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Introduction 

One of the important tools of the lattice-theoretical l'esearches is the 
examination of lattice congruences. In connection with lattice congruences 
arises the necessity of the examination of lattice ideals, for Is - -  the kernel 
of the homomorphism induced by the congruence relation O - -  is an ideal 
(if it is any), and this ideal implicates a lot of p~roperties of (9. 

In this paper our aim is to examine the properties of lattice congru- 
ences and the correspondence O--~ Io. Our main tools in the discussion are 
two special types of congruence relations: the minimal congruence relations, 
induced by a subset of the lattice L, and the separable congruence relations, 
respectively. 

In this paper we deal also with three problefns of 0 .  BII~KHOFF [2]. 1 
We prove a result of J. HASHIMOTO [14] (solving problem 73) in a new 
and more simple w a y f  and get a new answer to the question raised in 
problem 72; this has more applications to special cases than the original 
solution of this problem given by T. TANAKA [18]. We obtained a more 
general solution of problem 67 than J. JAKUBIK in [15]. 

The paper consists of four parts. In Part I we deal with congruence 
relations in distributive lattices. First we prove a theorem that describes the 
minimal congruence relations in distributive lattices. By the help of this 
theorem we get a good look at numerous properties of congruence relations in 
distributive lattices, all of which are able to characterize the distributivity of 
a lattice. We prove, finally, a theorem which is a far-reaching generalization 

a Numbers in brackets refer to the Bibliography given at the end of the paper. 
2 In his cited paper J. HASmMOTO deals with the representations (representation is a 

homomorphism of a lattice onto a ring of sets) of a lattice, and with topologies which 
are defined by special representations and inverse representations. Among the applications 
of these general discussions one can find the solution of problem 73. This explains that 
if we consider a single theorem independently of the others, then the proof seems to be 
rather difficult. It has some interest that while J. HASHIMOTO uses the Axiom of Choice 
during the proof, we succeeded in omitting it. 
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of many known theorems (which are due to J. HASH1MOTO and M. KOLIBIAR), 
and contains the solution of 13. BIRKHOFF'S problem 73 too. 

In Part II we discuss with the help of the notion "weak projectivity" 
(introduced by R. P. DILWORTH [3]) the questions related ~o congruences in 
general lattices. After three preliminary lemmas we ge t  an answer to the fol- 
lowing question: In which lattices is every congruence relation O com- 
pletely determined by the ideal /o consisting of all x with x ~ _ 0 ?  Further on 
we consider the least congruence relation 0[I]  under which a given ideal 
is a congruence class. We point out that the correspondence I - ~  0[I]  is a 
complete join-homomorphism and in case of distributive lattices it is moreover 
an isomorphism. Finally, we turn our attention to some questions related to 
weak projectivity. 

In Part II1 we deal with the notion of separable congruence relations. 
After the definition and typical examples we prove some lemmas of prelimi- 
nary character, some of which are interesting in their own right. Next we 
turn to the problem of giving an answer to 13. BIRKHOFF'S problem 72, by 
applying the results concerning separable congruence relations. Then we use 
these results in order to characterize the distributive lattices on which the 
congruence relations satisfy the dual infinite distributive law. 

In Parts II and III we get the results of J. JAKUBIK [15] - -  concerning 
problems 72 and 73 of 13. BIRKHOFF, in case of discrete l a t t i c e s -  as trivial 
special cases. 

We close Part III by analysing a question raised in problem 67 of 
G. B1RKHOFF. 

After some preliminary theorems we deal in Part IV with the problem: 
in which distributive lattices may a Boolean ring operation be defined? We 
describe also in Part IV the types of these lattices and operations. 

The kernel of this paper has been published in Hungarian in the pa- 
pers [6] and [7]. We supplemented the results by several new ones. For 
instance, the results concerning G. BIRKHOFF'S problem 67 are all new. 

Preliminaries 

Let L be a lattice. The elements of L are denoted by the letters 
a, b, c, . . . ,  x, y, z. If the lattice L has a greatest or a least element, then it 
will be indicated by 1 and O, respectively. Proper inclusion will be denoted 
by a > b ,  while the fact that a covers b will be indicated by a>-b. The 
lattice operations are denoted, as usual, by O and rl, while V a,  and Aa~ 

will mean the complete join and meet of the elements a,,, respectively, if 
they exist. If a has a complement, it will be denoted by a'. 
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Ix, cr designate s the set of all elements x in L for which the pro- 
position e(x), defined on the elements of L, is true. 

The principal ideal generated by a is ( a ] - -  {x;x  < a}, the principal 
dual ideal generated by a is [ a ) =  Ix; x--> a} and the closed interval [a, b] 

{-  b} is x , a < x  < 
The congruence relations on the lattice L are denoted by O, ~ ,~,  ~. 

The set of all congruence relations on the lattice L is indicated by @(L). 
The universal and the identical congruence relations are designated by ~and 
o~, i. e. x ~ y  (0 for all x , y  ~ L;  x ~ - y  (~o) if and only if x-~-y. 

Ideals of the lattice L are denoted by the symbols I ,J ,  K. The set of 
all ideals of the lattice L is indicated by s 

The sets O(L) and s under suitably defined partial orderings form a 
lattice. This is assured by the following two assertions" 

Under the natural partial ordering, @ ~ q5 (O, q5 E @(L)) if and only 
if x ~ y  (@)implies x ~ y  (qs), O(L) form a complete lattice. Moreover, 
let A be any set of congruence relations O on L. We define two new relations 
.~ and r~ by 

(i) x ~ y ( ~ )  means x ~ y  (O) for all O E A ;  

(ii) x ~ y ( r t )  means that for some finite sequence X~Zo ,  zl . . . . .  z , , ~ - y  
we have z,: ~ - z i  (Oi) for some OiEA.  

Then ~, r~ are congruence relations; moreover ~2 is the join and ~ is 
the meet of all @ ~A. 

LEMMA 1. Let L be a lattice and ~ the set of  all ideals of L. Under 
the set inclus&n, s is a lattice with complete union. I f  A is a subset of s 
then we define K as the set of all x for which 

x <= y~ U y2 tJ ... u y~,, yi C L 

for some L ~ A. Then K is the complete union of the I r A. 

The first assertion is due to G. BmKHOFF [2]; we were unable to find 
a proof of the second one in the literature, but the proof is clear from the 
definitions, so we omit it. 

Now we define some special congruence relations. Let S be a subset of L and 
A the set of all congruence relations under which S lies wholly in one congruence 
class. By BIRKHOFF'S theorem (cited above) the meet of the set of congruen- 
ces A is again a congruence relation, and under this, too, all the elements of 
S are in the same congruence class. Hence there exists a least congruence 
relation under which the elements of S are in the same class. We shall say 
that this is the congruence relation generated by S, and we shall denote it 
by @[S]. A special case of great importance is when S contains only two 
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elements a and b; in this case @[S] will be designated by O~,v. A trivial 
connection between the notions O[S] and O~,~ is the following 

LEMMA 2. Let S be a subset of the lattice L. Then 

(1) O[S] = V Oa,~. 
a, "~) E S 

PROOF. Obviously, O~,b_-- < O[S] for all a, bES, hence V Oa, bN O[S]. 
a, b E g  

On the other hand, S is in one congruence class under V O~, v, for x, y E S and 
a, bE8 

x=~Y( V O~,b) contradict Ox,~ =< V O~,b. Thus O[S] = V O,,b by the 
a, bES a, bES  a, bCS 

minimal property of @[S], as asserted. 
If L is a lattice, then /~ denotes a homomorphic image of L, under the 

homomorphism a--~d, i. e. d denotes an element of / - a s  well as the class 
of those elements x of L for which x---,~. If a congruence relation @ is 
given, then the homomorphic image of L induced by O (i. e. the lattice of 
all congruence classes) will be indicated by L(O). If there exists an ideal 
which is a congruence class under the congruence relation O, then we denote 
it by Io. Clearly, Io is the kernel of the homomorphism induced by O. 

If in L all bounded chains are finite, then following J. JAKLIBIK and 
M. KOLIBIAR we speak of a discrete lattice. Further, if in L between all com- 
parable pairs of elements there exists a finite maximal chain, then we call 
the lattice semi-discrete. (These notions coincide in modular, moreover in 
semi-modular lattices, see e. g. [10].) 

At last, we shall denote by S and T the five element lattices generated 
by the elements x,y, z such that the following identities hold: 

(S) x> y, x u z = y u z =  l, x n z = y n z = O ;  

(T) x U y : x O z = - y u z : l ,  x n y = x n z = y n z = O .  

I. CONGRUENCE RELATIONS IN DISTRIBUTIVE LATTICES 

w 1. Description of minimal congruence relations 
in distributive lattices 

It is well known that if O is a congruence relation, then a ~ b  (O) i f  
and only if au b ~ a n  b (O) (see [2]). From this trivial fact it follows that 
we need consider only the problem of determining the comparable pairs of 
elements congruent under the minimal congruence relation, which collapses 
a comparable pair of elements. (We say that O collapses a and b if they 
are in one congruence class under O )  
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THEOREM 1. Given two elements a, b of  the distributive lattice L with 
a >= b, the elements c, d ( L with c >-- d satisfy c ~ d (6)o, ~) if and only if  

( a u d )  n c = c  (2) 

and 

(3) ( b u d ) n c : d .  

PROOF. We define the relation 0 on L by putting 

(4) x ~ y  (O) 
if and only if c = x O y  and d = x f l y  satisfy (2) and (3). 

From the identities (a U x) n x = x, (b to x) o x = x it follows that 6) is 
reflexive, and from the symmetry oF x, y in the definition of 6) it follows the 
symmetric property of 6). To prove the substitution law for 6), let us sup- 
pose x ~ y  (6)), and let t be arbitrary, then from the distributivity of L and 
from (2), (3), (4) we obtain 

{a u [(x u t) n (y u t)]} n [(x u t) u (y u t)] = {[a u (x n y)] u t} n 

n [(x u y) u t] = {[a u (x n y)] n (x u y)} u t =  (x u y) u t = (x u t) u (y u t ) ;  

and in a similar way 

{b u [(x u 0 n (y u t)]} n [(x u t) u (y u t)] = (x u t) n (y u t ) ;  

furthermore 

{a u [(x n t) n (y n t)]} n [(x n t) u (y n t)l = {[a u (x n y)] n (a u t)} n 

n [(x u y) n t] = [a u (x n y)] n (x u y) n [(a u t) n t] = {[a u (x n y)] n 

n (x uy)} n t = ( x  uy)  n t - -  (x n t) u (y n t), 
and likewise 

{b u [(x n t) n (y u t)]} n [(x n t)  u (y n t)] = (x n t) n (y n t). 
Thus these equations show us that x~__y (0 )  implies x U t~ytO t (6)) and 
xnt=_ynt  (0).  

We show the transitivity of @ at first in case u ~ v > - - w , u ~ v ( 6 ) ) ,  
v=--w (@). By (4) we get 

(5) (a u v) n u - -  u, 

(6)  (b u ~,) n tz = ,, 
and 

(7)  (a u w) n v = % 

(8) (b u w) n v = w. 

We prove 

(9) (a U w) n u = u, 

( l o )  (b u w) n u = w 
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which are by (4) equivalent to u ~ -  w ((9). Clearly, from (7) we have a U w ~ v, 
applying this fact, u > v, v > w and the distributivity of the lattice we get 

(a U w) N u = [(a U w) N u] U v = (a U w U v) n (u u v) = (a u ,;) n u, 

but by (5) u = (a U v)n  u, thus (a U w)n  u - =  u, completing the proof of (9). 
From v ~ w we get b U v>=b U w, hence, using (6) and (8), 

(b u w) n u = (b u w) n (/) u v) n u = (~ u w) n v : w, 
as asserted. 

Now let us suppose u ~ _ v  ((9), v ~ _ w  (t9) for arbitrary u,v,  w EL. 
Applying the substitution law, it follows u U v = (u U v) U (v N w) ~ u U v U w ((9), 
U N v : (U N v) N (v U W) ~ (U n ~,) n (~ n w ) :  u N v n w ((9), i.e. 

u u ~J u w ~ u u v ((9), 

u u ~ u n ~  ((9), 
u n v ~ u n ~ . n w  ((9). 

But 
u U ~" U w ~ u  U v ~ u  N u ~ u N v N  w, 

thus from the previous paragraph it follows that u U v U w ~  u N v N w (O). 
From the substitution law by direct computation we obtain u U w = (u U w ) u  
u (u n w) = [(u u ~ u w) n (u u w)] u (u n w) _= [(u n ~ n w) n (u u w)] u (u n w) = 
= (u N v N w) U (u n w)--- u o w (@). This completes the proof of the transiti- 
vity of (9. 

We conclude that (9 is a congruence relation. Furthermore, a = b  ((9), 
so (9-->(9o, b, (9~,b being the least congruence relation with a ~ b .  Again, 
x ~ y  ((9) implies in view of Theorem 1 

x u y - - [ a U ( x N y ) ] n ( x u y )  and x n y = [ b v ( x o y ) ] N ( x u y ) .  

a=~b  ((9~,b) and so applying the substitution law twice to the elements 
t = x U y and t = x O y, we get [a U (x N y)] N (x U y) ~ [b U (x N y)] n (x u y) ((9o, b) 
which is equivalent to x U y ~ _ x  Ny  ((9~,b) if we take into consideration the 
above equations. Hence x ~ y  ((9) implies x ~ y  ((9~,~), that is, (9=<(9~,b, 
which compared with the inequality proved above gives the desired result, 
(9 = (9~,~, completing the proof of Theorem 1. 

Some of the most important applications of Theorem 1 will be proved 
in the following section. 
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w Characterizations of distributive lattices 

Some properties of congruence relations of a lattice are suitable to 
characterize the distributivity of a lattice. We shall deduce such characteri- 
zations from Theorem 1. 

THEOREM 2. Each one of  the following conditions is equivalent to the 
distributivity of  the lattice L" 

(a) i f  c ~ d  (@a,b), then a ~ d  (or c ~-- b) is impossible whenever b ~ a, 
d < c  (a,b,c,  d E L ) ;  

(b) [b, a] is a congruence class under 0~, b for all b ~ a (a, b E L); 

(c) O,,~ N Oc, a ~ e ~  for all a~b>--c>--d (a,b,c, d E L ) ;  

(d) @~,~ has a complement in O(L) (for all a>=b) such that c>=a 
implies c ~ a  (| b)(a, b,c E L); 

(e) i f  C is a chain of  the lattice L, then every congruence relation of  
C may be extended to L such that the congruence classes on C remain the 
same; 

(f) for any ideal I and for any x~--y, x ~ y  ( 0 [ I ] )  i f  and only i f  
x ~ y U v for some v E I; 

(g) the condttion (f) is valid for all principal ideals I; 

(h) evely ideal is a congruence class under some homomorphism ; 

(j) every principal ideal is a congruence class under some homomorphism. 

Pl~OOV. First we prove that conditions (a)--( j )  hold in a distributive 
lattice L. 

Let us suppose that e ~ d (@o,b) (a ~ b, c > d)  and yet b ~ c, then from (3) 
d = (b U d) N c ~ c contrary to c > d. We get a contradiction in a similar way 
from a ~ d  and (2). Thus the validity of (a) is a s i m p l e  consequence of 
Theorem 1. 

From (a) we can easily deduce (b). Indeed, if c ~ a  (O~,b) and c~[b, a], 
then either c U a > a  or c N b < b  holds (for, in case c U a ~ a  and c A b = b ,  
we should have b ~ c ~ a, i. e. c E [b, a]). But from a < a U c and a ~ c (O~, b) 
we get a ~ a U c  (0~,0,  while b > c o b ,  c ~ b  (0~,~) imply b ~ c n b  (@~,0, 
both are in a contradiction to (a). 

Now we prove that (c) holds in L. Let a > b ~ c > d ,  x > y  and 
x ~ y  (O.,bNOc,, O. Then x ~ y  (O~,d), hence by Theorem 1 

(11) . ( d u y ) n x = y .  

We assert that c n (d u x) > c N (d U y). Indeed, if e N (d U x) = c n (d u y), then 
from the equality c U x : c u y  (it follows from c U x ~ c U y  (O~,a) and 
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from (a)) we get c U (d U x) = c u (d U y). Thus d U x and d U y are both relative 
complements of c in the interval [c N (d U x), c O x], hence d U x = d U y. From 
(11) we infer x ~ (d U x) N x = (d U y) N x = y, a contradiction. Obviously, 
c N ( d u x ) ~ c n ( d u y )  (Ox, u) and @x,v=<O~,b, so we get cN(dUx)  
=~cN(duy) (O~,0 and a>b>-c>--c N(dUx)>cN(duy) ,  in contradiction 
to (a). If a ~---b or c =  d, then there is nothing to prove. 

Next let us consider condition (d). We define O as the join of the 
congruence relations O[[a)] and O[(b]]. Then O~,bO O = t ,  because for all 
x<~yEL,[x,y]~[xNb, yUa], thus from x N b ~ y u a  (O~,bUO) we get 
x~_y (Oo,~UO). Let us suppose that for some x, yEL (x@y) we have 
x ~ y  (O~,bNO). This is equivalent to o<@~,v  and Or,~=<O~,bNO. 
From the latter @~,y~O~,bNO~,~NO and O =  V @ .... Thus (using the 

u ~ ' v ~ b  

infinite distributive law in O(L), see in [2], [4], or in w I of Part I1) Ox, y ~ @~,y N 
n V O ,0 and from (c) Oo, bN 0 .... = o  which 

u > v>:a 
u < v ~ b  

is a contradiction. So, O~O~,bl. Obviously, c_>= a implies c~a(O) .  
To prove the validity of condition (e), let a chain C be given in L, 

and a congruence relation 0 on C. We define the following congruence 
relation of L: O ~  V O~,b. We prove that 0 has the desired property. 

a ~ b E C  
a~b(r  

Assume x ~ y  (0),  x, yCC. Then by B~RKHOFF'S theorem cited in the Preli- 
minaries, there exists a finite number of pairs of elements a~, b~ such that 

ai < br and ar (O), furthermore x ~ y (  V O~i, O. If [x,y]cU[a,:, bi], then 
i = l  

x=~y (O) is valid too and there is nothing to prove. If x ~ y ( O ) ,  then there 
exists a part [x~, y~] of [x, y] with the property that for each i either ar < b~ 

<=x~<y~ or xa<y~a~<b~. Then from (c) O%yN ~)O~r162 which con- 
i ~ l  < O tradicts Or, y = V ~i, hi. 

To verify condition (f), let the ideal I of L be given and let x >  y, 
x ~ - y  (O[I]). We prove that x ~ y  (0~,0 for some a, bs Indeed, from Lemma 2 
(911]~ V @~,~, and by BIRKHOFF'S theorem there exists a finite number of 

a, b E "[ 
a ~ b  

pairs of elements a~ > b~, a~, b~EI ( i ~  1,2 . . . .  , n) such that x ~ y (  V 0~, O" 
i = 1  

Let a~Va~ and b=Ab~, then a, bEl and obviously x ~ y  (O~,0. Then by 
Theorem 1 x = x N ( a u y ) ,  thus from the distributivify of L we get 
x = (x N a)U y, hence v = x N a has  the desired property. On the other hand, 
it is clear that if x ~ y u v  and ~:~L then x~_y (@[I]), so we have proved 
the validity of (f). 
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The conditions (g), (h), (j) are special cases of (f). 

Now we prove that each one of the conditions (a)--(j) implies the 
distributivity of L. 

If L is not distributive, then it contains as a sublattice a lattice, iso- 
morphic to the lattice S or T, defined formerly. Since a lattice has one of 
the properties (a)--(j) only if every sublattice of it has this property, so we 
must prove only that the lattices S and T fail to have this property. Among 
the conditions (f), (g), (h), (j) the last is the weakest one, hence in this step 
of the proof we may omit the others. (b) is a consequence of (a), so we 
may omit condition (a) too. 

First we verify that the interval [0, y] is a congruence class under 
no homomorphism in S and T. Indeed, if j ~ 0  (O) for some O, then 
x = x n (y U z) ~ x  N (0 U z) = 0 and xr y], a contradiction. Hence it results 
that in a non-distributive lattice conditions (a), (b), (f), (g), (h), (j) do not 
hold. A similar trivial computation shows that conditions (c) (consider in S 
the chain 0, y, x and in T the chain 0, x, 1), (d) (in S the interval [y, x], in T 
the interval [0, x] play the role of the interval [b,a]), (e) (see the chains 
described at the condition (c)), do not hold in the lattices S and T. Thus 
the proof of Theorem 2 is completed. 

We mention that the conditions of Theorem 2 play a fundamental role 
in our researches related to all properties of distributive lattices, not only 
in this paper, but in the papers [9], [10], [11], [12] too. 

Conditions (h) and (j) are the same as those of Theorem 2.2 of 
J. HASHIMOTO [14] (conditions (3) and (4)). 

w 3. A generalized form of G. Birkhoff's problem 73 

In his textbook [2] O. BIRKHOFF proposed the following problem: 

Find necessary and sufficient conditions in order that the correspond- 
ence between the congruence relations and ideals of a lattice be one-to-one. 

More precisely : 

Find necessary and sufficient conditions in order that the correspond- 
ence @-+Io be an isomorphism between @(L) and s 

Applying Theorems 1 and 2, we get an answer to this question. 

LEMMA 3 (J. HASmMOTO'S theorem). In the lattice L there is a one-to- 
one correspondence (in the natural way) between the ideals and congruence 
relations if  and only i f  L is a distributive, relatively complemented lattice with 
zero element. 

I0 Acta Mathematica IX/ l - -2  
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PROOF. 

The necessity of  the conditions. Obviously, Lo is the zero ideal of L. 
Every ideal of L is a congruence class under some homomorphism, so the 
distributivity of L is assured by condition (h) of Theorem 2. 

Now let us suppose that L is a distributive lattice with zero element. 
We prove that L is relatively complemented. By a theorem of J. YON NEUMANN 
(see [2], p. 114), it is sufficient to prove that if b < a, then b has a complement 
in the interval [0, a]. Let V,,~ be the ideal which consists of all u with 
u ~ O  (@~,b). V,,b is a congruence class under precisely one congruence 
relation, hence a z : b  (O[Va,~]).'From condition (f) it follows that for some 
v ~ V~, ~ we have 

(12) b u v ~ a .  

It is clear that v ~ O  (@..Q, hence from Theorem 1 (v and 0 play the roles 
of e and d) 

(13) b n v=-0 .  

(12) and (13) show that v is the complement of b in [0, a]. 

The sufficiency of  the conditions. From condition (h) of Theorem 2 it 
follows that every ideal of L is a congruence class under some homomor- 
phism. Furthermore, every ideal is a congruence class under at most one 
congruence relation, as it follows from the complementedness of the intervals 
of type [0, a] (see [2], p. 23, or the Corollary of Theorem 4 in this paper). 

Now we are ready to prove the general theorem. 

THEOREM 3. Let L be a lattice and "a" a f ixed element of  L. Every con- 
vex sublattice of  L containing "a" is a congruence class under precisely one 
congruence relation i f  and only i f  L is distributive, and all the intervals o f  
type [a, b] (a >= b or a < b) are complemented. 

PROOF. 

The necessity of  the conditions. First we show the necessity of the dis- 
tributivity of the lattice L. Let us suppose that L is not distributive; then it 
contains as a sublattice either the lattice S or the lattice T. (x, y, z will indi- 
cate the generators of S or T.) 

We prove that z ~--- a is impossible. Indeed, since x n y ~ x U y, that is, 
@~---@x~y,~ is not equal to o~, the congruence class which contains a 
under @, is different from the congruence class which contains a under r 
Thus the congruence class under O containing a contains a further element x, 
so we may pick out an element c such that e<>a and 

(14) (0). 
Now, according as c > a or c < a, the interval [x n y n a, a] or [a, x U y U a] is 
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a congruence class under no homomorphism. Let us discuss the case c > a 
(if c < a, then the proof goes on the same lines). Then a z x  n y n a ( r  implies 
(as in the proof of condition (b) in Theorem 2) x ~ y  (q~), for any r so 
x U y = _ x O y  (~),  hence @=>O, c ~ a  (r (see (14)~, but cr al; 
a contradiction. 

Thus we have proved that x U z = y U z  and x O z = y N z  are 
impossible if z ~ a .  So we may suppose by the Duality Principle that 
x U a ~ y u a. We assert that under these hypotheses the interval [y n z N a, y U a]~ 
(which contains a) is no congruence class under any congruence relation. 
Indeed, if y u a ~ y N z N a ,  then 

z : z u ( y n z N a ) ~ z U ( y u a ) = ( z U y ) O a = z U x U a ,  

furthermore x n z ~ x n ( z U x O a ) = x .  But x ~ y n z ,  y o a ~ y n z > ~ y n z n a  
and x~ [y  N z n a, y u a], a contradiction. 

Summarizing the above proved assertions, we get that the existence of 
the sublattices S or T contradicts the fact that every convex sublattice of L 
containing a is a congruence class under precisely one congruence relation. 

Our second aim is to prove the complementedness of the intervals of 
type [a, b] (a ~ b or a < b). Let bl > b2 > a. Since Oh1, b2 �9 o), there exists an 
element c, comparable with a, such that c ~ a  (Obl,O. From condition (a) of 
Theorem 2 we see c < a is impossible. It follows that the congruence class under 
Obl, b~ which contains a is not empty and it is a part of [a). Hence in [a) the 
condition of Lemma 3 holds, that is, [a) is relatively complemented. In a 
similar way we get the relative complementedness of (a] too. The necessity 
of the conditions is therefore proved. 

The sufficiency of the conditions. Let L be a distributive lattice such that~ 
for a fixed a, the lattices (a] and [a) are relatively complemented. First we 
show that the distributivity of L implies that every convex sublattice is a 
congruence class under some homomorphism. Let D be a convex sublattice, 
I and J the ideal resp. dual ideal generated by D. A trivial computation 
shows that D is a congruence class under 0[I] N O[J]. 

Secondly we prove that every convex sublattice containing a is a 
congruence class under precisely one congruence relation. It is enough to 
prove in case the convex sublattice consists of a alone, for if D is a con- 
gruence class under more than one homomorphism, then let us consider 
among these the minimal one, O[D], and let L - -  L(O[D]) be the corresponding 
homomorphic image of L. In Z there are fulfilled all the conditions as in L 
if the fixed element is ~, furthermore the one element convex sublattice a 
is a congruence class under more than one homomorphism of L. So we 
succeeded in reducing the proof to a special case. 

10" 
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Now let us suppose that x > y .  It is enough {o prove the existence of 
a c with c=~a and c ~ a  (Ox,~). From the distributivity of L we obtain 
a U x > a U y  or a ~ x > a n y  ( a U x = a u y a n d a N x = a n y c o n t r a d i c t x @ y ) .  
Let c be the relative complement of a o y in the interval [a, a u x] in the first 
.case, and the relative complement of a n x in the interval [an y, a] in the 
second case. A trivial calculation shows that x - ~ y  implies c ~ a in both cases, 
that is, the one element sublattice a is a congruence class only under e). 
Thus the proof of Theorem 3 is completed. 

The proof shows us that Theorem 3 may be sharpened by replacing 
the condition "every convex sublattice containing a . . . "  by the following 
weaker one: "every interval containing a . . . " .  

That the relative complementedness of the whole lattice is not a con- 
sequence of the condition, it may be illustrated by the following simple 
~connterexample: L is the chain of three elements and a ,  the fixed element, 
is the only element different from 0 and 1. 

An immediate consequence of our Theorem 3 is the 

COROLLARY. Every convex sublattice of  L is a congruence class under 
precisely one homomorphism if  and only i f  L is a relatively complemented 
distributive lattice. 

Special cases of Theorem 3 were already known. Lemma 3 (the spe- 
cial case a = 0 )  was first proved by J. HASmMOTO [14] in 1952; a year 
later G. J. PtREgKIN [1] has proved Lemma 3, by supposing that the lattice 
L is distributive and has a zero element. The Corollary was proved inde- 
pendently of us - -  by supposing the distributivity of the lattice c o n s i d e r e d -  
by M. KOLIBIAR [16]. 

We remark that we may get further theorems, too, as easy consequences 
of Theorem 3. For instance, in [9] we have pointed out that the following 
assertion of J. HASmMOTO [14] is also a simple consequence of Theorem 3: 

A relatively complemente d lattice L is distributive if and only if L has 
an element a such that (a] and [a) are prime factorizable. 

Using transfinite methods it results [11] that Lemma 3 may be sharp- 
ened;  in [11] we have published another very simple proof of Lemma 3. 
Related to these questions we refer to [9] too. 



IDEALS AND CONGRUENCE RELATIONS ~N LATTICES 

II. CONGRUENCE RELATIONS 1N GENERAL LATTICES 

149 

w 1. Some lemmas on congruence relations 

(b) 

(c) 
(d) 

all tEL. 

In this section we prove three lemmas which will simplify the proofs 
of several theorems in Parts II and Ill. A part of the merely technical Lemma 4 
was proved already in Theorem 2. 

LEMMA 4. Let ~ be a binary relation defined on the lattice L. ~ is ct 
congruence relation i f  and only i f  

(a) x ~ x  (,~)for a l l x E L ;  

x ~ y  (~) is equivalent to x u y =~ x N y (~)for all x, y E L; 

x>=y>=z, x z _ y  (~.) and y ~ z  (~) imply x ~ z  (~); 

i f  x ~ y  and x z y  (~), then x U t ~ y u t  (~), x N t ~ y N t  (~) fo r  

PROOF. Obviously, it is sufficient to prove that a relation ~ satisfying 
conditions (a)--(d) is a congruence relation. 

By (a) ~ is reflexive, and by (b) it is symmetric too. 

Let u_--> v, u ~ ;  (~) and a, bE[v, u], then we assert a ~  b (~). Indeed, 
u>=aub>=aob>=v a n d f r o m ( d )  u N ( a u b ) - ~ - ~ v n ( a u b )  (~) and uN(aUb)>= 
>=vN(aub),  thus applying again (d), a u b = [ u n ( a u b ) ] u ( a N b ) ~ [ v N ,  
n (a U b)] U (a a b)-= a n b (~), whence from (b) a ~ b (~), and the assertion 
is established. 

Next let x=~y  (~) and y ~ z  (~). On account of (b) x u y = ~ x n y  (~), 
thus from (d) x u y u z = ( x u y )  u ( y u z ) ~ ( x n y ) u ( y u z ) ~ y u z  (~), simi- 
larly, x n y n z = ~ y n z  (~), that is, x u y u z  ~ > >=x = y u z = y n z  N y n z  and the 
consecutive elements are congruent modulo }, so applying twice (c) we get 
x u y u z ~ x n y n z (~). Considering that x, z E Ix n y n z, x u y u z], we conclude 
x ~ z  (_~), i. e. } is transitive. 

The substitution law may easily be proved too, for if we assume x z y  (~),. 
then from (b) and (d) x u y ~ - - x n y  (}) and ( x u y )  u t z ( x n y ) u t  (}), 
but x u t ,  y u t E [ ( x n y ) u t ,  x u y u t ] ,  hence we obtain x u t ~ y u t ( ~ )  and 
alike x N t ~ y N  t (}), completing the proof of the Lemma. 

We note that the conditions of Lemma 4 are independent and may be 
weakened, e. g. (a) may be replaced by (a') x ~ y  (~) for some x, yEL,  but 
we need only the above described form of Lemma 4. 

Now we prove a lemma which sharpens for lattices a similar result 
of G. BIRKHOFF for general algebras (see the Preliminaries). 
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LENNA 5. Let A be a subset of O(L). We define the relation ~l" x ~ y  OJ) 
i f  and only i f  there, is a finite sequence x U y = uo >= ul >=... >= u,r - -  x N y 
satisfying u r  ui-1 (Od for some O ~ A  ( i =  1 . . . .  , n). Then ~ is a congru- 
ence relation and ~1 ~ V On. 

OaEA 

PROOF. It is clear that if ~I is a congruence relation, then r~ = V @ , .  
Thus it remains to prove that ~ is a congruence relation. Obviously, it is 
reflexive and symmetric. If x>=y>--z, x ~ y  (~) and y ~ z  0t), then we have 
two chains which connect x and y, resp. y and z, having the desired property. 
Joining these two chains, we get one from x to z with the desired property. 
At last if X=Zo>=Z~>=...>=z~=y, then t u x = t U Z o > = t U z ~ > = . . . > = t u z , =  
= t  u y, thus x ~ y  (~) implies x U t z - y  U t Oi), and in a similar way we get 
that it implies xN t ~ y N t  0/) too. We see ~ satisfies the conditions of 
Lemma 4, that is, ~2 is a congruence relation. 

The importance of Lemma 5 should be revealed by the fact that it 
decides in the interval [a, b] whether a=~b is valid or not. For instance, 
applying Lemma 5, it may be proved easily 3 the notable theorem of N. 
FUNAYAMA and T. NAKAYAMA [5], according to which in O(L) unrestrictedly 
holds the infinite distributive law 

(ID) O n V 0~, = V(O rl O,). 

In proving (ID) it suffices to show that x => y and x ~ y  (V(@ n O~)) imply 
x ~ y  ( o N v o , ) .  If x ~ y  (V(ON 0~)), then by Lemma 5 for some finite 
sequence we have X=Zo>=Z~>=. . .>=z~=y ,  z , ~ - z r  ( O n O  O, hence 
z i _ ~ z ~ ( O ) ,  further on z i_ i~z~  (@0, so Zi-a~Zi  (VOw), consequently 
z ~ _ ~ z ~  (oNVO~),  that is, x ~ y  ( o n V O , ) ,  thus o f lVO~<_-V(ONO~) ,  
q.e .d.  

According to Theorem 1, in a distributive lattice under O~,b (a-->_ b) 
the elements c,d, (c_-->d) are congruent if and only if c = ( a u d )  nc, 
d - - ( b  U d)f? c. Now we generalize this theorem to arbitrary lattices. 

Obviously, if 

(15) [ . . . ( { [ (a U b) U xa] rl x2} U x3) n . . .1  U x,, = c U d, 

(16) [ . . . ( { [ (a  n b) u xd n u n . . . ]  u x,, = c  n d, 

then c ~ d  (Oo, b), as it follows from the substitution law. 
The theory of congruence relations in arbitrary lattices is based upon 

the notion of weak projectivity due to R.P. DILWORTH [3]. 

a The idea of this proof of the theorem of FUNAVAMA and NAKAYA~AA is essentially due 
to R. P. DILWOWrH [31. 
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DEFINITION 1.4 Let L be a lat t ice and a, b, c, d ~ L. The pair of elements 
a, b is weakly projective into the pair of elements c, d if for some &, . . . ,  x, ,~L 
the equations (15) and (16) hold. 

In what follows a, b-- .c ,  d will denote that a, b is weakly projective 
into c, d. Obviously, the relation --- is transitive. 

With the help of this notion we can easily describe the congruence 
relation O~, ~. 

LEMMA 6 (D1LWORT H [3]). c ~ d  (Oa, b) in the lattice L i f  and only i f  
for  some finite sequence 

(17) cLJd--  y o ~ y l  >= . . .  ~ y ~ - c n d  onehas  a,b--,y.~-l,y~ ( i~ -  1,2 . . . . .  k). 

PROOF. It is clear that if c, d satisfy (17), then c ~ d  (@~,0. On the 
other hand, let us define the relation ~ such that u ~ - v  (~) if and only if 
some sequence {yi} and c ~ - u ,  d ~ - v  satisfy (17). Repeating word for word 
the trivial calculation of Lemma 5 we get (applying Lemma 4) that ~ is a 
congruence relation, completing the proof of this lemma. 

COROLLARY 1. Let L be a lattice and S a subset of  L. S is a congru- 
ence class under some congruence relation i f  and only i f  a,b, c E S  and 
a, b --~ c, d imply d E S .  

PROOF. The assertion "only if" is trivial from the definition, and "if" 
is obvious from Lemma 2 and Lemma 6. 

From Corollary 1 and from Theorem 1 it results the well-known fact 
that every convex sublattice of a distributive lattice is a congruence class under 
some congruence relation. This proof gives perhaps more insight into the 
cause of the validity of the above statement. 

Another trivial consequence of this lemma is 

COROLLARY 2. A lattice L is simple i f  and only i f  for all a, b, c, d ~ L 
there exists a finite sequence c u d - -  zo >: z~ >-- . . .  >= z ,  ~- c n d such that 
a, b --* zi-1, zi (i ~- 1,2 . . . .  , n). 

If L is a modular lattice and a covers b, then a, b--*c, d implies that 
c = d  or c covers d. Thus we are led to 

COROLLARY 3. If in the simple modular lattice L there exists a pair of  
elements a, b such that a covers b, then L is discrete. 

4 Definition 1 is that of [6], but it may be shown easily that it is equivalent to that 
of R. P. DILWORTH. The notation is the same as in [6]. 
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w W e a k l y  c o m p l e m e n t e d  la t t ices  

The notion of weak complementedness was introduced by H. WALLMAN 
[19] for distributive lattices. Now we define the notion of weak comple- 
mentedness 5 in general such that for distributive lattices this is equivalent to 
that of H. WALLMAN. 

DEFINITION 2. A lattice L with 0 is weakly complemented if to all 
pairs of elements a, b (a ~ b ; a, b ~ L) there exists an element c ~ 0 such that 
a,  b --~ c, O. 

A trivial computation shows G that in a distributive lattice a >  b and 
a, b --, c, 0 (c~O)  imply a N c > O, b n c = O. On the other hand, if a n c > 0 and 
b n c = O, then putting c' = a n c we obviously have a, b --, c', 0 and c' ~ O. 
This coincides with the original definition of weak complementedness in 
distributive lattices. 

Weak complementedness is not a homomorphic invariable property, 
that is, there exists a lattice which is weakly complemented, but a suitable 
homomorphic image of it is not relatively complemented. If this lattice is 
distributive, then it is necessarily infinite (see the example in [11]), but 
in the non-distributive case there are finite examples too; e. g, let L be the 
following lattice : 

o/~ 
\ oJO\ 

We can easily verify that this lattice is weakly complemented, yet L(@~, o)-  
which is isomorphic to the chain of three elements - -  is not weakly com- 
plemented. 

0.  J. AREgKIN [11 proved the following assertion: 
Let L be a distributive lattice with zero element. Every ideal of L is 

the kernel of at most one homomorphism if and only if every homomorphic 
image of L is weakly complemented. 

a It seems to be unreasonable to change the definition of weakly complemented 
lattices, for it is a well-known notion. Our motivation is:  the original notion of weak 
complementedness was successfully used only in dis t r ibut ive lattices in discussing the 
connection of topological spaces and distributive lattices [19] and in the researches of the 
congruence relations of distributive lattices [l]. In general lattices only some theorems were 
known which are based on the original definition. For this reason we propose the notion 
of "weakly complemented in the stronger sense" for the original one. 

a It follows trivially from Theorem 1 too. 
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Now we show that this theorem is valid for arbitrary lattices with the 
above defined notion of weakly complementedness. This is a solution of the 
most natural generalization of G. BIRKHOFF'S problem 73. 7 

THEOREM 4. In the lattice L every congruence relation is the minimal 
one of a suitable ideal i f  and only i f  L has a zero and every homomorphic 
image of  L is weakly complemented. 

For the proof a preliminary lemma is needed. 

LEMMA 7. Let L be a lattice with zero element. The zero ideal is a 
congruence class under predisely one congruence relation i f  and only i f  L is 
weakly complemented. 

PROOF. If the lattice L is weakly complemented, then the zero ideal is 
a congruence class only under ~o, for if x4=y,  then there exists a z 4=0, with 
x, y---, z, 0, that is, z ~ 0 (O.,, ~), i .e.  the zero ideal is not a congruence 
class. On the other hand, let us assume that to the elements x , y  there is 
no element z with x, y --+ z, 0. Then z ~ 0 (Ox, y), z > 0, is impossible, for if this 
held, then from Lemma 6 it would follow the  existence of a z l > 0  with 
a, b---,z~, 0. Thus the zero ideal is a congruence class under ~o and Ox, v too, 
a contradiction. 

Now we prove Theorem 4. Let I be an ideal which is a congruence 
class under at least one congruence relation. Obviously, I is a congruence 
class under more than one congruence relation if and only if the zero ideal 
of L(@[I]) is a congruence class under more than one congruence relation. 
Thus the proof of Theorem 4 is completed. 

If L is distributive, then we get from Theorem 4 the above theorem of 
of O. J. AREgnm. s On the other hand, we want to point out that every rela- 
tively complemented lattice with zero element is weakly complemented, so as 
a trivial special case of Theorem 4 we get a result of (3. BIRKHOFF (see [2], 
p. 23): 

COROLLARY. In a lattice with O, where all closed intervals [O,a] are 
complemented, every congruence relation is determined by the ideal consisting 
of  all x with x ~ O. 

We can get another answer to the above-mentioned problem. 

7 j. JA•uBIK [15] and J. HASmMOTO [14] have also formulated in such a way the 
more natural generalization. 

8 Comparing Theorem 4wi th  Lemma 3 we get the following theorem of (3. J. AnegKm 
[1]: A distributive lattice with zero is relatively complemented if and only if every homo- 
morphic image of it is weakly complemented. (A far-reaching generalization of this theorem 
may be found in our paper  [11].) 
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If a, bCL,  then E,,o will denote the ideal which is generated by all 
x with a , b - * x , O .  

THEOREM 5. In the lattice L every congruence relation h,~s an ideal as 
a congruence class and every ideal is a congruence class under at most one 
congruence relation if  and only i f  L is a weakly complemented lattice with 
zero element and to all a, b ~ L there exist a y ~ E~, ~ and a sequence a U b = 
=do>=dl  >= ... ~ c l , ~ = a N b  with y,O--*di-l ,di  ( i = 1  . . . .  , n). 

PROOF. We already know the necessity of the existence of a zero ele- 
ment and of weak complementedness. The third condition is necessary too, 
because if for a, b it did not hold, then Va, b would be a congruence class under 
more than one homomorphism. Indeed, if V~,b were the kernel of precisely 
one homomorphism, then a ~ b  (6)[Va, b]) would be valid, and this means just 
by Lemma 6 the validity of the third condition. 

The sufficiency of the conditions follows from the fact that under these 
conditions 

a ~ b  (@) if and only if Vo, b~Io ,  

that is, Io determines the congruence relation. Indeed, if a ~ b  (6)), then 
a , b - * c , O  implies c ~ 0  (6)), that is, V~,b~[o. On the other hand, if 
~ ,  b ~-- Io, then there exist a y ~ V~, b and a finite sequence a t3 b = Yo => YI 

> = . . . > = y , = a n b  with y,O--~yr but from y~V~,b~_[o it follows 
y ~ O  (6)) and so a ~ b  (6)), q. e. d. 

Theorem 5 is a generalization of a theorem of J. JaZUBlff [15]. J. JAKUBIK 
dealt with discrete lattices and he got the conditions of Theorem 5 with the 
small difference that lhe conditions on a, b are supposed only if a covers b. 
An easy computation shows that these conditions are equivalent in discrete 
lattices, and what is more it becomes trivial that it is valid not only in dis- 
crete lattices but under that weakened condition, too, that L is semi-discrete. 

w 3. Minimal congruence relations generated by ideals 

In lhis section we deal with the correspondence t - ~  6)[I]. 

THEOREM 6. The congruence relation generated by the ideal Via is 
V O[L], that is, 

(18) 6)[VI~] V6)[I~]. 

PROOF. First we verify that if a ~ b and a < c, then 

(19) O~,bu O~,~= @~,b .... 
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Since a ~ b (O~, ~uc) and a ~ c (@~, b~.), thus On, b U Oo, c ~= O~, o~c ; on the 
other hand, a ~ b  (@a, b) and a ~ c  (0~,~,), hence a ~  b U c (@~, b U O~, ~), that 
is, @~, ~u~ ~ @,,c U O ... .  These inequalities prove (19). 

By Lemma 2, (18) is equivalent to 

(20) V O~,~= V V Oo,,~. 
x, y E  V I~ a E A a ,  b E I  a 

a E A  

Let us suppose that Oo, b OCCURS in the right side of (20), then a, b E L, for 
some c~EA, hence a, bE VI~ ,  thus we obtain that Oo, b occurs in the left 

~ E A  

side of (20), i. e. (20) holds with => instead of : .  
Conversely, let O~,v be a congruence relation which occurs in the left 

side of (20). By Lemma 1 this means the existence of such i, r (EI~r, a r E A ;  

r ~  l, 2, . . ., n) that x, y N i ~ , u . . . U & , . .  Let u ~  Ai~rN(XNy) .  Obviously, 

u E I~, ( r ~  1 , . . . ,  n), hence 0 , ,%.  occurs in the right side of (20). By (19) 

O ~ , % = @  ~ >--O~.,v, and so 
r : l  % V i~ 

V V V oo, , 
x, y E  V Yc~ a E A  a, bElvc 

a E A  

that is, (20) is valid. 
Let us denote by @o[I] the least congruence relation under which I is a 

congruence class. Obviously, O [ I ] =  O0[I] if Oo[I] exists. 9 

COROt.LaR'r. t f  Oo[L,] exists for all a E A, and also O0[ V I,,] exists, then 
a E A  

V Oo[M = Oo[VM. 
In Theorem 6 we have proved that the join of minimal congruence irela- 

tions of ideals is a minimal congruence relation of an ideal. The analogous 
assertion for the meet is not true as it may be shown by the example of 
the lattice S. It would have some interest to give conditions under which the 
meet of minimal congruence relations remains minimal. We assert only 

LgMMA 8. Let L be a lattice with 0 on which every ideal is a congru- 
ence class under at most one congruence relation. Let ~ denote the lattice of  
all ideals in L which are congruence classes under some congruence relation. 
Then s is isomorphic to @(L), i. e. 

(21) (9 [ V Id  = V O [i~1 (I~ E s 
a E A  a E A  

(22) (9[ A I~] : h O [I~] (L, C s  
a E A  a E A  

9 It would be of great interest to examine the lattice of all ideals for which 0o[I ] 
exists. One can easily prove that they form a distributive lattice. 
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let (L K, s 

and 
7= 

then there are refinements of these chains of common length. 

PROOF. (21) was proved in Theorem 6. (22) follows from the fact that 
the existence of 0 E L implies the existence of A/s; furthermore AI~ is a con- 
gruence class under AO[&]. But Al,, is a congruence class under at most 
one congruence relation, hence AO[I~]zO[AI~]. Thus we have proved 
that the correspondence I---~O[I] (IEV~) is an isomorphism, between s and 
O(L), and so .s is distributive. Hence the JORDAN--DEDEKIND theorem is 
applicable to s and this assures the validity of the last statement. 

Now we give a simple answer to the problem formulated above. 

THEOREM 7. The congruence relations of the form 6)[1] form a sub- 
lattice of 0 (L) if 

(23) O~,bNOa,~O~,~ for all a<=b,a<=c. 

PRooF. We 'must prove only 

(24) O [I,] n 0 [L] = O [L n 121, 

for the same statement for joins was proved in Theorem 6. Applying Lemma 2, 
(24) get the following form: 

V @o,~,n V O~,d= V @x,.~, 
a, b E Z  1 e, d E I  2 x, yEI~ nI~ 

thus from the infinite distributive law we conclude 

(25) V (Oa, ,, n Oc, ,~) = V O~,y. 
o, b E I 1 ; c  , d E &  x, y E I ~ n l  2 

If O~,v occurs in the right side of (25), i.e., x ,y  E/1 N/2, then O~,v occurs 
in the left side too, i. e. 

V V Ox, . 
a, bEI~; c, a E  G x, y E I ~ n I 2  

On the other hand, we see that if t ~ < a N b N c N d  (a, bEI~, c, dEI.O, then 
by (23) 

@~, b rl 0,-., ~z ~ 6)~,,,,, N @~,..,,~,, =. @(,,..uo~e,.,d), *, 

where (a U b) N (c U d) E L a & and t E/1 N /.2, i .e .  every member of the left 
side is less than or equal to a suitable member of the right side, and so 
the inequality holds in the reversed sense too, completing the proof of (25). 

The condition (23) is not necessary, not even in modular lattices. 
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As an easy consequence of Theorems 1 and 7 we get" 

COROLLARY. In a distributive lattice the congruence relations of  type 
O[l] form a sublattice of O(L). 

PROOF. Let a ~ b  and a ~ c ,  then u ~ v  (do, b) and u:_=v (O4, e) under 
the condition u ~ v  are equivalent to (Theorem 1) 

(26) (a 0 v) N u = v, 

(27) (b U v) 13 u = u, 

(28) (c 0 v) A u = u. 

From (27) and (28) by the distributive law 

(29) u = u a u = (b 0 v) n u N (c tJ v) fl u = [(b n c) 0 v] n u. 

(26) and (29) together mean by Theorem 1 that u ~ v  (O~,b~). Thus 
< ; O~,bN 0 . . . .  O~,b~ the converse inequality is an immediate consequence 

of 0~, b, 0~,~ >= 0~, b~ ; the proof is completed. 
We remark that this Corollary is an immediate consequence of condi- 

tion (f) of Theorem 2 too. 
The validity of (21) and (22) is assured under a lot of restrictions by 

THF~OREM 8. L e t  L be a dual infinite distributive lattice with zero ele- 
ment. Then the congruence relations 0[I] form a complete sublattice of  0 (L), 
that is, (21) and (22) are valid. 

PROOF. It is enough to prove (22). This may be treated in a similar 
manner as the Corollary of Theorem 7. It suffices to note that the zero ele- 
ment assures the existence of AI~, and the dual infinite distributive law is 
used in the proof of 

A 0 o , ~ =  0~, ^~ 

which is analogous to (23). We omit here the detailed proof. 

w Remsrks on weak projectivity 

Let four elements a , b , c , d  be given in L such that a,b--~c,d and 
c, d - *  a, b. Then a ~ b  is equivalent to c=~d under every congruence rela- 
tion. The situation is the same if a, b and c, d are projective TM (which shall 
be denoted by [a, b]H[c,d] if a ~ b and c : < d ) .  The following problem 
arises: give a necessary and sufficient condition under which a,b is 

lo In the literature one speaks about the projectivfly of intervals. We say that a, b 
and c, d are projective if the intervals [a VI b, a U b] and [c Vl d, c U d ] are projective in the 
usual sense. Our definition is more convenient in the sequel. 
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projective into c, d if and only if 

(30) a , b - - , c , d  and c,d--*a,b.  

Now we consider two classes of lattices in which this condition holds. 

THEOREM 9. Let L be a 

A) distributive, or 

B) discrete, modular 
lattice, then a, b and c, d are projective if  and only i f  (30) holds. 

Pr~oov. Evidently, in both cases it is enough to verify that (30) implies 
the projectivity of a, b and c, d. 

A) By Theorem 1, (30) is equivalent to (we suppose that a _--< b, c ~ d) 

(31) (a u c) n d - - e ;  

(32) (b u c) Nd ~- d; 

(33) (c U a) n b =- a; 

(34) (d U a) n b = b. 

Let us prove the equation b U (a U c) = d  U (a U c), i.e. 

(35) b U c = d U a. 

From (32) b u c > = d  and from b>=a we get b u c > = d u a  and, on the other 
hand, from (34) a U d => b and from d _--> c we get a U d ~ b U c; these inequa- 
lities prove (35). The equations (31), (33), (35) show that the consecutive 
members of the sequence of intervals [a, b], [a U c, b U c], [c, d] are transposed, 
that is, [a, b] H[c, d], q .e .d .  

We see that we have proved more than it was required by Theorem 9. 
In addition we get 

THEOREM 9'. O~, b = 0~, d in a distributive lattice L if  and only i f  
a, b and c, d are projective. 

B) The proof may be decomposed into two assertions. These may be 
proved by trivial induction, hence the detailed proofs may be omitted. 

LEMMA 9. I f  L is a modular, discrete lattice and a, b, c ~ L, a <= b, then 
under condition B we have u 

l[a,b]>=l[auc, buc] and l[a,b] ~ l [ a N c ,  bNc], 

and if a sign of equality holds, then the corresponding intervals are transposed. 

PRooF by induction on l[a, bl. 

~ l[a, b] denotes the length of a maximal chain from a lo b. 
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LEMMA 10. I f  L is a modular, discrete lattice and a,b,c,  dEL, 
a <= b, C ~ d, a, b -* c, d, then 

l[a, o] tic, d] 
PROOF by Lemma 9 and by an induction on the number of steps in 

the definition of weak projectivity (the number n in (15) and (16)). 
The proof of case B)may  be completed as follows: if a _--< b and c =< d 

and condition (30) holds, then l [a ,b]=l[c ,d]  from Lemma 10, hence 
[a, b] H [c, d] from Lemma 9, q. e. d. 

By repeated use of distributivity it is c learthat  if in a distributive 
lattice a, b--,c, d (a >= b, c ~ d), then for suitable p and q(EL) the following 
two equations hold (see Theorem 1 too): 

(36) (a u p) n q = c, 

(37) (b U p) N q = d. 

Now we prove that this property characterizes the distributivity of the lattice L. 

Tr~EO~eM 10. The condition a, b ~ c, d (a ~= b, c >= d) is equivalent to 
(36) and (37) i f  and only i f  L is distributive. 

PROOF. The sufficiency of the distributivity is obvious. Therefore we may 
restrict ourselves to the necessity. 

Let us suppose that the stated condition holds. We prove that c > d => a 
is impossible. Indeed, if d>--a, then b u p > : a ,  and so a u p _ ~ b U p ,  that is, 
a U p :  b u p, consequently c := (a U p) N q - :  (b U p) n q = d, a contradiction. 

It follows from Lemma 6, that c>d>=a,  c ~ d  (O~,v) is impossible, 
hence from condition (a) of Theorem 2 we get the distributivity of L. 

llI. SEPARABLE CONGRUENCE RELATIONS 

w 1. The definition of separable congruence relations; examples 

In this section we introduce the notion of separable congruence rela- 
tion. This notion will enable us to solve many problems. 

DEFINITION 3. Let L be a lattice and O a congruence relation on L. O 
is separable if to all a --< b in L there exists a chain a = z0 N zl =< ...  =< z,~ = b 
such that for each i either z~-l~z,: (O) or (z~_l@z~(O) and) x, yE[z~ 1, z~], 
x ~ y  (O) imply x ~ y .  

We also say that this chain {z~} is separated modulo O, or O separates 
the chain {z~}, or a and b are separated modulo O by the chain {z d. 
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We get immediately from the definition" 

LEMMA 1 1. I f  the lattice L is semi-discrete, then all congruence relations 
on L are separable. 

Now let us consider an example 1~ of a non-separable congruence rela- 
tion. Let L be the chain of all positive integers, together with - [ - ~ .  We 
define x ~ y  (O) if and only if x - ~ 2 i ,  y = 2 i + l  for some i ~ 1 , 2 , . . . .  
Obviously, O is non-separable, e .g.  no chain separates 1 and + ~ .  

From the definition it is also clear that if O is separable, then between 
all a, b (a ~ b) there exists a maximal chain such that on this chain there is 
but a finite number of congruence classes with more than one element 
under  O. Indeed, every maximal chain which refines a separating chain has 
the required property. 

The converse statement is in general not true. It is neither true that if 
O is a congruence relation such that between all a > b there is a maximal 
chain with the property described above, then O is necessarily separable. 
The statement: if O is separable, then all maximal chains between any a >--b 
have the property described above, is also false. Counterexamples may be found 
in w 4 of this Part, see examples (A) and (B). 

Some typical examples on separable and non-separable congruence 
relation will be shown by the following lemmas. 

LEMMA 12. Let L be a lattice with the greatest element 1, and I a 
neutral ideaU of  L. @[t] is separable if  and only i f  I is a principal ideal. 

PROOF. If 1 and y ( ~ l )  are separated under Oil] (I~=L) by the chain {zr 
(i ~ 1 , . . . ,  n), then it may be supposed that zl = y ,  z3 ~ 1 (n ~ 3). There is 
no subinterval of [z2, 1] which is congruent under @[/], thus z2 is the gener- 
ating element of 1. On the other hand, if I - - ( a ] ,  then x-->_ y may be sepa- 
rated under 6)[I] by the chain y ~ x N (y t3 a) --< x. ~4 

The following is a significant example of a non-separable congruence 
relation of distributive lattices. 

LEMMA 13. Let an infinite sequence of  elements a ~ al < bl < ...  < a~ < 

< b~ < ... < b be given in the distributive lattice L. Then V 6)~, ~ is not 

separable. 

12 This example is generalized by Lemma 13. 
~3 The ideal I of the lattice L is called neutral if for any ideals J, K of L, the sub- 

lattice of the lattice of all ideals of L generated by L J, K is distributive. If I is neutral, 
then x ~ y  under 0[I] if and only if (xNy) U i ~ x U y  for some iEI. For this fact we 
refer to [2]. pp. 28, 79, 119 and 124, or to [14],p. 167. 

~ If in Lemma 14 we omit the condition that L has a unit element, then the 
assertion does not remain valid. 
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PROOF. Suppose that O = V O~, b~ is separable, and let {z~} be a chain 
which separates a and b (a : zo < zl < .-. < z~ = b). If z~_l~z~ (O), then 

n 

z~ l~z~(V iO%,  @, that is, already a finite number of the [a~, b~] generates all 

congruences on the chain {z~}. Let [at, bt] be an interval different from the 
above ones.Let O'er, ~ be the complement of O~,, bt (see condition ( d ) o f  
Theorem 2), then a ~ b (@a,, b~ U (9'~, bt), a ~ b (@'a,, bt) (for at ~a b, (O'~,, 0) .  
Hence for a suitable index j we have Zj_l ~ z y  (@'at, O" According to Lemma 
5 applied to Zj_l~_zj ~ (O'a,,b,U @~,b~), there is a pair of elements u , v  such 
that zj_l ~ u < ~J ~ z~ and u ~ v (O~, O. On the other hand, Z j - l ~  z; ((9), 

that is, u ~ v  (O) whence u z - v  (V O % , @ . _  Comparing this with 

the above congruence we get u ~ v  (Oat, b~N y O%,= b:.), that is, 

n 

u ~ v  (Vl(O~s., bs. ~ n O~ t 0)" From the conditions of the Lemma and from 

[asz, bs~] 4 = [a~, bt], we get for each l either % < bj~ < at < & or at < b, < % < bsz" 

Thus by condition (c) of Theorem 2 we get 0%, b h n Oa,, b~= o). Hence the 

above congruence becomes u ~ v  (m), i. e. u = v ,  in contradiction to u<v .  
The proof is completed. 

Now we prove 

LEMMA 14. The Separable congruence relations on L form a sublattice 
O~(L) of O(L). OdL) contains t and o0. 

PROOF. It is clear that ~ and o) are separable, so O~(L) is not the void 
set. Furthermore, let O, ~ ~ O~(L), and let a>=b (a, b ~ L). The chain {zdr 
separates a and b modulo O, and let {u~:.}j be a chain which separates zr and 
z~_~ modulo qz A rather simple computation shows that the chain {u~,~}~,~ sepa- 
rates a and b modulo @ U q~ as well as modulo (9 n @, completing the proof. 

@(L) is distributive, hence its center (9~(L) is the set of all congruence 
relations having a complement. It is well known that (9~(L) is a sub- 
lattice of O(L). (It is trivial from the identities ((gU ~ ) ' : ( 9 ' ~  qx and 
((9~ q~)'= O' u q,'.) 

L~MMA 15. I f  the congruence relation (9 has a complement, then it is 
separable, that is, (9~(L)~ (gs(L). 

PROOF. By Lemma 5, to all a>b there exists a chain a=Zo>_--...->-z,.~b 
such that either z~z~_~ ((9) or z~=~z~_~ ((9) for every i. We assert that 
the chain {zi} separates a and b modulo (9. Indeed, if x ,y  ~ [z~,z~_~] and 
z~z~_~ ((9), furthermore x ~ y  (O), then from x ~ y  ( 0 ' ) w e  get 
x ~ y  ((g n O'), that is, x = y ,  q. e. d. 

1l Acta Matheraa:tica IX/I--2 
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COROLLARY. In a distributive lattice all congruence relations o f  the form 
0~, ~ are separable. 

This  is an immedia te  consequence  of condi t ion  (d) of Theorem 2 and 

of L e m m a  15. 

w 2. Weakly modular lattices and G. Birkhoff's problem 72 

First  of all we in t roduce the not ion of weakly  modu la r  lattices. It p lays  

an impor tan t  role in the d i scuss ion  of p rob lem 72 as well as in our  resear-  

ches  concern ing  the so-cal led  s tandard  ideals (see [8]). 

DEFINITION 4. The  lattice L is weakly  modu la r  if a , b - - ~ c , d  
(a ~ b, c ~ d, a, b, c, d E L) implies the existence of e lements  al, b~ (a M al ~ b~ ~-- b) 
such that  e, d ~ a~, bl. 

The weakly  modu la r  lattices are a c o m m o n  genera l iza t ion of the m o d u -  

lar and  relatively complemen ted  lattices 15 as it is a s sured  by  

LEMMA 16. I f  L is a 

(a) modular, or 

(b) relatively complemented 

lattice, then it is weakly modular. 

P~ooF.  The  case (a) is an immedia te  consequence  of the i somorph i sm 

theorem for modu la r  lattices (we refer to [2], p. 73). N o w  cons ider  case (b). 
Let a > b and a n x > y ~-- b flx.  Then  deno t ing  by  z the relative complemen t  

of y in the interval [ b o x ,  a N  x], we have aN x , y - - ~ b , b  Uz and  b ~ b  u z ~ a ,  
for [ (aNX) N z ] U b ~ b u z  and ( y n z )  u b ~ b .  In the same lines it may  be 

proved  that in case a > b ,  a u x > _ - - y > b u x ,  we have b u x ,  y--~ax, a for 

1~ The necessity of a common generalization of modular and relatively complement- 
ed lattices has arisen in many cases. Let us consider an illustrative example. DJLWORTH 
and HALL [4] proved - -  generalizing a theorem of G. BmKUOFF - -  that every weakly atomic 
(a lattice is called weakly atomic, if any a ~ b implies the existence of c, d with a ~ c > - d ~  b) 
modular lattice is the subdirect product of projective lattices (a projective lattice is a lat- 
tice in which all prime intervals are projective). J. HASmMOTO [13] proved a similar result for 
relatively complemented lattices. Thus the necessity of a theorem arises which is a com- 
mon generalization of the above mentioned ones. Let us call the lattice L weakly projec- 
tive if for any pair of prime intervals p, q the relations p --+ q and q --* p hold (the notations 
are that of w 3). Obviously, any weakly projective modular or relatively complemented lattice 
is projective. We assert: Any weakly atomic, weakly modu-lar lattice is a subdirect product 
of weakly projective lattices. The proof goes on the same lines as the proof of the asser- 
tion of DILWORTH and HALL, or, what is the same, the proof of J. HASHIMOTO. This is also 
a consequence of Lemma 18 
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suitable a > a~ ~ b. The proof may be completed by an easy induction on n 
of Definition 1. 

From Lemma 16 it is also clear that the weakly modular lattices gener- 
alize the modularity in another way than the semi modularity. We remark 
that by the Corollary 2 of Lemma 6 all simple lattices are also weakly 
modular. 

An important property of weakly modular lattices is proved in 

LEMMA 17. Let L be a weakly modular lattice and 0 a congruence rela- 
tion on L. Define x = y  (0") i f  and only i f  in the interval [x N y, x U y] every 
congruence class under 0 consists of a single element. Then O* is a con- 
gruence relation, furthermore O* is the pseudo-complement ~6 of (9 in O(L). 

PROOF. Owing to the definition of O*, it is reflexive and satisfies the 
condition (b) of Lemma 4. Let u > ~ > w , u ~ v  (O*) and ~ w  (O*) and 
let us suppose that for some u>=x>y>=v we have x=~y (O). Since 
x=~y (O .... U O,,,~,), from Lemma 5 it follows the existence of xl, yl such that 
x _>--_ xl > Yl ----> Y and either u, v - ,  xl, Yl or :v, w --* xl, y~. From the weak modu- 

> v  > w l > w  or x,y--,.u~,v~ larity it results that x~,yl--,v~, w~ for some v =  ,1 = 
for some u > = u ~ > v ~ v .  But x ~ y  (O) implies v ~ w l  (O) or u ~ v ~  (0),  
in contradiction to v=~w (O*) or to u ~ v  (O*). The cases u = v  and v = w  
are trivial. Finally, we prove that x>=y and x z _ y  (O*) imply x U t ~ y  U t (0"). 
Indeed, if x U t ~ y  U t (O*) is not true, then u ~ v  (O) is valid for some 
x U t - - > u > v = y  t. From the weak modularity it follows that u,v--~xl,  Y, 
for some x>=x~ >yl>=y, that is, x~___y (O*) is false. Thus we have proved 
the validity of the conditions (a)--(d) of Lemma 4, and so @* is a con- 
gruence relation. The last assertion of the lemma is clear. 

COROLLARY. Any separable congruence relation of  a weakly modular lat- 
tice has a complement, that is, O d L ) =  O~(L). 

PROOF. Let O be separable; we assert that the congruence relation O* 
of Lemma 17 is the complement of O. Indeed, if a >--b (a, b ~ L), then let 
a-=Zo>Z= ,= . . -=>  > z , = b  be a chain which separates a and b modulo O. If 
z~@z~_~ (O), then by the definition of O* it follows z,z~zz+~ (O*), whence: 
a ~ b  ( 0  U 0"), completing the proof of O U O * =  L. 

Now we proceed to problem 72 of G. BIRKHOFF (see [2], p. 153): 

Find necessary and sufficient conditions on a lattice L that its con- 
gruence relations should form a Boolean algebra. 

~6 Let L be a lattice with O. The element a* is called the pseudo-complement of a' 
if x N a : O  is equivalent lo x ~ a*. 

1I * 



I~4 ~. ORATZER AND E . T .  SCH~IlDT 

First T. TANAKA [18] gave an answer to this question? ~ He got the 
following interesting theorem which is a generalization of a theorem of R. P. 
DILWORTH [3]: 

The congruence relations of the lattice L form a Boolean algebra if and 
.only if L is a discrete subdirect product o f  simple lattices. (Discrete sub- 
direct product is a subdirect product in which any two elements differ only 
in a finite number of components.) 

The theorem of T. TANAKA may be considered as the structure theorem 
.of lattices L for which O(L)  is a Boolean algebra. However, in some 
respects the following theorem is more applicable to interesting special 
cases : 

THF~OREM 1 1. The congruence relations of the tattke L form a Boolean 
algebra if and only if 

(W) L is weakly modular 

and 
(S) all congruence relations on L are separable. 

PROOF. 

The necessity of the conditions. Let us suppose that @(L) is a Boolean 
algebra for the lattice L. Then by Lemma 15 all congruence relations are 
separable, hence (S) is necessary. 

Let us suppose that a, b --~ c, d (a > b, c ~5 d). @~, ~ has a complement, let 
us denote it by ~ .  Now, a ~ b  (O~,~LJ ~), but in case a ~ b  (q)), it follows 
that c~_d (q)) which is impossible, so a~pb (~).  Thus Lemma 5 implies 
that for some a ~ a ,  > b , ~ b  the relation a , ~ b l  (@~,d) holds. By Lemma 6 

this implies that for some al>--a2> b2>=bl, c,d--*a2, b2 is valid, thus in case 
O(L) is complemented, (W) holds. 

The sufficiency of the conditions. By (W), @,(L)--~ @,(L), as it was 
proved in the Corollary of Lemma 17. Condition (S) is equivalent to CO(L) 

@~(L), thus O ( L ) =  r as we wished to prove. 

We get from Theorem 11 a lot of Corollaries. 

COROLLARY 1. The lattice of all congruence relations of a 

(a) modular, or 

17 The result of T. TANAKA remains valid in abstract algebras, too, this explains that 
for lattices one can get sharper results. We note that while the result of T. TAnA~A de- 
pends on the Axiom of Choice, our result does not use it. 
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(b) relatively complemented ~8 

lattice is a Boolean algebra i f  and only i f  the condition (S) holds. 

It follows from Theorem 11 and from Lemma 16. 
In case the distributivity of L is assumed, we can get further improve-  

ments. 

COROLLARY 2 (Theorem of J. HASHIMOTO [14]). The lattice of  all con- 
gruence relations of  a distributive lattice L is a Boolean algebra i f  and only 
i f  L is discrete. 

PROOF. By Corollary 1 it is enough to prove that in distributive lattices 
(S) is equivalent to the discreteness of L. Indeed, if L is discrete, then by 
Lemma 11 (S) holds. On the other hand, if L is not discrete, then by the 
usual method of bisection of intervals we get a sequence of elements re- 
quired in Lemma 13, so that, by this lemma it follows the existence of a 
nonseparable congruence relation, that is, condition ( S ) i s  false? 9 

In case of modular compler~iented lattices, SHIH-CNIANG WANG got a 
condition for the complementedness  of @(L). 

COROLLARY 3 (Theorem of SmH-CHIANa WANG [20]). The lattice of  all 
congruence relations of  a complemented modular lattice is a Boolean algebra 
i f  and only i f  all neutral ideals are principal. 

PROOF. By a theorem of G. BIRKHOFF, every congruence relation of a 
complemented modular  lattice is a minimal congruence relation of a neutral 
ideal. By Lemma 12, the minimal congruence relation of a neutral ideal is 
separable if and only if the ideal is principal, and so Corollary 3 follows. 

It is surprising that Corollary 3 which seems to be true only in comple-  
mented modular lattices remains true after omitting the condition of modu-  
larity, provided that we replace neutral ideals by standard 2~ ones. In [8] we 
proved that every congruence relation of a relatively complemented lattice 
with 0 and 1 is a minimal congruence relation of a standard ideal, thus the 
proof of Corollary 3 may be applied to establish 

18 The results of this section were published in [7] in 1957. At the same time, 
]. HASmMOTO published in [13] the following result : If in L the restricted chain condition 
holds (that is, in every (closed) interval of L the maximum or the minimum condition 
holds) and L is relatively complemented, then O(L) is a Boolean algebra. Indeed, the 
restricted chain condition is a special case of semi-discreteness, further, on any semi- 
discrete lattice all congruence relations are separable (Lemma 11), thus the assertion follows 
from the part (b) of Corollary 1. 

19 For a direct proof of Corollary 2 see our paper [12]. 
2e, We have introduced the notion of standard ideals in [8]. Among the more than 

seven equivalent definitions now we formulate only the following two: (a) the ideal I is 
called standard if for any ideals J, K of L the relation J 0 (I  U K) ~ (J 17 I) U (J 17 K) holds ; 
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COROLLARY 4. The lattice of all congruence relations of a relatively 
complemented lattice with O and 1 is a Boolean algebra if and only if  all 
standard ideals are principal. 

We get other types of Corollaries if we restrict our consideration to 
discrete or semi-discrete  lattices. In semi-discrete  lattices (S) is valid (Lem- 

ma 11). We prove that in semi-discrete  lattices (W) is equivalent to 

(J) weak projectivity between pr ime intervals is symmetric.  

(The interval [a, b] is called prime if b covers a.) Indeed, if (W) holds 
and b covers a, d covers c, a,b--~c,d, then for some b ~ b ~ > a l ~ a ,  
c,d---~al, bl is valid, but from the covering relations we infer b=b~ and 

a = a l ,  hence (J) is valid. On the other hand, assume the validity of (J), 
and  let a,b--*c,d, a<b .  Let a = x o < x ~ < . . . < x ~ = b  be a finite maximal  

chain between a and b. Then c ~ d  ( U 0~.~,~,_1), so that by Lemmas  4 and 5, 
i = 1  

for some cNd<=c~-<d~<=cud and for some i, x~_~,x~-~ca, dl is valid. But 
then by (J) c~, d ~ x ~ ,  x~_~ and the assertion follows. Thus  we have 

COROLLARY 5. The lattice of all congruence relations oJ a semi-discrete 
lattice is a Boolean algebra if and only if the relation of weak projectivity 
between prime intervals is symmetric. 

Corollary 5 in case of discrete lattices was  firstly proved by J. JAKUmK [15]. 
We shall weaken the conditions of Corollary 5 in the following section. 

w 3. Special properties of @(L) 

If we can construct from the lattice L a new lattice, then it is always 
interesting to characterize those lattices for which the new lattice has some 

special properties. So, for instance, the characterization of those lattices for 
which O(L) is a Boolean algebra was the content of w 2. Now we consider 

further problems of this kind. 

(b) the ideal I is said to be standard if x ~ y  under @[I] if and only if (xNy)Ut--xUy 
for some t EI. From (a) it is clear that the notion of standard ideals is a generalization 
of the neutral ideals; from (b) we see that the proof of Lemma 12 for standard ideals 
remains valid. 

In [8] we have proved Corollary 4 in another way. We can sharpen Corollary 4, 
for in [8] we have proved that in a weakly modular lattice all standard elements are neutral 
and in a relatively complemented lattice all ideals which are congruence classes under 
some congruence relation are standard, thus we get: the lattice of all congruence relations 
of a relatively complemented lattice with 0 and 1 is a Boolean algebra if and only if every 
ideal which is a congruence class under some congruence relation is a principal ideal. 
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We know that in @(L) the infinite distributive law 

(ID) o n V O ~ = V ( O n O ~ )  

holds, but, as it was pointed out by N. FUNAYAMA and T. NAKAYAMA [5], 

the dual law 

(DID) O u A O ~ = A ( @ u O ~ )  

does not hold in general. Let us consider the lattices in which (DID) does 
hold. First we prove 

LEMNA 18. Let 0 be a separable congruence relation 
any subset A of  O(L) 

O u  A o o =  A ( o u o , o  
OaEX OaEA 

is valid. 

PROOF. Since O U AOo=<A(O u O~) is true in any complete lattice, it 
is enough to verify that @uAO~>__A(OuO~). Let x ~ y  (A(@uO,0) ; 
since O is separable, there exists a chain x U y = Zo_--> zl>=..._--> z,~ = x n y 
separating x U y and x Cl y modulo O. If zr (O) for some i, then from 
Zi_l ~ zi (A(O u O,)) we get z~ ~ zr (A O~). Thus for every i either zi ~ z~_l (O) 
or-z~-~z~_~ (AO~), that is, x=~y (OoAO~,), which we intended to prove. 

COROLLARY. If  all congruence relations on L are separable, then (DID) 
holds unrestHctedly. 

Lemma 18 or its Corollary may not be conversed, as it will be shown 
in {} 4 by a counterexample (example (C)). 

Now we characterize the distributive lattices L such that in O(L) 
(DID) holds. 

THEOREM 12. In the lattice of all congruence relations of a distriOutive 
lattice (DID) holds unrestricted@ if  and only if  L is discrete? 1 

PROOF. If L is discrete, then all congruence relations on L are separable 
by Lemma 11, thus, by the Corollary of Lemma 18, (DID) holds in @(L). 

On the other hand, assume that (DID) holds in O(L). Let OEO(L). 
then O =  V O~,b. By condition (d) of Theorem 2 any Oa, b has a com- 

a ~ b(O) 

plement O~,b. Put O =  A O~,b, then by (ID) 
a--t~ (O) 

o n o =  Vo,,,~ n (AO;,O = V(oo,~ n A o;,, 0 ~ V(O~,,~ n o ; ,0  = V~ = o, 

hence O 0 0 = r  and from (DID) 

o u o = VOo,~ u (AO', 0 - -  A(o;,~ u V oo,~)_-> A(o~,~ u oo,0 = ,, 

2~ A simple proof of Theorem 12 was published in our paper [12]. 

of L. Then for 
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(the A and V are extended to all a, b with a = b  (O) in all above formulae), 
thus O U q )=L,  that is, ~ is the complement of O. Thus O(L)is a Boolean 
algebra, hence from Corollary 2 of Theorem 11 L is discrete and the theorem 
follows. 

Now we consider a question related to problem 67 of G. BIRKHOFF [2]. 
Let P be the set of all prime intervals of the lattice L;  the elements 

of P are denoted by p, q. If p ~ [a, b] and q = [c, d], furthermore a, b--. c, d ,  
then we write p--*q. The elements of P under the relation --* are quasi- 
ordered, thus if we identify those p,q for which p - , q  and q-- .p simul- 
taneously, then we get a partially ordered set which will be denoted also 
by P. Now we are seeking for a condition under which O(L) ==_ 2 P. (2 denotes 
the lattice of two elements. The definition of 2 P may be found in [2], p. 8.) 

LEMMA 19. For any lattice L, 2 P is a complete homomorphic image of 
O(L). 

PRooF. We say that the congruence relation E) collapses the prime 
interval p, if p = [a, b] and a ~ b  (O). We call a subset A of P s-ideal, if 
pEA and p ~ q  imply q EA. We assert that every s-ideal may be regarded 
as the set of all prime intervals collapsed by some congruence relation. 
Indeed, if O is a congruence relation, then the set of all collapsed prime 
intervals A form an s-ideal, for if pEA and p - . q ,  then q is also collapsed 
by @. On the other hand, let A be an s-ideal of P, and let us define 
O - -  V O~,b. Under @ the prime intervals of A are collapsed, further- 

:p=[a, b l E a  

more if q is collapsed by O, then q=-[a, hi, a ~ b  (0), thus, by Lemmas 4 
and 5, p - - q  for some pEA, hence qEA. 

In a similar way we get that if under 0~ and O the  collapsed prime 
intervals are A~ and Ao, respectively, then under @ tJ ~ and @ A q) the col- 
lapsed prime intervals are Ar LJ Ao and Ae [1Ao, where t3 and [1 denote the 
set theoretical meet and join. Thus the set B of all s-ideals of P, partially 
ordered under set-inclusion is a homomorphic, moreover, a complete homo- 
morphic image of O(L) (naturally the void set is also regarded as an s-ideal). 
It is evident that B is isomorphic to 2 P, completing the proof of Lemma 19. 

A trivial condition concerning the problem under discussion follows 
from Lemma 19. 

THEOREM 13. The isomorphism O ( L ) ~ 2  P holds if and only if to any 
pair 0 > q5 (0, q)E O(L)) there exists some PEP collapsed by 0 but not by qs. 

PROOF. Since 2 P is a homomorphic image of @(L), the condition of 
Theorem 13 is necessary and sufficient in order that this homomorphism may be 
an isomorphism. Q. e. d. 
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As a trivial consequence of Theorem 13 we get immediately a sharpened 
form of a theorem of J. JAKUBIK [15] (he restricts himself to discreie lattices; 
in w 4 we prove by examples that the following Corollary is more sharpen 
than JAKtmIK'S theorem): 

COROLLARY 1. I f  L is a semi-discrete lattice, then O ( L ) ~ - 2  P. 

Instead of proving it we shall verify a more general assertion. 

COROLLARY 2. Let L be a weakly atomic lattice with separable congru- 
ence relations. Then @(L) ~ 2 P. 

PRooF. It is enough to prove that if (9 > ~ ,  then there exists a prime 
interval p which is collapsed by (9 but not by ~ .  As a matter of fact, there 
exists a pair of elements a,b  with a > b ,  a ~ b  ((9) and a ~ b  (~) ,  and 
there exists a chain which separates a and b modulo 0~; let a = z0 =>..- --> z, = b 
be this chain. Choose an index i for which z i ~ z ~ 1  (~) .  Then no subinter- 
val of [zi, zi-1] is congruent under ~ .  By weak atomicity there is a prime 
interval p in [zi,z~_l]; thus p is not collapsed by ~ but is collapsed by (9, 
completing the proof. 

Theorem 13 and Corollary 2 may be regarded as a general solution of 
G. BIRKHOFF'S problem 67. 

From Corollary 1 one can deduce Corollary 5 of Theorem 11 using 
only the fact that 2 e is a Boolean algebra if and only if P is unordered. 22 
Thus from Corollary 2 of Theorem 13 we get a generalization of Corollary 
5 of Theorem 11: 

Let L be a weakly atomic lattice with separable congruence relations. 
(9(L) is a Boolean algebra i f  and only i f  weal: projectivity is a symmetric 
relation among #s prime intervals. 

w 4. Counterexamples 

Now we construct some counterexamples to questions raised in Part III. 
(A) There is a lattice having a congruence relation @ and a maximal 

chain C such that @ induces on C an infinity of congruence classes 
of more than one element. 

22 Let us prove that 2 P is a Boolean algebra if and only if P i s  unordered. Indeed, if 
P is unordered and f E2P, i .e .  f is an isotone function from P to 2, then define g by 
g(a) = 0 if f(a) = 1 and g(a) = 1 if f(a) = 0. Obviously, g is the complement of f in 2 P. 
On the other hand, if x,y(: P and x ~ y ,  then consider the function f for which f ( x ) =  1, 
f(y)~O. If g is the complement or f ,  then max(f(a),g(a))~l for all a E P, that is, 
g ( y ) = l ,  min(f(a),g(a))=O for all a(:P, whence g(x)~O, g is not isotone; a cont- 
radiction. 
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EXA.~PLE. Let P be the chain of al! non-positive integers together with 
- - ~ ,  with the natural ordering. In the cardinal product of P with itself let 
us consider the congruence relation O ~  O~0,0)x-co,0) and a maximal chain C 
which consists of all elements of type (x,x). By the Corollary of Lemma 15 
O is separable, yet on the chain C it induces an infinity of congruence 
classes with more than one element. 

(B) There exists a lattice L on which there is a non-separable congruence 
relation O with the property that any a, b (a >= b) may be connected by a 
maximal chain on which there is but a finite number of congruence classes 
of more than one element. 

EXANPLE. Let P be the chain of all non-negative integers and let L be 
co 

the l'attice P.P bounded with I, and O = V 0(2i,0)(2i4-1,0), By Lemma 13, O 
i = 1  

is non-separable. Let a > b. We may suppose a ~ I  unless [b, a] is finite. 
If a = l ,  then a chain with the required properties is formed by the elements 
(bl, x), where b ~---(bl, b2) and x runs over the numbers b2, b2@ 1, b2-~2 . . . . .  

It is of some interest that examples (A) and (B) could be constructed 
among distributive lattices. 

(C) There is a lattice L with the property that in O(L), although the 
dual infinite distributive law unrestrictedly holds, yet there are non-separable 
congruence relations. 

EXANPLE. Let P be again the set of all non-negative integers and let 
L consist of P and of three new elements I ,x ,y .  L will be a lattice if the 
partial ordering of P remains the usual and the following relations hold: 

x u i ~ y u i ~ x u y = x U I = y u l = I ,  
x • i = y o i = I n O = O  for all iC P. 

Let us have a look over the congruence relations of this lattice L. It is easy 
to verify that l ~ i  and i ~ 0  (i=t=0) hold only under t. This implies that 
with the exception of r all congruence relations of L are those of P, in the sense 
that the congruence relations of P are extended to congruence relations of L 
such that the congruence classes outside P consist of one element only. 
In O(P) the law (DID) is satisfied as we proved it in Theorem 12, thus a 
trivial calculation shows its validity in O(L) too. Yet in O(L)there are non- 
separable congruence relations, for instance, let x ~ y  (O) if and only if 
x = 2 i - ~ l  and y = 2 i  (i is arbitrary, i E P, i~-0) ,  then one cannot separate 
e .g.  1 and L 

Naturally, all counterexamples of type (C) are non-distributive, for if 
L were distributive, then by Theorem 12 it would follow that L is discrete, 
hence by Lemma 11 all congruence relations on L are separable. 
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(D) There is a semi-discrete but not discrete lattice L, with the pro- 
perty that O(L) is a Boolean algebra. 2a 

EXAMPLE. Let L be the set of all non-negative integers. We partially 
order L by putting 

2 i - - 1  < 2 i < 0 ,  
2 i - -1  < 2i -k  1 (i--= 1, 2 , . . . ) .  

Then L is a lattice which is obviously non-discrete but semi-discrete, fur- 
thermore L is simple, that is, it has all the required properties. 

(E) There is a weakly atomic, not semi-discrete lattice L with separable 
congruence relations such that O(L) is a Boolean algebra. 24 

EXAMPLE. Let L be the lattice of all partitions of an infinite set. Then 
L is a simple, weakly atomic lattice (foi" the proof we refer to O. ORE [17]), 
thus it satisfies the required properties. 

IV. BOOLEAN RING OPERATIONS ON DISTRIBUTIVE LATTICES 

w 1. A cha rac t e r i za t ion  of re la t ive ly  complemented distributive 
la t t ices  

In this section we prove a theorem which enables us to prove the 
main theorem of this part without complicated computations. 

Let 
f (ul, . . . ,  x l ,  . . . ,  

and ~i(ul,  ., un, x~,. . . ,  xm) l (i~- 1,2 . . . .  , k) 

be lattice-polynomials with the variables xj. 

THEOREM 1 4. In a relatively complemented lattice L the system of equations 

(38) f~ ~-~Pi (i---~ 1, 2 , . . . ,  k) 

has a solution for any 
u ~ a l , . . . , u , ~ a , ~  (a~E L;j--=- l , 2 , . . . , n )  

if and only if (38) has a solution in 2 for any 
uz--b~, . . . ,u ,~:b ,~ ( b ~ 2 ; j = l , 2 , . . . , n ) .  

We remark that if m : 0  (that is the set of unknowns is void), then 
(38) is a system of identities, the validity of which is in question. 

23 Example (D) shows that Corollary 5 of Theorem 11 is applicabie to more lattices 
than the original theorem of J. JAKUm~. 

2~ (E) shows that tt!e assertion formulated at the end of w 3 is actually stronger 
than Corollary 5 of Theorem 11. 
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First we prove 

LEMMA 20. Let L be a relatively complemented distributive lattice and 
xj, . . . ,  x,, ( L. L has a sublattice B~ which is a finite Boolean algebra con- 

taining x~, . . . ,  x,~ (and O(B,) ~ 4"). ~ 

PROOF. The assertion for n =-~ 1 is true. Now we make an induction 
on n. Let us suppose that we have already constructed B,~-I which contains 
x l , . . . , x , , 1 .  Let O~-I,L~-~ be the least and greatest elements of B~_~, 
respectively. Let us consider in the interval [O~>1, u~ U I~-11 the relative com- 
plement I'_~ of I~-1 and let A1 and A~ be sublattices of L consisting of 
O~_~, I'~_~ and x,~ U L-~, x~, respectively. Let B,~= (B~_~. A~)o A2 where o de- 
notes the cardinal product, but if B~ is regarded as a sublattice of L, then the 
embedding B~ in L is effected by (x, y) ~ x  N y. Obviously, B~ is a finite 
Boolean algebra and Xl . . . .  , x~ (Bn.  The calculation on the number of the 
elements of B~ is very easy by the construction. 

Now we prove Theorem 14. 

The necessity of  the condition. Consider a finite Boolean algebra B~+m 
containing the elements x~,. . . ,x,~; a~, ... ,a,~. (38) is solvable in B,~+~, thus 
it is solvable in 2 too. Any choice of ~r may be regarded as a homomorphic 
image of a suitable chosen a~. 

The sufficiency of  the condition. Let us suppose that (38) may be 
solved for some x~ = b~ in 2. Then (38) is solvable in all finite Boolean algeb- 
ras, for (38) is solvable componentwise. Let B,~ be a finite Boolean algebra 
containing a~, . . . ,  a~. (38) is solvable in B~, thus it is solvable in L too. 

From Theorem 14 we get easily a theorem which characterizes the 
relatively complemented distributive lattices. 

THF.ORZ~a 15. The solvability of  (38) in L is equivalent to the solva- 
bility in 2 i f  and only i f  L is relatively complemented and distributive. 

PROOF. The case "if" was proved in Theorem 14. Now prove the 
"only if". The identity 

a U (b n c ) = ( a U  b) n (a uc) 

holds in 2, thus it must hold in L, that is, L is distributive. Furthermore, 
the equation system 

(aub)  u x = a u b u c ,  

( a u b ) n x = a  

is solvable in 2, thus it must be solvable in L too, hence L is relatively 
complemented, q. e. d. 

~-s The number  of the elements  of the finite lattice L is indicated by O(L). 
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w 2. Boolean ring operations 

In Corollary of Theorem 3 we have shown that among distributive 
lattices just the relatively complemented ones have the property that every 
congruence relation is determined by any congruence class of it. It is well 
known that the rings have the same property. We prove that this connection 
between the rings and relatively complemented distributive lattices is not 
accidental. We shall see that any relatively complemented distributive lattice 
may be regarded as a Boolean ring, hence the validity of the above state- 
ment becomes very natural. 

DEFINITION 5. Let A be a set of equations on the distributive lattice L, 
containing a finite number of equations, parameters and the unknowns x ,y  
and z. If A has a unique solution with respect to z for any fixed values of x 
and y in any homomorphic image of L, then we write z = x4-y .  If the oper- 
ation 4- satisfies the group axioms, then we .speak of a group operation 
defined on the lattice L. If, furthermore, in a similar way (that is, with an 
equation system, having unique solution in any homomorphic image of L) 
there is defined another oper0,tion denoted by - such that 4- and �9 satisfy 
the ring axioms, then we speak of a ring operation defined on the lattice L. 26 

THEOREM 16. On the distributive lattice L one may define a Boolean 
ring operation if  and only if  L is relatively eomplementedF 7 All Boolean ring 
operations may be defined in the following way: 

Let a be a fixed element of  L. Let x.y be equal to (x U a) n (x U y) a (a U y) 
and let x 4- y be the relative complement of  x.y in the interval [anxny, auxuy]. 

PROOF. First we prove that the operations defined in the Theorem are 
ring operations. Applying Theorem 14 we get that it suffices to prove in 
case of the lattice 2. 

In the lattice 2 the above 
tables: 

operations may be given by the following 

4 - 1 0 1  

a = O  0 0 1 
1 1 0 

0 1 

0 0 0 
1 0 1 

~-6 The conditions of Definition 5 are satisfied if we define + and �9 only with 
the operations: join, meet, and taking the relative complement of an element in an interval. 

27 One can easily show that if we restrict ourselves to that special case in Defini- 
tion 5 in which the equations of A contain x and y only i n , h e  form x U y  and x Ny ,  then 
the existence of a ring operation characterizes not only the relative complernentedness of 
a distributive lattice, but even the distribuiivity of the lattice. It immediately follows from 
the fact that with the above definition @ is ambiguous in the lattices $ and T. 
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Thus it is clear that we get Boolean ring operations. The case a ~  1 is the 
dual of the above. 

Now we prove that in a relatively complemented distributive lattice one 
cannot define other Boolean ring operations. First we prove this for finite 
lattices. If the lattice considered is 2, then the assertion is trivial, there is 
only two types of Boolean ring operations. Let us consider the Boolean 
algebra B n = T .  A system of equations is uniquely solvable in a lattice 
which is a cardinal product of lattices if and only if the same is true 
in all of its cardinal-components. Thus the Boolean ring operations in Bn 
are in a one-to-one correspondence with the Boolean ring operations of the 
n components. In all of its components two operations may be defined, thus 
in Bn the number of different operations is 2 '~ (these are all different from 
each other, for the zero elements are unequal). On the other hand, the con- 
struction in the Theorem gives also 2 n different operations, for a may be 
chosen in 2 '~ different ways and these are also different from each other, 
for the zeros of the rings (a) are unequal. Thus the definition of Theorem 16 
exhausts all the Boolean ring operations in the finite case. 

Now, let us turn to the general case. Let x, y and u, v be two pairs of 
elements of L, and Bx, v, Bu, ~ will denote the finite Boolean algebras containing 
x, y resp. u, v and the parameters of the operations. Bx,~ and B .... are finite, 
thus they have elements a and b which characterize the operations in Bx, y and 
in B ..... respectively. We get a contradiction from a=~= b, and this will com- 
plete the proof of the statement according to which all Boolean ring oper- 
ations may be defined in the way described in the Theorem. Indeed, 
if a@b, then consider an element s common to Bx, y and to B . . . .  Now, 
s + s = a considered in Bz, v and s ~- s = b in B . . . .  thus necessarily a - -  b. 

We shall use the following note: if L is a distributive lattice and 
Xl, . . . ,x~r then there exists a finite sublattice L~ of L, containing 
xa,..,,x~. Indeed, by an obvious induction ( n = l  is trivial) if L,~_~ is 
already constructed such that x~, . . . ,  x,_~ r Ln-~, then let L, consist of Ln-~, 
from x,~ and from the elements of the form x,~ Cl u and x~ U u where u runs 
over the elements of L,~-I. 

At last we prove that if on the distributive lattice L one may define a 
Boolean ring operation, then L is relatively complemented. Let L~,.~ be a finite 
sublattice of L which contains x, y and all the parameters. L~, ~ is a subdirect 
product of replicas of 2 and in 2 the operations are defined as in the 
Theorem, thus in L~,y the operations are defined by the definition of our 
Theorem too. From the fact that L~,~ is closed under the operations -}- and �9 , 
it follows the relative complementedness of L~,y and in the same way the 
relative complementedness of L, q. e. d. 

(Received 2 January 1958) 
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