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Introduction
Let &,&,...,&,... denote a sequence of independent random varia-
bles and put
(1) ;1L:§1+E2++En (nzl,z,)

Several authors (see e. g. [1] and [2]) investigated the asymptotic distribution
of L, for ¢ — -+ oo where »(f) is a positive integer-valued random variable,
for £>0, which converges in probability to -+ oo for ¢{— -+ oc. The most
general results in this direction have been obtained by DoOBRUSIN [3]. In all
these investigations it has been supposed that »(f) is for any #> 0 independent
of the random variables , (n==1,2,...). A general and very useful theorem
‘without this supposition has been proved by F.J. ANSCOMBE [4]. In a recent
paper [5] TAKACS has proved a theorem, which can be considered also as a
result on the asymptotic distribution of the sum of a random number of
independent random variables, i. e. using the above notations on the asymp-
totic distribution of L, where C, is defined by (1). In this case »(f) depends
essentially on the variables £, (n=1,2,...). The aim of the present paper
is to show that the mentioned result of TAKACS can be easily deduced from
a special case of the theorem of ANSCOMBE mentioned "above. To make the
paper self-contained, we give in §1 a short proof of the special case of
ANSCOMBE’s theorem which is needed for our purpose (Theorem 1). Using
this theorem, in §2 a new and simple proof of the result of TAKACS men-
tioned above is given.

§ 1. A theorem of Anscombe

THEOREM 1 (ANSCOMBE). Lef us suppose that &, &, ..., &, ... are indepen-
dent and identically distributed random variables with mean value O and variance 1.
Let us put 5,=8& 48+ ---+E.. Let further v(t) denote a positive integer-
valued random variable for any t>0 such that 7%@ converges for t— oo
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in probability to a constant ¢ > 0. Then we have'

x

.1 lim P(vi”% ) D) — V_w Je %,

ProoOF oF THEOREM 1. Let 0 <& <—é— be arbitrary. First we choose a

value # >0 such that for f=1¢ we have

(1.2) P(|v()—ct|=cst) =s.
Clearly
(1.3) P(Vi”g) ) ;‘P( <x, z(z‘):n]
It follows from (1.2) and (1.3) that for {=¢
0 _ L —all=s
(1. 4) 'P(W(T) <x) ln_%mP(Wq V(t n) =,

Now let us put® N,=[c(1—¢&)t] and N,=[c(1+¢&)t]. Then we have for
[n—ct| = ect

(1.5) (Vg—%<x,ax(z‘)=n)éP(CN1<xVN2+p, v({t)=n).

where

o= Max ) 2 §kf.

N<n=N, N<k=n

Similarly we obtain

(1. 6) (Vgi<x v(t)—n) =P(Lw, < x/Ny—o, v(t) =n).
According to a well-known inequality due to A. N. KOLMOGOROV [6], we have
.7 Po=7 VN)<—(N2—~L<5V3 if t>c1.9

Let us denote by R the event o < V?V?V—l and by E the event |n—ct) < cet.
Taking (1.4), (1.5), (1.6), (1. 7) into account, it follows

(1.8) P(V%) )<P(V§X;1 x,/%+]?§,RE)+6]??

1 We denote by P(...) the probability of the event in the brackets.
2 We denote by [...] the integral part of the number in the square brackets.
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and

(1.9) P(V%—%)q)zp(%q—ﬁ; RE)—.S.

It follows that
Ix 3~) - ( - ) (;N VﬁTe 3—) Ve
P( L<x—|e |—T/e=P <x| =Pl Z2<x]|/ —= 6/e.
VN, V V Vo (®) [ 1-28+V8 +6e
By the central limit theorem we have (see e. g. [7], p. 215)

JLH; P (% < x) = @(x)

where @(x) is defined by (1. 1). Thus we obtain, as @(x) is continuous, (1. 1).

§ 2. New proof of a theorem of L. Takacs

In his paper {5] TAKAcs has considered stochastic processes of the fol-
lowing type: 1, Ty, ..., Tn, ... are random points on the real axis,

T0:0<T1<T2<“’<Tn<"'
such that putting

(2 1) Topt1— Top — gﬂ and Tonta— Ton+1 = Nn (n = O; 1; .. )

the positive random variables &,, 7, are all independent, the variables &, are
all identically distributed with the cumulative distribution function PG . <x)=
= A(x) and the variables 7, are also identically distributed with the cumu-
lative distribution function P (7, < x) = B(x).

For any positive number >0 let us put

; &+ 486 if mana=t< v (n=1,2,..),
“()ﬁ— §1+§2++§n+t_72n if 7o =1< Ton (ﬂ:O,l,...)

and B(f)=t—ea(f). By other words, if we interpret ¢ as time, and consider
a system which is at time 7 in state d if 7o, =<t (n=0,1,...) and
in state B if v 1 =f<T. (n=1,2,...), then «(¥) and B(¢f) denotes the
total time which the system has spent in state ¢ and &, respectively, during
the time interval (0, f). TAKACS investigated the limiting distribution of the
random variables «(f) and 8(f), respectively, for { —oc, and proved that if the
first two moments of the random variables &, and 7, exist, and if we put

2.2)

(2.3) @ :j?di (x) and ﬂ:_rde(x),

Q 0

13*
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further

(2. 4) oi=|(x—aydA(x) and of—](x—prdB(),
0 0
and finally -
@ 8 8’ 0u+d’op
2.5 Q=———:, b= and Dzl/——-—,
@5 PR PR @8y
then £D—at ;g FO—0!
DYt DVt
mean value O and variance 1.
Using Theorem 1 of §1 we give a new proof of this fact which is
somewhat simpler than that given by TakAcs.
Thus we prove the following

are asymptotically normal for f— 4 oo with

THEOREM 2 (TAKACS). If @, 8, 0a and of exist, we have

. a(t)—at
(2. 6a) lim P — < X|= D(x)
t>+w DIt
and ' ( ' )
(2. 6b) lim P (@(gy_?bf < x) — D(x)
for —oc< x< 4 oo where
2.7 D (x) = 1/217 Je" %du.

The proof is based besides Theorem 1 on three simple lemmas of
which Lemma 1 and Lemma 2 are well known.

LEMMA 1. If x(t), ¢(f) and O(t) are random functions (0 < { < -+ oo) and
are such that the asymptotic distribution of y(f) exists, &(f) converges in prob-
ability to 1 and O(f) converges in probability to O for t----oc, then the
asymptotic distribution of y(f)e(t) 1+ 6(f) exists also for t->-+4 oo and coin-
cides with that of x(t).

Lemma 1 is contained in a theorem of H. CRamER ([7], p. 255), and
therefore may be omitted.

LEMMA 2. If 4, x and y@ are sequences of random variables such that
0=y =29 and the sequences 3O and y? have the same asymptotic dis-
tribufion for n— 4 oo, then yx - has also the same asymptotic distribution.

The proof of Lemma 2 is evident and may be left to the reader. (As
a matter of fact, Lemma 2 can be deduced also from Lemma 1.)
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LEMMA 3. Letf &,&,,...,&., ... denote a sequence of identically distribu-

ted random variables, having the distribution function F(x), and let us sup-
+©

pose that the second moment JxQdF (x) of the variables &, exists. Let v(t)

denote a positive integer-valued random variable for t>0, for which W—EQ

%’u(t)

Vv

converges in probability to ¢ >0 for t— -+ . Then converges in prob-

ability to 0.
PROOF OF LEMMA 3. Let us choose an &>0. Then we can find to any
d0>0 a f, >0 such that for f=1,
(2.8) P(|v()~—ct|=sc)=0.
Put further
(2.9 N.=[c(1—¢#)t] and N,=[c(1+¢)t].
We have evidently

Max |&,|
(2. 10) (f&,@[ > s) = (H—P( AR s)

Vv /N

and thus

@.11) P(-lv%% > e) = (M—Ny) (1—F eV N) + F(—zN)) + 6.

+0
As the existence of fodF(x) implies that

lim xQ(l—F(x))z hm XF(—x)=0

x>+

Ng’—Nl
and — N,

follows that

is bounded, further J may be chosen as small as we like, it

vty |
Vv (t)

limP(

>0

):0 for any &>0.

Thus Lemma 3 is proved.
Now we are in the position to prove Theorem 2.
Let us put
(2.12) Cn ==&+ T = Tons1—Ton 1 (n=1,2,...)
and let the positive integer-valued random variable »(f) be defined for £ >0
by the inequality
(2.13) Tovy-1 =1 < Tay(pyaa-
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Clearly
(2. 14) PO =N)=PG AL+ +v>10) N=1,2,...)
which implies that

7/(1‘) G454+ L t )

As the law of ]arge numbers (see e.g. [7], p. 253) clearly applies to
the random variables &,, which are independent, identically distributed, and
their mean value is -5, we have

. Y R . 0 for y>ea+3,
(2.16) llmP( P >y)_31 for y<e--6.

N> Q

(2.15) and (2.16) imply that #t) converges in probability to a—{l— 3 for

t— - oo. (This fact is well known (see e. g. [8]); we proved it only for the
sake of completeness.) Now let us put ’

(2.17) 3k=‘z—%§)§?} (k=1,2,...).

Then we have

£ H—at _ 8 Eipel + 1)

(2. 18) 9, — Tron_ =N St

7;1 Vet+8~ Vatg =T Yerp

As the random variables 9 are independent, identically distributed, and have
the mean value O and the variance D? it follows by Theorem 1 that

2@ P
(2. 19) lim P DLT/I;/_(_T)— <xf= D(x).

On the other hand, it follows from Lemma 3 (which can be applied as the
random variables §, and 7, have finite variances) that

Eviryrt and Evpr1 + Ty
v £70)
are converging in probability to 0. Thus, by Lemma 1, the random variables

»(t) v(t)

9 w(t)+1 + Nty ” §v(t)+1
e s and 2" Tats
DYv (). DYv(H

are both asymptotically normal for { — -+ co. By virtue of (2. 18) and Lemma 2
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we obtain
(2. 20) fim p( el)—at x) — D).
o DV (e+8)v({)
Taking into account that Z&(‘;‘_‘f_@ converges in probability to 1 for {— -+ oo,

and using again Lemma 1, we may replace (e¢-8)v(f) by ¢ in (2. 20), what
proves (2. 6a). Clearly, (2. 6b) follows from (2.6a), in view of

{2.21) B(t)—bt=at—e(t).
This completes the proof.

(Received 6 March 1957)
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