume property (v) and that f¢ is connected. Then z is dominant. 

Proof We first extend the action z to the field algebra. With ~ the normal field 
group, recall that we have the exact sequence l ~ d ~ , ~ - ~ - ~ e ;  under the 
assumption a) for each double cone we also have the exact sequence 
t ~ s J ( ( 9 ) - ~ - ( ( 9 ) ~ - ~ e ;  here d((9) denotes the unitary group in 92(0) and 
d =  U d((9). We can choose a section ~ - ~ p ~ e ~ ( ( 9 1 ) ,  ~ ~ unitary; then ~p~p~, 

Os2C 
=ue,~,~p~,, u~,e,e n(92((9)) 4. Define the action ~ on ~z(92((91))'~(02) , for (91C C (9 2, 
by ~ = A d ~ .  The action ~ is a (section independent) representation of ~ by 
automorphisms of rc(92((9i))'c~((92) whose restriction to rc(92((91)'c~92((92) ) is 
7YfTC- 1. 

We will drop the symbol z~ when confusion is not possible. 
Note that ~ commutes with the gauge transformations e.. 

4 With ~ y ~ E F  a section, ~=@~ZoOV~, where % is the vacuum representation, the field algebra 
acts on Jf0~= ~ ~ ,  ~ = Jtf o 
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By assumption (v) to each g e N, we I~, there is a unitary Vge ~((9~) such that 

Ad Vo I ~((9~) = c% ; (3.3) 

hence P~en(9.1((9~))'c~((9,) and applying (3.4) to the section tp¢ defining ~¢ we get 

{~(~) = <~, g>Vq, g e N ,  ~e~ .  (3.4) 

Hence -~ is dominant and we have to show that its restriction z to ~fl w is also 
dominant. 

By Proposition (2.7) (ii) we have a continuous unitary representation 
g e if--* ~/~0 ~ rr(9.1((9~))'c~ ~((gw) fulfilling (3.4). B y continuity there is a neighbourhood 
X(e)  of the identity is ~ such that 

((2,~gf2):t=0 for geJV'(e). (3.5) 

With m the average over the gauge group action we have 
m:~(~I((gw))'c~((9~)-*~.fl w, m~¢=~¢m; hence setting T0=m(~g), geN, we have 
Tg~ JC/'~(g) and T0~:0 for 9edV(e) by Eq. (3.5). 

Hence ,/V(e)CH~; by Lemma 3.2 if u>w, u~I~, ~,(9)  contains a unitary for 
each ge N(H,~); since N is connected, N ( H , ) =  N and 1: is dominant on ~tl, ; therefore 
this holds for all uel~. [] 

3.5. Theorem. Assume property (v). Then • is dominant for any countable ~. 

Proof.Denote by./t°F (respectively Yt°B) the subspace of 3(F~ spanned by all We with 
a Fermi (respectively Bose) sector, and define 

J~(g) = {Fe~(qi((gw))' c~(O~)/~¢(F)= <4, g) F, ~e~}. 

We divide the proof in three steps. 

Let B oeJ2w(g ) be not a Fermi operator. By the Reeh-Schlieder theorem, if 
(9C(9"c~(9~, there is a Bose operator ~pe~((9) such that (VY2,B/2)%0. Since 
Ve ~((9J ,  we have tp*Bg~w(g); then Tg-m(v*Bg)4=O, ToeJCZ~(g ) and g~Hw; we 
proved one inclusion and the opposite one is obvious, and 1. follows. 

Let hoe (¢ be defined by <4, ho> = + 1 or - 1 if ~ is Bose or Fermi respectively. 
2. The subset H~ C N is a closed and open subgroup and either H w = N  or 

G = Hw" {e, ho} ~ Hw x 2g 2. 
Note that, with (ge W, (9 C (9j~(9~, ~ a unitary Fermi operator in ~((9), we have 

a d  91 ~((9,~) = %01 ~((9,v). 

If h(~H~, and ~U h is a unitary in J~w(h), ~h is Fermi and V ~  n is a unitary Bose 
operator in ~((9~) inducing c%o on ~((9,); then hhoeH,~ and g =H,,,uH~h o. 

I fH~ and H~h o are not disjoint, the subgroup generated by H~ contains h o and 
then equals N. By Lemma 3.2 and arbitrariness of w then z is dominant. 

Let H~c~H~h o =0. If h~H~, hho~H ~ and there is a Fermi unitary in Jg~(hho); 
by the argument above there is a Bose unitary in J~((hho)ho)= J~(h). 

Bose unitaries form a group and, by the multiplication properties of ~ , (g ) ,  H~ 
is a group. By Proposition 3.4 H~DW(e) and H~ is open and closed. Since 
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= H ~ u H w h  o, HwnH,~ho =0, we have the direct product decomposition N =H~ 
• {e, ho}. 

3. If u > w,/dt,(ho) 4 = {0}. 
If H~+'~,  ~ = H ~ . { e ,  ho}, and ~={e ,  ± i h o } - H  w, where {e, ho} l=~B~kl~ , ,  

l {e, ho}'~TZ z, hence there is a denoting by ~qB the subgroup of Bose sectors. Hw 
Fermi sector ~o, 42 = e, such that 

~ = ~R{e, ~o} ; {e, ~o} -- Hwi. 

Let u > w ;if gel id , /d , (g)  contains a unitary operator Y/~g by Lemma 3.2. Hence 
the action zINB is dominant on ~tl~, and 9t, is generated by the subalgebra ~3 of 
z l~-f ixed points and by { ~ ,  g~Hw}. Since ~o(Y~0)= ~ all 9~ H,~ = {e, ~o} ±, if z~o 
is the identity on ~3 it follows that Z~o is the identity on 9t~ contrary to Proposition 
2.3. 

Let Be ~B, Z~o(B ) 4 = B; setting T~o = B -  Z~o(B) we have 

ze(Tho) ---- (( ,  ho) T~ o , ~ ;  

namely ~ o e ~ ( h o ) ,  T~o4:0 and hoeH,.  
Since H,  D H w, H,  = N; by Lemma 3.2, r is dominant on 9t~, v > u, hence on any 

91v. [] 

4. Local Charges 

By the results of the previous section, under the assumptions made in Sect. 1, for 
each pair of double cones @1 C C(92, we have a continuous unitary representation 
9EN-*~g~t (@l) ' c~I (02)  inducing the gauge transformations on 5((91). This 
representation is unique up to the transformation (2.13). 

Since N is abelian and ~U is a representation, U generates an abelian 
subalgebra of observables in 9X((92), by a simultaneous measurement of which we 
can determine the charge localized in (fi 1. In the spectral decomposition 

~Kg= ~ (~,g)E~ (4.1) 

E~s 9i((fi 0'ngi((fi2) is nonzero for all ~ and expresses the local property of a state of 
having exactly charge ~ in (91 plus some specifications in (9' 1 n(92, depending upon 
the choice (4.1) of the solution to our problem. The vacuum state cannot fulfill any 
such specification by the Reeh-Schlieder theorem. 

The representation ~Kg can be described in terms of localcharges in a more 
familiar way when ~q is finitely generated. In this case 9 has independent 
generators rll, ...,~lq, ~l, "-, ~p with r/~" = e and ~ aperiodic, i.e. the r/i are multipli- 
cative charges, ~j additive charges. The correspondence 

m q  n 1 (m 1 . . . .  , rnq, n, . . . .  , nv ) -~* . . . t /q  {1 -..¢;~ (4.2) 

is an isomorphism of the Kronecker product 

;g~ x . . . x ~  x2gx ... x ~  

onto ~ ;  accordingly we can identify N with the topological product of the duals 

, - , ~  x ... x ~ x X x ... x lr. (4.3) 
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Let e i be the first vi t~ root of 1; with ~sf~, gef~, ~,,~(m I . . . . .  np), g ~ ( m '  1, ...,re'q, 
ei°',..., e~°,), the duality between (q and ~ is given by 

(4, g) = e7 ''~ .. .e~"V"ae I"1°' -. .e i '°p . 

By the identification (4.3) we have 

% = C~J...Cq~ei°'s'...e i°~'s, , g~fY,  (4.4) 

where Ci~9.i((90'c~9.I((92) is a unitary with C'~'=I and Jdtg[(~01)'c~gI((92) is a 
selfadjoint operator with spectrum equal to 7/. 

If tp~E ~(~0 ~) is a field operator destroying the charge ~ = qT'~...~, then [cf. Eq. 
(1.9)] ~Vg~p~% - t  = (~, g)~p~ and 

Citp ~ = e["'tp¢C i , i = 1,..., q,  (4.5) 

J k ~  ~- ~¢(Jk-- nkI), k = 1,..., p. (4.6) 

By letting (9~ =(91,,TIR 4 as n~oo  in the above choice we get for each quasi- 
local 

D~pf2 = lim ~,C(.')wC(Y)*O~, __, (4.7) 

Qkh0f2= lim [J("), ~]Q,  (4.8) 
n--+ oo 

where D,, Qk are the generators of the global representation qg(g) of it, defined by a 
formula analogous to (4.4). 

Note that by acting on a choice C~, ..., Jp with a space time translation we get a 
choice for the translated region. 

Any set of p commuting self adjoint operators )1,-.-,)p affiliated to 
9.I((91)'c~9.I((9z) and fulfilling (4.6) have a similar interpretation. We get all such 
p-tuple of operators as follows. Let (¢o be the connected component of e in ~, ~o 
its simply connected covering ~IR x ... x I~ and a the canonical homomorphism 
of (Yo into ft. Fix a reference continuous unitary representation 
g~ ~ f  ~((9 ~)'c~(~) = !It fulfilling z~(ogo) = (~, g)~q,  ge  ~,  and define the ac- 
tion 0 of (¢0 on 91~ by 0 0 = 0~(0), 0 o = Ad °-h'~ [ 91L The generic choice aTx, ..., )~ are the 
generators of the unitary representation 

g~ ~o-~'f'~ =XoY~(a)~ 9t, (4.9) 

where Xa. is a continuous unitary 0-cocycle in 91L This wider class of operator 
systems Ja, .--,-lp should be the natural tool in an approximation procedure to 
construct p Wightman fields having the meaning of charge densities for the 
additive independent charges ~a,-.., ~- 

5. Comments on the General Assumptions 

As mentioned in the introduction, the validity of the present analysis is limited to 
the case of charges which are strictly localizable in bounded regions. (Assuming 
duality, we also do not discuss broken gauge symmetries or soliton sectors [19].) 
By the work of Buchhotz and Fredenhagen one is led to consider charges 
localizable at best in spacelike cones [5]. In this case we cannot expect the 
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existence of the analogs to the operator (1.2). Actually by [5] the relevant 
representations are normal on the relative commutants of subalgebras associated 
to spacelike cones, unlike our case. 

We next discuss assumption (v) and (v'). By twisted duality (1.8), (v) is 
equivalent to the following: if (91, (92e J£, (91 C C(92, the linear map defined by 

Pah°z~*& ®tPz, ~&e~((91), ,pz s {}t((9~), (5.1) 

/'C t t t is normal [ 12]. By restriction to ~z(9i((91)) C ~((9 j), 01((92)) C ~ ((92), reduction to 
~go ®Jfo C~,~®af and duality, one easily gets (v') from (5.1) and (v)=>(v'). 

Conversely if (v') holds and z is dominant, then (v) holds. It suffices [10] to 
show that there are normal product states on ~((91)V {~t((9;)' -,  faithful on each 
algebra. 

With g~ ~ s  ~((gz) a continuous unitary representation of N inducing the 
gauge transformations on ~((91), my the normal conditional expectation of ~3(2/f~) 
given by the average over Ad~/Fo, geN, we have for ,&e ~((90, ,p2e~t((92) - 

m v ( I p  11,02) = m ( l p  1)1p2 ; m °mv(IpllP2) = m(ipl)m(tP2); 

with co a normal product state over ~((91)V 91((92)-, co omom~ is a normal product 
state over ~((9,) V ~'((9~)-. 

Assumption (v') has strong consequences on the structure of ~t. With 2C a 
separable Hilbert space and ~3 the C*-inductive limit of ~3(H ®") by 
B s f B ( ~ ® " ) ~ B ® l e ~ ( a f ® " + l ) ,  for any theory fulfilling (v') we have that ~I is 
isomorphic to ~. 

At the local level, duality together with assumption (v') imply that 9/((9) is 

injective. For by duality glft,0)= 0 9~(0,), if (9 ,E~,  (9,+, CInterior ((9,) and ~ (9, 
n 

= (9. With 9)l, a type I factor such that 

~((9). +1 C ~JL C ~/(e.), 

we have 9/((9)= (~ ~.  and 9/(0) is injective s. 
n 

Concerning assumption a) one could argue that, in a Poincar6 covariant 
theory, under an assumption closely related to (v') and to the existence of local 
densities for the generators of Poincar6 transformations, any irreducible localized 
morphism would be covariant. 

The other part of a) should be related to additivity (ii) whereby 92[((9) for any 
small (9 generates with its translates all the observables of the theory. 

Our last comment is the interpretation of some Statements in this paper as 
Galois relations. With dg C~2l and j f  C Aut(9I) define J g ± =  {Qe Aut(gi)/o(A)= A, 
AeJ//} ; AF ±= {A~gi/o(A)=A, Oe,#'}. 

Since each ~eJV is locally normal, for any J~cAut(9/) ,  ~C" is a J ' -closed 
subalgebra of 5R. With ~B C N a *-subalgebra and ag = ~3 ", it is easily seen that 
sg = s¢ l±. Hence by duality 

~/((9) = ~ I ( ( g Y  ± . ( 5 . 2 )  

5 R.V. Kadison was the first to note that (v') together with continuity would imply hyperfiniteness 
[21] 
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Since J((9)± = 9.i((9) ~, by Proposition 2.3 we also have 

J ( ( 9 ) = J ( e )  11 . (5.3) 

By definition, F((9)=~1((9') ± and rc(9.1((9')lz)=~((9)'cn~(9.1). The following re- 
lation is a natural conjecture 

~I((9') = 9.I(O') ±± . (5.4) 

By intersection with 9I((91),(913 3 (9, it follows from (5.4) 

{ ~((9) '  ~ 9x((91 )}~ = ~ ( e ' )  ~ 9x((91). (5.5) 

Proposition. Let (9, (91, (g z be double cones, (9 C (91 C C (-Oz. Under the assumptions in 
the Introduction and (5.4), for any choice of unitaries ~U~ 9.I(01)'~9.i((9z), such that 
z~(~)=  (~,g}~Ug, ~ ,  g~f#, we have 

~t((9), = 9.t((9') v {%/ge  ~ } ,  (5.6) 

i.e. 9.1((9) ~ is the Y--closed *-algebra generated by 9.I((9') and any choice of  local charge 
operators in 9.I((9) ~. 

Proof Since 9.1((9) is injective it is generated by an amenable group of unitaries ; 
averaging over the induced automorphism group gives a conditional expectation 
~b from ~3(Y'go) onto g2t((9)' such that 

q5(9.1((90)=9.1((90c'~9.I((9)' for each (91~c(~, (gC(91- 

Since q5¢2t)= 9.[((9) ~" and ~ 92[((9 0 is norm dense in 9.1, by norm continuity of q~ 

also U N((90m91((9) ' is norm dense in 9.1((9) ~. By Theorem 3.5 and Proposition 
01s~f 

2.7, (ii), ~1((9)'~I((91) is generated as avon  Neumann algebra by ~1((9 0n9.I((9' ) and 

~/~g, g ~ ~. It follows that 9.I((9)" C ~I((9') V {U s, g ~ f#} and since g[((9)~ is J -c losed  by 
the above remarks and 9.I((9')C9.1((9) ~, 4f0Eg.I((9)', we have also the opposite 
inclusion and (5.5) is proved. [] 

Assumption a) might be essential for conjecture (5.4). The rest of the paper 
could easily be modified replacing a) by: there is (ge ~ such that Fc((9)~f~ is onto. 
However if such (9 cannot be chosen arbitrarily small, there is little hope of 
recovering charge density Wightman fields. 
Note added in proof. In a forthcoming paper in collaboration with Roberto Longo, some results of 
this paper are generalized and the arguments given here in Sect. 3 are considerably simplified. Dealing 
with the case where parastatistics are possibly present, i.e. the gauge group f# is not assumed to be 
abelian, we prove that for each pair of double cones (9 ~ c C (gz there is a continuous unitary representa- 
tion g ~  of fq with values in ~((92) inducing the gauge automorphisms % on ~((9t) and such that 
% ( ~ )  = ° ~ h - , ,  h, ge  G. If in particular f# is a Lie group the generators of V provide a local current 
algebra in 9.I((91)'cn~((92). The center of the yon Neumann algebra generated by ~ ,  ge ~, is an abelian 
subalgebra of observables in 9.I((90'~9.I((92) , and these observables determine the superselection 
quantum numbers contained in the region (9~ by measurements in the region (gz. 
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