IDEALS AND CONGRUENCE RELATIONS IN LATTICES

By
G. GRATZER and E. T. SCHMIDT (Budapest)
(Presented by A. Rénvi)

Introduction

One of the important tools of the lattice-theoretical researches is the
examination of lattice congruences. In connection with lattice congruences
arises the necessity of the examination of lattice ideals, for /e — the kernel
of the homomorphism induced by the congruence relation ® — is an ideal
(if it is any), and this ideal implicates a lot of properties of ©.

I[n this paper our aim is to examine the properties of lattice congru-
ences and the correspondence & — fo. Our main tools in the discussion are
two special types of congruence relations: the minimal congruence relations,
induced by a subset of the lattice L, and the separable congruence relations,
respectively.

In this paper we deal also with three problems of G. BIRKHOFF [2]."
We prove a result of J. HAsHIMOTO [14] (solving problem 73) in a new
and more simple way,” and get a new answer to the question raised in
problem 72; this has more applications to special cases than the original
solution of this problem given by T. TANAKA [18]. We obtained a more
general solution of problem 67 than ]. JAKUBIK in [15].

The paper consists of four parts. In Part 1 we deal with congruence
relations in distributive lattices. First we prove a theorem that describes the
minimal congruence relations in distributive lattices. By the help of this
theorem we get a good look at numerous properties of congruence relations in
distributive lattices, all of which are able to characterize the distributivity of
a lattice. We prove, finally, a theorem which is a far-reaching generalization

! Numbers in brackets refer to the Bibliography given at the end of the paper.

2 In his cited paper J. Hasummoro deals with the representations (tepresentation is a
homomorphism of a lattice onto a ring of sets) of a lattice, and with topologies which
are defined by special representations and inverse representations. Among the applications
of these general discussions one can find the solution of problem 73. This explains that
if we consider a single theorem independently of the others, then the proof seems o be
rather difficult. It has some interest that while ]J. Hasumoro uses the Axiom of Choice
during the proof, we succeeded in omitting if.
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of many known theorems (which are due to ]. HASHIMOTO and M. KOLIBIAR),
and contains the solution of G. BIRKHOFF’s problem 73 too. ‘

In Part Il we discuss with the help of the notion ‘“weak projectivity”
(introduced by R. P. DiLworTH [3]) the questions related to congruences in
general lattices. After three preliminary lemmas we get an answer to the fol-
lowing question: In which lattices is every congruence relation @ com-
pletely determined by the ideal /o consisiing of all x with x=07? Further on
we consider the least congruence relation @[/] under which a given ideal
is a congruence class. We point out that the correspondence /— @[/} is a
complete join-homomorphism and in case of distributive lattices it is moreover
an isomorphism. Finally, we turn our attention to some questions related to
weak projectivity.

In Part Il we deal with the notion of separable congruence relations.
After the definition and typical examples we prove some lemmas of prelimi-
nary character, some of which are interesting in their own right. Next we
turn to the problem of giving an answer to G. BIRKHOFF’s problem 72, by
applying the results concerning separable congruence relations. Then we use
these results in order to characterize the distributive lattices on which the
congruence relations satisfy the dual infinite distributive law.

In Parts Il and Il we get the results of J. JAKUBIK [15] — concerning
problems 72 and 73 of G. BIRKHOFF, in case of discrete lattices — as trivial
special cases.

We close Part III by analysing a question raised in problem 67 of
Q. BIRKHOFF.

After some preliminary theorems we deal in Part {V with the problem:
in which distributive lattices may a Boolean ring operation be defined? We
describe also in Part IV the types of these lattices and operations.

The kernel of this paper has been published in Hungarian in the pa-
pers [6] and [7]. We supplemented the results by several new ones. For
instance, the results concerning G. BIRKHOFF’s problem 67 are all new.

Preliminaries

Let L be a laftice. The elements of L are denoted by the letters
a, bc ..., x» z lf the lattice L has a greatest or a least element, then it
will be indicated by 1 and O, respectively. Proper inclusion will be denoted
by a> b, while the fact that a covers & will be indicated by a>b. The
lattice operations are denoted, as usual, by U and n, while Va, and Aa.

will mean the complete join and meet of the elements a., respectively, if
they exist. If o has a complement, it will be denoted by a’.



IDEALS AND CONGRUENCE RELATIONS IN LATTICES 133

{x, «(x)} designates the set of all elements x in L for which the pro-
position «(x), defined on the elements of L, is true.

The principal ideal generated by a is (a]=={x;x =a}, the principal
dual ideal generated by a is [@)={x; x = a} and the closed interval [a, b]
is {x;a=x=0b}.

The congruence relations on the lattice L are denoted by @, @,§, 1.
The set of all congruence relations on the lattice L is indicated by @(L).
The universal and the identical congruence relations are designated by ¢ and
m, i.e. x=y (¢) for all x,y€L; x=y () if and only if x=7y.

Ideals of the lattice L are denoted by the symbols /, /, K. The set of
all ideals of the lattice L is indicated by €.

The sets @(L) and £ under suitably defined partial orderings form a
lattice. This is assured by the following two assertions:

Under the natural partial ordering, ® = @ (O, ® <€ ©(L)) if and only
if x=y (®) implies x=y (D), O (L) form a complete lattice. Moreover,
let A be any set of congruence relations @ on L. We define two new relations
& and 7 by

(i) x==y() means x=y (O) for all @cA;

(i) x=y(n)) means that for some finite sequence X =2, 21, ..., Zn =Y

we have z,1==2 (6, for some O);€ A.

Then &, 1 are congruence relations; moreover 7 is the join and § is
the meet of all @ € A.

LEMMA 1. Let L be a lattice and £ the set of all ideals of L. Under
the set inclusion, € is a lattice with complefe union. If A is a subset of £,
- then we define K as the set of all x for which

XZ=)UpU-- Uk, Y€l
for some I, ¢ A. Then K is the complete union of the 1€ A.

The first assertion is due to G. BIRKHOFF [2]; we were unable to find
a proof of the second one in the literature, but the proof is clear from the
definitions, so we omit it.

Now we define some special congruence relations. Let S be a subset of L and
A the set of all congruence relations under which S lies wholly in one congruence
class. By BIRKHOFF’s theorem (cited above) the meet of the set of congruen-
ces A is again a congruence relation, and under this, too, all the elements of
S are in the same congruence class. Hence there exists a least congruence
relation under which the elements of S are in the same class. We shail say
that this is the congruence relation generated by S, and we shall denote it
by @[S]. A special case of great importance is when S contains only two
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elements @ and b; in this case @[S] will be designated by @, ,. A trivial
connection between the notions @[S] and @, , is the following

LEMMA 2. Let S be o subset of the lattice L. Then
(1) OS]=V 0.,,.

abeES

ProoF. Obviously, @, , = O[S] for all a,b€¢ S, hence V 6, = O[S].
a, bES

On the other hand, S is in one congruence class under Y @, ,, for x,y €S and
a, bES

x=y(V O, contradict 6., = V 6,,. Thus O[S]= VY 6,, by the
a,beS

a,bES a,bES
minimal property of @S], as asserted.

If L is a lattice, then L denotes a homomorphic image of L, under the
homomorphism a — @, i. e. @ denotes an element of L as well as the class
of those elements x of L for which x—a. If a congruence relation @ is
given, then the homomorphic image of L induced by ® (i. e. the lattice of
all congruence classes) will be indicated by L(®). If there exists an ideal
which is a congruence class under the congruence relation @, then we denote
it by lo. Clearly, /o is the kernel of the homomorphism induced by ©.

If in L all bounded chains are finite, then following J. JAKUBIK and
M. KouBIAR we speak of a discrete lattice. Further, if in L between all com-
parable pairs of elements there exists a finite maximal chain, then we call
the lattice semi-discrete. (These notions coincide in modular, moreover in
semi-modular lattices, see e. g. [10].)

At last, we shall denote by S and T the five element lattices generated
by the elements x, ¥, z such that the following identities hold:

S) x>y, xUz=yUz=1,xnz=ynz=0;
M xUy=xUz=yuz=1, xny=xnz=ynz=0.

I. CONGRUENCE RELATIONS IN DISTRIBUTIVE LATTICES

§ 1. Description of minimal congruence relations
in distributive lattices

It is well known that if @ is a congruence relation, then a=1>b (0) if
and only if aub=anb (@) (see [2]). From this trivial fact it follows that
we need consider only the problem of determining the comparable pairs of
elements congruent under the minimal congruence relation, which collapses
a comparable pair of elements. (We say that @ collapses a and b if they
are in one congruence class under ®)
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THEOREM 1. Given two elements a,b of the distributive latfice L with
a = b, the elements ¢, d € L with ¢ = d satisfy c=d (0.,) if and only if

2) (aud)nc=c
and
3) (bud)nc=d.
ProOF. We define the relation ® on L by putting
@ x=y (0)

if and only if c=xUy and d=xny satisfy (2) and (3).

From the identities (aux)nx=x, (bux)nx=x it follows that @ is
reflexive, and from the symmetry of x, y in the definition of @ it follows the
symmetric property of @. To prove the substitution law for @, let us sup-
pose x=y (@), and let ¢ be arbitrary, then from the distributivity of L and
from (2), (3), (4) we obtain

ufxun@udlinfxud)u(yudl={lavxnylutin
nlxupuf={lavxnylnxuyiut=xuy vi=(xUHu(yut);
and in a similar way

bulxunn@unlinixuhu(ruhl=Eu)n(yut);
furthermore
lavlxnt)yn(rndlinlxnHuynt)]={lavu(xnyln(@ut);n
nfxuyntl=auExninxuynflaut)nt]={auv(xnyn
Nnxuyint=(xuynt=&nt)u(ynt),
and likewise
bulxntn(yudlin[xnHun=E&n)nni).
Thus these equations show us that x=y (®) implies xut=yut¢ (®) and
xnt=ynt (O).
We show the transitivity of @ at first in case u=v=w, u=v (0),
v=w (). By (4) we get

() (auv)nu==u,
6) Guv)ynu=v
and

(7 (auw)nv=r,
) Guw)nv=w.
We prove

) (@uw)nu=u,

(10) Guwyna=w"
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which are by (4) equivalent o u=w (0). Clearly, from (7) we have aUw =y,
applying this fact, # = v, v =w and the distributivity of the lattice we get

(auw)nu=[auw)nujuv=_(@uwuv)n@uv)=(>@Uu)nu,

but by (6) u=(@Uv)nu, thus (aUw)nu=u, completing the proof of (9).
From v=w we get buv=bUw, hence, using (6) and (8),
Guwyna=@GBuw)n@Gu)na=>Buw)nv=w,
as asserted.
Now let us suppose u=v (), v=w (@) for arbitrary u, v, we€ L.
Applying the substitution law, it follows zUv=(zUs)U (kN W)=uUvUw (O),
uNuv=@no)N@Uw=@no)nwnw)=unvnw (M), i.e.

aUvUw=uuv (6),
uUv=unv (),
anv=unvnw (0).
But
uurUwZuUvZunv=unvnw,

thus from the previous paragraph it follows that zuvuw=unvnw (O).
From the substitution law by direct computation we obtain uUw= (U w)u
Uaw)=[(wuvuw)n@uw)]u@@nwy=[unvaw)n@uw)ju@nw) ==
=@nvnw)u@nw)=unw (O). This completes the proof of the transiti-
vity of @. ' '

We conclude that @ is a congruence relation. Furthermore, a=1¥6 (6),
so @®=0,,, 0,, being the least congruence relation with a=»~. Again,
x=y (O) implies in view of Theorem 1

xuy=fau(xnyin(xuy) and xny=[buxny]n(xuy).

a=b (0O,,) and so applying the substitution law twice to the elements
t=xyUyandf=xny,weget fau(xny]nxuy)=[bu(xnyIn(xuy)(Oqs)
which is equivalent to xUy=xny (0, if we take into consideration the
above equations. Hence x=y (@) implies x=y (0, ,), that is, O =0,,,
which compared with the inequality proved above gives the desired result,
® = @,,;, completing the proof of Theorem 1.

Some of the most important applications of Theorem 1 will be proved
in the following section.
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§ 2. Characterizations of distributive lattices

Some properties of congruence relations of a lattice are suitable to
characterize the distributivity of a lattice. We shall deduce such characteri-
zations from Theorem 1.

THEOREM 2. Each one of the following conditions is equivalent to the
distributivity of the lattice L :

(@) if c=d (Ouy), then a=d (or ¢ = b) is impossible whenever b = a,
d<c (a,b,c,declL);

(b) [b,a] is a congruence class under @, , for all b=a (a,b¢ L);

©) OueNOLa=w for all a=zb=c=d (a,b,c,d€ L),

(d) ©.,» has a complement in @(L) (for all a=b) such that c=a
implies c=a (0,) (a, b,c€L); ’

(e) if Cis a chain of the lattice L, then every congruence relation of
C may be extended to L such that the congruence classes on C remain the
same;

(f) for any ideal I and for any x=y, x=y (O[I]) if and only if
Xx=ypUwv for some v€l;

(g) the condttion (f) is valid for all principal ideals I;

(h) every ideal is a congruence class under some homomorphism

(i) every principal ideal is a congruence class under some homomeorphism.

Proor. First we prove that conditions (a)—(j) hold in a distributive
lattice L.

Let us suppose that c=d (@,,;) (@ = b, ¢ > d) and yet b =c, then from (3)
d=(bud)nc==c contrary to ¢ >d. We get a contradiction in a similar way
from a=d and (2). Thus the validity of (a) is a simple consequence of
Theorem 1.

From (a) we can easily deduce (b). Indeed, if c=a (0,,.) and c&lb, g},
then either cua >a or cnb < b holds (for, in case cUa==a and cnNb=b,
we should have b=c=aq, i. e. c€[b, a]). Butfrom a<auc and a=c (0,,1)
we get a=aUc (0,,), while b>cnb, c=b (O,,) imply b=cnb (O.,),
both are in a contradiction to (a).

Now we prove that (c) holds in L. Let a>b=c>d, x>y and
x=y (0,0 0O, 4). Then x=y (6, ,), hence by Theorem 1

(1 o @uy)nx=y.
We assert that cn(dux)>cn(duy). Indeed, if cn(@dux)=cn(dUy), then
from the equality cux=cuy (it follows from cux=cuy (0.q) and
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from (a)) we get cu(dux)=cuU(duy). Thus dux and d Uy are both relative
complements of ¢ in the interval [cn(dUx),cUx], hence dUx=dUy. From
(11) we infer x=(@Ux)nx=(dUy)nx=y, a contradiction. Obviously,
cn(dux)=cn(duy) (0,,) and 6.,,=06,,, so we get cn(dux)=
=cn(@Uy) (Ony) and a>bz=cz=cn(@ux)>cn(dUy), in contradiction
to (a). If a=0 or c=d, then there is nothing to prove.

Next let us consider condition (d). We define @ as the join of the
congruence relations @[[a)] and @{(b]]. Then @,,U ©®—:, because for all
x=y€L[x,y]<S[xnb,yua], thus from xnb=yuva (O,,UDP) we get
x=y (0, U D). Let us suppose that for some x,y€L (x=y) we have
x=y (@,,nP). This is equivalent to w<@,, and O,,=6,,n D.
From the latter @,,—=0,,n@,,n® and ®= V @, ,. Thus (using the

2 >YEg

U=Y==Y

infinite distributive law in @ (L), see in[2], {4}, orin § 1 of Partll) B, ,= @, ,n
NOsen V Oe=0,,nV(@.:n0O,.,) and from (¢) @,,n O, ,=— » which

u>v=0
< v=b

is a contradiction. So, @ = 0); ;. Obviously, ¢ = a implies c=a(D).

To prove the validity of condition (e), let a chain C be given in L,
and a congruence relation @ on C. We define the following congruence
relation of L: @ = >\b/eo .. We prove that ® has the desired property.

a=b(D)
Assume x==y (6), x,y€C. Then by BIRKHOFF’s theorem cited in the Preli-
minaries, there exists a finite number of pairs of elements a;, b; such that

a; < b; and a; = b; (D), furthermore x=y( \7 O,,;,5). If [x,y]cUla:, b, then
i=1

x=y (D) is valid too and there is nothing to prove. If x == y(®), then there
exists a part [x;, y;] of [x, y] with the property that for each i either a;: < b;=

=x <) or ; <y =a;<b;. Then from (¢) @, ,nV G, ==w which con-
tradicts @,,, =V O, s, =l
To verify condition (f), let the ideal / of L be given and let x=y,
x=y (O[I]). We prove that x =y (6,,;) for some a, b¢ /. Indeed, from Lemma 2
Ol]= IYEI@M, and by BIRKHOFF’s theorem there exists a finite number of
az=b

pairs of elements a; > b;, a;,b;¢l (i=1,2,...,n) such that x=y( \7@%%).
=1

Let a=Va; and b=Ab;, then a, b€/ and obviously x=y (6,.). Then by
Theorem 1 x=xn(auy), thus from the distributivity of L we get
x=(xna)uy, hence v=xna has the desired property. On the other hand,
it is clear that if x=yUv and v€/, then x=y (@[/]), so we have proved
the validity of (f).
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The conditions (g), (h), (j) are special cases of (f).

Now we prove that each one of the conditions (a)—(j) implies the
distributivity of L.

If L is not distributive, then it contfains as a sublattice a lattice, iso-
morphic to the lattice S or T, defined formerly. Since a lattice has one of
the properties (a)—(j) only if every sublattice of it has this property, so we
must prove only that the lattices S and T fail to have this property. Among
the conditions (f), (g), (h), (j) the last is the weakest one, hence in this step
of the proof we may omit the others. (b) is a consequence of (a), so we
may omit condition (a) too.

First we verify that the interval [0, )] is a congruence class under
no homomorphism in S and T. Indeed, if y=0 (®) for some @, then
x=xn(yuz)=xn(OuUz)=0 and xg[0,y], a contradiction. Hence it results
that in a non-distributive lattice conditions (a), (b), (f), (g), (h), (j) do not
hold. A similar trivial computation shows that conditions (c) (consider in S
the chain O, y, x and in T the chain 0, x,1), (d) (in S the interval [y, x], in T
the interval [0, x] play the role of the interval [, a]), (e) (see the chains
described at the condition (c)), do not hold in the lattices S and T. Thus
the proof of Theorem 2 is completed.

We mention that the conditions of Theorem 2 play a fundamental role
in our researches related to all properties of distributive lattices, not only
in this paper, but in the papers [9], [10], [11], [12] too.

Conditions (h) and (j) are the same as those of Theorem 2.2 of
J. Hasnimoro [14] (conditions (3) and (4)).

§ 3. A generalized form of G. Birkhoff’s problem 73

In his textbook [2] G. BIRKHOFF proposed the following problem:

Find necessary and sufficient conditions in order that the correspond-
ence between the congruence relations and ideals of a lattice be one-to-one.

More precisely:

Find necessary and sufficient conditions in order that the correspond-
ence ®—Jo be an isomorphism between (L) and £.

Applying Theorems 1 and 2, we get an answer to this question.

LEMmA 3 (J. HASHIMOTO’s theorem). In the lattice L there is a one-fo-
one correspondence (in the natural way) between the ideals and congruence
relations if and only if L is a distributive, relatively complemented lattice with
zero element.

10 Acta Mathematica 1X/1—2
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ProoF.

The necessity of the conditions. Obviously, I, is the zero ideal of L.
Every ideal of L is a congruence class under some homomorphism, so the
distributivity of L is assured by condition (h) of Theorem 2.

Now let us suppose that L is a distributive lattice with zero element.
We prove that L is relatively complemented. By a theorem of J. VON NEUMANN
(see [2], p. 114), it is sufficient to prove that if b < @, then & has a complement
in the interval [0, a]. Let V., be the ideal which consists of all uz with
u=0 (0.,.). Vo» is a congruence class under precisely one congruence
relation, hence a==b (O®[V..]). From condition (f) it follows that for some
v€V,» we have
(12) buv=a.

It is clear that v==0 (®,,s), hence from Theorem 1 (v and O play the roles
of ¢ and d)

(13) bnv=0.

(12) and (13) show that v is the complement of & in [0, a].

The sufficiency of the conditions. From condition (h) of Theorem 2 it
follows that every ideal of L is a congruence class under some homomor-
phism. Furthermore, every ideal is a congruence class under at most one
congruence relation, as it follows from the complementedness of the intervals
of type [0,a] (see [2], p. 23, or the Corollary of Theorem 4 in this paper).

Now we are ready to prove the general theorem.

THEOREM 3. Let L be a lattice and “a” a fixed element of L. Every con-
vex sublattice of L containing “a” is a congruence class under precisely one
congruence relation if and only if L is distributive, and all the intervals of
fype [a,b] (a = b or a<b) are complemented.

PROOF.

The necessity of the conditions. First we show the necessity of the dis-
tributivity of the lattice L. Let us suppose that L is not distributive; then it
contains as a sublattice either the lattice S or the lattice T. (x,y, 2 will indi-
cate the generators of S or T.)

We prove that z=a is impossible. Indeed, since xny==xUy, that is,
® = 0., v, is not equal to w, the congruence class which contains a
under @, is different from the congruence class which contains ¢ under w.
Thus the congruence class under ® containing a contains a further element x,
so we may pick out an element ¢ such that ¢cZa and
(14) c=a (O).

Now, according as ¢>a or ¢ <a, the interval [xnyna,a] or [a,xUyua]is
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a congruence class under no homomorphism. Let us discuss the case ¢>a
(if ¢ < a, then the proof goes on the same lines). Then a=xnyna (P) implies
(as in the proof of condition (b) in Theorem 2) x=y (P), for any @, so
xUy=xny (D), hence P=0, c=a (D) (see (14), but c¢[xnyna, da};
a contradiction.

Thus we have proved that xuUz=yUz and xnz=ynz are
impossible if z=a. So we may suppose by the Duality Principle that
xUa=yUa. We assert that under these hypotheses the interval [ynzna, y uaj
(which contains @) is no congruence class under any congruence relation.
Indeed, if yUa=ynzna, then

z=zU(ynzna)=zu(yua)=(Uy)Ua=zUxUaq,

furthermore xnNz=xnN(zUuxua)=x. But x=ynz yua=ynz=ynzna
and x§[ynzna,yua], a contradiction.

Summarizing the above proved assertions, we get that the existence of
the sublattices S or T contradicts the fact that every convex sublattice of L
containing a@ is a congruence class under precisely one congruence relation.

Our second aim is to prove the complementedness of the intervals of
type [a, 8] (@= b or a<b). Let b, > b, >a. Since @y, w, there exists an
element ¢, comparable with a, such that c=a (6, ). From condition (a) of
Theorem 2 we see ¢ < a is impossible. It follows that the congruence class under
®,,,5, which contains a is not empty and it is a part of [a). Hence in [a) the
condition of Lemma 3 holds, that is, [@) is relatively complemented. In a
similar way we get the relative complementedness of (a] too. The necessity
of the conditions is therefore proved.

The sufficiency of the conditions. Let L be a distributive lattice such that,
for a fixed a, the lattices (a] and [a) are relatively complemented. First we
show that the distributivity of L implies that every convex sublattice is a
congruence class under some homomorphism. Let D be a convex sublattice,
I and J the ideal resp. dual ideal generated by D. A trivial computation
shows that D is a congruence class under @[/]n @[]].

Secondly we prove that every convex sublattice containing a is a
congruence class under precisely one congruence relation. It is enough to
prove in case the convex sublattice consists of a alone, for if D is a con-
gruence class under more than one homomorphism, theii let us consider
among these the minimal one, ®@[D], and let L== L(®[D]) be the corresponding
homomorphic image of L. In L there are fulfilled all the conditions as in L
if the fixed element is a, furthermore the one element convex sublattice a
is a congruence class under more than one homomorphism of L. So we
succeeded in reducing the proof to a special case.

10%
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Now let us suppose that x> yp. It is enough fo prove the existence of
a ¢ with ¢==a and c=a (U,,). From the distributivity of L we obtain
aux>auyoranx>any (@aux=aUyand anx=any contradict x =k ).
Let ¢ be the relative complement of a Uy in the interval @, a U x] in the first
case, and the relative complement of anx in the interval [any,a] in the
second case. A trivial calculation shows that x=y implies c=a in both cases,
that is, the one element sublattice @ is a congruence class only under .
Thus the proof of Theorem 3 is completed.

The proof shows us that Theorem 3 may be sharpened by replacing
the condition “every convex sublattice containing a...” by the following
weaker one: “every interval containing a...”.

That the relative complementedness of the whole lattice is not a con-
sequence of the condition, it may be illustrated by the following simple
counterexample: L is the chain of three elements and a, the fixed element,
is the only element different from O and 1.

An immediate consequence of our Theorem 3 is the

COROLLARY. Every convex sublattice of L is a congruence class under
precisely one homomorphism if and only if L is a relatively complemented
distributive lattice.

Special cases of Theorem 3 were already known. Lemma 3 (the spe-
cial case a=0) was first proved by ]J. HasmimoTo [14] in 1952; a year
later G. J. AReSkIN [1] has proved Lemma 3, by supposing that the lattice
L is distributive and has a zero element. The Corollary was proved inde-
pendently of us — by supposing the distributivity of the lattice considered —
by M. KoLiBIAR [16].

We remark that we may get further theorems, too, as easy consequences
of Theorem 3. For instance, in [9] we have pointed out that the following
assertion of J. HAsHIMOTO [14] is also a simple consequence of Theorem 3:

A relatively complemented lattice L is distributive if and only if L has
an element g such that (a] and [a) are prime factorizable.

Using transfinite methods it results [11] that Lemma 3 may be sharp-
ened; in [11] we have published another very simple proof of Lemma 3.
Related to these questions we refer to [9] too.
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II. CONGRUENCE RELATIONS IN GENERAL LATTICES

§ 1. Some lemmas on congruence relations

In this section we prove three lemmas which will simplify the proofs
of several theorems in Parts I and IIl. A part of the merely technical Lemma 4
was proved already in Theorem 2.

LEMMA 4. Let & be a binary relation defined on the lattice L. § is a
congruence relation if and only if

@) x=x (&) for all x€L;
(b) x=y () is equivalent to xUy=xny (§) for all x,ycL;
(c) xzyz=zx=y (§) and y=z (§) imply x=2z (§);

(d) if x=y and x=y (), then xUt=yput (&), xnit=ynt ¢ for
all tel.

Proor. Obviously, it is sufficient to prove that a relation § satisfying
conditions (a)—(d) is a congruence relation.

By (a) § is reflexive, and by (b) it is symmetric too.

Let u=vw, u=v (§) and a, b€[v, u), then we assert a=>b (§). Indeed,
uzaUbz=anbz=v and from (dyun(@ub)=wvn(aub) (§) and un(@u b=
=vn(eub), thus applying again (d), aub=[un(aub)u(@nb)=[vn
n@udu@nby=—and (E) whence from (b) a=b (§), and the assertion
is established.

Next let x=yp (§) and y==z (§). On account of (b) xuy=xny (§),
thus from (d) xuyUz=(xUup)U(pu2)=@Eny)u(yuz)=yUz (§), simi-
larly, xnynz=ynz (§), that is, xuyuz=yUz=ynz=xnynz and the
consecutive elements are congruent modulo & so applying twice (c) we get
xuyuz=xnynz (§). Considering that x, z€[xnynz x U yuU 2], we conclude
x=z (§), i. e. § is fransitive.

The substitution law may easily be proved too, for if we assume x=y (§),
then from (b) and (d) xuy=xny () and (xupy)ut=(Exny) Ut (@),
but xUf, yut€f(xny)ut, xuyut], hence we obtain xut=yut (§) and
alike xnt=ynt (§), completing the proof of the Lemma.

We note that the conditions of Lemma 4 are independent and may be
weakened, e. g. (a) may be replaced by (@) x=y (§) for some x,y€L, but
we need only the above described form of Lemma 4.

Now we prove a lemma which sharpens for lattices a similar result
of G. BIRKHOFF for general algebras (see the Preliminaries).
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LEMMA 5. Let A be a subset of ®@(L). We define the relation n:x=y (n)
if and only if there_is a finite sequence xUy=u,Zu,= - ZU,==xX0NYy
satisfying w;=u;-, (6;) for some @;€A (i=1,...,n). Then n is a congru-
ence relation and n= Y\ 6,.

. 8,54

Proor. It is clear that if 7 is a congruence relation, then 7=Y@,.
Thus it remains to prove that # is a congruence relation. Obviously, it is
reflexive and symmetric. If x=y=z, x=y (n) and y=2z (1), then we have
two chains which connect x and y, resp. y and z, having the desired property.
Joining these two chains, we get one from x to 2z with the desired property.
At last if x=z=2z,=---=z,=y, then tUux=tUz=tUz = -=ftUz,—
=tUy, thus x=y (n) implies x Ut=y Ut (), and in a similar way we get
that it implies xni=ynt (n) too. We see 7 satisfies the conditions of
Lemma 4, that is, 7 is a congruence relation.

The importance of Lemma 5 should be revealed by the fact that it
decides in the interval [a, b] whether a=b is valid or not. For instance,
applying Lemma 5, it may be proved easily’ the notable theorem of N.
Funayama and T. Nakavama [5], according to which in ®(L) unrestrictedly
holds the infinite distributive law

(D) OnVO.=V(OnG,).

In proving (ID) it suffices to show that x=y and x=y (V(® n @,)) imply
x=y (OnV0O,). If x=y (V(®nO,)), then by Lemma 5 for some finite
sequence we have x=z0= 2z =---=2.,=), Zin=2 (On6), hence
2i1=2;(0), further on z,.1=2 (0;), so zi1=2z (VO.), consequently
zi1=2; (OnV O,), that is, x=y (@nY 6,), thus ONY B, =V (On O,),
g.e.d.

According to Theorem 1, in a distributive lattice under ®,,, (a = b)
the elements ¢, d, (c=d) are congruent if and only if c=(aud)nc,
d=(bud)nc. Now we generalize this theorem to arbitrary lattices.

Obviously, if
(15) [-(aub)ux]nx}ux)n---Jux,=—cud,
(16) [---([@nb)ux]nx}tux)n--Jux,=cnd,

then c=d (0,,,), as it follows from the substitution law.
The theory of congruence relations in arbitrary lattices is based upon
the notion of weak projectivity due to R.P. DILwORTH [3].

3 The idea of this proof of the theorem of Funavama and Naxavama is essentially due
to R. P. Diworta [3].
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DEFINITION 1.* Let L be a lattice and q, b, ¢, d € L. The pair of elements
a, b is weakly projective into the pair of elements ¢, d if for some x;,..., x, €L
the equations (15) and (16) hold.

In what follows @, b—c,d will denote that a, b is weakly projective
into ¢, d. Obviously, the relation — is transitive.

With the help of this notion we can easily describe the congruence
relation @, ;.

LEMMA 6 (DiLworTH [3]). ¢=d (0.,,») in the lattice L if and only if
for some finite sequence

(A cud=pz=yp = =yp—=cndonehas a,b—y: 1,y (=1,2,..., k).

ProOOF. It is clear that if ¢, d satisfy (17), then c=d (®,;). On the
other hand, let us define the relation & such that u=w» (§) if and only if
some sequence {y;} and ¢=u, d =v satisfy (17). Repeating word for word
the trivial calculation of Lemma 5 we get (applying Lemma 4) that & is a
congruence relation, completing the proof of this lemma.

CorOLLARY 1. Let L be a lattice and S a subset of L. S is a congru-
ence class under some congruence relation if and only if a,b,c €S and
a,b—c,d imply d¢S.

Proor. The assertion “only if” is trivial from the definition, and “if”
is obvious from Lemma 2 and Lemma 6.

From Corollary 1 and from Theorem 1 it results the well-known fact
that every convex sublattice of a distributive lattice is a congruence class under
some congruence relation. This proof gives perhaps more insight into the
cause of the validity of the above statement.

Another trivial consequence of this lemma is

CoroLLARY 2. A lattice L is simple if and only if for all a,b,c,d€L
there exists a finite sequence cUd=zy =21 =:-- =Z2z,=cnd ‘such that
a,b—»zi_l,zi (l :1,2,...,/1).

If L is a modular lattice and a covers b, then a,b—c,d implies that
c=d or ¢ covers d. Thus we are led to

COROLLARY 3. If in the simple modular lattice L there exists a pair of
elements a, b such that a covers b, then L is discrete.

4 Definition 1 is that of [6], but it may be shown easily that it is equivalent to that
of R. P. DiuwortH. The notation is the same as in [6].
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§ 2. Weakly complemented lattices

The notion of weak complementedness was introduced by H. WALLMAN
[19] for distributive lattices. Now we define the notion of weak comple-
mentedness® in general such that for distributive lattices this is equivalent to
that of H. WALLMAN.

DeFINITION 2. A lattice L with O is weakly complemented if to all
pairs of elements a,b (a=5=0; a, b€ L) there exists an element ¢==0 such that
a,b—¢,0. '

A ftrivial computation shows® that in a distributive lattice a > b and
a,b—¢,0 (c==0) imply anc >0, bnc=0. On the other hand, if anc>0 and
bnc=0, then putting ¢’ =anc we obviously have a,b->¢,0 and ¢ ==0.
This coincides with the original definition of weak complementedness in
distributive lattices.

Weak complementedness is not a homomorphic invariable property,
that is, there exists a lattice which is weakly complemented, but a suitable
homomorphic image of it is not relatively complemented. If this lattice is
distributive, then it is necessarily infinite (see the example in [11]), but
in the non-distributive case there are finite examples too; e. g. let L be the

following lattice: ~
2N
o]
AN

o
NN
G AN
AN ol
N
O
We can easily verify that this lattice is weakly complemented, yet L(®,, o) —
which is isomorphic to the chain of three elements — is not weakly com-
plemented.
G. ]. AReskiN [1] proved the following assertion :
Let L be a distributive lattice with zero element. Every ideal of L is
the kernel of at most one homomorphism if and only if every homomorphic
image of L is weakly complemented.

51t seems to be .unreasonable to change the definition of weakly complemented
lattices, for it is a well-known notion. Our motivation is: the original notion of weak
complementedness was successfully used only in distributive . lattices in discussing the
connection of topological spaces and distributive lattices [19] and in the researches of the
congruence relations of distributive lattices [1]. In general lattices only some theorems were
known which are based on the original definition. For this reason we propose the notion
of “weakly complemented in the stronger sense” for the original one.

6 It follows ftrivially from Theorem 1 too.
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Now we show that this theorem is valid for arbitrary lattices with the
above defined notion of weakly complementedness. This is a solution of the
most natural generalization of G. BIRKHOFF’s problem 73.

THEOREM 4. [In the lattice L every congruence relation is the minimal
one of a suifable ideal if and only if L has a zero and every homomorphic
image of L is weakly complemented.

For the proof a preliminary lemma is needed.

LEmmA 7. Let L be a lattice with zero element. The zero ideal is a
congruence class under precisely one congruence relation if and only if L is
weakly complemented.

ProoF. If the lattice L is weakly complemented, then the zero ideal is
a congruence class only under w, forif x==y, then there exists a z==0, with
x,y— 2,0, that is, 2=0 (@,,,), i.e. the zero ideal is not a congruence
class. On the other hand, let us assume that to the elements x, y there is
no element z with x, y —2,0. Then 2=0 (8., ,), z >0, is impossible, for if this
held, then from Lemma 6 it would follow the existence of a z >0 with
a, b— z, 0. Thus the zero ideal is a congruence class under » and @, , too,
a confradiction.

Now we prove Theorem 4. Let / be an ideal which is a congruence
class under at least one congruence relation. Obviously, / is a congruence
class under more than one congruence relation if and only if the zero ideal
of L(®]I]) is a congruence class under more than one congruence relation.
Thus the proof of Theorem 4 is completed.

If L is distributive, then we get from Theorem 4 the above theorem of

of G. J. AReSKIN.® On the other hand, we want to point out that every rela-
tively complemented lattice with zero element is weakly complemented, so as

a trivial special case of Theorem 4 we get a result of G. BIRKHOFF (see [2],
p. 23): :

CoRrOLLARY. In a lattice with 0, where all closed intervals [0, a] are
complemented, every congruence relation is defermined by the ideal consisting
of all x with x=0.

We can get another answer to the above-mentioned problem.

7 J. Jaxusi [15] and ]. Hasmmmorto [14] have also formulated in such a way the
more natural generalization.

8 Comparing Theorem 4 with Lemma 3 we get the following theorem of G. ]J. AreskiN
[1]: A distributive lattice with zero is relatively complemented if and only if every homo-
morphic image of it is weakly complemented. (A far-reaching generalization of this theorem
may be found in our paper [11])
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If a,b¢L, then V., will denote the ideal which is generated by all
x with a,b—x, 0.

THEGREM 5. In the lattice I every congruence relation has an ideal as
a congruence class and every ideal is a congruence class under at most one
congruence relation if and only if L is a weakly complemented lattice with
zero element and to all a,b € L there exist a y€ 'V, , and a sequence a U b—
—dy=di=--=d,—anb with y,0—>di1,d; (i=1,...,n).

Proor. We already know the necessity of the existence of a zero ele-
ment and of weak complementedness. The third condition is necessary too,
because if for a, b it did not hold, then V, , would be a congruence class under
more than one homomorphism. Indeed, if V,, were the kernel of precisely
one homomorphism, then a=b& (®[V,,:]) would be valid, and this means just
by Lemma 6 the validity of the third condition.

The sufficiency of the conditions follows from the fact that under these
conditions

a=b (®) if and only if V. ,S /e,
that is, /e determines the congruence relation. Indeed, if a==#6 (@), then
a,b—c,0 implies c=0 (@), that is, V,,S/. On the other hand, if
Vo, s & Io, then there exist a y€ V., and a finite sequence aUb=y, =), =
=...=y,—anb with 3,0y, ¥, but from yeV,,S/le it follows

y=0 (M) and so a=b (M), q. e. d.

Theorem 5 is a generalization of a theorem of ]. JAKUBIK [15}]. . JAKUBIK
dealt with discrete lattices and he got the conditions of Theorem 5 with the
small difference that the conditions on @, b- are supposed only if a covers b.
An easy computation shows that these -conditions are equivalent in discrete
lattices, and what is more it becomes trivial that it is valid not only in dis-
crete lattices but under that weakened condition, too, that L is semi-discrete.

§ 3. Minimal congruence relations generated by ideals

In this section we deal with the correspondence /- Q[/].

THEOREM 6. The congruence relation generated by the ideal V. is
VO], that is,

(18) @[vla]:vg[[a]
Proor. First we verify that if a=5 and a=¢, then
(19) @a,bu @a,c: @a,buu-
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Since a=b (O, 3..) and a=c (O ), thus O, ,U O, . =6, ,,.; on the
other hand, a=b (0.,,) and a=c (0,,.), hence a=bUc (@, U B, ), that
is, @y o= 0, .U O, .. These inequalities prove (19).
By Lemma 2, (18) is equivalent to
(20) Vo O,y=V V O
nye V I, aCA a,bET,
acA
Let us suppose that @&, , occurs in the right side of (20), then a, b€/, for

some e € A, hence a,b¢ V [,, thus we obtain that @, , occurs in the left
. acA

side of (20), i. e. (20) holds with = instead of =.
Conversely, let @, , be a congruence relation which occurs in the left
side of (20). By Lemma 1 this means the existence of such i, (€[, €A;

r=1,2,...,n) that x,y=ie U---Uls. Let u= /1\ iz, N(XNY). ‘Obviously,
r=1
ucl, (r=1,...,n), hence O, is, OCCUTS in the right side of (20). By (19)

\;’ 0,, =0 , =0,,, and so
r=1 T u \ iy

=1 7

@xyy é \/ V @a'yb’
nye V Iy aCA a,bEI,
acA
that is, (20) is valid.
Let us denote by @,[/] the least congruence relation under which / is a

congruence class. Obviously, @[I]=0,[{] if G,[I] exists.’

COROLLARY. [If @,lly] exists for all e € A, and also O\ I,) exists, then
aEA

V Oolle] = Ou[V/a]-

In Theorem 6 we have proved that the join of minimal congruence rela-
tions of ideals is a minimal congruence relation of an ideal. The analogous
assertion for the meet is not true as it may be shown by the example of
the lattice S. It would have some interest to give conditions under which the
meet of minimal congruence relations remains minimal. We assert only

LeMmA 8. Let L be a laftice with O on which every ideal is a congru-
ence class under at most one congruence relation. Let € denote the lattice of
all ideals in L which are congruence classes under some congruence relation.
Then € is isomorphic to (L), I. e.

@n @[a\e/A[“] =a\€/A@ [7.] (I €9),
(22) 2] [a/éAIa] :a’éf) [7.] (I.€%);

9 It would be of great interest to examine the lattice of all ideals for which 6,[/]
exists. One can easily prove that they form a distributive lattice.
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let (I K, X;, Y;€9)
I=X,2X\D---DX,=A
and
I=Y,0Y,D---OY, =K,
then there are refinements of these chains of common length.

PROOF. (21) was proved in Theorem 6. (22) follows from the fact that
the existence of 0 € L implies the existence of Al,; furthermore A/, is a con-
gruence class under A@[l,]. But Al. is a congruence class under at most
one congruence relation, hence A@®[l,]==O[AL}]. Thus we have proved
that the correspondence /— @[I] (/ € $) is an isomorphism, between € and

O(L), and so ¢ is distributive. Hence the JORDAN—DEDEKIND theorem is

applicable to €, and this assures the validity of the last statement.
Now we give a simple answer to the problem formulated above.

THEOREM 7. The congruence relations of the form ®[I] form a sub-
lattice of O (L) if

(23) O, oN O =0, for all a=ba=c.
PROOF. We must prove only
(24) OLn O[L]= 0O n 1),

for the same statement for joins was proved in Theorem 6. Applying Lemma 2,
(24) get the following form :

V O,.n Y @c,d: ' @xyy)

a, bEL e, A€ T, z,yELn,
thus from the infinite distributive law we conclude
(25) V (0N 0Og)= V 06,
6, b€ ;0 d€EL ayeELhnl

If @,,, occurs in the right side of (25), i.e, x,y€Lnl, then ©,, occurs
in the left side too, i. e.
V (0,00, V 0,
a0, bEI ¢, AET, x,yeL;nly
On the other hand, we see that if f=anbdbnend (a, b€/, ¢,dc i), then
by (23)
@a, v N @z’,(lé @aub,t 0 @cud,ﬂ = @(aub)n(cué’),f;

where (@ub)n(cud)yelnl, and t€l,nl,, i e every member of the left
side is less than or equal to a suitable member of the right side, and so

the inequality holds in the reversed sense too, completing the proof of (25).
The condition (23) is not necessary, not even in modular lattices.
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As an easy consequence of Theorems 1 and 7 we get:

COROLLARY. In a distributive lattice the congruence relations of type
O[I] form ¢ sublattice of G(L).

ProOF. Let a=b and a=c, then u=v (0,,,) and u=v (6,,.) under
the condition # =+ are equivalent to (Theorem 1)

(26) (auv)ynu=nv,

27) buv)ynu=u,

(28) _ (cUuv)nu=u.

From (27) and (28) by the distributive law

(29) u=unu=(>(huvynun(cuv)nu=[bnc)uv]nua.

(26) and (29) together mean by Theorem 1 that u=wv (@4 n.). Thus
O, N0, .=0,,.; the converse inequality is an immediate consequence
of Oy, Oy .= B4 pn.; the proof is completed.

We remark that this Corollary is an immediate consequence of condi-
tion (f) of Theorem 2 too.

The validity of (21) and (22) is assured under a lot of restrictions by

THEOREM 8. Let L be a dual infinite distributive lattice with zero ele-
ment. Then the congruence relations @[] form a complete sublattice of @ (L),
that is, (21) and (22) are valid.

PrROOF. It is enough to prove (22). This may be treated in a similar
manner as the Corollary of Theorem 7. It suffices to note that the zero ele-
ment assures the existence of A/l., and the dual infinite distributive law is
used in the proof of

/\ @a, by @a, Abg

which is analogous to (23). We omit here the detailed proof.

§4. Remarks on weak projectivity

Let four elements a,b,c,d be givenin L such that a,b—c¢,d and
¢,d—a,b. Then a=1b is equivalent to c=d under every congruence rela-
tion. The situation is the same if @, b and ¢,d are projective’ (which shall
be denoted by [a, 8] II[c,d] if a=b and c=d). The following problem
arises: give a necessary and sufficient condition under which a,b is

10 In the literature one speaks about the projectivity of intervals. We say that a, &
and ¢, d are projective if the intervals [aNb, aU b] and [cNd, cUd] are projective-in the
usual sense. Our definition is more convenient in the sequel.
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projective into ¢, d if and only if

(30) a,b—c,d and ¢, d—a,b.

Now -we consider two classes of lattices in which this condition holds.
THEOREM 9. Lef L be a
A) distributive, or

B) discrete, modular
lattice, then a,b and ¢, d are projective if and only if (30) holds.

Proor. Evidently, in both cases it is enough to verify that (30) implies
the projectivity of a, b and ¢, d.

A) By Theorem 1, (30) is equivalent to (we suppose that a = b, ¢ = d)

3YH (@ucynd==c;
32) (buco)nd=d,
(33) : (cuaynb=a,;
(34) duaynb==a.
Let us prove the equation bu(auc)=du(auc), i.e.
(35) buc=dua.

From (32) buc=d and from b=a we get buc=dua and, on the other
hand, from (34) aud = b and from d =c¢ we get aUd = b Uc; these inequa-
lities prove (35). The equations (31), (33), (35) show that the consecutive
members of the sequence of intervals [a, 8], [aUc, bU¢], [¢, d] are transposed,
that is, [a, b} [c, d], q.e.d.

We see that we have proved more than it was required by Theorem 9.
In addition we get

THEOREM 9. @, , =0, in a distributive lattice L if and only if
a,b and ¢, d are projective.

B) The proof may be decomposed into two assertions. These may be
proved by trivial induction, hence the detailed proofs may be omitted.

LEMMA 9. If L is a modular, discrete lattice and a,b,c €L, a=»b, then
under condition B we have

lla, bl =lavuc,buc] and lla,b]l ={[anc, bnd],
and if a sign of equality holds, then the corresponding intervals arefransposed.

ProoF by induction on [[a, b].

11 {]a, b] denotes the length of a maximal chain from a to b.
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Lemma 10. [f L is a modular, discrete lattice and a,b,c,d€L,
a=bc=d ab—cd, then
l{a, b] = I]c, d].

PrROOF by Lemma 9 and by an induction on the number of steps in
the definition of weak projectivity (the number n in (15) and (16)).

The proof of case B) may be completed as follows: if a=b and ¢ =d
and condition (30) holds, then i[a, b]==I[c,d] from Lemma 10, hence
{a,b] Il[c, d] from Lemma 9, q.e.d. ’

By repeated use of distributivity it is clear that if in a distributive
lattice a, b—c¢,d (a = b, ¢ = d), then for suitable p and ¢(€ L) the following
two equations hold (see Theorem 1 too):

(36) (@aup)ng=c,
37) (bup)ng=d.

Now we prove that this property characterizes the distributivity of the lattice L.

THEOREM 10. The condition a,b—c,d (a = b, ¢ = d) is equivalent to
(36) and (37) if and only if L is distributive.

Proor. The sufficiency of the distributivity is obvious. Therefore we may
restrict ourselves to the necessity.

Let us suppose that the stated condition holds. We prove that c >d =a
is impossible. Indeed, if d =a, then bUp =a, and so aUp = b U p, that is,
aup=>bup, consequently c==(aup)ng=(bup)ng==d, a contradiction.

It follows from Lemma 6, that ¢>d =a, c=d (0,;) is impossible,
hence from condition (a) of Theorem 2 we get the distributivity of L.

III. SEPARABLE CONGRUENCE RELATIONS

§ 1. The definition of separable congruence relations; examples

In this section we introduce the notion of separable congruence rela-
tion. This notion will enable us to solve many problems.

DEFINITION 3. Let L be a lattice and @ a congruence relation on L. &
isseparableiftoall a =& in L there existsachain a=2 =21 =--- = 2,==0
such that for each i either zi.1=2z (O) or (z;.1=E2:(0) and) x, Y€[zi 1, 2,
x=y (O) imply x=y.

We also say that this chain {z:} is separated modulo ®, or @ separates
the chain {z;}, or a and b are separated modulo ® by the chain {z;}.
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We get immediately from the definition:

LEMMA 11. [If the laftice L is semi-discrete, then all congruence relations
on L are separable.

Now let us consider an example of a non-separable congruence rela-
tion. Let L be the chain of all positive integers, together with 4-oo. We

define x=y (@) if and only if x=2i, y=2i+1 for some i=1,2,....
Obviously, ® is non-separable, e. g. no chain separates 1 and - co.

From the definition it is also clear that if & is separable, then between
all a, b (a = b) there exists a maximal chain such that on this chain there is
but a finite number of congruence classes with more than one element
under @. Indeed, every maximal chain which refines a separating chain has
the required property.

The converse statement is in general not true. It is neither true that if
® is a congruence relation such that between all @ > b there is a maximal
chain with the property described above, then @ is necessarily separable.
The statement: if @ is separable, then all maximal chains between any a =&
have the property described above, is also false. Counterexamples may be found
in §4 of this Part, see examples (A) and (B).

Some typical examples on separable and non-separable congruence

relation will be shown by the following lemmas.

LEMMA 12. Let L be a lattice with the greatest element 1, and [ a
neutral ideal® of L. ®[I] is separable if and only if I is a principal ideal.

ProoF. If 1 and y(¢[) are separated under @{/] (/== L) by the chain {z;}
{i=1,...,n), then it may be supposed that z, =y, z;=1 (n=23). There is
no subinterval of [z,, 1] which is congruent under @[/], thus z, is the gener-
ating element of /. On the other hand, if /={(q], then x =y may be sepa-
rated under @[/] by the chain y=xn(yua)=x."

The following is a significant example of a non-separable congruence
relation of distributive lattices.

LEMMA 13. Lef an infinite sequence of elements a=a, < b, < --- <a; <
<bi<---<b be given in the distributive lattice L. Then \ @, s, is not
=1
Separable.

12 This example is generalized by Lemma 13.

13 The ideal 7 of the lattice L is called neutral if for any ideals J, K of L, the sub-
lattice of the lattice of all ideals of L generated by I, J, K is distributive. If [ is neutral,
then x=y under @[/] if and only if (xNy)Ui=xUy for some i€l For this fact we
refer to [2], pp. 28, 79, 119 and 124, or to [14], p. 167.

4 If in Lemma 14 we omit the condition that L has a unit element, then the
assertion does not remain valid.
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PrROOF. Suppose that @ =V @, ,, is separable, and let {z;} be a chain
which separates @ and b (a=z<z<:-<z.=0b). If 2.1=2; (), then

Zi1 Ezi(\? @% v;,)» that is, already a finite number of the [a:, b] generates all
1=1

congruences on the chain {z;}. Let [a;, b] be an interval different from the
above ones.Let &, »,, be the complement of ®,, , (see condition (d) of
Theorem 2), then a=0 (Ou,, o, U O's, 1), A= (O's,, »,) (for a:==b: (0Vs,, 1))
Hence for a suitable index j we have z;.15=2; (&', »,). According to Lemma
5 applied to 2z,.1=2; (0's, 5, U O, ), there is a pair of elements u, » such
that zzn=u<v =z and u=v (O, »). On the other hand, z;.1=2; (),

that is, u=v (®) whence u=v (VY @%‘w”h)' Comparing this with
I=1 i
the above congruence we get u=v (0, N VO, o), that s,
=1

u=v (\n/(@ajl, bjln@“h”t))' From the conditions of the Lemma and from
=1

laj,, b;] = [a:, b:], we get for each [ either a;, < by, < a: <b; or &< b < a;, < by,
Thus by condition (c) of Theorem 2 we get @%’ b, N ©.,, »,— o. Hence the
above congruence becomes u=v (), i.e. u=w, in contradiction to u <.

The proof is completed.
Now we prove

LEMMA 14. The separable congruence relations on L form a sublattice
O,(L) of GO(L). Oy(L) contains ¢ and .

PrOOF. It is clear that ¢ and w are separable, so @,(L) is not the void
set. Furthermore, let &, @ € O,(L), and let a=b (a,b¢€ L). The chain {z;};
separates @ and b modulo @, and let {u;}; be a chain which separates z; and
z;-1 modulo @. A rather simple computation shows that the chain {u; ;}; ; sepa-
rates @ and b modulo ® U @ as well as modulo & n @, completing the proof.

@ (L) is distributive, hence its center ®.(L) is the set of all congruence
relations having a complement. It is well known that ®,(L) is a sub-
lattice of @(L). (It is trivial from the identities (@u @Y =®"n @ and
Ond)=6'ud)

LEMMA 15. If the congruence relation & has a complement, then it is
separable, that is, @,(L)S O,(L).

ProoF. By Lemma 5, to all a> b there exists a chainga=z,=---=2,=0
such that either z;=z;.1 (O) or z;=2z;;y (@) for every i. We assert that
the chain {z;} separates a and 6 modulo ®. Indeed, if x,y €[z, z;-1] and
z;=E2i1 (0), furthermore x=y (@), then from x=y (') we get
x=y (@n@E), that is, x=1y, q. e. d.

11 Acta Mathematica IX/1—2
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COROLLARY. In a distributive laftice all congruence relations of the form
G, are separable.

This is an immediate consequence of condition (d) of Theorem 2 and
of Lemma 15.

§ 2. Weakly modular lattices and G. Birkhoff’s problem 72

First of all we introduce the notion of weakly modular lattices. It plays
an important role in the discussion of problem 72 as well as in our resear-
ches concerning the so-called standard ideals (see [8]).

DEFINITION 4. The lattice L is weakly modular if a,b—c,d
(a<b,c==d, a,b,c,d € L)implies the existence of elements a,, & (a=a, <b, =b)
such that ¢, d—ay, b;.

The weakly modular lattices are a common generalization of the modu-
lar and relatively complemented lattices™ as it is assured by

LEMMA 16. /f L is a

(a) modular, or

(b) relatively complemented
lattice, then it is weakly modular.

PrOOF. The case (a) is an immediate consequence of the isomorphism
theorem for modular lattices (we refer to [2], p. 73). Now consider case (b).
Let @ >b and anx>y=bnx. Then denoting by z the relative complement
of y in the interval [bnx,anx], we have anx,y—b,bUz and b<bUz=a,
for [anx)nz]ub=0bUz and (yNz)Ub—2>. In the same lines it may be
proved that in case a>b,aux=y>bUx, we have bUXx,y—a,a for

15 The necessity of a common generalization of modular and relatively complement-
ed lattices has arisen in many cases. Let us consider an illustrative example. DrwortH
and Hauw [4] proved — generalizing a theorem of G. Brrknorr — that every weakly atomic
(a lattice is called weakly atomic, if any a>>b implies the existence of ¢, d with az=c >~ d=10)
modular lattice is the subdirect product of projective lattices (a projective lattice is a lat-
tice in which all prime intervals are projective). ]. Hasummoto [13] proved a similar result for
relatively complemented lattices. Thus the necessity of a theorem arises which is a com-
mon generalization of the above mentioned ones. Let us call the lattice L weakly projec-
tive if for any pair of prime intervals p, g the relations p — g and g — p hold (the notations
are that of § 3). Obviously, any weakly projective modular or relatively complemented lattice
is projective. We assert: Any weakly atomic, weakly moduwlar lattice is a subdirect product
of weakly projective lattices. The proof goes on the same lines as the proof of the asser-
tion of Diuwortn and Haui, or, what is the same, the proof of ]. Hasummoro. This is also
a consequence of Lemma 18.
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suitable @ >a, = b. The proof may be completed by an easy induction on n
of Definition 1.

From Lemma 16 it is also clear that the weakly modular lattices gener-
alize the modularity in another way than the semi modularity. We remark
that by the Corollary 2 of Lemma 6 all simple lattices are also weakly
modular.

An important property of weakly modular lattices is proved in

LEmmMA 17. Let L be a weakly modular lattice and @ a congruence rela-
tion on L. Define x=y (O) if and only if in the interval [x Ny, x U y] every
congruence class under ©) consists of a single element. Then @ is a con-
gruence relation, furthermore @ is the pseudo-complement™ of ® in G(L).

Proor. Owing to the definition of @, it is reflexive and satisfies the
condition (b) of Lemma 4. Let u>v>w,u=v (6") and v=w (@) and
let us suppose that for some u=x>y=v we have x=y (). Since
x=y (0,.U0,,), from Lemma 5 it follows the existence of x;, y; such that
x=x, >y =y and either u, v — X, ¥, or v, w—X,,y,. From the weak modu-
larity it results that X, y,— v, W, for some v=w,>wW=w or X,y — U, 1,
for some u=u; >v=v. But x=y (@) implies v,=w, (O) or 1,=1n, (O),
in contradiction to v=w (O%) orto u=v (B"). The cases u=v and v=w
are trivial. Finally, we prove that x=y and x=y (@) imply x U=y U (O).
Indeed, if xUf=yut (@) is not true, then u=w» (®) is valid for some
xUtz=u>v=yUtf From the weak modularity it follows that 7, »— X7y,
for some x=x, >y, =y, thatis, x=y () is false. Thus we have proved
the validity of the conditions (a)—(d) of Lemma 4, and so ®" is a con-
gruence relation. The last assertion of the lemma is clear.

COROLLARY. Any separable congruence relation of a weakly modular lat-
tice has a complement, that is, &,(L)= 6.(L).

PROOF. Let @ be separable; we assert that the congruence relation ®*
of Lemma 17 is the complement of @. Indeed, if a=b (q,b€ L), then let
Q=z,=2,=---=2,—b be a chain which separates a and & modulo @. If
zi== zi.1 (0), then by the definition of @* it follows z;=2z4.1 ("), whence
a=b (0 U O"), completing the proof of @ U G =..

Now we proceed to problem 72 of G. BIRKHOFF (see [2], p. 153):

Find necessary and sufficient conditions on a lattice L that its con-
gruence relations should form a Boolean algebra.

16 Let L be a lattice with 0. The element a* is called the pseudo-complement of a
it xNa=0 is equivalent {0 x == q*.

11*
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First T. TANAKA [18] gave an answer to this question.” He got the
following interesting theorem which is a generalization of a theorem of R. P.
DiLwoORTH [3}: v

The congruence relations of the lattice L form a Boolean algebra if and
only if L is a discrete subdirect product of simple lattices. (Discrete sub-
direct product is a subdirect product in which any two elements differ only
in a finite number of components.)

The theorem of T. TANAKA may be considered as the structure theorem
of lattices L for which ©(L) is a Boolean algebra. However, in some
respects the following theorem is more applicable to interesting special
cases:

THEOREM 11. The congruence relations of the latfice L form a Boolean
algebra if and only if

(W) L is weakly modular
and

(S) all congruence relations on L are separable.

PROOF.

The necessity of the conditions. Let us suppose that ®(L) is a Boolean
algebra for the lattice L. Then by Lemma 15 all congruence relations are
separable, hence (S) is necessary.

Let us suppose that a,b—c, d (@ > b, c==d). ©, , has a complement, let
us denote it by @. Now, a=b (0, .U D), but in case a=b (D), it follows
that c=d (@) which is impossible, so a==é (®). Thus Lemma 5 implies
that for some a=aq, > b, = b the relation a,=¥8, (6, ,) holds. By Lemma 6
this implies that for some a,=a, > b,= by, ¢, d— ay, b, is valid, thus in case
®(L) is complemented, (W) holds.

The sufficiency of the conditions. By (W), 6,(L)=6,(L), as it was
proved in the Corollary of Lemma 17. Condition (S) is equivalent to @(L)=
== @,(L), thus O(L)=0,.(L), as we wished to prove.

We get from Theorem 11 a lot of Corollaries.

CoroLLARY 1. The lattice of all congruence relations of a

(a) modular, or

17 The result of T. Tanaka remains valid in abstract algebras, too, this explains that
for lattices one can get sharper results. We note that while the result of T. Tanaxka de-
pends on the Axiom of Choice, our result does not use it.
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(b) relatively complemented™®
lattice is a Boolean algebra if and only if the condition (S) holds.

It follows from Theorem 11 and from Lemma 16.
In case the distributivity of L is assumed, we can get further improve-
ments.

CoroLLary 2 (Theorem of j. HasHmoTo [14]). The lattice of all con-
gruence relations of a distributive lattice L is a Boolean algebra if and only
if L is discrefe.

Proor. By Corollary 1 it is enough to prove that in distributive lattices
(S) is equivalent to the discreteness of L. Indeed, if L is discrete, then by
Lemma 11 (S) holds. On the other hand, if L is not discrete, then by the
usual method of bisection of intervals we get a sequence of elements re-
quired in Lemma 13, so that, by this lemma it follows the existence of a
nonseparable congruence relation, that is, condition (S) is false.”

In case of modular complemiented lattices, SHIH-CHIANG WANG got a
condition for the complementedness of @(L).

CoroLLARY 3 (Theorem of SHIH-CHIANG WANG [20]). The lattice of ail
congruence relations of a complemented modular lattice is a Boolean algebra
if and only if ail neuiral ideals are principal.

Proor. By a theorem of (. BIRKHOFF, every congruence relation of a
complemented modular lattice is a minimal congruence relation of a neutral
ideal. By Lemma 12, the minimal congruence relation of a neutral ideal is
separable if and only if the ideal is principal, and so Corollary 3 follows.

It is surprising that Corollary 3 which seems to be true only in comple-
mented modular lattices remains true after omitting the condition of modu-
larity, provided that we replace neutral ideals by standard® ones. In [8] we
proved that every congruence relation of a relatively complemented lattice
with 0 and 1 is a minimal congruence relation of a standard ideal, thus the
proof of Corollary 3 may be applied to establish

18 The results of this section were published in [7] in 1957. At the same time,
J. Hasumioro published in [13] the following result: If in L the restricted chain condition
holds (that is, in every (closed) interval of L the maximum or the minimum condition
holds) and L is relatively complemented, then @(L) is a Boolean algebra. Indeed, the
restricted chain condition is a special case of semi-discreteness, further, on any semi-
discrete lattice all congruence relations are separable (Lemma 11), thus the assertion follows
from the part (b) of Corollary 1.

12 For a direct proof of Corollary 2 see our paper [I2].

20 We have introduced the notion of standard ideals in [8]. Among the more than
seven equivalent definitions now we formulate only the following two: (a) the ideal [ is
called standard if for any ideals J, K of L the relation JN(JUK)=(Jn 1)U (JnK) holds;
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CoroLLARY 4. The lattice of all congruence relations of a relatively
complemented latfice with O and 1 is a Boolean algebra if and only if all
standard ideals are principal.

We get other types of Corollaries if we restrict our consideration to
discrete or semi-discrete lattices. In semi-discrete lattices (S) is valid (Lem-
ma 11). We prove that in semi-discrete lattices (W) is equivalent to

(J) weak projectivity between prime intervals is symmetric.

(The interval [a, b] is called prime if & covers a.) Indeed, if (W) holds
and b covers a, d covers ¢, a,b-—c,d, then for some b=b,>a,=aq,
¢, d—a, b, is valid, but from the covering relations we infer b=#6, and
a=a, hence (J) is valid. On the other hand, assume the validity of (J),
and let a,6—c,d, a<b. Let a=x,<x, <--<X,=¥& be a finite maximal

chain between ¢ and 6. Then ¢c=d ( Lnj 0., -, ,), so that by Lemmas 4 and 5,
=1

for some cnd=¢ —<ﬁ_§_cu d and for some I, Xx; 1, X;— ¢, d; is valid. But
then by (J) ¢, di—x;, x;.; and the assertion follows. Thus we have

COROLLARY 5. The lattice of all congruence relations of a semi-discrete
lattice is a Boolean algebra if and only if the relation of weak projectivity
between prime infervals is symmetric.

Corollary 5 in case of discrete lattices was firstly proved by ]. Jaxusik [15].
We shall weaken the conditions of Corollary 5 in the following section.

§ 3. Special properties of O(L)

If we can construct from the lattice L a new lattice, then it is always
interesting to characterize those lattices for which the new lattice has some
special properties. So, for instance, the characterization of those lattices for
which @(L) is a Boolean algebra was the content of § 2. Now we consider
further problems of this kind.

(b) the ideal 7 is said to be standard if x =y under &[/] if and only if (xNyyUt=xUy
for some ¢t€ 1 From (a) it is clear that the notion of standard ideals is a generalization
of the neutral ideals; from (b) we see that the proof of Lemma 12 for standard ideals
remains .valid.

In [8] we have proved Corollary 4 in another way. We can sharpen Corollary 4,
for in [8] we have proved that in a weakly modular lattice all standard elements are neutral
and in a relatively complemented lattice all ideals which are congruence classes under
some congruence relation are standard, thus we get: the lattice of all congruence relations
of a relatively complemented lattice with 0 and 1 is a Boolean algebra if and only if every
ideal which is a congruence class under some congruence relaticn is a principal ideal.
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We know that in ®@(L) the infinite distributive law

(ID) &nYVO.=V(On 6B,)
holds, but, as it was pointed out by N. Funavama and T. Nakavama [5],
the dual law

(DID) GUAB.=A(B U B,)
does not hold in general. Let us consider the lattices in which (DID) does
hold. First we prove

LEMMA 18. Let © be a separable congruence relation of L. Then for
any subset A of (L)

OU A O.= A (OUBO,)
0,4 0,64
is valid.

Proor. Since @ UAO.=A(O U B,) is true in any complete lattice, it
is enough to verify that OUAG.=A(OU B,). Let x=y (A(OU B,));
since ® is separable, there exists a chain xUy=z=z=---=2,=xn y
separating x Uy and xny modulo @. If z,==2,; (@) for some i, then from
zi.1=2; (N(O U On)) we get 2= 2, 1 (A O.). Thus for every i either z;=2z;_1 (0)
or-zi=2,1 (AOs), that is, x=y (@ UAB.), which we intended to prove.

COROLLARY. If all congruence relations on L are separable, then (DID)
holds unrestrictedly.

Lemma 18 or its Corollary may not be conversed, as it will be shown
in § 4 by a counterexample (example (C)).

Now we characterize the distributive lattices L such that in ®(L)
(DID) holds.

THEOREM 12. In the lattice of all congruence relations of a distributive
lattice (DID) holds unrestrictedly if and only if L is discrefe

Proor. If L is discrete, then all congruence relations on L are separable
by Lemma 11, thus, by the Corollary of Lemma 18, (DID) holds in G(L).
On the other hand, assume that (DID) holds in & (L). Let @€ @(L).
then @ =V ©,,. By condition (d) of Theorem 2 any ®,, has a com-

a=b(0)

plement &;,. Put ®— A 0, then by (ID)

a=b(0)
OND=V0O,,n(AOL) =V(O0s NAOL)=V(O0, 0 O 1) =V =0,
hence ®n ®— w, and from (DID) '
OUD=VO,, UANO,)=A(O: s UVOu) ZA(OLU B 1) =1,

21 A simple proof of Theorem 12 was published in our paper [12].
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(the A and Y are extended to all a, b with a=0b (®) in all above formulae),
thus @ U @ =, that is, @ is the complement of ®@. Thus @(L)is a Boolean
algebra, hence from Corollary 2 of Theorem 11 L is discrete and the theorem

follows.
E3

Now we consider a question related to problem 67 of G. BIRKHOFF [2].

Let P be the set of all prime intervals of the lattice L; the elements
of P are denoted by p,q. If p==/|a, b] and ¢ =/, d}, furthermore a,b—cd,
then we write p—¢. The elements of P under the relation — are quasi-
ordered, thus if we identify those p,q for which p—g¢g and ¢—p simul-
taneously, then we get a partially ordered set which will be denoted also
by P. Now we are seeking for a condition under which & (L) == 2F. (2 denotes
the lattice of two elements. The definition of 27 may be found in [2], p. 8.)

LEMMA 19. For any lattice L, 2% is a complete homomorphic image of
B (L).

ProOF. We say that the congruence relation & collapses the prime
interval p, if p==|[a, b] and a=b (@). We call a subset A of P s-ideal, if
pEA and p—g imply g€ A. We assert that every s-ideal may be regarded
as the set of all prime intervals collapsed by some congruence relation.
Indeed, if ® is a congruence relation, then the set of all collapsed prime
intervals A form an s-ideal, for if p€A and p-»gq, then g is also collapsed
by @. On the other hand, let A be an s-ideal of P, and let us define
6= [V] A@a,b. Under @ the prime intervals of A are collapsed, further-

p={o, 5l€
more if ¢ is collapsed by @, then g=/a, b}, a=0b (@), thus, by Lemmas 4
and 5, p—»q for some p< A, hence g€A.

In a similar way we get that if under @ and @ the collapsed prime
intervals are Ags and Ae, respectively, then under @ U @ and ®n @ the col-
lapsed prime intervals are As U Ae and Aes N Ae, where U and n denote the
set theoretical meet and join. Thus the set B of all s-ideals of P, partially
ordered under set-inclusion is a homomorphic, moreover, a complete homo-
morphic image of @(L) (naturally the void set is also regarded as an s-ideal).
It is evident that B is isomorphic to 27, completing the proof of Lemma 19.

A trivial condition concerning the problem under discussion follows
from Lemma 19.

THEOREM 13. The isomorphism @(L)==2F holds if and only if to any
pair @ > @ (G, @ cB(L)) there exists some p € P collapsed by & but not by .

PROOF. Since 27 is a homomorphic image of (L), the condition of
Theorem 13 is necessary and sufficient in order that this homomorphism may be
an isomorphism. Q. e. d.
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As a trivial consequence of Theorem 13 we get immediately a sharpened
form of a theorem of ]. JAKUBIK [15] (he restricts himself to discrete lattices;
in § 4 we prove by examples that the following Corollary is more sharpen
than JAKUBIK’s theorem):

CoroOLLARY 1. [f L is a semi-discrete lattice, then @(L)==2F.
Instead of proving it we shall verify a more general assertion.

COROLLARY 2. Let L be a weakly atomic lattice with separable congru-
ence relations. Then @(L)~=2F.

ProOOF. It is enough to prove that if @ > @, then there exists a prime
interval p which is collapsed by ® but not by @. As a matter of fact, there
exists a pair of elements ¢,b with a>b, a=0b (®) and a==b (P), and
there exists a chain which separates ¢ and b modulo @; let a=2,=---= 2,=0
be this chain. Choose an index i for which z;==z;.1 (®). Then no subinter-
val of [z;, zi-1] is congruent under @. By weak atomicity there is a prime
interval p in [2;,2:1]; thus p is not collapsed by @ but is collapsed by &,
completing the proof.

Theorem 13 and Corollary 2 may be regarded as a general solution of
G. BIRKHOFF’s problem 67.

From Corollary 1 one can deduce Corollary 5 of Theorem 11 using
only the fact that 27 is a Boolean algebra if and only if P is unordered.®
Thus from Corollary 2 of Theorem 13 we get a generalization of Corollary
5 of Theorem 11:

Let L be a weakly atomic lattice with separable congruence relations.
O (L) is a Boolean algebra if and only if weak projectivity is a symmetric
relation among ifs prime intervals.

§ 4. Counterexamples

Now we construct some counterexamples to questions raised in Part III.

(A) There is a lattice having a congruence relation & and a maximal
chain C such that @ induces on C an infinity of congruence classes
of more than one element.

22 Let us prove that 2 is a Boolean algebra if and only if Pis unordered. Indeed, if
P is unordered and f €2P, i.e. fis an isotone function from P to 2, then define g by
g(@=0if fle)=1 and g(a)=1 if f(a)=0. Obviously, g is the complement of f in 27
On the other hand, if x, y€ P and x >y, then consider the function f for which f(x)=1,
F(N=0. If g is the complement of f, then max(f(a),g(@))=1 for all a € P, that is,
£(y)=1, min (f(a), g(a))=0 for all a € P, whence g(x)=0, g is not isotone, a cont-
radiction.
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ExampLE. Let P be the chain of all non-positive integers together with
— oo, with the natural ordering. In the cardinal product of P with itself let
us consider the congruence relation @ == B ( 0 and a maximal chain C
which consists of all elements of type (x, x). By the Corollary of Lemma 15
@ is separable, yet on the chain C it induces an infinity of congruence
classes with more than one element.

(B) There exists a lattice L on which there is a non-separable congruence
relation @ with the property that any a, b (a = b) may be connected by a
maximal chain on which there is but a finite number of congruence classes
of more than one element.

ExampLE. Let P be the chain of all non negative integers and let L be
the fattice P-P bounded with /, and @ = \/ Beineis,e. By Lemma 13, @

is non-separable. Let a > b. We may suppose a==1 unless [b,a] is finite.
If a=1, then a chain with the required properties is formed by the elements
(b,, x), where b= (b, b,) and x runs over the numbers b,, b,-1-1,b6,--2,....

It is of some interest that examples (A) and (B) could be constructed
among distributive lattices.

(C) There is a lattice L with the property that in @(L), although the
dual infinite distributive law unrestrictedly holds, yet there are non-separable
congruence relations.

ExampLE. Let P be again the set of all non-negative integers and let
L consist of P and of three new elements 7/, x,y. L will be a lattice if the
partial ordering of P remains the usual and the following relations hold:
XUi=yUi=xUy=xUl=yul==|
xni=yni=In0=0 forall i€P.
Let us have a look over the congruence relations of this lattice L. It is easy
to verify that /=i and i=0 (i5=0) hold only under «. This implies that
with the exception of ¢ all congruence relations of L are those of P, in the sense
that the congruence relations of P are extended to congruence relations of L
such that the congruence classes outside P consist of one element only.
In ®(P) the law (DID) is satisfied as we proved it in Theorem 12, thus a
trivial calculation shows its validity in @& (L) too. Yet in ®(L) there are non-
separable congruence relations, for instance, let x=y (@) if and only if
x=2i+1 and y=2i{ (i is arbitrary, i € P, i = 0), then one cannot separate
e.g. 1 and L
Naturally, all counterexamples of type (C) are non-distributive, for if
L were distributive, then by Theorem 12 it would follow that L is discrete,
hence by Lemma 11 all congruence relations on L are separable.
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(D) There is a semi-discrete but not discrete lattice L, with the pro-
perty that @ (L) is a Boolean algebra.”

ExamPLE. Let L be the set of all non-negative integers. We partially
order L by putting
2i—1<2i<Q,
2i—1<2i+41
Then L is a lattice which is obviously non-discrete but semi-discrete, fur-
thermore L is simple, that is, it has all the required properties.
(E) There is a weakly atomic, not semi-discrete lattice L with separable
congruence relations such that & (L) is a Boolean algebra.*

(i=1,2,...).

ExampLE. Let L be the lattice of all partitions of an infinite set. Then
L is a simple, weakly atomic lattice (for the proof we refer to O. ORE [17]),
thus it satisfies the required properties.

IV. BOOLEAN RING OPERATIONS ON DISTRIBUTIVE LATTICES

§ 1. A characterization of relatively complemented distributive
lattices

In this section we prove a theorem which enables us to prove the
main theorem of this part without complicated computations.

Let
fillt, ooty X, oo ey Xon)

"702’(1117 vy Uny Xyyoon,y xm)

be lattice-polynomials with the variables x;.

and

THEOREM 14. [n a relatively complemented lattice L the system of equations
(38) fi=; (i=1,2,...,k)

has a solution for any

Ui=0y, ..., Uy =0y (qiel;j=1,2,...,n)
if and only if (38) has a solution in 2 for any
y=>by, ..., u,=b, (;€2;7j=1,2,...,n).

We remark that if m =0 (that is the set of unknowns is void), then
(38) is a system of identities, the validity of which is in question.

28 Example (D) shows that Corollary 5 of Theorem 11 is applicable to more lattices
than the original theorem of J. Jakumix.

2 (E) shows that the assertion formulated at the end of §3 is actually stronger
than Corollary 5 of Theorem 11.
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First we prove

Lemma 20. Let L be a relatively complemented distributive lattice and
Xi,-.., Xo€ L. L has a sublattice B, which is a finite Boolean algebra con-
taining xi, ..., %, (and O(B.) =4").%

PrROOF. The assertion for n==1 is true. Now we make an induction
on n. Let us suppose that we have already constructed B,.; which contains
Xiy-vesXu-1. Let Ouoq,f,1 be the least and greatest elements of B.-i,
respectively. Let us consider in the interval [O,-1, u. U /.-1] the relative com-
plement [}, of [,.; and let A, and A, be sublattices of L consisting of
O.-1, -1 and x, U I,-1, x,, respectively. Let B,—(B,-1-A,) o As where o de-
notes the cardinal product, but if B, is regarded as a sublattice of L, then the
embedding B, in L is effected by (x,y)—xny. Obviously, B, is a finite
Boolean algebra and x,...,x,€ B5,. The calculation on the number of the
elements of B, is very easy by the construction.

Now we prove Theorem 14.

The necessity of the condition. Consider a finite Boolean algebra Bi.m
containing the elements xi, ..., Xm; @,..., 2. (38) is solvable in By, thus
it is solvable in 2 too. Any choice of @&; may be regarded as a homomorphic
image of a suitable chosen a;.

The sufficiency of the condition. Let us suppose that (38) may be
solved for some x;==»&; in 2. Then (38) is solvable in all finite Boolean algeb-
ras, for (38) is solvable componentwise. Let 5, be a finite Boolean algebra
containing as, ..., d.. (38) is solvable in B,, thus it is solvable in L too.

From Theorem 14 we get easily a theorem which characterizes the
relatively complemented distributive lattices.

THEOREM 15. The solvability of (38) in L is equivalent to the solva-
bility in 2 if and only if L is relatively complemented and distributive.

Proor. The case “if” was proved in Theorem 14. Now prove the
“only if”. The identity
au@ne)=(@ub)n(auc
hoids in 2, thus it must hold in £, that is, L is distributive. Furthermore,

the equation system
(an)Ux:anUC,

(aub)ynx=a
is solvable in 2, thus it must be solvable in L too, hence L is relatively
complemented, g. e. d.

% The number of the elements of the finite lattice L is indicated by O(L).
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§ 2. Boolean ring operations

In Corollary of Theorem 3 we have shewn that among distributive
lattices just the relatively complemented ones have the property that every
congruence relation is determined by any congruence class of it. It is well
known that the rings have the same property. We prove that this connection
between the rings and relatively complemented distributive lattices is not
accidental. We shall see that any relatively complemented distributive lattice
may be regarded as a Boolean ring, hence the validity of the above state-
ment becomes very natural.

DEFINITION 5. Let A be a set of equations on the distributive lattice L,
containing a finite number of equations, parameters and the unknowns x,y
and 2. If A has a unique solution with respect to z for any fixed values of x
and y in any homomorphic image of L, then we write z=x-+y. If the oper-
ation + satisfies the group axioms, then we .speak of a group operation
defined on the lattice L. If, furthermore, in a similar way (that is, with an
equation system, having unique solution in any homomorphic image of L)
there is defined another operation denoted by - such that 4 and - satisfy
the ring axioms, then we speak of a ring operation defined on the lattice L.*

THEOREM 16. On the distributive laottice L one may define a Boolean
ring operation if and only if L is relatively complemented.” All Boolean ring
operations may be defined in the following way:

Let a be a fixed element of L. Let x-y be equal to (x Ua)n (x Up)n(auy)
and let x-+y be the relative complement of x-y in the interval [anxny, auxuy).

ProoF. First we prove that the operations defined in the Theorem are
ring operations. Applying Theorem 14 we get that it suffices to prove in
case of the lattice 2.

In the lattice 2 the above operations may be given by the following
tables:

+]0 1 101
a=0 001 0/0o0
1,10 1101

26 The conditions of Definition 5 are satisfied if we define + and - only with
the operations: join, meet, and taking the relative complement of an element in an interval.

27 One can easily show that if we restrict ourselves to that special case in Defini-
tion 5 in which the equations of A contain x and y only in'the form x Uy and x Ny, then
the existence of a ring operation characterizes not only the relative complementedness of
a distributive lattice, but even the distributivity of the lattice. It immediately follows from
the fact that with the above definition -}- is ambiguous in the lattices S and T.
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Thus it is clear that we get Boolean ring operations. The case a==1 is the
dual of the above.

Now we prove that in a relatively complemented distributive lattice one
cannot define other Boolean ring operations. First we prove this for finite
lattices. If the lattice considered is 2, then the assertion is trivial, there is
only two types of Boolean ring operations. Let us consider the Boolean
algebra B,==2". A system of equations is uniquely solvable in a lattice
which is a cardinal product of lattices if and only if the same is true
in all of its cardinal-components. Thus the Boolean ring operations in B,
are in a one-to-one correspondence with the Boolean ring operations of the
n components. In all of its components two operations may be defined, thus
in B. the number of different operations is 2" (these are all different from
each other, for the zero elements are unequal). On the other hand, the con-
struction in the Theorem gives also 2" different operations, for a may be
chosen in 2" different ways and these are also different from each other,
for the zeros of the rings (a) are unequal. Thus the definition of Theorem 16
exhausts all the Boolean ring operations in the finite case.

Now, let us turn to the general case. Let x,y and u, v be two pairs of
elements of L, and B, ,, B., , will denote the finite Boolean algebras containing
x,y resp. u,v and the parameters of the operations. B, , and B, , are finite,
thus they have elements @ and & which characterize the operations in B, , and
in B, ., respectively. We get a contradiction from @ ==&, and this will com-
plete the proof of the statement according to which all Boolean ring oper-
ations may be defined in the way described in the Theorem. Indeed,
if a==b, then consider an element s common to B,, and to B,,,. Now,
s-+s==a considered in B.,, and s4-s=20 in B, ,, thus necessarily a=2b.

We shall use the following note: if L is a distributive lattice and
X1, ..., X € L, then there exists a finite sublattice L, of L, containing
X1, ..+, X.. Indeed, by an obvious induction (n=1 is trivial) if L, is
already constructed such that x,...,x..1€ L._1, then let L, consist of L.,
from x, and from the elements of the form x,nu and x,Uu where u runs
over the elements of L,.;.

At last we prove that if on the distributive lattice L one may define a
Boolean ring operation, then L is relatively complemented. Let L., , be a finite
sublattice of L which contains x,y and all the parameters. L, , is a subdirect
product of replicas of 2 and in 2 the operations are defined as in the
Theorem, thus in L, , the operations are defined by the definition of our
Theorem too. From the fact that L, , is closed under the operations 4 and -,
it follows the relative complementedness of L, , and in the same way the
relative complementedness of L, g. e. d.

(Received 2 january 1958)
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