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Introduction 

Let [.<2, 4, #] be a measure space. By other words, let $2 be an arbitrary 
abstract set, ~ a a-algebra of subsets of $2 and p:(A) (A E d;I;) a measure 
defined in ,(2 and on ~.  We shall denote tiae elements of ~ by capital 
letters A, B, C . . . . .  The elements of $2 will be denoted by o). We denote by 
A + B  the union and by AB the intersection of the sets A and B. 

We shall call a sequence A,, (n = 0 ,  1, . . . )  of measurable sets strongly 
mixing with density c~ if for any B E c%, such that ~ (B)<  + ~ ,  we have 

(1) lira ~ ( A , B ) = ~ ( B )  

where 0 < c ~ <  I and the value of cr does not depend on B. 
Evidently, in the case when ~($2) <-b  ~ ,  we have, choosing in (1) 

B ~ $2, 

(2) lira ~J ( A , ) =  c: # (22). 

Thus  if ~($2)< + ~ ,  (1) can also be written in the form 

(3) lira ~(A~B)-- ~(B) lira f~(A~). 

The term "strongly mixing" has been chosen in accordance with the well- 
known definition of a strongly mixing measure preserving transformation of 
a measure space in ergodic theory (see [I], [2]). As a matter of fact, if T is 
a measurable transformation of the measure space [$2,8;,~] preserving the 
measure U and ~(s  + o~, then T is called strongly mixing if for any 
A E dI and B E d~ we have 

~, (A) ~ (B) 
(4) lira # ( r  ~A.B)--  

. . . .  ($2) 

Taking into account that in this case # (T-"A) = , a  (A) (n = 0 ,  1 , . . . )  and 
using the terminology introduced above, we may say that the measure preserv- 
ing transformation T is strongly mixing if and only if for any A Ed~ the 

sequence A,-~-T-'~A (n = 0 ,  1 , . . . )  is strongly mixing with density [~(A) # ($2)" 
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This is, however, a very special way of obtaining strongly mixing sequences 
of sets, as will be seen from the examples given below. 

The notion of strongly mixing sequences of sets is especially important 
in probability theory. In the present paper we shall mostly deal with these 
applications, and therefore we suppose in general that the measure space 
considered is a probability space, i. e. ~ (/2) ~ 1. To avoid misunderstandings 
We shall denote probability measures by P (or Q). If [~2, 4 ,  P] is a proba- 
bility space, then, as usual, the elements of ~ will be called events. Thus a 
sequence A~ ( n ~ 0 ,  1 , . . . ) o f  events will be called strongly mixing with 
density e if for any event B ~ ~ we have 

(5) lim P (A,,~ B) = e P (B) 
'r CO 

where 0 < c~ < f. As (5) is trivially satisfied (with every value of e) for any 
sequence A~ of events if the event B has probability 0, it suffices to suppose 
that (5) holds if P (B)  > 0 .  By using the usual notation P(AIB)  for the 
conditional probability of the event A with respect to the event B, defined 
in the case P ( B ) > 0  by 

P (AB)  
(6) P ( A [ B ) - -  p ( B ) ,  

we may write (5) in the following equivalent form: 

(5*) lim P (An [B) ~ a 
n - ~  CO 

for every event B for which P ( B ) > 0 .  Thus a sequence A~ (n=O,  1 , . . . )  
of events is strongly mixing with density e (0 < a < 1 )  if (5*) is satisfied 
for every B which has a positive probability. 

It is easy to show that the following theorem ~ holds: 

THEOREM 1. I f  [~2, d{, P] is a probability space and the sequence 
A~ (n--O, 1,. . .)  of events is strongly mixing with density e, then 

(7) lim Q(A,) ~ a 
?z-~- CO 

holds for any probability measure Q in $2 and on c~ which is absolutely 
continuous with respect to the measure P. 

PROOF. By the Radon--Nikodym theorem there exists a non-negative 
and measurable function Z ( ~ ) o n  f2 which is integrable with respect to the 

1 This theorem is, of course, known. (It has been used e. g. implicitly in [3].) We 
state it here for the sake of reference, as we did not find it explicitly formulated in the 
literature. For the same reason we sketch its simple proof. 
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measure P and is such that for any A E ~ we have 

(8) Q (A) -~-.fZ (o)  d P.  
A 

Clearly, (7) holds if X ( ~  is a step function (i. e. if X(o )  takes on 
only a finite number of different values). As to any integrable Z and any 

> 0  there can be found a step function ZL such that j[Z(o)--Zl(o)ldP<~, 
it follows easily that (7) holds in the general case too. 

Thus Theorem 1 is proved. 
In w 1 of the present paper we shall give the following necessary and 

sufficient condition for a sequence of events being strongly mixing: 

THEOREM 2. The sequence A~ of events, such that Ao ~ $2 and P (A,~) > 0 
(n = 1, 2,...),~" is strongly mixing with density e if  (and only if) 

(9) lira P ( a ,  i Ak) : a 

for k-~-O, 1,. .. where O < e < l and e does not depend on k. 

Thus the strongly mixing property of the sequence A, depends on the 
relative positions of the sets A~ only. 

Theorem 2 will be proved in w 1 by means of Lemma l, relating to 
sequences of elements of an arbitrary Hilbert space. 

Theorem 2 is fairly general and when applied to different types of 
sequences of events, leads to some interesting special cases. One of these 
is the following: 

THEOREM 4. Let ~.1, ~.2,..., ~, . . . . .  be a sequence of independent random 
variables on the probability space [~2, c~, P] and let us suppose that there can 
be found a sequence C,~ of  real numbers and another sequence D,~ of  positive 
numbers such that lira D , = - t - ~ ,  further a distribution function F(x)  such 

that putting ~,~==- ~ + ~2 + " "  -[-, ~,~ (n ~ 1, 2 , . . . )  we have 

(10) ,~-.lim~ P ~ -D~ < x ---F(x)  

for every real x which is a point of continuity of the distribution function 
F(x). Let Q be an arbitrary probability measure in $2 and on ~ which is 

The supposition P (A,) > 0 for every n @ 1 is made only tO make a simple for- 
mulation of our result possible; it is not an essential restriction. As a matter of fact, 
according to the definition, in a strongly mixing sequence of events there can occur only 
a finite number of events having the probability 0, and these may be omitted as the 
strongly mixing character of a sequence of events is not influenced by the change of a finite 
number of elements of the sequence. The condition A 0 = ~2 is not a restriction either; it 
has been supposed only to include the condition lim P (A 0 = ~ into (9). 
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absolutely continuous w#h respect to P. Then we have 

(11) l i_moQ( -~  < x = F ( x )  

in every point of continuity x of F(x). 

Thus the fact that the distribution of g"--C'~ tends to a limiting distrib- 
D,  

ution as well as this limiting distribution itself, are invariant against the 
change of the underlying probability measure, provided that this measure P 
is replaced by a probability measure Q which is absolutely continuous with 
respect to P. 

Note that with respect to the measure Q the random variables ~ are, 
in general, not independent. Thus Theorem 3 may be considered as a result 
extending the validity of the limit theorems of probability theory, valid for 
independent random variables, to certain sequences of "almost independent" 
random variables. 

The first result of the type of Theorem 4 has been given by the author 
of the present paper in [3] where there were two restrictions: it has been 
supposed that the random variables ~n have discrete distributions and that 
the probability space [.Q,~, P] is isomorphic to the probability space for 
which ~ is the interval (0, 1) and P the ordinary Lebesgue measure. In a 
subsequent paper [4] A. N. KOLMOGOROV has proved a more general result. 
He dropped the supposition that the variables ~, are discrete, and concern- 
ing the probability space he supposed that the measure P is perfect (for 
the definition of perfect measures see [5]). Theorem 4 does not contain any 
restriction concerning the probability space, thus it is more general than the 
result of KOLMOGOROV ment ioned  above. It has been pointed out by 
E. MARCZEWSKI (oral communication) that Theorem 4 can be deduced also 
from certain results of E. SPARRE-ANDERSEN and B. JESSEN [6]. P. REvI~SZ 
(oral communication) has shown that Theorem 3 can be proved also by 
using certain limit theorems of J. L. DOOB on martingales [7]. However, 
the proof given in w 2 of the present paper, which shows that Theorem 4 
is a special case of Theorem 2, is in some sense the most natural approach. 
As a matter of fact, Theorem 2 is a source of a large number of similar 
results which can not all be obtained by the other methods mentioned. We 
can obtain e. g. by means of Theorem 2 results similar to Theorem 4 for 
general Markov chains instead of the special Markov chains formed by par- 
tial sums of independent random variables? 

3 This question will be discussed in a forthcoming joint paper of P. R~v~sz and the 
author. 
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Theorem 2 when applied to ergodic theory leads to a criterion (Theo- 
rem 3)for  a measure preserving transformation defined on the measure space 
[s~2, ~,  t~] being strongly mixing. 

In {} 3 we consider weakly mixing sequences of sets and events, re- 
spectively, and obtain similar results as in the case of strong mixing. 

My thanks are due to Mr. P. REvEsz for his valuable remarks which I 
utilized in PreParing the present paper. 

w 1. A criterion for the strongly mixing property of a sequence 
of events 

Let ~ be an arbitrary Hilbert space. We denote the elements of % by 
small letters (e. g. f ,g ) .  The inner product of the elements f and g will be 
denoted by ( f ,g)  and the norm (f,f)~12 of f by Ilfll. We first prove the fol- 
lowing 

LEMMA. I. Let f ,  (n = O, 1 . . . .  ) be a sequence of  elements of  a Hilbert 
space ~.  Let us suppose that 

(1.1) IIf~/l ~ K (n~O,  1 . . . .  ) 
where K is a positive constant not depending on n. Let us suppose further thai 
for any k = O ,  1, . . .  we have 

(1.2) 
Then for any g ~ % we have 

O. 3) 

tim (f,,  f~D = O. 
t,i -~- O3 

lira (g,f,,)==O. 

PROOF. Let us denote by ~1 the least subspace of % which contains 
the etements f 0 , f l , . . . , f , . . . .  Clearly, (1.3) holds if  g is a finite linear 

combination of the elements f o , f l , . . . , f , ~ , . . . ,  i. e. if g = - ~ c k f ~ . .  It follows 
1 ~ l  

that (1.3) holds also if g is an arbitrary element of %1, because in this case 

for any e > O  there exists a finite linear combination g~- -~c t< f~  such that 

]lg--g~ll < ~ which implies that 

(1.4) [(g,f,<)--(g,,f,,)l ~ Ks 
and thus 

(1.5) lira sup I(g, fo)l =< 

As ~ > 0  is arbitrary, (1.5) implies (1.3). Now, let ~.~ denote the set of 
those elements of % which are orthogonal to every element of the sequence 
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f,~. Clearly, (1 .3)  holds i f g  C ~C2. As by a well-known theorem (see [8], p. 8) 
every g ~ % can be represented in the form g=g~-Eg2  where g~ ~ %1 and 
g , ~ ,  it follows 4 that (1 .3)  holds for any g ~ % .  Thus our lemma is 
proved ? 

It should be mentioned that our lemma contains as a special case the 
well-known fact that if {f~} is an orthonormal system, the Fourier coefficients 
(g, f , )  of an arbitrary g ~ % are tending to 0 for n ~ ~ .  This fact is usually 
proved by means of BESSEL'S inequality which gives, of course, much more. 
The corresponding stronger result under the supposition (1.2)  will be given 
in a forthcoming paper. 

We now deduce from our lemma 

THEOREM 2. Let [~, ~{, P] be a probability space. Let As (n =- O, 1, . . . )  be 
a sequence of events such that Ao --- ~ and P (A~) > 0 (n ~- 1, 2 , . . . ) .  The 
sequence A~ of events is strongly mixing with density a (0 < ,z < 1) if (and 
only if) 
(1 .6)  lim P (AnlA~.) = e 

'~-+" CO 

for k - - 0 ,  1, . . . .  

PROOF OF THEOREM 2. Let % denote the Hilbert space of all real ran- 

dom variables ~ - - - ~ ( o )  (a~ ~J2) such that - ) '~2dP exists. Let us define the 
~2 

inner product by ( ~ , ~ ) = . f ~ d P  and, correspondingly, the norm by 

Let the random variables a n = e , ( ~ )  be defined as follows: 

l l - - a  if e )~An ,  
= ( n  = o ,  1,  . .). 

- - a  if o)~An 
Then we have 

(1 .7)  (ak, an)--=P(AkA.) a P ( A ~ ) - - a P ( A , ) - I - a  ~. 

As A o ~ - ~ ,  it follows from (1.6)  that 

(1 .8)  lira P (An) = e.  
~ - + 0 3  

Further it follows from (1.6)  that 

(1 .9)  lim P(A,~A~)=aP(A~)  (k---  1, 2 , . . . ) .  

B. Sz.-Nam" kindly called my attention to the fact that the idea of the above 
proof of our lemma is the same as that of the standard proof of the theorem (see e. g. [8], 
p. 10) that if f,  is an arbitrary sequence of elements of ~ such that IILII is bounded, 
then there exists a subsequence of the sequence f~which converges weakly to an element 
/ o f  9(. 

Another proof of Lemma I has been found independently by P. R~v~sz. 
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From (1.7), (1.8) and (1.9) we obtain 

(1.10) lim (ak, an)~-0 ( k = 0 ,  1,...)~ 

Taking into account that 

(1.11) l l~ l i2= (1 -a )~  P (A,)-I-~2 ( 1 - - P  (A,j) < 1, 

we see that the sequence a~ satisfies the conditions of Lemma 1. Thus we 
have for any g E 
(1.12) lim (g, ~zn)=0. 

n-~- co 

Choosing for g = g ( o ) )  the random variable defined by 

l l if ~ E B ,  
(1.13) g ( o ) ) =  0 if e) EB, 
we have 

(1.14) (g, r = P (A,~ B)--cr P(B) 

and thus by virtue of (1.12) we obtain, provided that P ( B ) > 0 ,  

(1.15) lim P(A, I B ) = ~ .  
7t-->- CO 

Thus Theorem 2 is proved. 
By combining Theorem 2 with Theorem 1 it follows ~ that if Q is any 

probability measure in f2 and on gl; which is absolutely continuous with 
respect to P, and A, satisfies the conditions of Theorem 2, then we have 

(1.16) lim Q(A~)=~.  
n-->- CO 

Let us now consider the application of Theorem 2 to ergodic theory. 
Let [S2, ~,  #] be a measure space and suppose that # ( ~ ) <  § o~. A measure 
preserving (not necessarily one-to-one) transformation T of this space is 
called strongly mixing if, denoting by T-~A the inverse image of the set A 
(i.e. the set of those wE,Q for which Te) EA) and defining T'~A by the 
recursion T "~ A : T-(~-~)(T-~A) (n : 2, 3,...), we have for any A E ~ and B E dI 

(1.17) lim ~(T-nA.B) - #(A)~(B) 
, .  

It should be mentioned that (1.16) could be deduced directly from the above proof 
oY Theorem 2 without making use of Theorem 1. As a matter of fact, let Z = g (co) be a 
function, the existence of which is ensured by the Radon--Nikodym theorem, such thai 

Q ( A ) = . I Z ( a ) d P  for AEd~. 
A 

If ){ belongs to ~ ,  i. e. i f ~ z ~ d P  exists, then applying (1.12) to this function X we directly 

obtain (1.16). The general case follows by remarking that to any integrable random 

variable Z and any e ~ 0 there can be found a 7.i C ~ such that I [Z--X11 dP < 
d 
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Applying Theorem 2 to the sequence A ~ - - T  "A of sets of the probability 

space [$2, ~,  P] where P (A) - -  t~ (A) ($2) and taking into account that by virtue 

of the supposed measure preserving property of the transformation T 

(1.18) ~(T-"A .T-~A)=~(T-k (T - ( '~ -~A .A) )=~(T- ( " -~A .A)  

for n ~ k, we obtain the following 

THEOREM 3. Let [$2, c%, ~] be a measure space, ~ ($2) < -k ~ and T a 
measure preserving transformation of  $2 onto itself. A necessary and sufficient 
condition for T being strongly mixing (i. e. for the validity of  (b. 17)) is that 
for any A ~ (2 with ~ (A)> 0 we should have 

(1.19) lim u ( T - " A . A ) =  ~2(A) ($2)" 
By other words, if (1.17) is valid for B ~ A ,  i t  is always valid. 

w 2. The invariance of the limiting distribution of sums 
of independent random variables 

In this w we prove 

THEOREM 4. Let ~1, ~, . . . ,  ~,~,... be a sequence of  independent random 
variables defined on the probability space [$2, ~,  P]. Let us suppose that there 
can be found a sequence C, of  real numbers and another sequence D, of  
positive numbers for which lim D , - - +  ~ ,  further a distribution function 

~---~- 03 

F(x) such that putting ~ l - k ~ +  "" + ~,~ we have 

PF ) (2.1) ,~-+limco ~ ~ < x  = F ( x )  

in every point of  continuity x of the distribution function F(x). Let Q be an 
arb#rary measure in $2 and on (2 which is absolutely continuous with respect 
to P. Then we have 

(2. 2) lira ~ , ~ -  < x = F (x) 

i f  x is any point of continuity of F(x). 

PROOF OF THEOREM 4. Let x be a point of continuity of F(x) and 
F(x) > 0. Clearly, it suffices to consider such values of x. In this case evi- 

dently \ ~ < x  > 0  for n > n 0 .  Let us put Ao=$2  and denote by A,~ 

~~+~o- C~+% the event that the inequality - D,~+,,o < x  takes place ( n ~  1, 2 , . . . ) .  
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According to Theorems 1 and 2, if we show that condition (1.6) is fulfilled 

for these events, (2 .2)fol lows.  Let us put ~* _~--C~ Thus it suffices to 
~" ~ D n  ~ 

prove that 

(2.3) lira P (~*~ < x I ~. < x) ~ F(x) 

for any k > no. 
Now we need the following simple lemma (see e. g. [9], p. 254): 

Ler~MA 2. If  ,% and ~ are random variables such that lira P ( , ~ <  x) 
n - ~  ff) 

~--F(x) in every point of continuity x of the distribution function F (x), and 
lim P([~nl>=d)=O for any d > 0 ,  then we have lim P(,,%-t-~,~<x)=F(x} 

in any point of continuity of F(x). 

Applying Lemma 2 to ~ ~ ~ and ~ = - -  

p [ ,-, -_~k 
(2.4) l im ~ g,,--~-s < 

[-k 
D~" it follows from (2.1) that 

f(x). 
J 

~k ~ , - -~k - -C ,  is independent of ~.* As ~,~ D,  D,~ _k, we have 

\ D < x  = P  

and thus from (2.4) 

(2.6) ~,-~olim P(~:--D~k < x  ~ < x  }~-F(x) .  

Applying again Lemma 2 to the random variables , , % = ~ " - -  g~ and 

~,~--- ~ on the probability space [~, g ,  P'] where P' (A) = P (Alga. < x), 

we obtain (2.3). Thus Theorem 3 is proved. 

Let us call a sequence r;,~ (n = 1, 2 . . . .  ) of random variables a mixing 
sequence with the limiting distribution function F(x) if for every B ~ ~ with 
P (B)>  0 and for every real x which is a point of continuity of F(x)we have 

(2. 7) lira P (~, < x lB ) ~- F (x). 

The assertion of Theorem 3 can be expressed by saying that if the random 
variables ~, are independent and putting g, = ~,+~2-t- . . .  -t-~, the random 

variables g~_ g , - - C ,  where D,---. ~ ,  have the limiting distribution function 
D n  ' 

F(x), then g*~ is a mixing sequence of random variables with the limiting 
distribution function F(x). 
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Mixing sequences of random variables have remarkable properties. For 
instance, if ~2,~ is a mixing sequence of random variables, then ~,~ is in the 
limit independent of any random variable &. As a matter of fact, if 
P (~q < y) > 0, we have 

{2.8) lim P0h~<x ,  & < y ) = P ( 0 - < y )  lim P(~,~< x l ~ q < y ) ~ P ( ~ q < y ) f ( x  ). 

Thus we obtain the following consequence of Theorem 4: 

COROLLARY 1. I f  tOe random variables ~n are independent, ~-=-~l- f  
- f  ~_~ + " "  d- ~.,,, and there can be found sequences of  real numbers C,, and 

D,~ > 0 such that D,, ~ - f -  ~ and ~{ - -  ' ~ ' -  C,,, has the limiting distribution 

F(x), then ~,~ is in the limit independent of  any random variable. 

Another interesting property of mixing sequences of random variables 
with a non-degenerate limiting distribution is that they can not b e  stochas- 
tically convergent to some random variable. As a matter of fact, let us 
suppose in contrary to our statement that 7 i, is a mixing sequence of random 
variables with the non-degenerate limiting distribution F(x), and that *i,~ 
tends stochastically to the random variable '~i~, i. e. for any d > 0 we have 

Then evidently by Lemma 2 

(2.9) P (~i| < x) == lira P (r~,~ < x) = F(x), 

further by Theorem 4 and Lemma 2 

(2. 10) P (~t~ < x, ~Ik < Y) ---~ tim P (~i,,, < x, '~t~ < Y) = F,(x) P (~i~ < Y), 

and therefore, applying again Theorem 3 and Lemma 2, 

(2.11) P ( ~ o < x ,  r t~<y) - - - l im  P ( r 1 ~ < x , ~ t k < y ) ~ F ( x ) F ( y  ). 

Thus r~ would be independent of itself which is clearly impossible, as by 
(2. 9) and the supposition that F(x) is a non-degenerate distribution, ~2~ is 
not a constant. 

Thus we obtain the following 

COROLLARY 2. I f  ~,  ~2 . . . . .  ~ , , , . .  are independent random variables, 
further there can be found real sequences C,, and D ~ > 0  with D,~-++ r 

such that putting ~ = ~ + . . .  -k ~,,~ and ~ ~,~-- C~ the limiting distribution 
- D .  

of  @ exists and is non-degenerate, then the random variables ;,~ can not con- 
verge stochastically to a random variable. 
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A special case of Corollary 2 has been mentioned in the textbook on 
probability theory of the author ([10], p. 534, Exercise 21). 

Let us consider an example. Let 

(2.12) t = 2 
(t) 

,,=1 2 " 

be the dyadic expansion of the real number t ( 0 <  t <  1) where each ~,~(t) 
is equal to 0 or 1. The functions ~,~(x) may be considered as random 
variables on the probability space [$2, ~ ,  P], where 52 is the interval (0, i), 
dI the set of all Lebesgue measurable subsets of $2 and P the ordinary 
Lebesgue measure. The random variables ~ ( t )  are clearly independent and each 

1 
lakes on the values 0 and 1 with probability ~-.  It follows by the Moivre-- 
Laplace theorem that putting 

& (t) = < (t) + - . .  -t- e~ (t) (2.13) 

we have 

(2.14) lira P 2 < x - -  e-Ydu. 

Our Theorem 4 gives in this case the following result: If Q is any proba- 
bility measure defined on the Lebesgue measurable subsets of the interval 
(0, 1), which is absolutely continuous with respect to the Lebesgue measure, 
i. e. if 

(2.15) Q (A) ~-~-fq (t) dt 
A 

1 

where q(t)>=O and j q ( t ) d t ~  l, then we have 
0 

t ; &(t) 2 1 u0 
(2.16) lira Q - -  < - -  e-~-du. 

Let us define, the set E,~(x) as the set of those t's (0 < t <  1) for which 
n 

&(t) 2 
< x  ( n ~ 1 , 2 ,  .. .). Then, clearly, En(x) is a strongly mixing 

1 - -2Vn 

sequence of sets. This example gives some idea about the structure of 
strongly mixing sequences of sets, as the sets E~(x) can easily be constructed. 

15 Acta Mathematica IX/l--2 
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w 3. Weak mixing 

A measure preserving transformation T of the measure space [s c%, V]~ 
with ~ ( ~ ) < + ~  is called weakly mixing (see [1], [2]) if for any AE 
and B E ~ we have 

1 ee-1 I (3. 1) lim - ~ . ~  I~(T-'~A.B) , . (A)#(B) 
N-+~ ~v ,~=o U(~) = 0 ,  

i. e. if ~(T-~A .B)  is strongly (C, 1)-summable to the limit ~,(A)~(B) t*(62) . Gener- 

alizing this notion, we shall say that the sequence A,, (n - -O,  1 . . . .  ) of  sets 
is weakly mkving with density ~ (0 < c~ < 1) /f for every B E ~ we have 

(3. 2) lira I ~v-1 
N+~o -N , ~  ~ {t* (A,B) - -  a#(B)  [ = 0. 

A sequence of sets in a probability space which is weakly mixing with, 
densitya, will correspondingly be called a weakly mixing sequence of events~ 
(with density e). By the same method as used in the preceding w167 we can 
obtain analogous results for weak mixing. 

The analogue of Theorem 1 runs as follows: 

THEOREM 5. ] f  the sequence A,, (n = O, 1 . . . .  ) of events of the prob- 
ability space [$2, ~,  P] is weakly mixing w#h density a (0 < c~ < 1), we have 
for any probability measure Q in ~2 and on ~, which is absolutely con- 
tinuous with respect to P, 

l N-1 

(3. 3) ee+=lim N ~ _  I Q (A,) - -  e [ ~--- 0. 

The proof of Theorem 5 runs along the same lines as that of Theorem 1. 
Instead of Lemma 1 we need the following analogous 

LeMMA 3. Let f ,  (n = O, 1, . . . )  be a sequence o f  elements of the Hilbert 
space %. Let us suppose that 

1 N-1 

(3.4) N,~=o I]f,~![ :< K ( N ~  1, 2 , . . . ) ,  

further that for any k =  O, 1 , . . .  we have 

1 N- t  
(3. 5) lim -~-~]  l(f~', f ,)[--:0.  

N-~-CO z Y r l~-O 

Then we have for any g E 
] N-1 

(3.6) lira ~7.a~ I (g, f n) l = 0 .  
N ~ -  CO 1 V ~ ' t~O 
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PROOF OF LEMMA 3. Clearly, (3.6) holds if g is a finite linear combina- 
tion of the elements of the sequence fr,, because 

1 2 1 ~=1 

If %1 is the least subspace of % containing the sequence f~ and g ~ %1, we 
q. 

may find for any ~ > 0 coefficients co, cl . . . . .  cr such that putting ga = .~ , c~ j ] ,  
k = 0  

we have IIg--glt] <~. It follows that  

and thus 

I(g, L )  I - I(g , L)  t <-_ 

what proves that (3. 6) holds for any g ~ %a. But if we denote again by %~ 
the set of those elements ~ which are orthogonal to every fn, (3.6) evidently 
holds for g~%2 too, and as every g ~ %  can be represented in the form 
g : g ~ + g 2  with gl ~ %~ and g.~%2, it follows that (3. 6) holds for every 
g E %. Thus kemma 3 is proved. From Lemma 3 we may deduce the following 
result which is analogous to Theorem 2: 

ThEOREm 6. The sequence A,, (n = O, 1, .. .) of events belonging to the 
probability space [~2, c%, P], for which Ao = $2 and P(A,)  > 0 (n -~- 1, 2, . . . ) ,  
is weakly mixing with density ~ (0 < ~ < I) if rand only if) we have 

1 zr 
(3.7) lim ~ ~_, [P(A,~lAk)--el=O for k = 0 , 1 , . . . .  

The analogue of Theorem 3 for weakly mixing transformations may be. 
stated as follows : 

ThEOREm 7. The measure preserving transformation T of the measure 
space [s e2, ~], for which ~(~2) < + ~ , is weakly mixing if for any A E O~ 
for which ~(A) > 0 we have 

1 N-1I ~2(A) 
( 3 . 8 )  lim ~-~.~ ~(T- 'A.A) = 0 .  

~+| ~ : o  ~(~2) 

The analogue of Theorem 4 for weakly mixing sequences of events is 
evidently also valid. 

(Received 6 February 1958) 
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