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CONVERGENCE OF SPECTRAL METHOD 

IN TIME FOR BURGERS' EQUATION 
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A b s t r a c t  

For solving Burgers' equation with periodic boundary conditions, this paper presents a 
fully spectral discretization method: Fourier Galerkin approximation in the spatial direction and 
Chebyshev pseudospectral approximation in the time direction. The expansion coefficients are 
determined by means of minimizing an object functional, and rapid convergence of the method 
is proved. 
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1. I n t r o d u c t i o n  

The classical spectral methods for Burgers' equation 

U, + UU~ -- vUx= = f 

usually discretize the time direction with finite difference method [11 so that  the order of 
convergence in the t-direction is lower than that  in the x-direction which is discretized 
with spectral method. Therefore, to obtain integral high order of convergence, we may 
also apply spectral method to the t-direction. Such a trial can be found in [2], where 
some numerical results were given by using the tau method in time, but  convergence of the 
method is not proved theoretically. As we shall find in paragraph 2, if we just approximate 
the equation and its initial condition with s tandard spectral discretization, the derived 
system of algebraic equations of the expansion coefficients will be overdetermined, or say, 
unsolvable. To overcome the difficulty, we shall construct an object functional and determine 
the expansion coefficients by minimizing it. In paragraph 3, we prove the convergence of 
this method. 

2.  A l g o r i t h m  

Let 
I = { z :  0 < z < 2~}, T={t: - l< t< l } ,  ~ = I x T .  
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We consider the following problem: 

DU ~ Ut + UU~ - vUx= = f,  in f~, (2.1) 
U(x,-I) = ~(x), in I, 

where f, ~ are of period 2~r with respect to x. B-L. Guo proved the existence and uniqueness 
of the solution U(x, t) of (2.1) in [3]. Obviously we have 

u(~,  t) = u ( ~  + 2~, t), v t  e [ -1,1] .  

Since Chebyshev polynomials are orthogonal with respect to the weight function 

w ( t )  = i/v/l - t 2 ,  t e ( - 1 , 1 ) ,  

we introduce the weight norms for a function ~(t) as: 

l l~l[~ cg(t)~2(t) dr, 2 d~ 2 dq~ 2 
= [[~[Iq,T = II~[l~ + ~ T + " "  + ~-~ T" 

1 

We define two finite dimensional spaces: 

FM = Span{e~k" : Ikl < M}, CN = Span{Ti(t) : 0 < j < N}, 

where Tj(t) is Chebyshev polynomial of degree j .  And we denote by PM the orthogonal 
projection from L2(I) to FM, and by HN, the interpolation from C(T) to CN, i.e. for all 
rl(t) e C(T), HNrl E CN satisfies 

n ~ ( t ~ )  = ~(t~) ,  j = 0, i , . . . ,  N, 

where t~Y, j = 0, . . .  , N are the extreme points of Chebyshev polynomial TN(t) within the 
interval [-1, 1], i.e. 

t N = cos(jTr/N), j = O, 1 , . . . , N .  

According to the idea of spectral method, we naturally hope to find 

u(z,t)  = ~ uikT¢(t)e ik= • CN®FM 

O<_j<N 
Ikl<M 

such that 

and 

V v E F M ,  O < j < N ,  

(~(-1), ~) - -  (~,~), w ~ F~. 

Unfortunately, this brings us (2M+ 1)× (N+2)  independent equations for merely (2M+ 1)x 
( N +  1) unknowns {uj,k). Such an overdetermined system of equations is usually unsolvable. 

In order to determine {ujk}, let us first construct an object functional EM,N : CN @ 
FM --+ ~rl+. For all 

w =  E wikTj(t)eikZ' 
O<_i<_N 
Ikl<_M 
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let 
2N 

2-NTr j~0 1 . =  2N EM,N(W) = ]IW(--1)- PM~OH 2 + "~j l Dw(tj ) - P2Mf(t~N)H~, (2.2) 

where {t~ N} are the extreme points of T2N(t), 

I, I < j _ < 2 N - 1 ;  
dj -- 2, j -- 0,2N. 

P r o p o s i t i o n  2.1. There exists a minimum for EM,N(w) in CN ® FM. 
Proo£ In fact, EM,N(W) can be regarded as a nonnegative multivariate function 

mapping {wjk} t o  EMN(W). For any j and k, we have 

EM,N(W) --~ +00, as [Wjkl --')" +00. 

Therefore, there exists a positive number R, such that for all w satisfying 

the following inequality holds: 

w2 k > R 2, 
0<j<N 
Ikl<_M 

EM,N(W) > EM,~(O). 

On the other hand, EM,N(W) c a n  reach its minimum in BR because the closed ball BR is 
compact in Euclidean space .~(2M+I)x(N+I). Thus the proposition is proved. 

Numerical methods for minimizing EM,N(W) have been well discussed in the literature. 
See [4]. 

3. Convergence Theorem 

T h e o r e m  3.1. Suppose the solution U(x, t) of (2.1) is sufficiently smooth and let 
u E Cg ~ FM be a minimal solution of EM, N(W) in CN ® FM. For any r > 0 and M, N 
sufficiently large, we have the following estimation: 

I I , , ( t )  - u ( t ) l l ,  = O ( M - "  + Y -" ) ,  Vt e [-1,11. 

To prove the convergence theorem, we need two results from approximation theory. 
L e m m a  3.2[5]. Suppose function ~(t) is sufficiently smooth. For 0 _< q _< ½s, there 

exists a positive constant c independent of N and ~, such that 

HIIN~ --~[lq,T ~- CN2q-sl[~[la,T" 

Lemn~a 3.3[6]. Suppose periodic function ~(z) is sufficiently smooth. For 0 _< q _< p, 
there exists a positive constant c independent of M and ~7, such that 

IIPM~ --Vllq,1 < cMq-PlVlpj. 

From the lemmas above, it is not difficult to obtain the following corollaries. 
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C o r o l l a r y  3.4. Let v(x,  t) be fixed and sufficiently smooth. For any r > 0 and M, N 
sufficiently large, we have 

zw(t) I ID~(IINPMV(t)  -- v(t)) 112z dt = O ( M  -er  + N-2r) ,  

where lal < 2. 
C o r o l l a r y  3.5. Let v(x ,  t) be fixed and sufficiently smooth. The following estimate 

holds: 
sup I n ~ P M - ( ~ , t )  - . ( ~ , t ) l  <_ c, 

(=,t) E~ 

where c is a positive constant. 
Proof. By Sobolev's embedding theorem, H2(~) -+ C°(m). It follows that  

sup lrI~PMV(x,t) - v(x,t)[ < IIII~PMv - vii2,. 
(=,t)en 

[al<a 

By Lemma 3.2 and Lemma 3.3, the proof can be finished. 
The next lemma will show that  the functional EM,N(W) is essentially equivalent to 

,'M.II  + [' .,,,p,M:(,>ll;,,. 

L e m m a  3.6 [5]. Let ((t) be a polynomial of degree N. We have 

N 1 

1 _ ~ x ~-~j~¢ ( t j )  <_ 2 w(t)~2(t) dr, 

where 

cj = 2, 

L e m m a  3.7 (Gronwatl's inequality[7]). 
are constants c and L, such that  

I < _ j < N - 1 ,  

j = O , N .  

Let v( t )  > 0 be continuous on [t0,T]. If there 

v(t) < c + L v(s)  ds, v t  e [t0,T], 

then the following Gronwall inequality holds: 

v ( t )  < ceL(*-*°). 

Now we prove the convergence theorem. Let Au = u - U. We have, by (2.1), that  

Au~ + ( u u =  - U U = )  - ~Au== = D u  - f ,  

Au~ - vAu== = D u  - f - (uu= - UU=) = D u  - f - ( U A u ~  + U=Au + A u A u = ) .  
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Forming inner products of L2(I) with A u  on both  sides, we obtain 

(A~(0, A~(t)) -.(zx~=(t), A~(t)) 
- - (nu ( t )  - st(t), Au(t))  -- [ (U(t)Au=(t) ,  Au(t))  

+ (u.(Oa,~(O, a,,(O) + (A,~(Ozx,~.(t), zx,(O)]. (3.1) 

Since U(t) and Au(t) are of period 27r, it is easy to prove, by means of integration by parts, 
that  

(~==(t), zX~Ct)) = -IZXu(t)I~,I, (ZX~(t)ZX~=(t), ZX~(t)) = 0, 

(V,(t)ZX~(t), ZX~(t)) = -2(vCt)~,( t ) ,  ~ ( 0 ) .  

Thus (3.1) is simplified as 

(Aut( t ) ,  Au(t))  + vlAu(t)]2,i = (Du(t) - f(t), Au(t)) + (U(t)Auz(t), Au(t)). 

We suppose sup IU(x,t)l = BI. It follows from above that  
(=,0en 

<~ (llO~,(0 - f(t)l[~ + IIAu(t)ll~) + ~ -  

Therefore 

(~.,(,), a .( ,))  _~ ~ll~u(~)- s(,)ll~ + ~lla-(~)ll~, (3.2) 
where c~ = 1 + B21/v. Integrating (3.2), we obtain 

OF /2 f; ll/Xu(t)ll~ -< II/X~(-1)ll} + ~(t)l lD~(*) - i( t) l l~ dt + ~ II/Xu(t)ll~ dr. 
1 1 

By Lemma 3.7, we have the following estimate: 

]lAu(t)ll~ < (IIAu(_X)I]~ + f_l, w(t)llDu(t)_ f(t)ll ~ dt)e2¢,. (3.3) 

Since 

dt 
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it follows, by Lemma 3.2 and Corollary 3.4, that  

P 1  

f(t)]l~ at 

+ O ( M  -~" + N-2") .  (3.4) 

Let u* = HNPMU.  We can make a series of estimations as follows: 

II,,(-~)- P,~oll~ + f~ ~(t)llD,,(t)- n,,,P,~S(011~ at 
<__~M>r(u) -< EM,N(,~*) 

2N 

- - - - I I P M U ( - - I )  - P M ~ I I ~  - -  ] - ~  x . - P2Mf(tj )11, 

f <2 ~(t) IID~*(t) t 2 1 -- I I2NP2Mf(  )l[_r dt 

_<4(/' ~(t)liD.'(,)-S(011~ at + f '  ,~(*)IIn,~,P, MS(0- S(011~ d') 

{ =4 ~o(O I1D,~*(t) - I(t)ll~at + O(M -2~ +g-~). 
1 

(3.5) 

Now we estimate f_l I w(t)IID~'(*) - f ( * ) l t ~  at. By (2.1), we have 

/ f 1 ~(t) llD~'(0- I(011~at= ~(*)IID~*(t)-DU(011~d* 
1 1 

+ f2, '*)II-'(,)-:(,> - .(,)~=(,)II;',) 

; =3 a,(t)llu*(t)~;(t)-U(t)U~(t)ll~dt + O ( M  -2~ + N - ~ ) .  
1 

(3.6) 

The term f_llW(t ) I1~*(*)~:(0- ~(,)u=(,)ll~ d, in (3.6) indicates the error caused by the 
nonlinear term of Burgers equation. We estimate it as follows: 
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Suppose sup I Ux (z, t) l = B2, and suppose sup 
(=,t)e~ (=,t)e~ 

3.5. We eventually have 

[u*(z,t) - u ( z , t )  I = B3 by Corollary 

j'_' ~(t)II,.,*(t)~¢(t) - u(t)u=(t)Jl~ dt 

,,,(t) It,,,(t) - ~'=(t)ll, at + ~= f- l"(t)I1, , ' (0 - u(t)ll~- dt 
\ J - - 1  

=O(M -=r + N-2"). (3.7) 

By (3.3)-(3.7), we conclude that 

ll,.,(t) - u ( t ) t l  x = o ( M - "  + N - ' ) ,  v t  e [ - 1 ,  t]. 
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