
ON THE ASYMPTOTIC DISTRIBUTION OF THE SUM 
OF A RANDOM NUMBER OF INDEPENDENT RANDOM 

VARIABLES 

By 

A. RI~NYI (Budapest), member of the Academy 

Introduction 

Let ~1, ~2, . . . ,  ~ , . . .  denote a sequence of independent random varia- 
bles and put 

(1) ~,~ = ~l-k ~2+ "" + ~  ( n ~ - l ,  2 , . . . ) .  

Several authors (see e. g. [1] and [2]) investigated the asymptotic distribution 
of ~,(,) for t ~ +  o~ where r(t) is a positive integer-valued random variable, 
for t>0 ,  which converges in probability to + ~  for t - - + + ~ .  The most 
general results in this direction have been obtained by DOBRUgIN [3]. In all 
these investigations it has been supposed that r(t) is for any t > 0 independent 
of the random variables ~,, (n ~ - 1 , 2 , . . . ) .  A general and very useful theorem 
without this supposition has been proved by F. J. ANSCOMBE [4]. In a recent 
paper [5] TAKAC$ has proved a theorem, which can be considered also as a 
result on the asymptotic distribution of the sum of a random number of 
independent random variables, i. e. using the above notations on the asymp- 
totic distribution of g~(,) where ~,~ is defined by (1). In this case r(t)  depends 
.essentially on the variables ~ (n ~ I ,  2 , . . . ) .  The aim of the present paper 
is to show that the mentioned result of TAKACS can b e  easily deduced from 
a special case of the theorem of ANSCOMBE mentioned above.  To make the 
paper self-contained, we give in w 1 a short proof of the special case of 
ANSCOMBE'S theorem which is needed for our purpose (Theorem 1). Using 
this theorem, in w 2 a new and simple proof of the result of TAKACS men- 
tioned above is given. 

w 1. A t h e o r e m  of A n s c o m b e  

THEOREM 1 (ANSCOMBE). Let us suppose that ~1, ~-2, . . . ,  ~ . . . . .  are indepen- 
dent and identically distributed random variables with mean value 0 and variance 1. 
Let us put  ~=~1-+-~2+ ""- t-~, ,  Let further r(t) denote a positive integer- 

valued random variable for any t >  0 such that--{-converges  for t - - . +  ~o 

13 Acta Mathematica VIII/l--2 



194 A. RENYI 

in probability to a constant c > O. Then we have ~ 
X 

(1.1) lira P l y . <  = q ) ( x ) ~  e--~du. 

- 0 0  

1 
PROOF OF THEOREM 1. Let 0 < s < 5 -  be arbitrary. 

value t~ > 0  such that for t>=t~ we have 

P(Ir(t)--ct[ ~ cat) ~ 2. (1.2) 

Clearly 

(1.3) 

First we choose a 

~V~(t) < x = ~=1 P < x, ,,(t) = n . 

It follows from (1 .2 )  and (1.3) that for t>=t~ 

(1.4) P (1/~(t) < x) ,v r (t) - -  I',*-~tI<~ ~ t P ( ~ " < x ' r ( t ) = n )  "~ [Vn <=s. 

Now let us put ~ N~=[c(1--t)t] and N 2 = [ c ( l + a ) t ] .  Then we 
I n - - c t [ ~ c t  

(1 5) P ( ~  �9 [~ 
where 

have for 

< x, ,~(t) = n)  <= P( ;~ ,  < x V E  + e, ~ ( 0 - =  n)~ 

Similarly we obtain 

(1.6) P ( { "  

e =  Max I , ~  ~k/. 
N~<n~N2 N ~ < k ~ n  

< x, ~(t) = n) _-> e(;~, < x Y ~ - e ,  ~(0 = n). 

According to a well-known inequality due to A. N. KOLMOGOROV [6], we have 
3 

(N~--N3~ _< 5 V~ if t >_-- 1 (1.71 p(o >_ V~-VN) <= Nle/3 cW' 
3 

Let us denote by R the event q < y - [ y ~  and b y  E the event I n ' c t l  < cat. 
Taking (1.4), (1.5), (1.6), (1.7) into account, it follows 

(1 .8)  e ~ < x  _~ ~ N < ~  + / ; , e e  + 6 ~  

1 We denote by P( . . . )  the probability of the event in the brackets. 
2 We denote by [...1 the integral part of the number in the square brackets. 
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and 

(1.9)  p (  ~,,(o < x  > < x  a 

It follows that 

(~N, x--V)-  - - 7 V ~ < P (  ~(o <xt<~(~a', ] / 1 - + 2 s .  3 a < = 

By the central limit theorem we have (see e. g. [7], p. 215) 

~q~C0 

where O(x) is defined by (1.1). Thus we obtain, as O(x) is continuous, (1.1). 

w 2. New proof of a theorem of L. Takfics 

In his paper [5] TAKACS has considered stochastic processes of the fol- 
lowing type: zl, T~. . . . .  , T~ , . . .  are random points on the real axis, 

T 0 = 0  < .r~ < ~c2 < ..- < %~ < ..- 
such that putting 

(2. 1) T~+~--T2n=~,  and T2,~+2--~c2n+~=~ ( n = 0 ,  1, . . . )  

the positive random variables ~,~, r/,~ are all independent, the variables ~ are 
all identically distributed with the cumulative distribution function P(~n < x) 
= A ( x )  and the variables r/,, are also identically distributed with the cumu- 
lative distribution function P(~/~< x)--B(x). 

For any positive number t > 0 let us put 

a ( t ) = t ~ + ~ 2 - [ - . . . - ] - ~  if ~2~_~--<t<~2~ (n ' - - l ,  2 , . . . ) ,  
(2.2) 

and f l ( t ) =  t--a(t). By other words, if we interpret t as time, and consider 
a system which is at time t in state ~ if ~72,~<=t<~2~+1 (n -~-- 0,1,  . . .) and 
in state g? if T2,,_~=<t<T2~ ( n = l , 2 , . . . ) ,  then a (0  and ~(t) denotes the 
total time which the system has spent in state ~ and oJ~), respectively, during 
the time interval (0, t). TAKACS investigated the limiting distribution of the 
random variables a(t) and fl(t), respectively, for t - + ~ ,  and proved that if the 
first two moments of the random variables ~ and ~/~ exist, and if we put 

(20 (30 

( 2 . 3 )  a=j'xdA(x) and fl=.[xdB(x), 
o o 

13" 
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further 

(2.4) 

and finally 

(2. 5) 

(3O O3 

a ~ : j ' ( x - - e ) 2 d A ( x )  and o~:.[(x--#)~-dB(x) ,  
o o 

a - -  b ~ - -  and D 

(2.6a) 

and 

(2.6b) 

for - -  ~ < x < -t- ~ where 

(2. 7) (x) - 

then a( t ) - -a t  and f l ( t)--bt  are asymptotically normal 
D~? Dl / t  

mean value 0 and variance 1. 
Using Theorem 1 of w 1 we give a new proof of 

somewhat simpler than that given by TAKACS. 
Thus we prove the following 

THEOREM 2 (TAKACS). I f  e, fl, a~ and a~ exist, we have 

p ) lira < x = q)(x) 
*++~ [ DVi  

lira P (~(t)--bt ) 
,-~+~o [-DV}- - < x = ~(x)  

x 

- CO 

The proof is based besides Theorem 1 on 
which Lemma 1 and Lemma 2 are well known. 

for t - + + ~  with 

this ,fact which is 

LEMMA 1. I f  z(t), e(t) and 6(0 are random functions (0 < t < -}- ~ )  and 
are such that the asymptotic distribution of z(t) exists, e(t) converges in prob- 
ability to 1 and 6(0 converges in probability to 0 for t--~-}-~,  then the 
asymptotic distribution of z(t)e(t)-}-O(t) exists also for t--+-}- ~ and coin- 
cides w#h that of z(t). 

Lemma 1 is contained in a theorem of H. CRAMEI~ ([7], p. 255), and 
therefore may be omitted. 

LEMMA 2. I f  ~,u) Z~) ~n , Z~ and are sequences of random variables such that 
X 0) ~ Z. =< ,~'(2) and the sequences Z~ ) and Z~ ) have the same asymptotic dis- 
tribution for n-+ + ~ ,  then Z~ has also the same asymptotic distribution. 

The proof of Lemma 2 is evident and may be left to the reader. (As 
a matter of fact, Lemma 2 can be deduced also from Lemma 1.) 

three simple lemmas of 



ON T H E  ASYMPTOTIC DISTRIBUTION 197 

LEMMA 3. Let ~1, ~ , . . . ,  ~ , . . .  denote a sequence of identically distribu- 
ted random variables, having the distribution function F(x), and let us sup- 

+co 

pose that the second moment jx dF(x) of the variables ~, exists. Let r(t) 
-GO 

denote a positive integer-valued random variable for t > O, for which r(t) 
t 

converges in probability to c > 0 for t--~ + ~ .  Then ~'(~) converges in prob- 

ability to O. 

PROOF OF LEMMA 3. Let us choose an ~ > O. Then we can find to any 
6 > 0  a t 1 > 0  such that for t=>t~ 

(2. 8) P ( l ~(t)--ct] >= ~c) <= d. 

Put further 

(2.9) gl:[CO--~)t] and N~=[c(l +Otl. 
We have evidently 

and thus 

+co 

As the existence of fx~df(x) implies that 

tim x2(1--F(x)) - -  lim x~"F( - - x ) :O  
X--~-t- C0 x-->-~- r 

and N2--N1 is bounded, further d may be chosen as small as we like, it 
NI 

follows that 

l i m P ( l ~ ( ~  > ~ ' ~ 0  for any ~>0 .  
J 

Thus Lemma 3 is proved. 
Now we are in the position to prove Theorem 2. 
Let us put 

(2.12) ~n--~--~-t-~=~2~+1--~2,~-~ (n : 1 ,  2, . . . )  

and let the positive integer-valued random variable r(t) be defined for t > 0 
by the inequality 

(2.13) "~2~(~) 1 ~ t < ~2~,(~)+1. 
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Clearly 

(2. 14) P(r(t)<=N)-~P(~+~2-?...+~,>t) ( N = I ,  2, . . .)  

which implies that 

( ,) (2.15) 

As the law of large numbers (see e.g. [7], p. 253) clearly applies to 
the random variables ~,~, which are independent, identically distributed, and 
their mean value is e--I-#, we have 

(2.16) ~ imP(  ~ + ~-+- "'" + ~'~ n 

~(t) 
(2. 15) and (2. 16) imply that 

l0  for y>cc+fl, 
>Y = 1 for y<a+fl.  

1 converges in probability t o - - : ~  for 

t - , +  ~ .  (This fact is well known (see e. g. [8]); we proved it only for the 
sake of completeness.) Now let us put 

(2. 17) O-k= ~k a~k ( k = l , 2 ,  ..). (c~ + ~)~/'~ 

Then we have 
~,(t) 

(2.18) X ,~  
k=l  

~(t) 

YU4-~ - V ~  ~=i V,7-4 g 

As the random variables &k are independent, identically distributed, and have 
the mean value 0 and the variance D 2, it follows by Theorem 1 that 

/ ~,(t) 

(2.19) l i m P [  ~ ' ~  < X ) : ~ ( X ) .  
~§ \ DV~(O 

On the other hand, it follows from Lemma 3 (which can be applied as the 
random variables ~,~ and ~ have finite variances) that 

~'(t)+l and -~'(t)+l "~ l~r(t) 

VT(0 N(0 
are converging in probability to 0. Thus, by Lemma 1, the random variables 

r(t) J,(t) 

D Vr(t) D V~-(t) 
are both asymptotically normal for t--* + ~ .  By virtue of (2. 18) and Lemma 2 
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we obtain 

,(2.20) l i m P (  a ( t ) - - a t  < x ) =  ~(x). 

Taking into account that r (t) (a + fl) t converges in probability to 1 for t---~ + ~ ,  

and using again Lemma l, we may replace ( a + ~ ) r ( t )  by t in (2. 20), what 
proves (2.6a). Clearly, (2. 6b) follows from (2.6a), in view of 

(2.21) ~(t ) - -b t  ~ at--c~(t). 

This completes the proof. 

(Received 6 March 1957) 
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