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Abstract .  A new method named STM is described for determining distance of objects and rapid 
autofocusing of camera systems. STM uses image defocus information and is based on a new 
Spatial-Domain Convolution~econvolution Transform. The method requires only two images taken 
with different camera parameters such as lens position, focal length, and aperture diameter. Both 
images can be arbitrarily blurred and neither of them needs to be a focused image. Therefore STM 
is very fast in comparison with Depth-from-Focus methods which search for the lens position or focal 
length of best focus. The method involves simple local operations and can be easily implemented 
in parallel to obtain the depth-map of a scene. STM has been implemented on an actual camera 
system named SPARCS. Experiments on the performance of STM and their results on real-world 
planar objects are presented. The results indicate that the accuracy of STM compares well with 
Depth-from-Focus methods and is useful in practical applications. The utility of the method is 
demonstrated for rapid autofocusing of electronic cameras. 

1 Introduct ion  

Passive techniques of ranging or determining 
distance of objects from a camera is an im- 
portant problem in computer vision. Stereo 
vision (Horn 1986) is perhaps the most popular 
technique. The major computational problems 
associated with stereo are the correspondence 
problem and detection of occlusion. Recently, 
Depth-from-Focus (DFF) methods (Horn 1968; 
Jarvis 1983; Krotkov 1987; Nayar 1992; Schlag 
et al. 1983; Subbarao et al. 1992; Tenenbaum 
1970) have attracted the attention of researchers 
as they do not suffer from the problems associ- 
ated with stereo. 

DFF methods are based on the fact that in 
the image formed by an optical system such as a 
convex lens, objects at a particular distance (or 
depth) from the lens will be focused whereas 
objects at other distances will be blurred or 
defocused by varying degrees depending on their 
distance. The distance u of focused objects 
(Figure 1) depends on the focal length f of 
the lens and the distance v between the lens 
and the position of the focused image. The 
relation between f ,  v and u is expressed by the 

well-known lens formula 

1 1 1 
- + -  (1) 

f u v 

The problem of focusing is to find and adjust the 
value of focal length f or the distance s between 
the lens and the image detector (Figure 1) or 
both so that a specified object is focused. One 
way of focusing then is to vary f and/or s in 
steps until the observed image of the object is in 
sharpest focus. Once the values of f and s which 
correspond to focusing the object are found, the 
distance of the object can be calculated using 
the lens formula. Therefore DFF is essentially 
a search method which requires acquiring and 
processing many images (about 10-12 in prac- 
tice). Recent work comparing different DFF 
methods can be found in Krotov (1987), Nayar 
(1992), and Subbarao et al. (1992). The disad- 
vantage of taking a large number of images is the 
amount of time required to adjust the camera 
parameters (lens position and/or focal length) 
before taking each image. This involves me- 
chanical motion of camera parts which is much 
slower than electronic computation. During the 
entire period of adjusting camera parameters, 
the scene must remain stationary. 
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Recently some researchers (Ens and Lawrence 
1991; Pentland 1987 and 1989; Subbarao and 
Wei 1992; Subbarao 1988 and 1989b; Subbarao 
and Surya 1992; Lai and Fu 1992) have pro- 
posed methods for finding distance of an object 
which do not require focusing the object. They 
take the level of defocus of the object into ac- 
count in determining distance. Therefore this 
approach is called Depth-frorn-Defocus (DFD). 
DFD methods do not involve searching for f 
and 8 values which correspond to focusing the 
object. Therefore these methods require pro- 
cessing only a few images (about 2-3) as com- 
pared to a large number (about 10-12) of images 
in the DFF methods. In addition, only a few 
images are sut~cient to determine the distance 
of all objects in a scene using the DFD methods, 
irrespective of whether the objects are focused 
or not. 

Several DFD methods have been proposed 
and demonstrated for objects with brightness 
edges (Grossman 1987; Pentland 1987; Subbarao 
and Natarajan 1988; Subbarao 1989b and 1989c; 
Lai and Fu 1992). In this case the underlying 
focused image is assumed to be a step edge or 
an edge of known form. A measure of edge 
blur is computed and this is used to estimate 
the distance of the object. In estimating the 

object distance from the edge blur, either a 
formula derived theoretically or a look-up table 
obtained experimentally by calibration is used. 
DFD methods for a set of simple objects such as 
lines, stripes, and blobs is discussed in Subbarao 
(1989c). 

DFD methods for arbitrary objects have 
been proposed by some researchers (Ens and 
Lawrence 1991; Pentland 1989; Subbarao and 
Wei 1992; Subbarao 1988). Pentland (1989) 
proposed a method of distance estimation for 
general objects using only two images, one of 
them being a focused image and another one 
a blurred image. The focused image was ob- 
tained by setting the aperture diameter to be 
very small (pin-hole). A ratio of the Fourier 
power between the two images was computed 
in a narrow band of frequencies. This ratio was 
shown to be related to the amount of blur. The 
ratio was used as an index into a look up table to 
obtain the object distance. In the experiments, 
over a 1 cubic meter workspace, Pentland re- 
ports an accuracy of 2.5% standard error. A 
very small aperture has two main problems: (i) 
it increases diffraction effects thus distorting the 
acquired image, and (ii) it increases the exposure 
period of the camera for a given Signal-to-Noise 
ratio, thus slowing the method. 
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Subbarao (1988, 1989b) and Subbarao and 
Wei (1992) have proposed a general Fourier 
domain based method which does not restrict 
the camera parameter settings or the form of 
the point spread function of the camera. One 
version of their method uses only a few one- 
dimensional Fourier coefficients and therefore 
is computationally efficient. The method was 
applied for autofocusing and ranging in a large 
number of experiments over a working space 
of 0.6 meter to infinity. An accuracy of 3.7% 
RMS error was reported in autofocusing ap- 
plication. In ranging application, the accuracy 
was about 4% RMS error at 0.6 meter distance 
and changed linearly to about 30% RMS er- 
ror at 5.0 meter distance. The performance of 
this method is comparable to the STM method 
presented here. 

Ens and Lawrence (1991) have proposed a 
method based on a spatial-domain analysis of 
two blurred images. It is a matrix based method 
and employs an iterative regularization approach 
in the presence of noise. They reported an RMS 
error of 1.3% in terms of the distance from the 
camera in the range 0.80 meter to 0.95 meter. 
The main disadvantages of the method are that 
it is based on a smoothness assumption and it 
is computation intensive. 

In this paper a new method of depth es- 
timation using a new Spatial Domain Convo- 
lution/Deconvolution Transform (S-Transform) 
(Subbarao 1991) is described. This method, 
named S-Transform Method or STM, uses only 
two images taken with different camera param- 
eters. All the computations are done in the 
spatial domain and are local in nature. Hence 
this method can yield denser depth maps (due 
to local computations) and can be implemented 
in parallel. STM has been implemented on 
a prototype camera system named Stonybrook 
Passive Autofocusing and Ranging Camera Sys- 
tem or SPARCS. A large number of experiments 
(about 600) using natural objects have yielded 
an RMS error of about 2.3% in autofocusing ap- 
plication. The percentage error in distance esti- 
mation is about 2.3% at 0.6 meter and increases 
linearly to about 20% at 5.0 meters. Consid- 
ering the fact that only 2-3 blurred images are 
used, these results compare well with the results 

obtained by a DFF method of about 1.6% error 
at 0.6 meter and increasing linearly to about 
12.5% error at 5.0 meter distance. Two varia- 
tions of STM are described and implemented, 
one where the lens position and focal length 
are changed and another where the diameter of 
camera aperture is changed. 

Next section describes the camera model. Sec- 
tion 3 describes the theory of S Transform rel- 
evant to STM. Subsequent sections present the 
theory and implementation of STM. 

2 Camera Model 

A schematic diagram of a camera system 
with variable camera parameters is shown in 
Figure 2. It consists of an optical system with 
two lenses L1 and L2. The effective focal length 
f is varied by moving one lens with respect to 
the other. O.A. is the optical axis, P1 and P2 
are the principal planes, Q1 and Q2 are the 
principal points, ID is the image detector, D is 
the aperture diameter, s is the distance between 
the second principal plane and the image de- 
tector, u is the distance of the object from the 
first principal plane, and v is the distance of the 
focused image from the second principal plane. 

The distance s, focal length f and the aperture 
diameter D will be referred together as camera 
parameters and denoted by e, i.e., 

e = (s, f ,  D).  (2) 

In order to illustrate the theoretical basis of STM 
we take the optical system to be circularly sym- 
metric around the optical axis, and use a paraxial 
geometric optics model (Gaskill 1978) for image 
formation. This is a good approximation in prac- 
tice to actual image formation process modeled 
by physical optics (Born and Wolf 1980; Sub- 
barao and Lu 1992). However, STM itself is 
applicable to physical optics model also. 

In Figure 2, if the object point p is not in 
focus, then it gives rise to a blurred image p" on 
the image detector ID. According to geometric 
optics, the blurred image of p has the same shape 
as the lens aperture but scaled by a factor. This 
holds irrespective of the position of p on the 
object plane. Since we have taken the aperture 



274 Subbarao and Surya 

P1 
I . . . .  ; 

U 1 v 
L1 

SCENE 

p: Object Point 
LF: Light Filter 
AS: Aperture Stop 
LI :  First Lens 
L2 : Second Lens 

P2 1D 
=.~ s _1 

t.2 

I Q 2R 

O.A.: Optical Axis ID: Image Detector 
PI: First Principal Plane s,f,D: Camera Parameters 
P2: Second Principal Plane v : Dist of Image Focus 
QI: First Principal Point p' : Focused Image 
Q2: Second Principal Point p"  : Blurred Image 

Fig. 2. Camera  model  and  camera  parameters .  

to be circular, the blurred image of p is also a 
circle with uniform brightness inside the circle 
and zero outside. This is called a blur circle. 

Let the light energy incident on the lens from 
the point p during one exposure period of the 
camera be one unit. Then, the blurred image 
of p is the response of the camera to a unit 
point source and hence it is the Point Spread 
Function (PSF) of the camera system. This PSF 
will be denoted by h(z, y). 

Let R be the radius of the blur circle and q 
be the scaling factor defined as q = 2R/D. In 
Figure 2, from similar triangles, we have 

q = - - -  = s - ( 3 )  
D v 

Substituting for 1Iv from Eq. (1) in the above 
equation, we obtain 

Note that q and therefore R can be either posi- 
tive or negative depending on whether s > v or 
s < v. In the former case the image detector 
plane is behind the focused image of p and in 
the latter case it is in front of the focused image 
of p. 

In a practical camera system, if two images 
g¢(x,y) for i = 1,2 are taken at camera param- 
eter settings of ei, then image magnification and 
mean image brightness may change even though 
nothing has changed in the scene. For example, 
moving the lens away from the image detec- 
tor will increase image magnification (because 
magnification is proportional to s) and chang- 
ing the aperture diameter changes mean image 
brightness (which is proportional to 7r(D/2)z). 
In order to compare the blur in images gl and 
g2 in a correct and consistent manner, they must 
be first normalized with respect to these factors. 
Normalization with respect to image brightness 
is carried out by dividing the image brightness at 
every point by the mean brightness of the image. 

Normalization with respect to image magni- 
fication is more complicated. It can be done 
by image interpolation and resampling such that 
all images correspond to the same field of view 
(Subbarao 1989a). The relation between an 
original image g(x,y) taken with s = sl and 
the corresponding magnification normalized im- 
age g~(x,y) taken with s = So is given by 
g~(z/sl,y/sl) = g(x/so, y/so). However, in 
most practical applications, the magnification 
change is less than 3% and can be ignored. It 
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is probably for this reason that most previous 
literature fails to mention the magnification cor- 
rection. But this cannot be overlooked from a 
theoretical point of view. 

In the following discussion we assume that 
the images have been normalized. Without toss 
of generality, we assume that the magnification 
has been normalized corresponding to s = so. 
After magnification normalization, the normal- 
ized radius R ~ = soR/s of the blur circle can be 
expressed as a function of the camera parameter 
setting e and object distance u as 

R'(e;u)= Ds° ( f  l ! )  " - - - 2  u (5) 

If we assume the camera to be a lossless 
system (i.e., no light energy is absorbed by the 
camera system) then 

ffh(x, dy = 1 y) dx (6) 

because the light energy incident on the lens 
was taken to be one unit. Using this and the 
fact that the blur circle has uniform brightness 
inside a circle of radius R' and zero outside, we 
obtain the PSF to be a cylindrical function: 

if + us _< R,2 
hi(x, y) = otherwise (7) 

where hi is the PSF according to paraxial geo- 
metric optics. 

In practice, the image of a point object is 
not a crisp circular patch of constant brightness 
as suggested by geometric optics. Instead, due 
to diffraction, polychromatic illumination, lens 
aberrations, etc., it will be a roughly circular blob 
with the brightness falling off gradually at the 
border rather than sharply. Therefore, as an al- 
ternative to the above cylindrical PSF model, of- 
ten (Horn 1986; Pentland 1987; Schreiber 1986; 
Subbarao 1988) a two-dimensional Gaussian is 
suggested which is defined by 

1 (8) h2(x, y) = 2rccr----ze 

where a is a spread parameter corresponding 
to the standard deviation of the distribution of 

the PSE In practice, it is found that (Subbarao 
t989b and 1989c) a is proportional to R', i.e. 

a = k R '  for k > 0  (9) 

where k is a constant of proportionality char- 
acteristic of the given camera. Except when a 
is very small (in which case diffraction effects 
dominate), in most practical cases 

1 
k = (10) 

is a good approximation (Subbarao and Natara- 
jan 1988; Subbarao, 1989c and 1990). Since the 
blur circle radius R r is a function of e and u, a 
can be written as ~r(e, u). (However, the image 
of an actual point light source for our camera 
was quite close to a cylindrical function and was 
far from a Gaussian.) 

If the radius R' is a constant over some region 
on the image plane, the camera acts as a linear 
shift invariant system. Therefore the observed 
image g(x,y) is the result of convolving the 
corresponding focused image f(x,  y) with the 
camera's point spread function h(x, y), i.e., 

g(x,y) = h ( x , y ) . f ( x , y )  (11) 

where • denotes the convolution operation. 
The point spread functions hi and h2 defined 

above are only two specific examples used to 
clarify our method. In order to deal with other 
forms of point spread functions, we use the 
spread parameter o'h to characterize them where 
ah is the standard deviation of the distribution 
of any function h. It can be defined as the 
square root of the second central moment of 
the function h. For a rotationally symmetric 
function it is given by 

dy (12) 

Using the polar co-ordinate system it can be 
shown (Subbarao and Natarajan 1988) that the 
spread parameter ahl corresponding to hi is 
R'/x/~. Therefore from equation (5) we have 

~rhi = mu -1 + c (13) 

where 

m -  and c = ~--~_ - (14) 
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We see that for a given camera setting (i.e., for a 
given value of the camera parameters s, f, D) the 
spread parameter ah~ depends linearly on inverse 
distance u -1. Similarly it can be shown that the 
spread parameter crh~ of h2 is a. Therefore from 
equations (5), (9) and (10) we again obtain ah~ 
in the same form as 

ah~ = m u  -1 + c. (15) 

In fact it has been shown (Subbarao 1989c) that 
even for an arbitrarily shaped aperture, ah is 
linearly related to inverse distance u -~. 

3 S Transform 

A new Spatial-Domain Convolution/Deconvo- 
lution Transform (S Transform) has been de- 
veloped for images and n-dimensional signals 
(Subbarao 1991) for the case of arbitrary order 
polynomials. The transform has been defined 
for both continuous signals and discrete signals. 
Here we summarize briefly only those results 
relevant to STM. 

Let f (x ,  y) be an image which is a two variable 
cubic polynomial defined by 

3 3 - m  

f (x ,  y) = E 2.-,~ am,nx myn (16) 
r n = 0 n = 0  

where am,n are the polynomial coefficients. (This 
restriction on the form of f will be relaxed later 
in Section 5.) 

Let h(x, y) be a rotationally symmetric point 
spread function. The moments of the point 
spread function are defined by 

f f  h~,.. = xmyn'h(x, y) dx dy (17) 
o o  o o  

Now consider the convolution of the image 
f (x ,  y) and the point spread function h(x, y) 

f f  g(x, y) = f ( x  - ~, y - rl)h(~, 71) d~drl 
o o  o o  

(18) 

Since f is a cubic polynomial, it can be ex- 
pressed in a Taylor series as 

f ( x  -- ~, y -- ~) 

(_~)m (_~])n fro'n( x, Y) 
E m!  n! 

O < m + n < 3  
(19) 

where 

0 m O n 
f~'n(x, y) - Ox m ~y. f (x ,  y) (20) 

=~ g ( x , y )  = re!n! fm 'n (x '  y)  
oo oo o < m + n < 3  

× CinCh(e, 7) aca,~ 
( -1 )  m+n 

= ~ m!n! f~'"(~,U) 
O_<m+n_<3 

f f  
(20 OO 

(_ l )m+, ,  
= ~ re!n! f""(x,v)h., , , ,  

O < m + n < 3  (21) 

Equation (21) expresses the convolution of a 
function f (x ,  y) with another function h(x, y) as 
a summation involving the derivatives of f (x ,  y) 
and moments of h(x, y). This corresponds to the 
forward S-Transform. Now let us use this formula 
to derive a deconvolution formula. Since h(x, y) 
is circularly symmetric it can be shown that 

h0,1 = hi,0 = hi,1 = h0,3 = h3,0 

= h2,1 = hl,2 = 0 and h2,0 = h0,2 (22) 

Also from equation (6) 

h0,0 = 1 (23) 

Therefore we obtain 

Y(~,u) =g(~,u) --~(f'°(~,u) +Y°'2(x,u)) 
(24) 

0 2 Applying ~ to the above expression on either 
side and noting that derivatives of order higher 
than 3 are zero (because f is cubic), we obtain 

f , ° (x ,v  ) = g~,°(~,u ) (25) 

Similarly applying ~ we get 

fo,2(x,y) = g°,~(x,u) (26) 
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Therefore 

(27) 

where V 2 is the Laplacian operator. Equation 
(27) is a deconvolution formula. It expresses 
the original function f(x,y) in terms of the 
convolved function g(x,y), its derivatives and 
the moments of the point spread function. In 
the general case this corresponds to Inverse S- 
Transform (Subbarao 1991). 

Using the definitions of the moments of h 
and the definition of the spread parameter 0-h 
of h, we have h2,0 = h0,2 = 0-~/2, and the above 
deconvolution formula can be written as 

0.2  

f(x,y)  v:g(x,y) (28) 

In the following section we describe the applica- 
tion of this formula to the problem of distance 
estimation from blurred images. 

4 D e t e r m i n i n g  D i s t a n c e  

In this section we develop a theoretical basis 
for determining distance. Let f(x,y) be the 
focused image of a planar object at distance u. 
The focused image f(x, y) at a point (x, y) of a 
scene is defined as the total light energy incident 
on the camera aperture (entrance pupil) during 
one exposure period from the object point along 
the direction corresponding to (x, y) (Subbarao 
and Nikzad 1990). 

Let gl(x,y) and g2(x,y) be two images of 
the object recorded for two different camera 
parameter settings el and e2 where 

el = (81, fl ,  D1) and e2 = (s2, f2, D2). (29) 

The images gl and g2 are normalized with re- 
spect to magnification, brightness, and other fac- 
tors such as sensor response and vignetting as 
necessary (Subbarao 1989a). 

For a planar object perpendicular to the op- 
tical axis, the blur circle radius R' is a constant 
over the image of the object (this may not be 
obvious at first sight, but it can be proved easily). 
In this case the camera acts as a linear shift in- 
variant system. Therefore gi will be equal to the 

convolution of the focused image f(x, y) with 
the corresponding point spread function hi(x, y). 
In brief this can be expressed by gl = h i ,  f and 
g~ = h2 * f .  Let the spread parameter 0.h for hi 
be 0.1 and for h2 be 0-> 

Now from equation (13) we can write 

0"1 = m l u  -1 + Cl (30) 

where 

DlSO Dlso [1 1 1 m l -  and  a=2-7 

(31) 

Similarly we obtain 

0- 2 = m 2 U  -1 ,+. C 2 (32) 

where 

D2 so 
- and c2 - 

o s0[1 1] 
(33) 

Therefore, 

U - 1  _ 0"1 - -  C 1 (7" 2 - -  C 2 
= ~ (34 )  

?7"t'l ~'~2 

0.1 can then be expressed in terms of 0.5 as 

0.1 = a0.  (35 )  

where 

o~ - -  
m l  m l  

and /3 = cl - c 2 - - .  (36) 
m 2  m 2 

We assume that in a small image neighbor- 
hood the focused image f(x,y) can be ade- 
quately approximated by a cubic polynomial in 
(x, y) as in equation (16). This assumption will 
be relaxed in the next section. In our applica- 
tion, the image neighborhood is of size 9 × 9 pix- 
els. Now we can apply the results from the pre- 
vious section, particularly the deconvolution ex- 
pression (28) and obtain the following relations: 

1 _ 2 ~ 2  ^ (37) f = g ~ - ~ ( q v  m 
1 0 . 2 - - 2  I = - 2 v  g2 (38 )  

In the above two relations, the dependence of all 
functions on (x, y) is understood but has been 
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dropped from notation only for convenience. 
These two relations express the focused image 
f in terms of the blurred (observed) images 
gt, g2, and the spread parameters 41 and 42. 
Equating the right hand sides of equations (37) 
and (38) we obtain 

1 2--2 Ia2--2 (39) g l - ~ c r l v g l  = g 2 - ~  2vg2" 

It can be easily verified for a third degree poly- 
nomial f that V2gl = V2g2. Therefore, in 
the above equation, V2g~ and V292 can be re- 
placed by 

V2g = (V2ffl + V2ff2) (40) 
2 

Further, using relations (35) and (39) we 
obtain 

where 

aa 2 + ba2 + c = 0 (41) 

a = ¼(~2 _ 1)V2g (42) 

b=~a l  fl_2vg (43) 

c = (gz - gl) + ¼/32V2g (44) 

The values of a and ¢~ are determined using the 
camera parameter values in relations (31), (33) 
and (36). The Laplacians x72gl and V'2g2 are 
computed from the two observed images gl and 
g2. Therefore, the coefficients a, b and c can 
be computed from a knowledge of the camera 
parameters and the observed images using re- 
lations (42), (43) and (44). Having computed 
the coefficients a, b and c, we can solve for 42 
by solving the quadratic equation (41). The 
distance u of the object is then obtained from 
equation (32). The fact that the quadratic equa- 
tion results in two solutions for 42 does pose 
a problem. The easiest way to overcome this 
two-fold ambiguity is to reduce the equation to 
a linear equation by forcing the coefficient a 
to be zero. This approach is followed in one 
version of our implementation. As an alter- 
native, one may record a third image g3 and 
solve for 42 again using g3 in place of g~. The 
common root for az in the two cases gives the 
correct root. However, the ambiguity persists 
if the two roots for the second pair of images 

are the same as that for the first pair of images. 
(This condition arises very rarely.) This is the 
basic principle of STM. However, the method 
described above needs to be modified to make 
it applicable in practice. 

Due to noise, the two focused images derived 
from the two blurred images may not be the 
same and equation (39) may not be valid. In 
order to make the method robust in the presence 
of noise, the following modification was made. 
Equating the right hand sides of equations (37) 
and (38) we get 

1 2 gl - g2 = ~(Crl - tr2)V2g (45) 

Squaring first and then integrating over a small 
region around the point (x, y) we get 

f f - g2)2 dx dy 

= f f ¢ v w  (46) 

which can be expressed as 

where 

( a ~ -  cr~) 2 = G 2 (47) 

G 2 = 16 f f ( g l  - g2) ~ dx dy (48) 
ff(v2g) ax au 

=~ (cr~- ~r~) = G' (49) 

where G p = +G. The sign of G' is ambiguous, 
but this ambiguity is not inherent. It was in- 
troduced by the squaring of equation (45). The 
ambiguity can be resolved from the given images 
gl and g2 in one of several ways. As one exam- 
ple, if gl is more blurred than g2 then o-~ > a~ 
and therefore the sign is positive, otherwise the 
sign is negative. It is easy to determine which 
of 91 and g2 is more blurred. From the the- 
ory on Depth-from-Focus methods (Subbarao 
et al. 1992) it is well-known that the gray-level 
variance of an image is a good measure of the 
degree of focus of the image. Therefore, if vl, 
v2 are the gray-level variances of 91, 92 respec- 
tively, then the sign is positive if vl < v2 and 
negative otherwise. Therefore 

G , = { + g  if vl < v2 
otherwise 



Depth from Defocus: A Spatial Domain Approach 279 

Now substituting for o-1 in terms of o-2 using 
equation (35) into equation (49) yields 

o-~(a 2 - 1) + 2oz/3o-2 +/3 z = G' (50) 

The above equation can be solved as a quadratic 
in o-> 

In our experiments, two variations of STM, 
named STM1 and STM2, were implemented. In 
STM1 the lens position was changed in acquiring 
the two images 91 and 9> This resulted in 
changing the parameters s and f of the camera 
but the aperture diameter remained the same 
(i.e. ]'1 ~ ]'2 and 81 ~ s2 but D1 = D2). In 
this case we get a = 1.0 and therefore the 
above quadratic equation in o-2 reduces to a 
linear equation. Therefore we get the unique 
solution: a,-/~2 

o-2 - 2/3 ( 5 1 )  

In STM2, only the diameter of camera aper- 
ture was changed in acquiring the two images 
gl and gs- All other camera parameters re- 
mained constant (i.e. st = s2 and fl = f2 but 
D1 ~ D2). In this case we get /3 = 0.0 and 
a = D1/Dz. Therefore the quadratic equation 
in o-2 reduces to 

cr2 =4-  c~ 2 - 1  (52) 

In this case we get two solutions for o-2. One 
way to obtain a unique solution is to set 82 = I2. 
In this case the sign of the right hand side above 
is negative. This is the approach used in our 
implementation. 

Ideally it should be possible to compute the 
value of as at one pixel (x,y) in the image 
and obtain an estimate of the distance. But 
because of noise and digitization, it is necessary 
to combine information from many pixels in an 
image region. In our implementation several 
alternatives were tried. Finally the following 
scheme worked well: o-z was computed at each 
pixet in a neighborhood of size 48 x 48 and 
a histogram of the values was obtained. The 
histogram was smoothed by a Parzen window 
and the mode of the resulting distribution was 
taken to be the best estimate of o-2. Once 
o-2 is determined the object distance u can be 

obtained using a look-up table or calculated 
from equation (32). 

5 Smoothed Differentiation Filters 

In the previous section we assumed a local cu- 
bic polynomial model for the focused image 
f (x ,g)  in deriving STM. This assumption can 
be removed by using a set of smoothing filters 
proposed by Meer and Weiss (1992) so that 
STM can be applied to arbitrary focused im- 
ages. Meer and Weiss (1992) have proposed a 
set of discrete image smoothing filters for es- 
timating images and their derivatives. These 
filters essentially provide an efficient way for 
fitting polynomials to image brightness in small 
neighborhoods through simple separable con- 
volution operation. The polynomial fitting is 
implicit and it is done subject to least-square 
error minimization. In our implementation we 
used one version of the filters where all data 
points have equal weight. The filters are based 
on Chebyshev polynomials as described in Ap- 
pendix A in Meer and Weiss (1992). 

The filter for image smoothing by fitting a 
quadratic or cubic polynomial is 

315n 2 - (3N 2 + 3N - 1)l (53) 
Lo(n)= ( 2 N - 1 ) ( 2 N + l ) ( 2 N + 3 )  

where the support of the filter is n = - N ,  - ( N -  
1), . . . ,  -1 ,  0, 1 . . . . .  N - 1, N. This filter is sep- 
arable and therefore can be first applied along 
rows and then along columns. The effective 
smoothing convolution kernel in this case is 
L = L0 * L0 T where L0 T is the transpose of L0. 
The filter for estimating the second order image 
derivatives is 

L2(n) = 3013n 2 - N(N + 1)] 
N(N + 1)(2N - 1)(2N + 1)(2N + 3) 

(54) 

In the implementation of STM, the result of 
applying the above filter along rows and columns 
were summed to get an estimate of the Laptacian 
of the image. In our implementation N was 
chosen to be 4 so that the window size becomes 
9 x 9 pixels. 
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(d) 

Let the underlying focused image of an object 
be f '(z,  y) which is not a cubic polynomial, and 
let the two blurred images of f~ corresponding 
to two point spread functions hi and h2 be 91 
and 91 respectively (Figure 4). Then we have 
9~ = h l * f '  and 91 = h2*f ' .  Now consider 
the effect of smoothing the blurred images 91 
and 9~ using a filter such as L = L0 * L~ r which 
fits a cubic polynomial. If gl and 92 are the 
smoothed images corresponding to 91 and 91 

respectively, then we have 91 = L • (hi * ft) 
and 92 = L ,  (h2 * f ')  (Figure 4, (a) and (b)). 
Using commutative and associative properties 
of the convolution operation, we can write 91 --- 
hi • (L • f') and 92 = h2 * (L • f'). Therefore, the 
smoothed images 91 and 92 can be thought of as 
the blurred images of the focused image f where 
f = L ,  f '  (Figure 4, (c) and (d)). However, 
f is the result of fitting a cubic polynomial to 
the underlying focused image f'. Therefore 91 
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Fig. 5. Actual object at step 10 and images with lens steps 10,40,70. 

Fig. 6. Actual object at step 60 and images with lens steps 10,40,70. 

and 92 are the blurred images of a hypothetical 
focused image f which can be modeled by a 
cubic polynomial. For this reason, STM can be 
applied to 91 and 92 to estimate or2. 

6 Implementation 

6.1 SPARCS 

STM described above was implemented on 
a camera system named Stonybrook Passive 
Autofocusing and Ranging Camera System 
(SPARCS). SPARCS was built over the last three 
years in our laboratory. A block diagram of the 
system is shown in Figure 3. SPARCS consists 
of a SONY XC-711 CCD camera and an Olym- 
pus 35-70 mm motorized lens. Images from the 
camera are captured by a frame grabber board 
(Quickcapture DT2953 of Data Translation). 
The frame grabber board resides in an IBM PS/2 
(model 70) personal computer. The captured 
images are processed in the PS/2 computer. 

The lens system consists of multiple lenses 

and focusing is done by moving the front lens 
forward and backward. The lens can be moved 
either manually or under computer control. To 
facilitate computer control of the lens movement 
there is a stepper motor with 97 steps, numbered 
0 to 96. Step number 0 corresponds to focusing 
an object at distance infinity and step number 
96 corresponds to focusing a nearby object, at 
a distance of about 55 cm from the lens. The 
motor is controlled by a microprocessor, which 
can communicate with the IBM PS/2 through a 
digital I/O board (Contec mPIO24/24). Pictures 
taken by the camera can be displayed in real 
time on a color monitor(SONY PVM-1342 Q). 
The images acquired and stored in the IBM 
PS/2 can be transferred to a SUN workstation. 
In effect, the system is set up such that, a C 
program running on the PS/2 can move the lens 
to any desired step number and take pictures 
and process them. 

Table I shows some important data of the lens 
used in SPARCS. In this table, the first column 
specifies lens position in terms of step number 
of the stepper motor. The second column is 
the focal length f,  third column is the param- 
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Table. I. Lens data. 

Step FL SI DO 

0 36.235 36.180 9034.0 

5 36.086 36.132 5300.0 

10 35.938 36.083 3750.0 

15 35.72 36.035 9~50.0 

20 35.646 35.9~""~ 2500.0 

25 35.502 35.941 1930.0 

30 35.359 35.894 1720.0 

35 35.217 35.848 1465.0 

40 35.076 35.802 1320.0 

45 34.937 35.757 1170.0 

50 34.798 35.712 1080.0 

55 34.661 35.667 965.0 

60 34.524 35.622 900.0 

65 34.389 35.578 1822.0 

70 34.255 35.534 770,0 

75 34.121 35.491 715.0 

80 33.989 35.448 i670.0 

85 33.859 35.406 1628.0 

90 33.728 35.363 595.0 

95 33.380 35.250 560.0 

eter 8 which specifies the distance between the 
image detector and the second principal plane 
of the lens, and the last column specifies the 
distance Do of an object which will be in best 
focus when the lens position is as specified in 
the first column. This data was obtained by the 
manufacturer of the lens by computer simula- 
tion and provided to us. This data is for the 
case when the zoom setting on the lens is 35 mm 
focal length. It is clear from this data that when 
the lens step number is changed, not only the 
parameter s but also the focal length changes 
by a small amount. Figure 7 shows a plot of 
the lens step number (the first column) along 
the x-axis and the reciprocal of best focused dis- 
tance I/Do along the v-axis. This plot indicates 
that the lens step number and the reciprocal 
of best focused distance have an almost linear 
relationship. This is in fact predicted by the 
lens formula (1). Based on this relationship, we 
often find it convenient to specify distances of 
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objects in terms of lens step number rather than 
in units of length such as meter. For example, 
when the "distance" of an object is specified as 
step number n, it means that the object is at 
such a distance Do that it would be in best focus 
when the lens is moved to step number n. The 
precise relationship between n and Do is given 
by Figure 7. In SPARCS, some experiments 
based on Depth-from-Focus methods indicated 
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that the data of Table 1 should be shifted by 12 
lens steps, i.e. a value of 12 should be added 
to each of the entries in the first column. We 
believe that this is due to mechanical assembly 
error between the lens and the CCD camera. 
We have taken this fact into account in reporting 
the results of our experiments in the following 
discussion. 

A missing piece of information in Table 1 
is the dependence of the ,diameter of camera 
aperture on lens position. We believe that the 
diameter also changes by a small percentage 
when the lens moves from one end to the other, 
but this data is not available to us. Therefore 
we have taken the diameter to be constant. The 
diameter was calculated from the F-number and 
the zoom focal length. 

As mentioned before, two versions of STM 
were implemented. In the first version named 
STM1, only the lens position was changed in 
obtaining two images gl and g2, but the diameter 
of the lens aperture was not changed. Changing 
the lens position changes the parameters s and 
f as shown in Table 1. In the second version 
of STM named STM2, only the diameter of the 
lens aperture was changed but the other camera 
parameters s, f were unchanged in obtaining 
the two images. First we present the results for 
STM1 and then for STM2. 

6.2 STMI 

The overall operation of SPARCS for finding 
distance and autofocusing of an object is sum- 
marized as a flow chart in Figure 17. The 
stepwise operation is also explained briefly with 
comments below. In the experiments, initially, 
the zoom setting of the lens was set to be 35 
mm focal length and the F-number was set to 
be 4. The camera gain was set to +6 db. 

The lens is first moved to step 10 and a 
first image gl(z, y) is obtained. Optionally we 
can specify the number of image frames (typi- 
cally 4) to be recorded which are then averaged 
to reduce noise. Such frame averaging is par- 
ticularly needed under low illuminations, and in 
the presence of flickering illumination such as 
fluorescent lamps. This was clearly evident from 
a number of tests on SPARCS. 

The lens is then moved to step 40 and a second 
image 92(z, y) is recorded. Again several frames 
may be recorded and averaged. The object to 
be ranged/focused can be selected by specifying 
a region in the image. The default region is the 
center of the image. The size of the region is 
also an option and the default size is 72 x 72. 
The two images are then normalized with re- 
spect to brightness. This is done by dividing the 
grey level of each pixel by the mean grey level 
of the entire image. Our implementation does 
not normalize the images with respect to other 
types of distortions such as vignetting and sen- 
sor response characteristics, as their effects are 
not significant for our camera. As mentioned 
earlier we have also ignored the magnification 
normalization, as the change in magnification 
due to change in lens position was found to be 
negligible (about 2%). 

The images are then smoothed using the least- 
squares polynomial fit filters proposed by Meer 
and Weiss (1992). The filter coefficients are 
derived from equation (53) and the filter size 
is 9 x 9. The Laplacian of the two smoothed 
images are then obtained using the differentia- 
tion filters of Meer and Weiss (1992) given by 
equation (54). 

The sign of G' is found by computing the 
gray-level variances of the original (unsmoothed) 
images 91 and 92. G 2 is calculated at every pixel 
by integrating over a 9 x 9 window centered at 
the pixel. G' is then calculated at every pixel. 
The value of the camera constants c~ and /3 
are calculated from a knowledge of the camera 
parameters (see Table 1). An estimate of or2 is 
then obtained at every pixel using equation (51). 
Due to border effects of smoothing filter and 
integration, the estimates of ~r2 is limited to the 
interior 48 x 48 region of the original 72 x 72 
images. A histogram of the estimated gz is 
computed. The bin size of the histogram was 0.1 
(the expected range of tr2 was from about -10.0 
to + 10.0). The histogram was smoothed using 
a Parzen Window of size 5. The mode of the 
histogram was taken to be the best estimate of 
or2. This value is used to estimate the distance of 
the object. In autofocusing application, from ~r2, 
the lens step number which will bring the object 
to focus is determined. The lens is then moved 
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to this step number to accomplish autofocusing. 
Once the value of a2 is estimated, equa- 

tion (32) can be used to determine the distance 
of the object. However, in our implementation, 
for obtaining the object distance or lens step 
number for focusing from the computed value 
of a2, a look-up table is used. The look-up 
table itself is obtained through calibration and 
this method was found to be more accurate than 
the direct method of using equation (32). The 
calibration procedure used by us is as follows. 
First an object is placed at a known distance 

and then or2 is obtained exactly as described 
above. This procedure is repeated for several 
different objects at the same distance and the 
average or2 and the distance are recorded. This 
gives one entry of the look-up table. All other 
entries are obtained by repeating the above pro- 
cedure for all possible distances of the objects. 
As for autofocusing, the relation between ob- 
ject distance and the best focused lens position 
was obtained by using a Depth-from-Focus al- 
gorithm which is based on the maximization of 
the energy of smoothed image gradient magni- 
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tude (Subbarao et al. 1992). For every possible 
distance, the best focused lens step number was 
determined for several different objects and the 
mean was recorded in the look-up table. 

In our experiments, it was found that if the 
object is very close to the camera, then the 
image gl is very highly blurred. In this case the 
results of ranging were unreliable. In such a 
case, a third image g3 was taken after moving 
the lens to step number 70 and the image pair g2 
and gz were used in the estimation of distance. 
The use of this third image is due to practical 

reasons. Theoretically, only two images are 
necessary and sufficient. In our implementation, 
whenever the use of the first two images gt, 92 
(taken at steps 10, 40 respectively) resulted in 
an object distance greater than step 45, the third 
image g3 was taken (at step 70). 

Two typical histograms of or2 are shown in Fig- 
ures 9 and 10. In these figures, the histogram 
obtained with first pair of images (gl, g2) is in- 
dicated by the plot "lens steps 10-40" and the 
histogram obtained with the second pair of im- 
ages (g2, g3) is indicated by the plot "lens steps 
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40-70". In Figure 9, the object is closer to step 
10 and hence the plot has a sharper peak for 
the first pair. In Figure 10, the object is closer 
to step 70 and hence the second pair of images 
yields a sharper histogram. In general as the 
object moves farther away from either of the 
two positions where the images are taken, the 
histogram becomes more and more fiat. The 
Q-factor (ratio of peak value to width at half 
the peak value) of the histogram may be used 
as a goodness measure of the results. 

Experiments were performed on five objects 
at normal room illumination (about 200 to 300 
lux), five objects at 200 lux illumination, and 
10 objects at 400 lux illumination. For each 
object the distance was varied from step 5 (step 
10 in some cases) to step 95. All these im- 
ages have been saved in an image database 
named SPARCS.DB1. Some of the objects in 
the database are shown in Figure 20. The total 
number of experiments is 355. The mean results 
are plotted in Figures 11-13. The actual dis- 
tance of the object measured in step numbers is 
along the z axis, and the estimated distance (in 
step number) is along the y axis. Under ideal 
conditions, the plots would have been diagonals 
running from bottom-left to top-right, which is 
indicated on the plots by the "ideal" plot. Some 
of the objects were very difficult ones such as 
thin lines and edges. The Root Mean Square 

(RMS) error was calculated for each of the three 
cases. Out of 97 steps, the RMS errors were 
1.48 steps at room illumination, 2.26 steps error 
at 200 lux illumination, and 2.28 steps at 400 
lux illumination. Since there are 97 steps, this 
error corresponds to about 2.5 percent error. 

6.2.1 Error Analysis. We shall use the ac- 
curacy achieved by Depth-from-Focus methods 
as a benchmark against which to compare the 
accuracy of STM. The DFF methods usually 
take a large number of images (about 10-12) 
and search for the sharpest focus position by 
maximizing some focus measure. Many differ- 
ent focus measures have been proposed and the 
performances of many of them are nearly the 
same (Subbarao et al. 1992). Since DFF meth- 
ods involve exhaustive search for the focused 
position, we believe that the accuracy that can 
be obtained by any DFD method (which takes 
just 2-3 images) can at best be equal to a DFF 
method. Hence we shall call the results obtained 
by the DFF method as DFEBST. A number of 
experiments were performed with a DFF method 
using the same objects used for the STM ex- 
periments. These experiments yielded an RMS 
error of 1.52 steps out of 97 steps. The RMS 
error of about 2.25 steps for STM compares 
well with this, considering the fact that only 2-3 
blurred images are used. 

The relationship between the reciprocal of 
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the object distance 1/u versus the lens step 
number is almost linear (see Figure 7) and can 
be expressed as 

1/u = ax + b (55) 

where x specifies lens position. For our camera, 
the lens position is specified in terms of a motor 
step number where each step corresponds to a 
displacement of about 0.03 mm. The RMS er- 
rors mentioned above are for the lens position 
and it gives a good indication of the parlor- 

mance of the method for application in rapid 
autofocusing of cameras. In order to compute 
the error in terms of object distance, we have to 
consider the error differentials in equation (55): 

16(Uu)t = al6xl (56) 

=~ --~ = al6xl u (57) 

16~1 = al~xt~ 2 (58) 

From the above relations we see that the rela- 
tive (percentage) error I~] in actual distance u 
increases linearly with distance, and the absolute 
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error 16u[ in actual distance increases quadrat- 
ically with distance. For our camera, using a 
Depth-from-Focus method (1992) the constants 
were found to be a = 0.0172 and b = -0.1143. 

Setting [Sz I to be the RMS error of 1.52 
steps for DFF and 2.25 steps for STM1 re- 
spectively, a plot of relative error [~[ is shown 
in Figure 14 and a plot of the absolute er- 
ror is shown in Figure 15. In Figure 14 
we see that for STM the percentage error in 
distance at 0.6 meter is about 2.3% and in- 
creases linearly to about 20% at 5 meter dis- 
tance. This compares well with the error ob- 
tained by the DFF approach of about 1.6% 
at 0.6 meter and increasing linearly to about 
12.5% at 5 meter distance. Figure 15 shows 
that for STM, absolute error increases quadrat- 
ically from 1.3 cms at 0.6 meter to about 1.0 
meter at 5 meters distance. The correspond- 
ing numbers for the DFF method are 1 cm 
at 0.6 meter and about 0.6 meter at 5 meters 
distance. 

A comparison between the actual radius of 
blur circle R' obtained from an experiment (us- 
ing equation (9)) and that predicted by the ge- 
ometric optics model (equation (5)) is shown 
in Figure 16. It can be seen that the error in 
terms of the radius of blur circle is less than 1 
pixel for most distances. 

6.3 STM2 

The procedure for calibration and experiments 
for STM2 is similar to STM1. The average 
sigma values are plotted in Figure 18. The ex- 
periment is first tried with two pictures 91 and 92 
taken at lens position fixed at 0 but F-numbers 
4 and 8 respectively. Fixing the lens position at 
step 0 assures that the focused image is always 
behind the image detector (because objects at 
infinity are focused at step 0 and all other ob- 
jects come to focus at higher step numbers). 
Therefore a unique solution is obtained for ~r2. 
If the estimated distance is greater than step 60, 
then the object is assumed to be too close to 
the camera and two more pictures are taken at 
step 60. These two are then used in estimating 
the distance. 

Experiments on STM2 were conducted on 
four different objects at room illumination 
(about 200-300 Lux) and ten different objects 
at 400 Lux illumination. These objects were the 
same ones used in STM1 experiments and all 
the images are available as a database. For each 
object the experiment was repeated by moving 
the object to different distances from step 10 to 
step 95 in steps of 5. Thus the total number of 
experiments is 18 x 14 = 252. The mean values 
of the results are plotted in Figure 19. The 
overall RMS error is about 2.25 steps out of 97 
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Fig. 19. Experimental results for STM2. 

steps. This accuracy is very similar to that of 
STM 1. 

6.4 3-Dimensional Objects 

In the previous section, planar objects were used 
so that a rigorous performance and error anal- 
ysis could be done. Here we give the results 

of determining distance of some 3D objects. In 
Figure 21, (a) and (b) are two images of a cone 
taken with lens positions 40 and 70. The cone 
is about 1.5 meters long with black and white 
stripes on it. The axis of the cone is placed 
roughly along the optical axis of the camera 
and the tip is about 0.7 meter from the camera. 
The images were divided into overlapping re- 
gions of 32 x 32 pixels and STM1 algorithm was 
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used to get one depth estimate at every 4 pixel 
intervals. The resulting depth map is shown 
in Figure 21 (c). The depth-map is roughly in 
agreement with the ground truth. 

Figure 21 (d) shows a 3-D object (Teddy Bear), 
which has a depth variation of about 10 cm. 
The result of running STM1 on it is shown in 
Figure 21 (e). The face of the Teddy Bear was 
the region chosen for processing. We get an 
approximate depth estimate in such cases where 
the depth discontinuities are not too large. 

In the case of 3-D objects, blurred images 
cannot be modeled as the result of convolving 
the focused image with the PSF of the camera. 
Therefore the distance estimated by STM will 
be in error. The error depends on the shape 
and appearance of objects. For objects with 
small depth variations, STM gives an estimate 
of "average" distance of the objects in the image 
window being processed. 

7 Conclusions 

The theory and implementation of a new DFD 
method named STM has been presented. It 
has been successfully demonstrated on an actual 
camera system built by us. Experimental results 
indicate that STM is useful for passive ranging 
and rapid autofocusing. The ranging accuracy 
of STM is high for nearby objects and decreases 
with increasing distance. The ranging accuracy 
of this method can be improved somewhat by 
using a DFF method which searches for the best 
focused position in a small interval near the 
distance estimated by STM. This combination 
of DFD and DFF methods together result in 
a powerful new technique for ranging which is 
both fast and accurate. 

If we want to find the distance of only one 
object, then one could use binary or Fibonacci 
search in a DFF method. The order of com- 
plexity is about the same for both binary and Fi- 
bonacci search. However if one wants to obtain 
a coarse depth-map of a scene (e.g. the cone 
object in Section 6.4), DFF requires a large uni- 
formly spaced sequence of images whereas STM 
needs only two to three images. In the case of 
search methods there is no closed form solution 

for the distance of objects and that is what dis- 
tinguishes Depth-from-Focus and Depth-from- 
Defocus. 

In comparison with the stereo method of rang- 
ing, the DFD methods do not suffer from the 
correspondence problem, but they are in general 
less accurate than stereo vision (assuming focal 
length to be less than base line, as for example 
in human vision system). Therefore the DFD 
methods such as STM can be used to get a rough 
estimate of distance which can then be used by 
a stereo algorithm to determine more accurate 
distance. The computation associated with es- 
tablishing correspondence is reduced due to the 
availability of a rough estimate of distance. 

The distance of "plain" objects such as white 
walls which do not exhibit reflectance variation 
under uniform illumination cannot be deter- 
mined by STM. However a random illumination 
pattern can be projected onto such objects to 
make them "textured". STM can then be used. 

The wavelength of light A can be considered as 
another camera parameter because focal length 
changes with wavelength (Born and Wolf 1980). 
STM can be implemented by taking two pictures 
using two different colors. Color filters may be 
placed in front of the lens for the purpose. 

Most existing camera systems (including our 
camera) are designed to maximize the depth-of- 
field since the goal is to obtain a "good" image 
of the scene for viewing by humans. However 
this minimizes the accuracy when ranging is con- 
cerned, since maximizing depth of field reduces 
the difference in blur between objects at differ- 
ent distances. Therefore, STM can be made 
much more accurate by designing cameras with 
small depth of field for the purpose of ranging. 

We are currently investigating the use of S- 
Transform for deblurring the blurred images. 
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