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Aspects of  the Turbulence Problem 
Survey Report 

By HANS W. LIEPMAIqN, Pasadena, California l) 

Second Part 2) 

IV. G E N E R A L  D I S C U S S I O N  

1. Equations of Motion. Reynolds Equations 

We assume that  the velocity components ui, the pressure :b, the density ~, 
the temperature T, etc. satisfy the general Navier-Stokes equations of motion, 
that  is, we have 

O~ ui Oq ui uk O~i k (IV-la) 
Ot + Ox k -- Ox k ' 

Oq Y Oe uk d op 0 ['r~k ui + qk] (IV-lb) 
ot + ox k - + ~ f  + ~ 

o e o~ u e 
0t + 0. ,  - 0 (IV-lc) 

with 
ou. 1 ( oui o .~  1 ( 2 + 2 # )  d t k + #  + 

wik = , P + -Y OxeJ ~ Ox~ Oxi / '  (IV-ld) 

OT 
q k  = - ot o x k  ' (IV-le) 

1 
Y = -~ ui ui + h .  (IV-1 f) 

;t,/~ are the two viscosity coefficients, a the beat conductivity, and h the 
enthalpy per unit mass of the fluid. 

A direct approacb to the turbulence problem would consist in solving (IV-l) 
for a given set of boundary or initial values and to compute mean values over 
the ensemble of solutions. Even for the most restricted problem, turbulence 
of an incompressible fluid, this appears to be a hopeless undertaking due to 
the nonlinear terms in the equations. Thus, the standard procedure, following 
REYNOLDS'  classical studies, consists of averaging over the equations rather 
than over the solutions. In this way relations between averaged quantities are 
obtained. However, due to the nonlinear transport terms, the system of equa- 
tions obtainable in this way is undetermined since it is impossible to obtain 
an equation which involves only correlations of the same order, for example, 
double correlations. 

1) California Inst i tute  of Technology. 
2) First  Par t  see ZAMP 3, 321 (1952). 
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Indeed, averaging (IV-la) for a field of flow consisting of a mean flow and 
turbulent fluctuations 

u ~ = U ~ + u ' ,  ~ = U ~  

yields Reynolds equations which couple the mean flow Ui to the quadratic 
mean values of the fluctuations. For example, for incompressible flow we have 

o5 u, 05 u, U~ o (zik _ e u'i u~) (IV-2a) 
Ot + Ox~ -- Ox k 

in which the "apparen t "  or Reynolds stresses now appear on the right hand 
side. Multiplying (IV-la) by u~, for example, and averaging we obtain an 
expression connecting the stress tensor u~ u~ with the expression containing 
the triple correlations u~ u~ u~, etc. The same procedure evidently applies to 
the general compressible case except that  more terms and equations are 
involved. 

Hence, the method of averaging the equations can not lead to a final deter- 
mined solution since it evidently does not exhaust the content of the original 
equations. The averaged equations require additional relations which have to 
come from statistical or similarity considerations or from general physical 
considerations which allow a choice of the possible solutions to be made from 
the number of solutions compatible with the averaged equations. 

2.  T h e  A n a l o g y  w i t h  K i n e t i c  T h e o r y  

From Reynolds equations, for example, in the simple form (IV-2a), an 
immediate analogy between turbulence in a fluid and molecular motion can be 
drawn. The viscous stress tensor v~ ~ expressed in terms of the molecular velo- 
cities c~. is given by Ti k : -- Q c i c k ,  thus (IV-2a) can be written 

05 ui 05 u~ uk 0 
Ot -~ OX k OX k E~ ~ "~- ~ Ui Ulkj �9 (IV-2b) 

Ideas such as BOUSSINESQ'S "exchange coefficient", PRANDTL'S mixing length, 
etc. make use of the analogy between molecular and turbulent shearing stresses. 
I t  should be emphasized, however, that  the computation of ~ from kinetic 
theory is reasonably simple only in the case of a perfect gas, that  is, for weak 
molecular interaction. The interaction between turbulent elements, on the 
other hand, is not weak in all interesting cases. Indeed, if an analogy of turbu- 
lent mixing with molecular kinetics is drawn at all it has to be drawn with the 
liquid state rather than with the gaseous state. Furthermore, to consider the 
fluid incompressible implies that  dissipated energy is small compared to the 
heat content of the fluid. That  is, ci ck ~ Ui Uk and the Mach number 

- -  '- is not U~/c2~  U2/c 2 is small compared to unity. For the turbulent fluid u~ uk 
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necessarily small compared to Ui U~ and consequently the proper analogy 
refers to "compress ib le  fluid f low" of this turbulent fluid. Indeed, the triple 
correlation terms of the turbulent fluctuations correspond to the heat flux 
tensor in the same way as the double correlation corresponds to the viscous 
stress tensor. For compressible flow the relation between heat flux and shear 
can not be neglected, in analogy to the relation between double and triple 
correlations in some problems in turbulence. 

One of the difficulties in dealing statistically with turbulence is evidently 
the fact that  we have to deal with strongly interacting elements. This precludes, 
in most cases, the use of the general asymptotic laws of probabili ty theory such 
as the central limit theorem which form the background to many  of the results 
of statistical mechanics, for example, of perfect gases, black body radiation, 
etc. all of which are problems of independent or nearly independent systems. 

Furthermore,  the fact tha t  turbulence is a " secondary"  structure super- 
imposed upon the molecular one means that  we deal with dissipative systems 
throughout and not with a fluid in thermal equilibrium. The very simplest 
state conceivable is a stat ionary one in which energy is fed to the system at the 
same rate as it is removed from the system and transforIned into heat. 

3. S o m e  C h a r a c t e r i s t i c s  of  the  E q u a t i o n s  
M a t h e m a t i c a l  M o d e l s  of  T u r b u l e n c e  

Turbulence is a phenomenon typical for large Reynolds numbers. I t  is thus 
important  to ask what  the general characteristics of the equation are for large 
Reynolds numbers. The typical phenomenon at large Reynolds numbers is the 
existence of boundary layers in a general sense, that  is, of thin layers where 
most of the dissipation takes place. In this sense shock waves are included in 
the boundary layer phenomena. The reason for the existence of boundary layers 
is the fact that  the stress terms in the equation of motion are the terms of 
highest order. These terms are multiplied by  a factor inversely proportional to 
the Reynolds number. Physically this means the existence of regions of dimen- 
sion ~, say, within the fluid, in which the dissipation takes place and where 
tends toward zero as some power of v, the kinematic viscosity, in such a fashion 
that  the dissipated energy remains finite. This implies, for example, in the case 
of the shock wave d ~ v, for the two-dimensional boundary layer on a solid 
wall ~ ~ v I/2, in a plane jet ~ ~ v 2/~, etc. (Similar considerations can be made 
for temperature layers.) The general tendency of the contribution of the quasi- 
linear terms in the equation of motion and the higher order stress term thus 
apparently consists at high Reynolds numbers in the production of narrow 
zones of intense shear. The narrow shear zones caused by  transversal waves 
of finite amplitude are vortex lines and vortex sheets. The random field of 
these transversal disturbances is called turbulence. In an incompressible fluid 
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longitudinal waves do not exist. In a compressible fluid both types exist and if 
the Mach number is sufficiently high both the longitudinal and transversal 
phenomena, that  is, sound and shock waves on one hand and turbulence on 
the other, are coupled, and energy is transferred between both fields. 

While shock waves exist in flow with one space coordinate, turbulence, at least 
in the case of incompressible flow and in the sense outlined above, is a strictly 
three-dimensional phenomenon. In two dimensions the balance between the 
regrouping or stretching of vortex filaments and dissipation is not possible. 
(Random fields made up of transversal shear waves are, of course, possible in 
two dimensions but they do not represent turbulence in the proper sense.) 

Expressed in terms of a Fourier representation of the velocity field the 
interplay of the nonlinear term with the stress term appears as a flux of energy 
from the lower frequencies to higher frequencies and the eventual dissipation 
at higher frequencies. In the course of t ime one effect of the nonlinear term 
consists in increasing the coefficients of the highest frequencies. The nonl inear  
terms thus contribute indirectly to the dissipation. 

BURGERS [38] 1) has extensively studied a mathematical  model of turbulence. 
This model accounts for both the nonlinear term and the dissipation term. I t  
is simplified most ly  in the space dimensions since only one and two dimensions 
are considered. Hence, the model does not apply directly to turbulence. In 
the one-dimensional case it can be applied to a random arrangement of shock 
waves rather than to turbulence. I t  does, however, allow the s tudy of the 
interplay between inertia and viscous terms. COLE [42J, [43] and independently 
E. I-IoPF [49] have recently found a general solution of BURGER'S one-dimen- 
sional, nonlinear equation which facilitates an analytical discussion of the 
behavior of the solutions with respect to initial and boundary values. 

Recently an electrical model nearly corresponding to BURGER'S one-dimen- 
sional equation has been studied experimentally by  BETCHOV [37]. BETCHOV 
feeds noise with a white spectrum and Gaussian distribution into his circuit and 
observes the resulting output. The probabili ty distribution of the response is 
skew and the joint probabili ty of the output voltage and its derivative shows a 
striking resemblance to similar observations of turbulent fluctuations. 

4. Local Isotropy 

KOLMOGOROFF'S concept of local isotropy [51] can be considered as one 
of the most important  general ideas in turbulence. 

The exchange of energy between eddies of various size or the flux of energy 
through a wave number  space represents a cascade process. The energy is 
supplied essentially in the low wave number region and passed on and dissipated 
in the region of large wave numbers. The question arises : is it possible to make 

1) N u m b e r s  in  b r a c k e t s  re fe r  to t he  B i b l i o g r a p h y ,  p a g e  4~3. 
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an asymptotic statement concerning the form of the energy spectrum of the 
large wave numbers ? This spectrum is due to a large number of random events, 
and we may hope therefore to be able to establish a general trend. The events 
are not independent and consequently the central limit theorem, or a similar 
statement intimately connected with independence, can not apply and it is to 
be expected that  any asymptotic  s tatement  made will be much weaker than, 
for example, the central limit theorem. 

KOLMOGOROFF introduces essentially three hypotheses; the first of which 
much broader than the other two. 
(1) The small scale motion is always isotropic. This is the concept of "local  

isotropy".  
(2) The energy spectrum of the small scale motion can not depend upon details 

of the flow; the energy spectrum E ( k )  or the space correlation function 
~(r) will depend upon the dissipated energy per unit volume and time 
and the viscosity v. 

(3) If  the Reynolds number of the problem is sufficiently large, the zone of 
dissipation and the zone of production of turbulent energy will be widely 
separated in the wave number space. Then there may  exist a range of wave 
numbers which are in a state of local isotropic equilibrium but  which are still 
not in the dissipation region. In this case E ( k )  will become independent of v. 
(2) and (3) imply a transfer mechanism which acts between neighboring 

wave number ranges. The contribution of a direct transfer of energy from 
one wave band into another far removed is assumed negligible. 

The simplest consequences of (1), (2) and (3) for the spectrum or correlation 
function are: due to (1) the pat tern  is isotropic, and one function suffices to 
describe correlation or spectrum; dimensional analysis can be applied to E ( k ) .  

Characteristic length and velocity made up of v a n d ,  are : 

l = v ~/~ e -  1 /~ ,  (IV-3 a) 

c = v V4 e m . (IV-3b) 

l, c can be interpreted as wave length and phase velocity of shear waves in a 
viscous fluid. (2) yields: 

E(k) = r dl~ ~(k v ~t~ e-1/4). (IV-4) 

For the subrange (3) v has to vanish from this expression and it follows that  

E ( k )  = const e ~/~ k -51a . (IV-5) 

This is the famous k -S/a law, first given by  KOLMOGOROFF 1) and independently 

1) I~OLMOGOROFF, ONSAGER, and vo~r WEIZS~.CKER did not actually use the spectrum concept. 
They gave a result equivalent to (IV-6) for the correlation function, the result for the spectrum 
is actually due to HEISnN~ERG [83]. 
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discovered by  ONSAGER [56] and YON WEIZSACKER [66]). 
double correlation function has the form 

9(r) = (1 -- const e -1/3 r -2/8) u*. 

ZAMP 

The corresponding 

(iv-6) 

Clearly, (2) implies that  all quantities associated with eddies within the local 
isotropic zone are expressible in terms of (IV-3) and that  they are similar. 

KOLMOGOROFF'S results have an asymptotic nature. Hence for a comparison 
of, say, (IV-5) or (IV-6) with experiments the range of Reynolds numbers in 
which the asymptotic laws can be applied has to be established. Only after this 
has been done can the adequacy of the general ideals underlying the hypothesis 
be checked with experimental results. The status of an experimental verifi- 
cation appears to be as follows : 

(i) Local Isotropy: The existence of local isotropy in shear flow appears 
rather well established. The most convincing results are the measurements of 
CORRSIN [46] and of LAUFER [52] in a jet and channel respectively. CORRSIN 
and LAUFER show that  the contribution of small scale eddies to the apparent  
shear vanishes faster than their energy. Extensive results concerning the dissi- 
pation, skewness, etc. are due to TOWNSEND [61], [62]. 

(ii) Similarity in the Viscous Region: Results of STEWART and TOWNSEND 
[99] in isotropic turbulence show that  the high frequency components of the 
spectrum are similar in the sense of (IV-4). 

(iii) Nonviscous Subrange: Measurements of the spectrum or correlation 
function in isotropic turbulence behind grids have been carried out to establish 
whether or not a subrange of the form (IV-5) or (IV-6) exists within the range 
of wind tunnel experiments. At the Reynolds numbers obtained so far in wind 
tunnels the results show that  no extensive subrange of this form exists [61], 
[91], [99]. This has been most clearly demonstrated by  STEWART and TOWSS- 
END, who estimate that  the Reynolds number based on the grid mesh required 
to obtain a nonviscous subrange should be of the order of three million or 
roughly ten times larger than hitherto investigated. 

Hence, wind tunnel measurements have not yet lead to  a decision concern- 
ing KOLMOGOROFF'S nonviscous subrange and the form of the corresponding 
spectrum and correlation function. 

Recent investigations by  MACCREADY [54] of the spectrum of atmospheric 
turbulence near the ground give support to the k-  5/3 law. MACCREADY'S measure- 
ments indicate that  local similarity exists for wave lengths up  to 160 cm. 
Reasonable agreement with the k-5/3 law or the corresponding r-2/3 law was 
found for even larger eddy dimensions up to an order of a hundred meters. 
While the results of.MACCREADY are very suggestive, the accuracy of measure- 
ment for atmospheric turbulence is naturally less than for wind tunnel investi- 
gations and hence MACCREADY'S result can not yet be taken as entirely con- 
clusive evidence. 
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Some astrophysical results concerning the existence of the k-5/3 law have 
been given by  yon  WEIZSXCKEI~ [67] and vo~l HO~NER [48], but  these results 
are rather inconclusive due to the difficulty of proper interpretation of the 
observations. 

The concept of local isotropy by its very nature does not contribute 
directly to an understanding of the transport phenomena. The Kolmogoroff 
region contains little energy but, at high Reynolds numbers the whol e dissipation 
should occur within the region and hence the dissipation terms are identical with 
the simple expressions for isotropic turbulence. However, there are physical 
situations in which one is mainly interested in the small scale motion even if it 
does contain comparatively little of the total turbulent energy. Typical examples 
are the gust problem for the motion of an airplane in atmospheric turbulence, 
scattering of waves due to turbulence, etc. For problems of this type where 
the general turbulent motion is either unknown or not even interesting, a general 
asymptotic statement is of paramount importance. 

BATCHELOR'S work on axisymmetrical and general nonisotropic but homo- 
geneous turbulence should be mentioned here [36]. BATCHELOR shows that  the 
pressure-velocity correlation terms in the equation transfer energy at one 
wave number from one velocity component to another and thus contribute 
a trend toward isotropy. In isotropic turbulence these terms vanish. 

5. Turbulent  Flows with Secondary Structure 

In recent years the importance of the existence of a secondary, large scale 
structure in turbulent shear flow has become apparent. CORRSlN [44] and 
TOWI~SEND [60] found that  the flow near the outer edge of a jet or wake is only 
intermittently turbulent. TOWNSEND has shown the importance of this motion, 
which is of a scale comparable to the width of the wake, upon the momentum 
and heat transfer in the wake. Recent experiments by  TOWNSEI~D [65] and 
KLEBANOFF and DIEI-IL [50] demonstrated the same intermittency near the 
edge of a boundary layer. Photographs of the wake of high-speed projectiles 
show that  the turbulent wake has a large scale structure superimposed upon the 
fine scale turbulence quite similar to the wake structure at low speeds. 

Intermittency and thus the existence of elements of a very large scale seem 
to be typical for turbulent flows with free boundaries. 

While the large eddies ordinarily found in intermittently turbulent flow 
appear statistically distributed, there do exist a number of cases in which a 
regular or nearly regular motion of large scale superimposed upon turbulent 
flow has been observed. PAI [57] and IVIAcPHAIL [55] found that the three- 
dimensional vortices which initiate the laminar instability in the flow between 
rotating cylinders (TAYLOR [100]) persist even if the flow has become fully 
turbulent. In recent measurements on a vortex street behind a cylinder ROSHKO 
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[58] found a similar result: above a cylinder Reynolds number of about 150 
the wake flow is essentially turbulent with superimposed, nearly equally spaced 
vortices. I t  is very likely that  similar patterns exist in other situations, for 
example, in zones of large thermal instability. 

The importance of these large eddies lies in their bulk transfer of turbulent 
fluid and their consequent influence on transfer properties and on the energy 
balance. Due to the size of these elements, which is comparable to the physical 
dimension of the flow, for example, the width of the wake, it is not possible to 
account for their behavior in terms of local quantities. For the case of the wake 
TOWNSEND [63] has discussed the possibility of a quasi-equilibrium taking into 
account this secondary structure. While there may be doubt about the details 
of this secondary structure there is no doubt that  the large scale motion can 
n o t  be ignored for a great many problems including problems in sound pro- 
duction from jets, combustion, etc. 

If we consider turbulence as a sort of secondary structure superimposed 
upon the flow of an ordinary viscous fluid we can look at the large scale motion 
again as a superstructure on the turbulent motion. The interesting and signi- 
ficant feature of this hierarchy is the fact that  the length scales are strictly 
separated, This feature is probably intimately connected with the form of the 
equation of motion and again related to the boundary layer phenomenon. 

V. I S O T R O P I C  T U R B U L E N C E  

In dealing with turbulence in nonuniform mean flow we are faced with 
a typical transport problem. The intensity of the turbulence varies in space 
and possibly in time and the gradient of the mean velocity introduces a preferred 
direction into the problem. We have to deal with a nonhomogeneous and non- 
isotropic state of turbulence. The most fruitful results in turbulence resulted 
from G. I. TAYLOR'S introduction of the concept of isotropic and homogeneous 
fields of turbulence. Consider, for example, a box filled with a fluid. At the 
time t ~ 0 the fluid is stirred up in a suitable way, say, by  dropping a grid 
through the box. The turbulence created in this fashion can be assumed to 
become isotropic and homogeneous in space, but it decays, so that  the field is 
not stationary. I t  is possible, of course, to conceive a setup such that  energy 
is continuously fed into the system by the stirring motion and removed again 
in the form of heat created by viscous dissipation. In considering this latter 
problem both the similarity and the essential difference between a box "filled 
with isotropic, homogeneous turbulence" and a gas o r  radiation in thermal 
equilibrium become evident. The similarity consists in the lack of over-all 
transport of momentum, heat, etc. ; only the interactions between the elements 
making up the fluid are important. The difference is that  in the turbulent 
system there is an energy flux which must be maintained by an external agent, 
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that is, t he  system is dissipative. To be sure, we may well question the possi- 
bility of such a setup. For example, the initial motion set up by a stirring 
mechanism can not be isotropic and homogeneous. Hence, we assume a trend 
toward isotropy rapid enough that  between the production of turbulence and 
the dissipation into heat there exists a sufficiently long time to set up an 
isotropic homogeneous state. The reasoning here is evidently based upon ideas 
similar to those used in the concept of local isotropy. It  may be expected that  
an isotropic state is reached more rapidly the more uniform the stirring 
mechanism. 

Granted that  a state of isotropic and homogeneous turbulence is possible, 
we can set up the kinematics of the field and the equations interrelating the 
mean values. The general scheme to introduce correlation tensors and to set 
up the equations from there is due to yon Ks and HOWARTH [85] .  In the 
following we will restrict the discussion to the incompressible case. 

1. Corre lat ion  Funct ions  

The field of isotropic, homogeneous turbulence is described by the two-point 

correlation tensors. Take two points PI(/~) and P2(R+ ~) in the field and form 
the tensors 

Pressure Correlation 

~(;) = p(~) p ( ~ +  ;) - p  p'; (V-la) 

Velocity, Double Correlation 

R,~(;) = u,(R) u~(/~+ ;) ~ u, u;; (V-ID) 

Velocity, Triple Correlation 

r.~(;) = u,(~) -5(s  ~ ( ~  + ;) - - , -5 u : .  (V-lc) 

For isotropic and homogeneous fields 

= ~ ( r ) ,  Ri~  = Rl(r)  ri r~ + R2(r) OiL, 
(V-2) x) 

Ti j k  = Tl(r) ri r~ rk + T2(r) ri ~j~ + T3(r ) rj ~ik + T4(r) rk 6 , j  , etc. 

For an incompressible fluid the continuity equation gives 

Ouj _ 0 
Oxj 

or  

p(R) u A R +  ;) = o; o R .  _ o; 0T.~ _ 0.  (V-3) 
Orj Or k 

1) /(r), h(r), etc. is sometimes writ ten for/(r ,  t), h(r, t), etc. Silnilarily/ ' ,  h ' ,  etc. denote deriva- 
fives with respect to r. 
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Hence R~, T~j, can each be expressed by a single scalar function of r. Following 
the KArmAn-Howarth notation we use the following functions: 

Rn{r 'O 'O}=/ ( r ) ;  Rn{O ' r 'O}= g( r ) '  I 
(V-4) 

J Tin{r, O, 0} = k(r); Tl12{0 , r ,  0} = h(r); T212{r, 0, 0} = q(r). 

From continuity 
r ( r )  

g = / + T / ' ;  k = 2 h ;  q = -  h + - f h '  . 

I t  is also useful to introduce the trace of Ri 

R(r) Rii = / + 2 g 
and 

%" T(r) = 1 T . ,  = T(r) -;-, 7 e ' - -  

(v-5) 

(V,6) 

Or 4 k 
Or (V-7) 

Furthermore, the products of the derivatives of the velocity components can 
be expressed as derivatives of the correlation tensors. This is shown in exactly 
the same way as in the case of one-dimensional stochastic processes (11-11) 

_ (i 0u, 0uj [ 0~R,j 

[ = / " ( o )  L2 8, ~ a .  - T 

which leads to the expression for the dissipation function ~b: 

Ou, _ - - 1 5 / z  1"(0) = - -5  # R"(0) .  (V-9) qb : ~ j Oxj 

The mean square vorticity s ~ is also easily found from (V-8) 

~2 ~ = - 1 5  ~ 1"(o )  - ~ ( V - l O )  # 

2.  S p e c t r u m  F u n c t i o n s  

Using the same formalism as in Section II  we can introduce the Fourier 
transforms of the correlations functions, the spectra. This was first done by 
TAYLOR[103] for the so~called "one-dimensional spectrum",  that is, the 
transform of/(r).  HEISENBERG [83] introduced the three-dimensional spectrum 
and KAMPE DE FERIET [15] and BATCHELOR [36] made use of a general spec- 
trum tensor qS~ obtained by a Fourier transformation of R~j. Thus 

�9 .(k3 = 8 @ f  d; R.(;) (v-11) 
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where k denotes the wave number vector. For isotropic turbulence, q~i j must 
be of the form 

~ , (k )  -- ~l(k) k, kj + ~(k)  ~ , .  (V-12) 

Continuity for an incompressible fluid means the existence of transversal 
waves only, hence it follows that  

q~i~ ks = (~1 k2 + ~ )  k~ = 0 
and thus 

q~j=q~lk2[~k--~ - ~ j ]  (V-13) 

from which HEISENBERG'S spectrum E(k) is obtained by 

E(k) = 2 ~ k 2 ~ ,  = - 8  :~ k~ ~ .  (V-14) 

Thus 

F(kl), TAYLOR'S one-dimensional spectrum, results from this by noting from 
(V-14), (V-11) and (V-7) that 

oo 

E(k)= 1 f R(r) k r sin k r dr (V-16) 
0 

thus 

1 [k~ F"(kl) - -  k l F ' ( k l ) ] k ~  k . E(k) = y (V-17) 

The relation between TAYLOR'S and HEISENBERG'S form of the spectrum is 
quite analogous to the relation between, say, the Maxwell distribution function 
for one component of the velocity ~v(ui) and the distribution function for the 
absolute velocity ~o(c). The latter sorts the molecules with respect to their 
kinetic energies while the former sorts only according to the contribution of 
one component to the kinetic energy. Thus 9(o) 4= 0 while ~;(o)= 0 and 
similarly 1:(o) . 0 while E(o) = O. ~o(c) and E(k) have more direct physical 
significance, however q~(ui) and F(kl) are more easily accessible to measurement. 

3. The Equations of Motion 

The KArmfin-Howarth equation establishes the relation between Rij and 
Tij~ and their derivatives. The equation can be written in the form 

O/ 2 Ohr 4 2v 0 ( 0/) (V-18) 
0-?- + 7 "  0 ~  = r --i-" 0~- r~-3~ ' 

ZAMP 11I]27 



418 I-IA~s W. LIEPMAN'N ZAMP 

where [(r, t) and h(r, t) are the correlation functions defined in (V-5). Another 
useful form is 

OR 2 0 2 v 3 
Ot -- r - ~ "  O~ (rz T) = r~ �9 0W ( r sR) '  (V-19) 

where R(r, t) and T(r, t) have been previously defined. Multiplying by k r sin k r 
and integrating over all r we have, with (V-16) for the function E(k, t) 

OE 2 kS f (T rS) ' s i n k  r kS" Ot ~ J ~ dr = - 2  v E (V-20) 

4 .  I n v a r i a n t s  

From (V-18) and (V-19) follows an invariant given first by LOITSlANSI~II 
[93]. Namely, multiplying the equations by r 4 and r 2 respectively and inte- 
grating over all space yields 

O f r 4 / ( r , t )  d r =  O, (V-21) 

O f  rS R(r, t) dr = 0 (V-22) 

provided t h a t / ,  r, k, T vanish sufficiently fast for large values of r. Further- 
more, since R : (r3/)'/r s 

/ r s R(r, t) dr = O. 

The integral in (V-21) 

/(r) r* dr  = A (V-23) 

is called LOITSlANSKII'S invariant. The existence of such an invariant is a simple 
consequence of the equation of motion. The continuity, momentum and energy 
equations in fluid dynamics each have the form of a continuity equation 
relating the time derivative of a function to a divergence term. The divergence 
terms can be written in the form 

0 1 0 r i 
0r~ [Q(r) r~] = ~ -  (Q r3) ' , 0 r ~  [Q(r) r, r~] : r3- (Q r ') ' ,  etc. 

and it becomes evident that  for homogeneous fields invariants will exist. For 
the velocity field this is LOITSlANSKII'S invariant, for the temperature field in 
isotropic turbulence Com~SlN [79] has given the appropriate invariant 

r ~ z9 ~9' dr = O, (V-24) 
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where v~ is the temperature fluctuation. For a compressible fluid a similar result 
holds for the density fluctuation s: 

O / r~ s s' dr = O (V-25) 

as given by  CHANDRASEKHAR [77]. 
The consequence of the existence of the invariant A on the spectrum E(k)  

follows directly from (V-16) and (V-20). A, being a fourth moment of [, is 
essentially determined by the largest elements of turbulence and hence it must 
determine E(k)  in the neighborhood of k = 0. Developing (V-16) and (V-20) 
into powers of k yields 

E ( k )  - 2 k4 A 
3! + . . .  (V-26)  

since 
1 

R(r) ----- ~ (r 3 / ) ' .  

Similarily, remembering that  T ( r ) - = - ( r  4 K ) ' / r  ~ (V-20) yields 

OE k G f - -  ~ - -  r 5 T(r,  t) dr - 2  v k 2 E (for smallk) Ot 1 6  

consistent with the statement OA/Ot = O. 
Consequently, the spectrum function E is proportional to k 4 near the origin 

and the coefficient of k a is time independent. This result was found by LI~I [92] 
and BATCHELOR [3611). 

We again draw an analogy to the Maxwell distribution of velocities or the 
Plank distribution of radiation. In both cases we can also obviously express the 
distribution functions in such a form that  their behavior near the origin 
remains invariant as the gas or the cavity cools down with time. However, 
if this is done the whole distribution remains similar, which is typical for a 
linear system and quite different from the turbulent case in general. 

5. The General  P r o b l e m s  in Isotropic  Turbulence  

The discussion of invariants and of the behavior of E(k)  for small k, the k 4 
law, essentially exhausts the results which can be obtained from the K~rm~n- 
Howarth and related equations without the introduction of additional prin- 
ciples or assumptions. The general problem posed to a theory of isotropic 
turbulence is the determination of the complete functions E(k ,  t), /(r, t) or 

qOij(k, t), etc. I t  is immediately questionable whether such a broad problem 
makes sense. The necessity of a stirring mechanism has to be considered some- 
how and it is by no means evident that  turbulence created in some manner, 

1) BATCHELOR shows t h a t  t he  k 4 l aw  r equ i r e s  h o m o g e n e i t y  only .  T h e  coeff ic ient  of k 4 is in  th i s  
case s t i l l  i n v a r i a n t  in  t ime  b u t  is a t en so r  t e r m  a n d  no t  a s imple  s c a l a r  l ike in  t he  i so t rop ic  case.  
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for example, in a box, will tend toward a unique function E(k ,  t). Indeed, the 
existence of the Loitsianskii invariant does establish a connection with the 
stirring mechanism for all times. For example, the anisotropy introduced by 
the stirring mechanism can be recovered in the latest stages of decay, as shown 
by BATCHELOR und STEWART [70]. Hence, while it may be futile to ask for the 
complete spectrum or correlation function without a complete description of 
the stirring mechanism, it makes sense to ask for any possible general form the 
spectrum may have in wave lengths far removed from the ones excited by the 
stirring mechanism and for times long with respect to a relaxation time. It  may 
be sufficient in these cases to describe the stirring mechanism by a character- 
istic length only, for example, the mesh size in the case of a grid. 

The approaches taken to a solution of the problem can be classified into 
groups. 
(a) Similarity Considerations and dimensional analysis. 
(b) Attempts to express the triple correlation or the corresponding spectral 

transfer integrals in terms of the double correlation or the spectrum E(k) .  
(c) Discussion of limiting cases. 

6. T h e  F i n a l  S t a g e  of  D e c a y  

The difficulty in discussing the KArmAn-Howarth or related equations 
arises naturally from the transport term. One may thus first consider a case 
where this term is negligible, as has already been done by YON KARMAN and 
HOWARTH [85] and MILLIONSHCHIKOV [94] and more completely by BATCHELOR 
and TOWNSEND [72]. If the turbulence has decayed far enough for the transport 
term to be negligible (V-18) or (V-20) may be integrated. The appropriate 
solutions are 

E(k ,  t) = const k 4 e -2~2t 

](r, t) = (8~ v t) L ~12 / ]{ r -- ~s, to } e -s~/s~t s 4 ds 

and thus 
u2 - A 

48 V2~ (v t)-~12. (as t + o0) 

(V-27) and (V-29) are in good agreement with experiments [72], [91]. 

(v-27) 

(v-2s) 

(v-29) 

7. S e l f - P r e s e r v a t i o n  

In the Kolmogoroff region the spectrum and correlation functions depend 
upon time during decay only indirectly through the dissipation ~. For the larger 
part of the energy spectrum that contains much of the turbulent energy, time 
has to enter explicitly. Forms of the spectrum or correlation function which 
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depend upon time but preserve their shape are called self-preserving. VoN 
I{/~RMAN and LIN [87] and STEWART and TOWNSEND [99] have recently discussed 
problems of self-preservation in detail. HEISENBERG [82] used the concept of a 
quasi-equilibrium using his form of the exchange term (see below). VON Ks163 
and LIN put E(k, t) = C k 4 ~(k/k~) where k, is a function of t. This expression 
leads to a decay law of the form 

u s ~ t -1~ . (V-30) 

HEISENBERG puts E(k, t) ~ Eo(t ) ~(k/k,) consistent with an initial decay law 
of the form 

u s m t -1. (V-31) 

While YON K.~RMs and LIN'S expression for E satisfies the proper condition 
E ~ k 4 for k + 0, HEISENBERG'S expression yields E ~ k for small k. The 
t -1~ law proposed also by  KOLMOGOROFF [88] and FRENKIEL [80] has not 
much experimental support while the t -1 law first discussed by  BATCHELOR 
and TOWNSEND appears to fit the experimental results in the initial stage of 
decay remarkably well. 

For a detailed discussion reference is made to the papers by  YON KAR~AN 
and LIN, and by  STEWARD and TOWNSEND. 

8. F o r m  of the  E x c h a n g e  T e r m  

The spectral equation (V-20) integrated from 0 to k reads 

k k oo k 

-- f E(k ' t )  dk = 2 / / ( T r S ) ,  k sin k r  dr dk v;o k sE(k ' ' )  dk k r  - - 2  (V-32) 
0 0 0 0 

The time rate of change of the energy contained in the range of wave numbers 
up to k is due to exchange with elements outside the range, as expressed in the 
second term, and to viscous dissipation. To make the equation determinate the 
exchange term has to be expressed in terms of E(k, t) and k. None of the forms 
of the exchange terms proposed so far have been completely successful. HEISEN- 
BERG'S form, or a more general similar expression due to YON K.~RM.~N, seems 
to have been the most succesful so far. HEISENBERG interprets nonviscous loss 
of energy from the range of waves numbers 0 to k as due to a turbulent viscosity 
in the sense of BOUSSINESQ'S exchange coefficient. Using dimensional reasoning 
he then puts 

k oo oo k 

(T rS) ' k ~ dr d k =  collst ~ )  dk k s E dk. (V-33) 
0 0 k 0 
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This form of the exchange term yields the k-  5/~ law in the nonviscous subrange 
of KOLMOGOROFF, as any dimensionally correct forms do, but leads to a law 
of the form k -7 in the viscous subrange of KOLMOGOROFF. This latter result is 
at variance with experiments ([106] and [91]) and also a priori unlikely since 
any power law E(k) ~ k -'~ for large k leads to infinite moments of E of order 
n -- 1. This in turn means that  the velocity components have no mean deriva- 
tive of order (n -- 1)/2, which is not likely. PROUDMAN has recently discussed 
the consequences of HEISENBERG'S assumptions [96]. 

The proposed forms of OBOUKHOV [95] and KOVASZNAY [89] are less suc- 
cessful than ~{EISENBERG'S. 

9. Temperature Fluctuations in Isotropic Turbulence 

CORRSlN [79] has studied the case of temperature fluctuations in a field of 
isotropic, homogeneous turbulence of an incompressible fluid. In this case he 
obtains an equation similar to the KArmAn-Howarth equation obtained for the 
temperature correlation function 

O(R) O(R + ;) = O(r) (V-34) 

and the temperature velocity correlations 

~9(R) ~9(ff + ; ) u , ( R  + r) = O,(r) . (V-35) 

Similarily equations for the spectrum can be written. The difference due to the 
scalar character of v q as compared to the vector character of u i becomes apparent  
in the form of the spectrum for small k. The temperature spectrum begins with 
k 2 corresponding to the invariance of 

/ ~ ~9' r ~ dr (V-36) 

during decay. The discussion of the final state of decay, the subranges, etc. is 
similar to that  for the velocity field, as shown in CORRSIN'S paper. 

10. Pressure Fluctuations in Isotropic Turbulence 

The pressure of an incompressible fluid p satisfies the equation 

r 2 u i  u j  
V ~p = - e  O& Oxj - [" (V-37) 

(V-37) is a very simple form of the general type of (Ill-6). Thus we immediately 
obtain from (111-11) the relation between the spectra of the pressure and the 
second velocity derivatives. Denote by / / (k )  the pressure spectrum and by  F(k) 
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the spectrum of f in (V-37). Then 

H(k) = 1 F(k) (V-38) 

since/ ' (k)  = k -2. (V-38) has been given by  BATCHELOR [75]. BATCHELOR intro- 

duces the spectrum tensor q~i j z ~ (~  corresponding to the quadruple correlation 1) 

q),, ~ ( r )  = u,(/~ u j ( ~  u,(R~+ ;) um(l~§ }) -- u , ( ~  u , ( ~  . uz(R + ;)ura(R'+ ;), 

(V-38) then becomes 

and 
k4 H(k) - ki kj k~ km qbijz,~) (V-39) 

p-~= 4 ~ e2 J'k~ II(k) dk, (V-40a) 

2 f k 4 i i ( k ) d k .  (V-4Ob) (gradp) ~ = 4 ~ q  d 

However, to evaluate ~0 i j z m or # ,  j z m it is necessary to introduce further assump- 
tions. BATCI~ELOR and also earlier HEIS~NBERG [83] assume the relation between 
the quadruple and double correlations to be the same as the one resulting from 

a normal joint probabili ty of ~(R) and ~(R + 7). With this assumption II(k) 
can be related to the energy spectrum function E(k) of isotropic turbulence and 
approximately evaluated. 

To relate the statistical properties of the substantial  acceleration in hydro- 
dynamics to the derivatives at a fixed position we must  know the properties 
of the pressure gradient. A study of the pressure field is thus very important  
for the relation between the Eulerian and Lagrangian correlations and thus 
for the diffusion problem in turbulence. Besides BATCHELOR'S paper  [75] 
reference is made to recent work of Col.I.IS [78] and UBEROI and CORRSlN [107]. 

BIBLIOGRAPHY 

Section I V 

[34-] BATCHELOR, G. K., The Theory o/ A xisyrnmetric Turbulence, Proc. Royal 
Soc. [A] 786, 480 (1946). 

[35] BATCHELOR, G. K., Kolmogoro//'s Theory o/Locally Isotropic Turbulence, 
Proc. Cambridge Phil. Soc. 43, 533 (1947). 

[36] BATCHELOR, G, K., The Role o] Big Eddies in Homogeneous Turbulence, 
Proc. Royal Soc. [A], 195, 513 (1949). 

[37] BETCHOV, R., An Experimental Model o/ Turbulence, Phys. Rev. (1952). 
Abstract only. 

[38] BURGERS, J. 1vI., A Mathematical Model Illustrating the Theory o/ Turbu- 
lence, in: Advances in Applied Mechanics, Vol. I (Academic Press, New 
York, 1948), p. 171. 

x) The second term has to be subtracted out to make 9(;) -~ 0 for large I r I 



424 HANS W. LIEPMANN ZAMP 

[39] CHANDRASEKHAR, S., The Theory o /Ax i symmetr i c  Turbulence, Phil. Trans. 
Royal  Soc. [A] 242, 557 (1950). 

[40] CHANDRASEKHAR, S., The Decay o[ Axisymmetr ic  Turbulence, Proc. Royal  
Soc. [A] 203, 358 (1950). 

[41] CHANDRASEKHAR, S., On Turbulence Caused by Thermal Instability, Phil. 
Trans. Royal  Soc. [A] 244, 357 (1952). 

[42] COLE, D.D. ,  see: LAGERSTROM, P .A. ,  COLE, J .D . ,  and TRILLING, L., 
Problems in the Theory of Viscous Compressible Fluids, Calif. Inst. Techn. 
(1949). 

[43] COLE, J .D . ,  On a Quasi-Linear Parabolic Equation Occurring in Aerody- 
namics, Quart, apph Math. 9, 225 (1951). 

[44] CORRSIN, S., Investigations o[ Flow in an Ax ia l l y  Symetric Heated Jet o/ 
Air,  NACA Adv. Conf. Rep. 3123 (1943) (Declassified). 

[45] CORRSlN, S., and USEROI, M. S., Spectra and Di//usion in a Round Tur- 
bulent Jet, NACA T. R. 1040 (1951). 

[46] CORRSlN, S., A n  Experimental Veri/ieation o/Local  Isotropy, J. aeron. Sci. 
76, 757 (1949). 

[47] DRYDEN, H. L., Some Recent Contributions to the Study o/ Transition and 
Turbulent Boundary Layers, NACA T. N. 1168 (1947). 

[48] HOERNER, YON, see: Ref. [10], (ZAMP 3, 341 [1952]). 
[49] HOPE, E., The Partial DiHerential Equation u t + u u~ = I~ uxx, Communi- 

cations on Pure and Applied Mathematics, I I I  (1950). 
[50] KLEBANOFF, P. S., and DIEHL, Z. W., Some Features o /Ar t i / i c ia l ly  Thick- 

ened Ful ly  Developed Turbulent Boundary Layers with Zero Pressure 
Gradient, NACA T. N. (1952) (in press). 

[51] KOLMOGOROFF, A. N., The Local Structure o/ Turbulence in Incompressible 
F lu ids /or  Very Large Reynolds Number, C. R. Doklady U. R. S. S. 30, 301 
(1941). 

[52] LAUFER, JOHN, Investigation o/ Turbulent Flow in a Two-Dimensional 
Channel, NACA T. lXT. 1257 (1947). 

[53] LIEPMAN, H. W., and LAUFER, J., Investigations o/Free Turbulent Mixing,  
NACA T. N. 1257 (1947). 

[54] MAcCREADY, P. B., Atmospheric Turbulence, P h . D .  Thesis, Calif. Inst. 
Techn. (1952) (to be published). 

[55] MACPHAIL, D. C., Proc. 6th int. Congr. appl. Mech., Paris (1946). 
[56] ONSAGER, LARS, The Distribution o /Energy  in Turbulence, Abstract, Phys. 

Rev. 68, 286 (1945). 
[57] PAI, S. I., Turbulent Flow Between Rotating Cylinders, NACA T .N.  892 

(1943). 
[58] ROSHI~O, A., On the Development o[ Turbulent Wakes From Vortex Streets, 

Ph .D .  Thesis, Calif. Inst. Techn. (1952) (to be published). 
[59] ROTTA, J., Statistische Theorie nichthomogener Turbulenz, Z. Phys. 129, 547 

(1951); 131, 51 (1951). 
[60] TOWNSEND, A. A., Measurements in the Turbulent Wake o[ a Cylinder, 

Proc. Royal  Soc. [A] 190, 551 (1947). 
[61] TOWNSEND, A. A., Experimental Evidence [or the Theory o[ Local Isotropy, 

Proc. Cambridge Phil. Soc. 4d, 560 (1948). 
[62] TOWNSEND, A. A., Local Isotropy in the Turbulent Wake o[ a Circular 

Cylinder, Australian J. sci. Res. /, 161 (1948). 
[63] TOWNSEND, A. A., The Eddy Viscosity in Turbulent Shear Flow, Phil. Mag. 

4J, 320 (1950). 



Vol. III, 1952 Aspects of the Turbulence Problem 425 

E64] TOWNSEND, A.A. ,  The Fully Developed Turbulent Wake o/ a Circular 
Cylinder, Australian J. sci. ires. 2, 451 (1949). 

~65~ TOWNSEND, A. A., The Structure o[ the Turbulent Boundary Layer, Proc. 
Cambridge Phil. Soc. 47, 375 (1951). 

E66] WEIZSXCKER, C. F. VOW, Das Spektrum der Turbulenz bei grossen Reynolds- 
schen Zahlen, Z. Phys. 724, 614 (1948). 

E67] WEIZS~CKER, C. F. VON, see: Ref. [10], (ZAMP 3, 341 [1952]). 

Section V 

[68] BATCHELOR, O. I{., Energy Decay and Sel]-Preserving Correlation Functions 
in Isotropic Turbulence, Quart. appl. Math. 6, 97 (1948). 

[69] BATCHELOR, G. K., Di[/usion in a Field o] Homogeneous Turbulence, I :  
Eulerian Analysis, Australian J. sci. Res. 2, 437 (1949). 

E70] BATCHELOR, G. K., and STEWART, R. W., Anisotropy o[ the Spectrum o/ 
Turbulence at Low Wave Numbers, Quart. J. Mech. appl. Math. 3, i (1950). 

E71~ BATCI~ELOR, G. K., and TOWNSEND, A. A., Decay o[ Isotropic Turbulence 
in the Initial Period, Proc. Royal  Soc. [A] 193, 539 (1948). 

E72] BATCHELOR, G. K., and TOWNSEND, A. A., Decay o[ Turbulence in the Final 
Period, Proc. Royal  Soc. [A l 19d, 527 (1948). 

[73] BATCHELOR, G. I~., and TOWNSEND, A. A., Decay o] Vorticity in Isotropic 
Turbulence, Proc. Royal  Soc. I90, 534 (1947). 

E74] BATCHELOR, G. I~., and TOWNSEND, A. A., The Nature o/ Turbulent Motion 
at Large Wave Numbers, Proc. Royal  Soc. 199, 238 (1949). 

E75] BATCHELOR, G. K., Pressure Fluctuations in Isotropic Turbulence, Proc. 
Cambridge Phil. Soc. 47, 359 (1951). 

[76] CHANDRASEKHAR, S., On Heisenberg's Elementary Theory o/ Turbulence, 
Proc. Royal  Soc. [A] 200, 20 (!949). 

E771 CHANDRASEKHAR, S., The Fluctuations of Density in Isotropic Turbulence, 
Proc. Royal  Soc. [A] 210, 18 (1951). 

E78~ COLLIS, D. C., The Di//usion Process in Turbulent Flow, Australian Council 
sci. and industr. Res. (Aeron.), IReport A 55 (1948). 

~79] CORRSlN, A., The Decay o] Isotropic Temperature Fluctuations in an Iso- 
tropic Turbulence, J. aeron. Sci. 18, 417 (1951). 

[80~ FRENKIEL, F. N., The Decay o] Isotropic Turbulence, J. appl. Mech. 5, 
311 (1948). 

[81~ FRENI<IEL, F. N., On Third Order Correlation and Vorticity in Isotropic 
Turbulence, Quart. appl. Math. 6, 86 (1948). 

[82~ HEISENBERG, W., On the Theory of Statistical and Isotropic Turbulence, 
Proc. Royal  Soc. [A] 195, 402 (1949). 

E83] HEISENBERG, W., Zur statistischen Theorie der Turbulenz, Z. Phys. 72d, 
62s (1948). 

[84] KARMAN, TH. YON, Progress in the Statistical Theory o[ Turbulence, Proc. 
nat. Acad. Sci. 34, 530 (1948). 

E85] KXRM3.N, TH. YON, and HOWARTH, L., On the Statistical Theory o/Isotropic 
Turbulence, Proc. Royal  Soc. EA~ 764, 192 (1938). 

E86] K~.RMXN, TH. VOW, and LIN, C. C., On the Concept o/Similarity in the Theory 
o[ Isotropic Turbulence, Rev. modern Phys. 27, 516 (1949). 

[87] KXRMAN, TH. VON, and LIN, C. C., On the statistical Theory o[ Isotropic 
Turbulence, in: Advances in Applied Mechanics, VoL n (Academic Press, 
New York, 1951), p. 1. 



426 HANS W. LIEPMANN ZAMP 

[88] 

[89] 

[90] 

[91] 

[92] 

[93] 

[94] 

[95] 

[96] 

[97] 

[98] 

[99] 

[ioo] 

[I01] 

[102] 

[1o3] 

[1o4] 

[lO5] 

[lO6] 

[1o7] 

KOL~tOGOROFG A. IV., Dissipation o/Energy in Locally Isotropic Turbulence, 
C. r. Acad. Sci. U. R. S. S. 31, 538 (1941); 32, 16 (1941). 
I~OVASZNAY, L. S. G., Spectrum o[ Locally Isotropic Turbulence, J. aeron. 
Sci. /5, 745 (1948) . . . .  
LEE, T. D., Note on the Coefficient o/Eddy Viscosily in Isotropic Turbulence, 
Phys. Rev. 77, 842 (1950). 
LIEI~ H. W., LAI_rFER, J., and LIEPMANN, K., On Lhe Spectrum o[ 
Isotropic Turbulence, NACA T. !%. 2473 (1951). 
LI~r C. C., On the Law o/Decay c~nd the Spectrum o[ Isolropic Turbulence, 
Proc. 7th int. Cong. appl. Mech. London 2 (1948). 
LOITSlANSKII, L. G., Some Basic Laws o/ Isotropic Turbulent Flow, CAHI 
Rep. 440 (1939); also 1VACA T. M. 1079 (1945), 
MILLIONSHCHIKOV, M., Decay o/  Homogeneous Isotropic Turbulence in a 
Viscous Fluid, C. r. Doklady U. R. S. S. 22, 231 (1939). 
OBOUI<HOV, A., On the Energy Distribution in the Spectrum O[ a Turbulent 
Flow, C. r. Doklady U. R. S. S. 32, 19 (1961). 
PROUDMAI~, I., A Comparison O/ Heisenberg's Spectrum with Experiment, 
Proc. Cambridge Phil. Soc. 47, 158 (1951). 
]:{OBERTSON, H,  P.,  The !nvariant Theory o/ lsotropic Turbulence, Proc. 
Cambridge Phil. Soc. 36, 209 (1940). 
STE'~VARD, ~ .  W. ,  Triple Correlations in Isotropic Turbulence, Proc. Cam- 
bridge P h i l  Soc. 47, 146 (1950). 
STEWARD, R.  W:,  and TowNsEND, A. A., Similarity and Sell-Preservation 
in Isotropic Turbulence, Phil. Trans. Royal Soc. 243, 359 (1951). 
TAYLOR, G, I., Stability o/ a Viscous Liquid Contained Between Two Rota- 
ting Cylinders, Phil. Trans. Royal  Soc. [A] 223, 289 (1923). 
TAYLOR, G. I., Diffusion by Continuous Movements, Proc. London Math. 
Soc. 20, 196 (1921). 
TAYLOR, G. I., Production and DiSsipation of Vorticiiv in a Turbulent Fluid, 
Proc. Royal Soc. [A] 184, 15 (1938). 
TAYLOR, G. I., The Spectrum o/ TurbulencG Proc. Royal Soc. [A] 164, 476 
(1938). 
TAYLOR, G. I., The Statistical Theory o/Turbulence, Parts I - IV,  Proc. Royal 
Soc, [A] !51, 421 (1935). 
TOWtCSEND, A. A., Measurement o/Double and Triple Correlation Derivatives 
in Isotropic Turbulence, Proc. Cambridge Phil. Soc. 43, 560 (1947)i 
TOWI~SEND, A. A., On the Fine-Scale Structure o/ Turbulence, Proc. Royal 
Soc. [A] 208, 534 (1951). 
UBEROI, M. S ,  and CORRSlN, S., Di/[uszon o/ Heat /tom a Line Source in 
Isotropic Turbulence, NACA T. N. 2710 (1952). 

Zusammen[assung 

Die Arbeit gibt einen fbberblick tiber einige Probleme der neueren Turbulenz- 
forschung. 1Nach einer allgemeinen Einle i tung werden zuerst elementai~e, ftir die 
Turbulenztheorie wichtige Resultate der Theorie homogener, stochastischer Vor- 
g/inge diskutiert.  Im  dr i t ten  Teil werdei1 sodann Beispiele linearer Systeme be- 
handelt ,  bei denen die/iusseren Kr/ifte yon tu rbu len ten  Schwankungen herrtihren. 
Im vierten Tell werden turbulente  Transportph~inomene gestreift, und im fiinften 
Tell wird ein kurzer Uberblick tiber Resultate und. Fragen der Theorie :der iso- 
tropen Turbulenz gegeben. 
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