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Abstract 

In this paper, we study how the two classical location models, the simple plant 
location problem and the p-median problem, are transformed in a two-stage sto- 
chastic program with recourse when uncertainty on demands, variable production 
and transportation costs, and selling prices is introduced. We also discuss the rela- 
tion between the stochastic version of the SPLP and the stochastic version of the 
p-median. 
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1. Introduction 

The classical facility location problem consists in finding the optimal location 
and size of  facilities to be established among a given set of  possible sites in order to 
meet supposedly known demands specified at a given set of locations with the objective 
of minimizing total costs consisting of  fixed costs for establishing facilities and variable 

production and transportation costs. 
In the static uncapacitated case, extensively studied since Kuehn and Hamburger 

[10] and for which we can refer to the recent surveys by Krarup and Pruzan [11] and 
Cornuejols et al. [3],  the main issue is on the location choice since sizes are obtained 
as the sum of  the demands served from each open location. Consequently, the 

established capacities are fully utilized. 
In the dynamic context discussed by Manne [14], the time-phasing of the 

decisions becomes important. The dynamic uncapacitated facility location problems 
were introduced by Roodman and Schwarz [16] and in a slightly different form by 
Wesolowsky and Truscott [18]. Van Roy and Erlenkotter [17] propose a dual-based 
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procedure that extends approaches developed by Bilde and Krarup [2] and Erlenkotter 
[4] for static uncapacitated problems. Their method assumes that capacities are fully 
used in each period. They propose to solve capacitated problems by extensions similar 
to those introduced by Guignard and Spielberg [7] in the static case. 

This paper addresses the stochastic facility location problem in which demands, 
variable production and transportation costs as well as selling prices can be random. 
Uncertainty in demands induces that full utilization of capacities becomes infeasible 
and the requirement that demands should be met in all circumstances becomes un- 
realistic. This explains why a selling price is introduced, since optimal decisions on the 
size of facilities will result from a trade-off between the cost of increasing the capacity, 
the net profit of selling goods and the probability of the various demand levels. 

Other work on stochastic location problems is mainly concerned with optimal 
location on networks, see e.g. Handler and Mirchandani [8], including reallocation 
decisions, see e.g. Berman and Leblanc [1] or Louveaux and Thisse [13], or is based 
on dominance assumptions that transform the problem into two simpler problems, see 
e.g. Jucker and Carlson [9]. 

Franca and Luna [6] propose to apply Bender's decomposition to the stochastic 
transportation problem introduced by Williams [19] in which the shipments are 
decided before the random events are observed. 

In this paper, we present a stochastic model for the simple plant location prob- 
lem and for the p-median problem in terms of a two-stage stochastic program with 
recourse, and we study the relations existing between the two models. 

2. A pr iva te  s ec to r  m o d e l  

The deterministic model of the uncapacitated facility location problem, also 
known as the simple plant location problem, is the following program: 

(SPLP) minimize z = X f/x. + X ~. c q y .  (1) 
l ~ J  i ~ I  / ~ J  

subject to ~,  y ,  = 1 i E I (2) 
- , f  

Yij - x/ <<, 0 i E L  j E J  (3) 

Yii >~ 0 i E 1 ,  / E  J (4) 

x i E 10, 1} ] E  J ,  (5) 



F. V. Louveaux, Discrete stochastic location models 25 

where I is the set of  customer locations or demand points, J the set of potential 
facility locations, x i is 1 if facility ] is open and 0 otherwise, yq is the fraction of 
location's i demand supplied from facility ], cq is the total of  the variable capacity, 
production and distribution costs for supplying all of  location's i demand from facility 
], and fi ~> 0 is the fixed cost for establishing facility ]. 

The solution of the SPLP is a set of  facilities to be established. The size of a 
given facility is obtained as the sum of all demands that it serves. 

In the stochastic case where production and distribution costs on one hand, 
demands on the other hand, become random, it is no longer possible to define the 
size of a facility as the sum of the demands it serves: this sum is not uniquely defined 
as demands become random, but also for some realizations of the production and 
distribution costs, it might be more appropriate not to serve all demands. Therefore, 
both the choice of  the demands to be served as well as the size of the facilities to be 
established become part of  the decision process. Hence, it is necessary to introduce 
either a profit for meeting demands or a penalty for unmet demands. 

The stochastic formulation of the simple plant location problem is best defined 
in terms of a two-stage stochastic program with recourse, where the first-stage decisions 
are the location and the size of the facilities to be established and the second-stage 
decision is the allocation of the available production to the most profitable demand 

points. 
The formulation of the stochastic simple plant location problem is as follows: 

(SSPLP) maximize E~ U E -  
X~Z ] 

- Zgi  

+ maximize ~ ~ di(~)" (pi(~)- ci/(~))'Yii(~) ] 
Y i E I  ] G J  

(6) 

subject to x/ E IO,  1} 

z.>~O 
I 

yq(~) ~ 1 
]~J 

Z d~(~).y~j(~) - z j  ~< o 
i E I  

y~/(~) - xj ~< o 

yo(~) >/o 

] e  ] (7) 

] e  ] (s) 

i ~  L ~E _-- (9) 

/ e  or, ~ e  --- (10) 

i E  I, j E J ,  ~E 

i E L  ] E  J, ~ ,  

(Ii) 
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where zj is the size of plant L f1' x1 and yq are as before, gj is the variable capacity 
cost, d i the demand at location i, Pi the unit profit for meeting demand in L cq the 
unit production plus distribution cost from ] to i, E~ denotes the mathematical 
expectation with respect to the random variable ~, and Uis some utility function. As 
indicated before, the model is a recourse model in the sense that the second-stage 
decision variables Yij depend on the particular realizations of the random event ~. 

Several extensions of the SPLP have been proposed in the deterministic case. 
Most of them can also be dealt with in the stochastic case. As an example, if the plants 
have known capacity aj (see Guignard and Spielberg [7] ), the variables zj disappear 
from this formulation, the fixed cost f/is replaced by f /+  ajgj, and the constraints 
(10) are replaced by 

Z di(~)"Yij(~) - ajx/ 4 0 j E  J, ~E .~. (13) 
i ~ l  

Another natural extension is to consider a multi-stage model with the possibility 
of building additional capacity in the later stages (see Van Roy and Erlenkotter [17] ) 
in the deterministic case. 

Finally, as far as computational aspects are concerned, a dual-based procedure 
for solving the above SSPLP problem (6)-(12)  is proposed by Louveaux and Peeters 
[12]. 

3. A public sector  m o d e l  

The deterministic p-median problem 

(p-M) minimize ~ ~, aqyq (14) 
x,y iE I  jEJ  

to ~ y ,  = 1 i E I subject (15) 
j~Y 

Yij <~ x] iE L ] E  J (16) 

Z x. = p (17) 
]EJ 

yq >1 0 (18) 

x/ E {0, 1} (19) 
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consists in finding the optimal location for exactly p facilities in order to meet a 
specified demand at the lowest possible transportation cost, where 1 is the set of  
client locations, J the set of  facility locations, among which p will be open, x/is 1 if 
facility ] is open and 0 otherwise, .vii is the fraction of location i's demand served at 
facility ], and aq is the variable transportation cost for client i to be served in j. 

The stochastic version of the p-median model is defined as follows: 

(Sp-M) maximize E~ U [maximize - ~ di(~). ~ aq(~).Yii(~ ) 
x L. y i ~ l  j ~ J  

- i~t pi(~)'di(~)" (1 - j~.r yi](~))] (20) 

subject to x/ E { 0 ,  t} ] E J  (21) 

Z. ~ 0 j E J (22) 
1 

Yq(~) 4 1 i E L ~E- ' -  (23) 
/ ~ J  

di(~).yi/(~ ) - zj ~< 0 ]E J, ~ E -  (24) 
i E I  

+ /~s ~ ~(~)'( i~I ~ di(~)'Yq(~)) ~< B' ~E ~, (25) 

y q ( ~ ) -  xj ~< 0 i E L  ] E  J, ~E--- (26) 

yi/(~)>/ 0 i E / ,  ] E  J, ~ E - - ,  (27) 

where a 6 is the variable transportation cost for client i being served at location j E J, 
Pi is a penalty for unmet demand, B is an upper bound on the budget, and sj is the 
service cost at facility j. 

As in the stochastic version of  the SPLP, the location and the size of the 
facilities are the first-stage decisions, while the allocation of the available service to 
the clients is done in the second stage. 

The elegance and simplicity of the deterministic p-median model are certainly 
not maintained in the stochastic version. This is mainly due to two factors: the possi- 
bility of unmet  demand and the explicit representation of the budget constraints. We 
discuss these factors in the next two sections. 
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4. P e n a l t y  fo r  u n m e t  d e m a n d  

Since the sizes may not be sufficient to cover the demands for all states of 
nature ~, the usual constraint IF, i ~ : Yi] = 1 is replaced by the weaker one (23). A 
penalty Pi for unmet demand is introduced in the objective function (20), since other- 
wise the optimal solution would trivially become Yi] = O, i E 1, j E J. In other words, 
randomness in the demands makes it necessary to specify explicitly the penalty for 
unmet demand, or equivalently the value of meeting demand which in the deter- 
ministic case is in fact assumed to be infinite. 

The necessity of this penalty is clearly an undesirable feature. In many cases, 
it seems rather difficult to evaluate the social cost of not being able to serve a client. 
In the case of emergencies involving human beings for instance, this amounts to 
assessing the value of human life, a problem which is at present unsettled. There exist, 
however, cases where this evaluation seems possible, such as the damage costs for in- 
sufficient cleaning response to oil spillings discussed by Psaraftis et al. [15]. 

The existence of this penalty is however a necessity. Formally, as pointed out 
above, since otherwise the optimal solution would trivially be to serve no client at all, 
and more fundamentally, since the problem in fact involves two different criteria: to 
serve 'as many'  clients as possible on the one hand, and to minimize service, trans- 
portation and investment costs on the other hand. This issue is resolved in the deter- 
ministic setting by replacing 'as many'  by 'all ', a solution which becomes impracticable 
when demands become uncertain, except maybe when the range of  possible demand 
values is narrow. 

5. T h e  b u d g e t  c o n s t r a i n t  

In this section, we discuss three different approaches for handling the budget 
constraint: a conservative approach by upper bounding, a separability approach, and 
the introduction of a system of prices. This last approach will also provide a relation 
between the stochastic versions of the p-median and the SPLP. 

5.1. A CONSERVATIVE APPROACH 

The budget constraint (25) is satisfied only if the maximum possible value of 
the left-hand side is less than B. If uncertainties on s! and d i are independent, this 
suggests replacing the Z i ~ i d i Y i j  term by its upper bound zi, as follows: 

+ 2:g1 + 8 .  
j j ~ z  j ~ ]  
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By making assumptions similar to those made in the deterministic case, namely f /=  f, 
and b =gi + sup~ ~ zsj(~) for all jE  J, the budget constraint becomes 

~x.<~ i / 
j ~ J  

e-bZ  
j~j 

Now, replacing F~ i ~ j z i by the upper bound sup~ ~ -. Z i di (~), one obtains the p-median 
constraint 

Z X . < ~  
1 f 

B -  b . sup ~ dt(~) 
~E'~ i ~ I  

with p being the integer part of  the right-hand side. 
As compared to the situation in the deterministic case, the value of p will be 

much smaller, since the values of b and 2i ~ ld i (~)  are replaced by an upper bound 
instead of the mean value in the deterministic case. In other words, due to uncertain- 
ties on service costs and on demands, and also due to the willingness to serve the 
maximal possible demand, the effect would be to reduce the number of facilities to 
be open and to increase the size of these facilities. This would result in an inappropriate 
balance in the usage of the budget. Although some other solutions could be considered, 
such as to base the value of p on expected demand level, the next two approaches 
give more adequate and balanced responses to the budget usage. 

5.2. THE SEPARABLE CASE 

Assuming the budget consists of  two different parts, an annuity B i for invest- 
ments and a yearly service budget B s, the constraint (25) can be replaced by 

I E J  i ~ J  

and 

Assuming, as usual in the deterministic case, identical fixed sizes and identical 
fixed and variable costs for all facilities (aj = a, fi = f and gi = g for all j),  the invest- 
ment budget constraint becomes 
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Z xj ~< (B i-pga)/f- 
j~J 

Since the right-hand side is equal to p, one obtains the p-value as 

p = B i I ( ga  + f ) .  (28) 

Similarly, assuming identical service costs in all facilities, si(~) = s(~) for all ], 
one obtains the service constraint 

~ di(~).yq(~) ~< Bs/S ~E ~_ 
] ~ J  i E I  

where the right-hand side gives an upper limit on the number of  clients who can be 
served. 

There should clearly exist some relation between the two budgets B i and B s 
such that a sufficient number of clients can be served given the available service 
capacities. In particular, since Zjdj(~).Yij(~ ) is bounded from above by a, if the 
relation a.p  < Bs/S is satisfied, then all open facilities can provide full service for 
every possible demand. In that case, one obtains a simplified version of the stochastic 
p-median as follows: 

maximize E~ U [ m a x i m i z e -  ~ di(~ ). ~ aij(~).yq(~) 
x t_ y i E 1  i ~ J  

i~z  j 

subject to xj E {O, 1} ] E J  (21) 

~'~ yq(~) ~< 1 i E / ,  ~E -- (23) 
j~J 

yij(~) - xj • 0 i E L  ] E J, ~ E -  (26) 

yq(~) >~ 0 i EI,  / E  J, ~ E ~_ (27) 

Z di(~)'Yij(~) 4 aj j E J, ~ E E (29) 
i E l  

Z xj p, (3o) 
] E J  

where the value of p in (30) is given by (28). 
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5.3. A PRICE SYSTEM 

In this section, following the approach proposed by Erlenkotter [5] in the 
deterministic case, we introduce the possibility of charging some price for each unit of  
service and we show how that price system introduces both a natural formulation for 
the budget constraint and the equivalence between the stochastic p-median and the 
stochastic SPLP. 

For a detailed discussion of the validity of the assumptions on the price system, 
we refer the reader to Erlenkotter [5]. 

First, we assume that the quantity of  delivered service and the associated costs 
are well defined. Second, service demands must be met inside the limits of  the available 
capacity. Potential demand is exogeneous and inelastic to travel cost. The penalty for 
unmet demand is large enough so that every 'reasonable' demand is satisfied. 

It is interesting to observe that this penalty has been explicitly introduced in 
the stochastic model of the p-median and that it is precisely the role of that penalty 
to make the balance between budgetary issues which would tend to limit the available 
service capacity and the desire to meet the largest possible demands. In other words, it 
is the role of  that penalty to decide what 'reasonable' means in terms of demands to 
be met,  especially when demands are random. 

Since potential demand is inelastic, it will not be affected if some price ~j(~) is 
charged for each unit of  service provided at location ]. The level of the price is a 
second-stage or recourse decision, taken after observing the value of the random vari- 
able. These service charges are added to the client costs in the objective function, and 
at the same time are also added as revenues to the right-hand side of the budget con- 
straint. 

The stochastic p-median problem becomes 

maximize 
x 

E~ U rmaximize - Zzdi(~)" ( ~ aii(~) + ~j(~)) "Yii(~) 
L. y . j E J  

t ~ s  j 

subject to (21), (22), (23), (24), (26), (27) 

j ~ J  j E J  j E J  i E l  

~< B + ~, di(~)" ~ ~'/(~)'Yi/(~) ~E - .  (32) 
i E I  I E J  
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Note that the original p-median problem (20 ) - (27 )  is a restriction of the 
present model, where the variables ~/(~) are forced to take the value zero for all 
] E J, ~ E -_-. Therefore, the extended model with service charges is preferable to the 
original one and will yield an increased expected utility. 

Now we observe that the constraint (32) must hold with equality for all ~ E _-.% 
in an optimal solution, since otherwise decreasing some ~/(~) corresponding to one 
Yij(~) > 0 would reduce (31). We may therefore substitute from (32) into (31) to 
obtain 

maximizeE~U[-.Zfix'-l~e]gi~x,. ,E  jr ! • 

+ maximize  - ~ di(~). ~, (aq(~) + sj(~)).yq(~) 
Y i e I  j e f f  

i e I  ] 

or equivalently 

r 
maximize E~ U L -  ~" fix" - Z g.z. 

x,z j e f f  1 j e f f  I I 

+ maximize 
Y 

~ di(~ ) • (pi(~) - aq(~) - sj(~)).yq(~) 
i E I  j e J  

+ B - ~ pi(~ ) .  di(~)]  . 
i e I  

(33) 

Two interpretations can be given to the result (33). First, that the problem 
(33) subject to (21) - (24) ,  (26), (27) is exactly the same as the private-sector model 
except for the constant term B - Zi e zPi(~)" di(~). In particular, if the utility is 
linear, then the decisions taken in the public- and in the private-sector model will be 
exactly the same. This constant term represents the difference between the allocated 
budget and the value of demand. 

A second interpretation is obtained by considering that (33) consists of two 
parts to be minimized: the difference between the expenses and the budget, 

j e J  I j e J  

and the difference between the value of the demand and the net value effectively ob- 
tained by the public 
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( ~. pi(~)" di(~) - ~ ~ di(~)" (Pi(~) - aij(~ ) - ~ ( ~ ) ) .  Yi](~). 
iEI iEI iEJ  

Note that the balance between these two terms fully depends on the choice of  the 
scaling factor used to define the value of Pi(~). 

The actual assignment of prices is a difficult problem with many degrees of 
freedom, since for each ~ E - there is only one constraint binding the prices ~I,i(~), 
j E J. Assuming the prices cover the marginal service cost s](~) plus a uniform charge 
~(~),  we deduce from (32) that 

Z 6 5 *  Z gizj -8  
jEJ  j~J  

ffs(~) = ~ ~ di(~)" Yii ~ E - .  
i ~ l  j~J  

Since Yii must be feasible for all i E L j E J, (27) is satisfied and therefore 

7 c  5 • Z gjz - 8  
(~) ~> j~ ' j - I  i ~ ~r I ~j E E. (34) 

Zz. j ~ j  I 

Since, in the deterministic case, ~j ~ jzj  is exactly equal to 2i ~ Idi , the right-hand 
side of  (34) corresponds to the price charged in the deterministic case. Hence, (34) 
indicates that a natural consequence of  uncertainty is that for a given budget, the price 
to be charged is larger than in the deterministic case. 
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