ON THE ASYMPTOTIC DISTRIBUTION OF THE SUM OF A RANDOM NUMBER OF INDEPENDENT RANDOM VARIABLES

By

A. RÉNYI (Budapest), member of the Academy

Introduction

Let $\xi_1, \xi_2, \ldots, \xi_n, \ldots$ denote a sequence of independent random variables and put

(1) $\zeta_n = \xi_1 + \xi_2 + \cdots + \xi_n$ $(n = 1, 2, \ldots).$

Several authors (see e. g. [1] and [2]) investigated the asymptotic distribution of $\zeta_{\nu(t)}$ for $t \to +\infty$ where $\nu(t)$ is a positive integer-valued random variable, for t > 0, which converges in probability to $+\infty$ for $t \rightarrow +\infty$. The most general results in this direction have been obtained by DOBRUŠIN [3]. In all these investigations it has been supposed that v(t) is for any t > 0 independent of the random variables ζ_n $(n=1,2,\ldots)$. A general and very useful theorem without this supposition has been proved by F. J. ANSCOMBE [4]. In a recent paper [5] TAKACS has proved a theorem, which can be considered also as a result on the asymptotic distribution of the sum of a random number of independent random variables, i. e. using the above notations on the asymptotic distribution of $\zeta_{\nu(t)}$ where ζ_n is defined by (1). In this case $\nu(t)$ depends essentially on the variables ζ_n (n=1,2,...). The aim of the present paper is to show that the mentioned result of TAKACS can be easily deduced from a special case of the theorem of ANSCOMBE mentioned above. To make the paper self-contained, we give in §1 a short proof of the special case of ANSCOMBE's theorem which is needed for our purpose (Theorem 1). Using this theorem, in §2 a new and simple proof of the result of TAKACS mentioned above is given.

§1. A theorem of Anscombe

THEOREM 1 (ANSCOMBE). Let us suppose that $\xi_1, \xi_2, \ldots, \xi_n, \ldots$ are independent and identically distributed random variables with mean value 0 and variance 1. Let us put $\zeta_n = \xi_1 + \xi_2 + \cdots + \xi_n$. Let further $\nu(t)$ denote a positive integer-valued random variable for any t > 0 such that $\frac{\nu(t)}{t}$ converges for $t \to +\infty$

13 Acta Mathematica VIII/1-2

in probability to a constant c > 0. Then we have¹

(1.1)
$$\lim_{t\to\infty} \mathbf{P}\left(\frac{\zeta_{\nu(t)}}{\sqrt{\nu(t)}} < x\right) = \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{u^2}{2}} du.$$

PROOF OF THEOREM 1. Let $0 < \varepsilon < \frac{1}{5}$ be arbitrary. First we choose a value $t_1 > 0$ such that for $t \ge t_1$ we have

(1.2)
$$\mathbf{P}(|\nu(t)-ct| \ge c \varepsilon t) \le \varepsilon.$$

Clearly

(1.3)
$$\mathbf{P}\left(\frac{\zeta_{\nu(t)}}{\sqrt{\nu(t)}} < x\right) = \sum_{n=1}^{\infty} \mathbf{P}\left(\frac{\zeta_n}{\sqrt{n}} < x, \nu(t) = n\right).$$

It follows from (1.2) and (1.3) that for $t \ge t_1$

(1.4)
$$\left| \mathbf{P}\left(\frac{\zeta_{\nu(t)}}{\sqrt[]{\nu(t)}} < x\right) - \sum_{|n-ct| < \varepsilon ct} \mathbf{P}\left(\frac{\zeta_n}{\sqrt[]{n}} < x, \nu(t) = n\right) \right| \leq \varepsilon$$

Now let us put² $N_1 = [c(1-\varepsilon)t]$ and $N_2 = [c(1+\varepsilon)t]$. Then we have for $|n-ct| \leq \varepsilon ct$

(1.5)
$$\mathbf{P}\left(\frac{\zeta_n}{\sqrt{n}} < x, \nu(t) = n\right) \leq \mathbf{P}(\zeta_{N_1} < x \sqrt{N_2} + \varrho, \nu(t) = n)$$

where

$$arrho = \mathop{\mathrm{Max}}_{N_1 < n \leqq N_2} \left| \sum_{N_1 < k \leqq n} \xi_k \right|.$$

Similarly we obtain

(1.6)
$$\mathbf{P}\left(\frac{\zeta_n}{\sqrt{n}} < x, \nu(t) = n\right) \ge \mathbf{P}(\zeta_{N_1} < x \sqrt{N_1} - \varrho, \nu(t) = n).$$

According to a well-known inequality due to A. N. KOLMOGOROV [6], we have

(1.7)
$$\mathbf{P}(\varrho \ge \sqrt[3]{\varepsilon} \sqrt{N_1}) \le \frac{(N_2 - N_1)}{N_1 \varepsilon^{2/3}} \le 5 \sqrt[3]{\varepsilon} \quad \text{if} \quad t \ge \frac{1}{c\varepsilon}.$$

Let us denote by R the event $\rho < \sqrt[3]{\epsilon} / \overline{N_1}$ and by E the event $|n-ct| < c\epsilon t$. Taking (1.4), (1.5), (1.6), (1.7) into account, it follows

(1.8)
$$\mathbf{P}\left(\frac{\zeta_{\nu(t)}}{\sqrt[3]{\nu(t)}} < x\right) \leq \mathbf{P}\left(\frac{\zeta_{N_1}}{\sqrt[3]{N_1}} < x\right) \sqrt{\frac{N_2}{N_1}} + \sqrt[3]{\tilde{e}}, RE\right) + 6\sqrt[3]{\tilde{e}}$$

¹ We denote by $P(\ldots)$ the probability of the event in the brackets.

² We denote by $[\ldots]$ the integral part of the number in the square brackets.

194

and

(1.9)
$$\mathbf{P}\left(\frac{\zeta_{\nu(t)}}{\sqrt{\nu(t)}} < x\right) \ge \mathbf{P}\left(\frac{\zeta_{N_1}}{\sqrt{N_1}} < x - \sqrt[3]{\epsilon}, RE\right) - \epsilon.$$

It follows that

$$\mathbf{P}\left(\frac{\zeta_{N_1}}{\sqrt{N_1}} < x - \sqrt[3]{\varepsilon}\right) - 7\sqrt[3]{\varepsilon} \le \mathbf{P}\left(\frac{\zeta_{\nu(t)}}{\sqrt{\nu(t)}} < x\right) \le \mathbf{P}\left(\frac{\zeta_{N_1}}{\sqrt{N_1}} < x\right) \sqrt{\frac{1+2\varepsilon}{1-2\varepsilon}} + \sqrt[3]{\varepsilon} + 6\sqrt[3]{\varepsilon}.$$

By the central limit theorem we have (see e. g. [7], p. 215)

$$\lim_{n\to\infty}\mathbf{P}\left(\frac{\zeta_n}{\sqrt{n}} < x\right) = \boldsymbol{\Phi}(x)$$

where $\Phi(x)$ is defined by (1.1). Thus we obtain, as $\Phi(x)$ is continuous, (1.1).

§ 2. New proof of a theorem of L. Takács

In his paper [5] TAKACS has considered stochastic processes of the following type: $\tau_1, \tau_2, \ldots, \tau_n, \ldots$ are random points on the real axis,

$$au_0 = 0 < au_1 < au_2 < \cdots < au_n < \cdots$$

such that putting

(2.1)
$$\tau_{2n+1} - \tau_{2n} = \xi_n$$
 and $\tau_{2n+2} - \tau_{2n+1} = \eta_n$ $(n = 0, 1, ...)$

the positive random variables ξ_n , η_n are all independent, the variables ξ_n are all identically distributed with the cumulative distribution function $\mathbf{P}(\xi_n < x) = A(x)$ and the variables η_n are also identically distributed with the cumulative distribution function $\mathbf{P}(\eta_n < x) = B(x)$.

For any positive number t > 0 let us put

(2.2)
$$a(t) = \begin{cases} \xi_1 + \xi_2 + \dots + \xi_n & \text{if } \tau_{2n-1} \leq t < \tau_{2n} \\ \xi_1 + \xi_2 + \dots + \xi_n + t - \tau_{2n} & \text{if } \tau_{2n} \leq t < \tau_{2n+1} \\ (n = 0, 1, \dots) \end{cases}$$

and $\beta(t) = t - \alpha(t)$. By other words, if we interpret t as time, and consider a system which is at time t in state \mathfrak{A} if $\tau_{2n} \leq t < \tau_{2n+1}$ (n=0, 1, ...) and in state \mathfrak{B} if $\tau_{2n-1} \leq t < \tau_{2n}$ (n=1, 2, ...), then $\alpha(t)$ and $\beta(t)$ denotes the total time which the system has spent in state \mathfrak{A} and \mathfrak{B} , respectively, during the time interval (0, t). TAKACS investigated the limiting distribution of the random variables $\alpha(t)$ and $\beta(t)$, respectively, for $t \to \infty$, and proved that if the first two moments of the random variables ξ_n and η_n exist, and if we put

(2.3)
$$\alpha = \int_{0}^{\infty} x dA(x) \text{ and } \beta = \int_{0}^{\infty} x dB(x),$$

A. RÉNYI

further

(2.4)
$$\sigma_{\alpha}^{2} = \int_{0}^{\infty} (x-\alpha)^{2} dA(x) \text{ and } \sigma_{\beta}^{2} = \int_{0}^{\infty} (x-\beta)^{2} dB(x),$$

and finally

(2.5)
$$a = \frac{\alpha}{\alpha + \beta}, \quad b = \frac{\beta}{\alpha + \beta} \text{ and } D = \sqrt{\frac{\beta^2 \sigma_{\alpha}^2 + \alpha^2 \sigma_{\beta}^2}{(\alpha + \beta)^3}},$$

then $\frac{\alpha(t)-at}{D\sqrt{t}}$ and $\frac{\beta(t)-bt}{D\sqrt{t}}$ are asymptotically normal for $t \to +\infty$ with mean value 0 and variance 1.

Using Theorem 1 of § 1 we give a new proof of this fact which is somewhat simpler than that given by TAKÁCS.

Thus we prove the following

THEOREM 2 (TAKÁCS). If α , β , σ_{α}^2 and σ_{β}^2 exist, we have

(2.6a)
$$\lim_{t \to +\infty} \mathbf{P}\left(\frac{\alpha(t) - at}{D\sqrt{t}} < x\right) = \Phi(x)$$

and

(2.6b)
$$\lim_{t \to +\infty} \mathbf{P}\left(\frac{\beta(t) - bt}{D\sqrt{t}} < x\right) = \Phi(x)$$

for $-\infty < x < +\infty$ where

(2.7)
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{u^2}{2}} du.$$

The proof is based besides Theorem 1 on three simple lemmas of which Lemma 1 and Lemma 2 are well known.

 \mathbf{x}

LEMMA 1. If $\chi(t)$, $\varepsilon(t)$ and $\delta(t)$ are random functions $(0 < t < +\infty)$ and are such that the asymptotic distribution of $\chi(t)$ exists, $\varepsilon(t)$ converges in probability to 1 and $\delta(t)$ converges in probability to 0 for $t \to +\infty$, then the asymptotic distribution of $\chi(t)\varepsilon(t) + \delta(t)$ exists also for $t \to +\infty$ and coincides with that of $\chi(t)$.

Lemma 1 is contained in a theorem of H. CRAMER ([7], p. 255), and therefore may be omitted.

LEMMA 2. If $\chi_n^{(1)}, \chi_n$ and $\chi_n^{(2)}$ are sequences of random variables such that $\chi_n^{(1)} \leq \chi_n \leq \chi_n^{(2)}$ and the sequences $\chi_n^{(1)}$ and $\chi_n^{(2)}$ have the same asymptotic distribution for $n \to +\infty$, then χ_n has also the same asymptotic distribution.

The proof of Lemma 2 is evident and may be left to the reader. (As a matter of fact, Lemma 2 can be deduced also from Lemma 1.)

196

197

LEMMA 3. Let $\xi_1, \xi_2, \ldots, \xi_n, \ldots$ denote a sequence of identically distributed random variables, having the distribution function F(x), and let us suppose that the second moment $\int_{-\infty}^{+\infty} x^2 dF(x)$ of the variables ξ_n exists. Let v(t)denote a positive integer-valued random variable for t > 0, for which $\frac{v(t)}{t}$ converges in probability to c > 0 for $t \to +\infty$. Then $\frac{\xi_{\nu(t)}}{\sqrt{\nu(t)}}$ converges in probability to 0.

PROOF OF LEMMA 3. Let us choose an $\varepsilon > 0$. Then we can find to any $\delta > 0$ a $t_1 > 0$ such that for $t \ge t_1$

(2.8)
$$\mathbf{P}(|\nu(t)-ct| \ge \varepsilon c) \le \delta.$$

Put further

(2.9) $N_1 = [c(1-\varepsilon)t]$ and $N_2 = [c(1+\varepsilon)t]$. We have evidently

(2.10)
$$\mathbf{P}\left(\frac{|\boldsymbol{\xi}_{\boldsymbol{\nu}(t)}|}{|\boldsymbol{\nu}(t)|} > \boldsymbol{\varepsilon}\right) \leq \boldsymbol{\delta} + \mathbf{P}\left(\frac{\max_{N_1 < n \leq N_2} |\boldsymbol{\xi}_n|}{|\boldsymbol{N}_1|} > \boldsymbol{\varepsilon}\right)$$

and thus

(2. 11)
$$\mathbf{P}\left(\frac{|\boldsymbol{\xi}_{\boldsymbol{\nu}(t)}|}{|\boldsymbol{\nu}(t)|} > \varepsilon\right) \leq (N_2 - N_1)\left(1 - F(\varepsilon \sqrt{N_1}) + F(-\varepsilon \sqrt{N_1})\right) + \delta.$$

As the existence of $\int_{-\infty}^{\infty} x^2 dF(x)$ implies that

$$\lim_{x\to+\infty} x^2(1-F(x)) = \lim_{x\to+\infty} x^2F(-x) = 0$$

and $\frac{N_2 - N_1}{N_1}$ is bounded, further δ may be chosen as small as we like, it follows that

$$\lim_{t\to\infty} \mathbf{P}\left(\frac{|\boldsymbol{\xi}_{\boldsymbol{\nu}(t)}|}{\sqrt{\boldsymbol{\nu}(t)}} > \varepsilon\right) = 0 \quad \text{for any} \quad \varepsilon > 0.$$

Thus Lemma 3 is proved.

Now we are in the position to prove Theorem 2. Let us put

(2.12)
$$\zeta_n = \xi_n + \eta_n = \tau_{2n+1} - \tau_{2n-1} \qquad (n = 1, 2, \ldots)$$

and let the positive integer-valued random variable v(t) be defined for t > 0 by the inequality

A. RÉNYI

Clearly

(2.14)
$$\mathbf{P}(\nu(t) \leq N) = \mathbf{P}(\zeta_1 + \zeta_2 + \cdots + \zeta_N > t) \qquad (N = 1, 2, \ldots)$$

which implies that

(2.15)
$$\mathbf{P}\left(\frac{\nu(t)}{t} < x\right) = \mathbf{P}\left(\frac{\zeta_1 + \zeta_2 + \cdots + \zeta_{[tx]}}{[tx]} > \frac{t}{[tx]}\right).$$

As the law of large numbers (see e.g. [7], p. 253) clearly applies to the random variables ζ_n , which are independent, identically distributed, and their mean value is $\alpha + \beta$, we have

(2.16)
$$\lim_{n\to\infty} \mathbf{P}\left(\frac{\zeta_1+\zeta_2+\cdots+\zeta_n}{n}>y\right) = \begin{cases} 0 \text{ for } y>\alpha+\beta, \\ 1 \text{ for } y<\alpha+\beta. \end{cases}$$

(2.15) and (2.16) imply that $\frac{v(t)}{t}$ converges in probability to $\frac{1}{\alpha+\beta}$ for $t \to +\infty$. (This fact is well known (see e. g. [8]); we proved it only for the sake of completeness.) Now let us put

(2.17)
$$\vartheta_k = \frac{\beta \xi_k - \alpha \eta_k}{(\alpha + \beta)^{3/2}} \qquad (k = 1, 2, \ldots).$$

Then we have

(2.18)
$$\sum_{k=1}^{\nu(t)} \vartheta_k - \frac{\xi_{\nu(t)+1}}{\sqrt{\alpha+\beta}} \leq \frac{\alpha(t)-at}{\sqrt{\alpha+\beta}} \leq \sum_{k=1}^{\nu(t)} \vartheta_k + \frac{\xi_{\nu(t)+1}+\eta_{\nu(t)}}{\sqrt{\alpha+\beta}}.$$

As the random variables \mathcal{P}_k are independent, identically distributed, and have the mean value 0 and the variance D^3 , it follows by Theorem 1 that

(2.19)
$$\lim_{t\to\infty} \mathbf{P}\left(\frac{\sum_{k=1}^{\nu(t)} \vartheta_k}{D\sqrt{\nu(t)}} < x\right) = \Phi(x).$$

On the other hand, it follows from Lemma 3 (which can be applied as the random variables ξ_n and η_n have finite variances) that

$$\frac{\xi_{\nu(t)+1}}{\sqrt{\nu(t)}}$$
 and $\frac{\xi_{\nu(t)+1}+\eta_{\nu(t)}}{\sqrt{\nu(t)}}$

are converging in probability to 0. Thus, by Lemma 1, the random variables

$$\frac{\sum_{k=1}^{\nu(t)} \vartheta_k + \frac{\xi_{\nu(t)+1} + \eta_{\nu(t)}}{\sqrt{\alpha + \beta}}}{D\sqrt{\nu(t)}} \text{ and } \frac{\sum_{k=1}^{\nu(t)} \vartheta_k - \frac{\xi_{\nu(t)+1}}{\sqrt{\alpha + \beta}}}{D\sqrt{\nu(t)}}$$

are both asymptotically normal for $t \rightarrow +\infty$. By virtue of (2.18) and Lemma 2

198

we obtain

(2.20)
$$\lim_{t\to\infty} \mathbf{P}\left(\frac{\alpha(t)-at}{D\sqrt{(\alpha+\beta)\nu(t)}} < x\right) = \Phi(x).$$

Taking into account that $\frac{\nu(t)(\alpha+\beta)}{t}$ converges in probability to 1 for $t \to +\infty$, and using again Lemma 1, we may replace $(\alpha+\beta)\nu(t)$ by t in (2. 20), what proves (2. 6a). Clearly, (2. 6b) follows from (2. 6a), in view of

 $(2.21) \qquad \qquad \beta(t) - bt = at - \alpha(t).$

This completes the proof.

(Received 6 March 1957)

References

- [1] H. ROBBINS, The asymptotic distribution of the sum of a random number of random variables, *Bull. Amer. Math. Soc.*, 54 (1948), pp. 1151–1161.
- [2] M. LOÈVE, Probability theory (New York, 1955), p. 384 and 407.
- [3] Р. Л. Добрушин, Лемма о пределе сложной случайной функции, Усп. Мат. Наук, 10 (1955), вып. 2 (64), pp. 157—159.
- [4] F. J. ANSCOMBE, Large-sample theory of sequential estimation, Proc. Cambridge Phil. Soc., 48 (1952), p. 600.
- [5] L. TAKACS, On certain sojourn time problems in the theory of stochastic processes, Acta Math. Acad. Sci. Hung., 8 (1957), pp. 169–191.
- [6] A. KOLMOGOROFF, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Math. II, No. 3 (Berlin, 1933).
- [7] H. CRAMER, Mathematical methods of statistics, (Princeton, 1946), pp. 254-255.
- [8] J. L. Doob, Renewal theory from the point of view of the theory of probability, Trans. Amer. Math. Soc., 63 (1948), pp. 422-438.