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Introduction 

There are known theorems stating the existence of an oscillating solu- 
tion of a linear or non-linear differential equation of the second order and 
also theorems stating the monotonity of the amplitudes (SOMN'S and POLVA'S 
theorem). Only one will be quoted here: that of W. E. MILN~ 1 concerning 
the non-linear equation 

y" -}- ep (x)f(y) = O. 
Let ~(x) be a positive continuous increasing and bounded function for x_>=a; 
the function f (y )  an increasing odd one and f ( y ) ~ L i p ( 1 )  for [y[ <: b. 
Taking a real value r 2 (0 < t r/I ~ b) the theorem states for x >= a the existence 
and uniqueness of a solution subjected to the initial conditions y ( a ) ~  9, 
y'(a) = 0  and this solution oscillates infinitely often for x >= a, the ampli- 
tudes decrease but do not approach zero. 

The present paper discusses the generalization of this theorem and cer- 
tain comparison theorems of Sturmian type concerning the "half-waves", 
"quarter-waves", "amplitudes" (see below the explication of these expressions) 
and the distances of the zeros. 

w 

One can raise the question what a condition imposed on the function 
f ( x , y , y ' )  involves the existence of an oscillatory solution of the equation 

(I) y'" ~ f (x, y, y'). 
It will be shown here that the separability of the variables of f(x,  y, y ')leads 
to such conditions. - -  We shall prove the following generalization of the 
above-mentioned theorem of W. E. MILNE: 

THEOREM 1. Suppose that in the non-linear differential equation 

(1) y"-t- q~(x)f(y)h (y') ~-0 

1 W. E. MILNE, A theorem of oscillation, Bull. Amer. Math. Soc., 28 (1922); pp. 102--104. 

6* 
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1. q~(x) > 0 is continuous, increasing and bounded for x ~ a; 
2. f ( y )  is an odd 2 non-decreasing function and f (y )  E Lip (1) for lYl <: b; 
3. h (u) > 0 is non-decreasing for u <: 0 and non-increasing for u >- O, 

further h ( u ) E L i p ( 1 ) f o r  all u; ~ then equation (1) has a unique solution 
subjected to the initial conditions y ( a ) = ~ ,  y ' ( a )= O ( 0 <  I~/I ~ b ) ;  this solu- 
tion exists for all x >: a, oscillates an infinite number of times, the ampli- 
tudes decrease but do not approach zero and y' remains bounded too. 

PROOF. Being f ( x , y , u ) : q J ( x ) f ( y ) h ( u )  continuous in the domain 
x ~ a, [Y[ ~ b and u arbitrary, the existence of the desired solution in a cer- 
tain right-hand neighbourhood of a is already clear. In order to prove the 
uniqueness of the solution, we shall show that the function f(x,  y , u ) =  
: ~ ( x ) f ( y ) h ( u )  satisfies in y and u a Lipschitz condition for ] y t : < b  
(u arbitrary and x ~ a). 

On account of 2 and 3, 

]fix, Y2, u.~)--f(x, YD th)l--  ~o(x) If(y~)h(u~)--f(yl)h(u~) I 

q) (x) If(Y2)--f(Y~)lh (ul) -k ff(Y~)] [ h (u~)-- h (ul)[ 

q~(x)(K~[y~--y~lh(O) + K2tu2--u~If(b) ) ~ M(ty2--y~ I § [u2--u~]), 

where M - - L  max (K~h(O), Kff(b)) and L is the least upper bound of ~(x), 
i .  e. L - -  lira q~(x), further lY~ I ~ b, ]Y,21 ~ b, ul and u2 are arbitrary, /(1 and 

x-~+ Co 

K~ are the Lipschitz constants of f ( y )  and h(u), respectively. We must show 
the existence of the solution for all x >--a. Equation (1) may be written in 
the form 

fytl 
(1') -h (y'~ q- q~ (x) f ( y) y' = O. 

By means of the notations 

Y 

f f ( t )  dt =- F(y), 
o 

t h i s  can be written a s  follows: 

0 

(H(• ---- + 

d . ( y ' )  dP(y)  dH(y')  elF(y) 0 or ~- - -  O. 
dx dx  - =  qD(x) dx  dx  

In order to prove the oscillating character of the solution, it is sufficient to assume 
instead of "f(y) is odd" that sgf(y)~-sgy. 

3 E. g. h(u) may be an even function decreasing for u =-O. 
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Hence, making use of Stieltjes integral, we obtain the following two equations : 
x 

(2) H(y') -t- q)(x) F(y) = f F(y) dq)(x) + 9~(a) F(,1), 
a 

x 

H(y') _ 
(3) q~(x) ~-F(y)~- j ~ d q : ( x ) - ] - F ( ~ ) .  

a 

The function F(y)is  positive for y::~0, F ( 0 ) ~ 0  and F(y) is an even 
function and increasing for y > 0. The function H(u) is positive, except at 
u ~ 0  where H ( 0 ) ~ 0 ,  and H(u) is increasing for u ~ 0. 

With regard to (2) and (3) the first of the functions 

H(y') p(x) 
P(x)=H(y')+q~(x)F(y), Q(x)-- q~(x) ~-F(y)-- q~(x) 

is obviously increasing, the second one is decreasing. 
The solution y(x)in question cannot attain for x>a  the boundary 

y~- +b ofthedomain D (x>=a, lYl~b, u arbit- 
rary). For, if a~ is the next point where y(a~)~- +_ ~2 
(Fig. 1), then, by the monotonity of Q(x), 

Q(a) ~ F(~) > Q(a'd - -  H(y'(a~)) + 

whence 
H(y'(a~)) 

O> ' 

and this is in contradiction to H(u)>=O, of(x)>0 

/ ,  . . . .  

~ \ i 

i 
J 

t 

Fig. 1 

also in the case when y'(a~)~0. Therefore y(x) cannot attain the value + 9, 
still less the value + b. 

Equation (1) assures that y"(x) remains finite in every finite interval 
x 

[a, c] and even as y'(x), being y'-~jy"(t)dt. Therefore the solution y(x)may 

be continued for all x >= a, i. e. this exists for x ~ a. 
Otherwise, the monotonity of Q(x) involves the boundedness of lY'I 

for all x ~ a, too. 
Now we prove the oscillatory character of y(x). 
See e.g.  the case r />0 .  Then considering (1) it is clear that at the 

place x ~ a  y" is negative and remains this as long as y is positive. Since 
x 

y'=jy"dx<O (x>a), y decreases, its graph is concave downward w i t h  
a 

negative slope to the right of a (as long as y is positive) and therefore must 
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cut the x axis at a finite point x~ > a (Fig. 2). In this point the derivative 

of y(x) is y [ = j y " d x < O .  To the right of x~ the value y is negative and 

therefore (see (1)) y" > 0 (the graph of y is convex downward), moreover y" 
increases as long as y' is negative, because y' (which is < 0) is increasing 

. i  \x,  a ,  . . . . . . . .  

a \ : 

Fig. 2 

and thus h(y'),  too, and again by virtue of 

(1) y", increases. Since y'-~-y~+.!y"dx, 

y' must vanish for a finite value x ~ a ~  
(otherwise y" would be positive and in- 

creasing, .I y"dx would surpass [Y;I and 

y' would be positive without having been 
zero). Starting at the place x--~a~, ) ,= y(al)< 0 we can arrive in the same 
manner at the succeeding zero x2 and further at a maximum place a2 (where 
y'(a2) ~ 0 ) ,  etc. Consequently, the oscillatory character for x--> a is proved? 
Zeros and only these are the points of inflexions. If ~i < O, the proof follows 
exactly the same lines. Let the zeros, the places ( > a )  of the extrema and 

�9 1 

I \ ~ / !'~ - , 7 3  

Fig. 3 

the corresponding values at these be denoted by xr ai and yr ( i ~  1, 2, 3 . . . .  ), 
respectively. Let lYe] be called as "amplitudes" of y(x), the graph of y(x) 
belonging to [x~, xr as a "half wave", and that belonging to [xr ar or 
[ai, x~+l] as a "quarter-wave" (Fig. 3). Being Q(x) decreasing and y ' (a)= 
y'(a 0 = 0 (i = 1, 2, 3 . . . .  ), H(O) --O, we have 

F(yO>F(y~+~ ) whence ly~l>ly,:+lI ( i = 1 , 2 , 3  . . . .  ), 

what indicates the decrease of the amplitudes; 5 but these do not approach 

4 Similarly, it may readily be seen that all the solutions of (1) have this character, 
provided that b is large enough compared to v. 

5 If f(y) is like that in footnote 5, then the maxima form a decreasing sequence 
and similarly the minima form another one. 
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zero because owing to the increase of P(x) 

rp(a)F(~) < q~(a~)F(y~) < fp(a2)F(y2) <. . .< q~(an)F(y,~) <.. . ,  

F(y,)  > ~ F(~) > F(~) (L ~- lim q~ (x)). 
ta~) ~§ 

COROLLARIES. 

H ( y )  is I. At places of equal ]Yl (not only at zeros) the sequence 
decreasing, q~ ,x) 

2. At places characterized by equal H(y') the values lY[ decrease. 

3. At places of equal y' the values q~(x)F(y) increase. If h(u) is an 
even function, these values corresponding to equal ]y'] are increasing too. 

4. At zeros and at places of equal q~(x)F(y) of the ascending branchs 
of the curve of y, the values y' increase. A similar statement is valid for the 
descending branchs. If h(tt) is even, ]y'] increases at places of equal 9~(x)F(y). 

5. On account of the decrease of Q(x) we obtain 

U(y;) H(y'~). ' ' x F(,i) > ~ > F(y,) > ~ 2 F(y2) > " "  (Y~ = Y  ( i ) ) .  

This is the relation between the amplitudes and the slopes at the neighbour- 
ing zeros. 

6. Being P(x) increasing we get 9(a)F(~)< H(y[) < ~(al)f(yl)  < 
< H(y;) <  (a2)F(y2) <- . . .  

7. In the case of MILNE'S theorem h ( u ) ~ c o n s t  

2 _q)(x)F(y), Q(x) - -  2q~(x) +F(y )  

and co nsidering the linear equation y" -t- ff (x)y ~ 0 ( f(y)  ~_y, h(u) = const) 

,2 P(x) 
P(x )=-~2- -+  - ~?(x)-ff-, Q(x) - -  q~(x) 

and some of the above formulae will be simplified. 

8. Assumption q ~ ( x ) ~ k = = c o n s t > 0  is possible too. In this case the 
functions P(x) and Q(x) remain constant, therefore the amplitudes, the va- 
lues H(y') at zeros and at places of equal y remain constant too, conse- 
quently all the "half-waves" are congruent, finally y(x) is periodic and y' is 
bounded? If h(u) is even, all the half-waves are symmetrical relative to their 
centres. 

6 If f(y) is like that in footnote o, then the maxima are equal and the minima too, 
but their absolute values may be different. 
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Provided that q~(x)=k=const>O, equation (1) will be of the form 

y"@ kf(y)h(y')  = 0 
and from this 

H(y') @ IcF(y) ~- c = kF(ll), 

hence denoting the inverse function of H(u) by  H-l(u)( i t  is a bivalent 
/nO function) 

~ /ttu)~u y' = H -~ (k(F(ll) - -  F(y) )), / /  " Hgu~ /" therefore 

du 
I (Y)=  g-~(k[e(~)__F(u)]) = x - a "  

~7 

' , ' I  ~, o According to the above theorem, the 
/ I ~  solution of this equation (the inverse 

"" function) exists for all x >~ a and it is 
ge~(6) periodic. If  h(u) is even, all the half- 

Fig. 4 waves are symmetrical to their centres. 
Let the inverse of the function H(u) 

be denoted by H~-l(u) for u => 0 and by g2-l(u) for u =< 0 (Fig. 4). Then 

0 

x~ --  a - -  f dy 
H~a (k[F(~i)--F(y) ]) 

17 

Similarly 
0 

dy 

a%--al =-j" H;Z(k[F(li)_F(y)] ) 

etc. The length of a period is 
f 

f dy a~--x l= H;~(lc[F(O_F(Y)l ) . 
0 

~7 

a2--x2 = [ dy 
., Hi-I(k[F(~)--F(y)I) 
0 

- q  

- 

- F  F 

Let limq~(x) be denoted by /:, then we see that the solution of (1) in ques- 
z-++ Co 

tion tends to the above periodic function and the distance of two consecutive 

tends to p (moreover decreasing as we shall show later) as x---, § z e r o s  

See, for example, the equation 
1 

j ' + k y ~ = o  (k > 0). 
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We get herefrom 
Y 

f d. I (y ) -~- - -  V__l+~[~+2k(~2 u 2 ) - ~ x - - a  (a<=x~a~). 

Introducing the notation V1 + 2 k f f = K  and carrying out the transformation 
2k ~ v ~  

vy 

V l - - v ' - ' ) ( K v - - 1 ) - - x - - a  (a <= x <= x~), v v -  K " 
1/K 

This integral is an elliptic one and its inverse is an elliptic doubly periodic 
function and the theorem states that one of the periodes is real, etc., and 
we recognize all these without the explicit form of the solution. As another 
example we take the equation 

Hence 
y" + kye -y'~ = 0 (k > 0). 

Y 

f d. 1(y) = - -  Vfog (1 + k ~ 2 - - k u  '~) - - x - - a  (a <= x <= xd. 

The above statements are valid here too and this is already more interesting 
because otherwise there is very little known" about this function. 

w 

Take now the general form of the explicit differential equation of the 
second order 

(1) y . . . .  f(x,  y, y'). 

It will be formulated here an oscillation theorem concerning this: 

THEOREM 2. Let f(x,  y, u) be defined for x ~ a and for arbitrary y and 
u with the following properties: 

1. f (x,  y, u) is continuous and sgf(x ,  y, u) =- - -  sgy ;  

2. f~(x, y, u), fu(x, y, u), .L(x, y, u) exist and are continuous ; 

3. s g f ~ - - s g y ;  

t >O if  s g u = s g y = ~ = O ,  t 
4. L ( x , y , u ) < O  and L ( x , y , u )  = 0  if y = O ,  I ( x ~ a ) ;  

< 0  if s g u = - - s g y = ~ O )  
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5. let f (x,  y, u) satisfy the Nagumo condition, i. e. let a continuous po- 
sitive function ~(u)  (u ->_- O) exist satisfying the conditions 

co 

and 
0 

then there exists fa t  x ~ a  a unique solution of (i) satisfying the initial con- 
ditions y(a) -~- ~ :~: O, y'(a) - -  0 and oscillating an infinite number of times. 

The proof follows exactly the same lines as in w 1. The theorem of 
NAGU~aO7 assures the existence of the solution for x ~ a stating the bound- 
edness of y'. (The question arises whether there exist at all functions 

f (x ,  y, u) satisfying 1--5. The function f ( x , y ,  u ) - - - - c f ( x ) f ( y )h (u )  of w 1 is 
an example for a function of this kind. Another example is f(x,  y, u)--- 

y~ 
- -  cf(X)y2§ (IYl <: b). The corresponding equation s has an oscillatory 

solution etc.) The increase and decrease o f f '  in the right-hand neighbourhood of 
the zeros x~ and x2, respectively (see Figures 2--3), are to read off from the 
formula y'" : f ~ - k f ~ y '  +fy'Y" in which all the terms of the right member are 
positive or negative, respectively. It is e a s y  to see, even as in the linear 
case, that the zeros cannot have a finite limit point. If we restrict y by 
lY[:<b ( b > 0 ) ,  then the graph o f y  can leave the domain x ->a , /y l_ -<b  
attaining the boundary y ~ - - - b  (supposed ~/> 0) and we cannot assert its 
further existence. 

w 

Theorem 1 may be extended to the equation 

(1) y" -~- ~ ,  ~(x)f~(y)h~(y ) --- 0 

where the functions ~o,:, j~, hl have the same properties as in w 1. Theorem 2 
cannot be applied here immediately without any hypothesis on the deriva- 
bility of the functions cfi, f~-, hi. In general, it seems to be impossible to 
find the analogues of the functions P(x) and Q(x). Let the restriction 

h~ =:h2 ~ h 3 ~  "" ~ h n ~ - h ( y ' )  
be assumed. Then 

Y'Y" ~ x ' h(y')  {-,~q~i(i=l )f':(Y)Y---~0 

z M. Nhouvlo, l~ber die Differentialgleichung y" ~ f (x ,  y, y'), Proc. of the Phys.-malh. 
Soc. of Japan (3), 19 (1937), pp. 861-865.  

See the discussion of this equation in a forthcoming paper of the author. 
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and with the notations 
Y 

F~(y) = f f4t)at, 
0 

we have 

(2) 

0 

n 
aH(y')  + ~_, 9~(x) dF~(y) _ 0 

dX i = l  dx 

whence, making use of Stieltjes integral, 

x 

H (y') + . ~  q~(x)F~(y)= . ~  jF,(y)clw4x) + ~, q~,(a)F,(~). 

Thus the function 

P(x) =- H(y') + ~ ~(x)F,(y)  
i ~ l  

is increasing, and similar conclusions may be made as in w 1. Without fur- 
ther restriction one cannot find the analogue of the function Q(x). If one 
of the functions ~(x) ,  say %(x), is more quickly increasing, then the other 

ones, i .e .  q:r are decreasing for i ~ 2 , 3 ,  n, then from (2) 
% ( x )  . . . .  ' 

1 dH(y')  + . ~  q~(x) dFi(y) _ 0 ,  
%(x) clx ~1%(x) dx 

and so we obtain by integration 
x 

i : l  ~ ' [~Y)  - -  - -  ~ 1  - [ -  
a 

v qai(a) ,_., , 

Clearly, the function 
H(y') _ .~  q~i(x) ~ .  . 

Q(x) == %(x)- ~=, %tx) 

is decreasing. In this case we cannot state the 
(however, see this problem later), only the 
. S  ~,(x) F~(y) formed at the amplitudes, etc. 

The equation 
d 

(3) dx (p(x)y') --I- q(x)f(y)h (p(x)y') = 0 

decrease of the amplitudes 
decrease of the sequence 
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be by  ra sforma ion in form m a y  

a 

(3') d~ 2 d~-  ~ 0 

where y, p, q mean y, p, q as functions of ~. Since p(x) must have a con- 
stant sign (see the above transformation), p(x) must be positive (in the op- 
posite case ~ would be negative for x > a). Being 

d(~q) d(pq) dx d(pq) 
d~ dx cl~_ - -  dx P' 

Theorem 1 may be applied: 

THEOREM 1'. Let the functions p(x) and q(x) be positive continuous, 
pq increasing and bounded for x ~ a, further let f (y)  and h(u) be the same 
as in w 1, then the same is true as under conditions of Theorem 1. The inflex- 
ions are not necessarily on the x axis. 

The function P ( x ) - - H ( p y ' ) + p q F ( y )  is increasing and Q(x) -~  

_ H(py') +F(y )  is decreasing and the results of w 1 hold concerning these 
Pq 

functions. 
In the linear case 

P ( x ) -  (PY')~ y2 
2 ~ - P q ~ '  

Q(x) is the function used in proving 
thus included in the above theorem. 

The equation 
d ~ 
dx (PY') + 

may be discussed similarly. 

Q(x) - -  (PY')~ " y~ 
2pq -k ~ . 

the SONm--POLYA theorem. This is 

y)h~(py') = 0 

w 

Let us consider again the equation 

(1) y " +  ~(x) f  (y) h(y') = 0 

with the premises of w 1 and the graph of the solution obtained there. 

T~EOREM 3. If  h(u) is an even function, then regarding equal values of 
y (equal levels) on a half-wave, the slope [y'] is greater to the right of the 
maximum (extremum) point than to the left of it. Consequently, the symmet- 
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rical of the left-hand quarter-wave to the ordinate x----x~, of the extremum 
will lie entirely above the right-hand quarter-wdve (Fig. 5), hence its area is 

greater too, finally 
x~ - -  x~ > x 2 -  Xm . 

PROOF. Equation (1)may be written in the form 

dH(y ' )  
(2) dx - -  q~(x)f(y)y'. 

M 

%'%'~%... 

Fig. 5 

The coordinates and the derivative of the left-hand branch will be denoted 
by x, y and y', and those of the right-hand branch by ~, ~ and ~', respec- 
tively. Then (2) relates to the left-hand branch and 

dH(f f )  
(3) d~ - -  q:(~)f(~)~' 
to the right-hand one. 

Integrating (2) as a function of x from x0 to xm and (3) as a function 
of ~ from ~0 to xm, we have (being H ( 0 ) = 0 )  (Fig. 6) 

H ( y o ) = f  ~(x)f(y)y 'dx-~- f q~(x)f(y)dy (y~=y'(xo)) 
Xo Yo 

and 

respectively. The variables of the integration of the right sides (i. e. y and ~2) 
pass the same interval (Yo, Y,~), but ~ passes the interval (x~,~0) and x the 
interval (Xo, X,,). On account of the ! 
monotonity of ~(x), there will be on 
the same level 0 ~ Yo = ~o ~ ym ~,~ 

H(~o) > H(y~) 
and, being H(u) an even function, 

I ol > l y;I. 
The further conclusion is obvious. 

The case of MILNE'S theorem and .... ~' 
that of the linearity are included too. 

- k 
I 

I 

t 

Fig. 6 
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w 

THEOREM 4. Holding the premises of the previous w but omitting the 
restriction h ( - - u ) ~ h ( u )  # will be proved that a quarter-wave lying before 
a zero may be brought by a rotation of 180 ~ or --180 ~ around the common 

endpoint quite over the succeeding half-wave, L e. (Fig. 7 ) t h e  arc A"M' is 

outside of the area bounded by the arc AN'--'-B and the part AB of the x 
axis: 

ly(x~--u)l > Jy(x~+ u)l (0 < u =< min (x~--x~r, x3--x2)). 

t4' 

\ ~ /x, , 

Fig. 7 

Here XM is the abscissa of the point M, x~ is that of the point N. 
Placing the origin in x2 (carrying out a linear transformation) the form of 
the equation will not be changed. Let e .g.  y(x) be the left-hand half-wave 
under the x axis and let the ordinate of the rotated half-wave be denoted by 
~(x) as a function of x. Then 

~(x)-~---y(--x),  71'(x)=y'(--x), 
whence 

y ( x )  = - ~ ( - x ) ,  y ' ( x )  - -  , / ( - x ) ,  

Writing these in the equation 

(1) 

Y 

Y 

Fig. 8 

~/ '(x)  - - y " ( - x )  

y"(x) - - ~ " ( - x ) .  

y" q- q~(x)f(y)h (y') = 0 
we have 

- , i ' ( - x )  + ~ ( x ) f ( - , ~  ( - x ) )  h ( , l ( - - x ) )  ~- O. 

Putting here - - x  instead of x and taking 
into account that f ( - - r l ) = - - f ( r ~ )  we obtain 
as an equation satisfied by ~/(x) 

(2) ~['(x) + q~(--x)fOi)h(~') = O. 

Now it will be proved that on the same 
x level (y = r~) ~' > y' from the level y ~ r / =  0 

up to the level ~ = y = y ~  where y~v=y(xN) 
(Fig. 8). Equations (1) and (2) may be 
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written, denoting the abscissae by x and ~, in the form 

(1') dH(y')  
c l ~ - -  q)(x)f(y)y' 

and 

(23 - 
dE  

respectively. Integrating from 0 to the common level y ~---7 2 =< y~, and taking 
into consideration that y ' (O)= r / ( 0 ) = y o ,  we obtain 

x y 

H(y')  = n (yo ) - - . f  rf(x)f(Y)Y' dx = H(yo) - -  ~ 9 (x)f(Y) dy, 
o o 

y 

n( , [ )  = n ( y ; ) - -  j" q~(--~)f(~)Ti'd~ = H (y;) - -  j 9(--.~)f(~)dr2, 
o o 

hence 
g 

H(~' ) - -  H (y') = ~ j [q)(x)--~(--g)l f(Y) d y, 
0 

but 
el(x) > 5~(--~) (x > x2) and f ( y )  >= O, 

therefore H(~i') > H(y), consequently 7 2' > y' (being r / >  0, y' > 0) up to the 
level y ~ yN, i. e. 

l y (x~-u) l  > ly(x2+u)l (0 < u <= min (x2--x~, xb--x2)). 

On this level y ' =  0, r2' > 0 and ~/ is still further increasing up to its maximum ; 
thus its arc will be over that of y. 

We shall prove, restricting f ( y ) ,  in w 7 that an extremum lying to the 
left of a zero is farther hereform than the extremum lying to the right of this 
zero, what means: the left-hand quarter-wave may be brought quite over the 
right-hand one; its area and "length" are greater. Similar facts will be stated 
concerning the half-waves too. 

w 

Now we extend one of STURM'S comparison theorems to the equations 

(1) y" + W(x)f(y)h (y') = O, 

(2) + ( i f )  = O. 

THEOREM 5. We assume the following conditions: 
1. 9(x) and g,(x) are positive continuous increasing bounded functions 

in any subinterval of [a, b], fur- in [a, b] and 5o(x) >= ~(x)  but Cf(x)~  g,(x) 
ther ~(x)--g , (x)  >= O(x--a) ,  x - - a ~ a - t - O ;  
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2. f(u) E Lip (1), f(u) is increasing and s g f ( u ) =  sg u, f(u) _ 0(1) 
u 

(u ~ 0), further f(u) is non-increasing for u > 0 and non-decreasing for 
u 

u < 0 (e. g. f(u) ~ Arctg u) ; 

3. h(u) > 0 is an even function non-increasing for u > O, non-decreasing 
for u < 0 and h(u) ELip(1); 

4. let y (x) and ~l(x) be oscillatory solutions of( l )  and (2), respectively, and 

y(a) ~ O, ~(a) >= O, y'(a) >0, ~'(a) >0, y(b)~-O, 

~[ (a) y (a) - -  y' (a)~(a) >= O; 

/ then (Fig. 9) ~(x) is increas- / ~  y(x) 
ing in a < x <= b and assuming 

a x~ Xm~ b X,n~Z > Xmy, 

where d is a certain positive Fig. 9 
number, x,% and x,% mean the 

.abscissae of the first maximum points of li(x ) and y(x), respectively, succeed- 
ing a, finally 

(x) > y(x) (a < x <= b). 

PRooF. It will be dealt with here only the case when 

y (a) --- ~ (a) = o, ~'(a) _-> y'(a) > o. 

The general case may be treated in the same way. 
In the first place it will be shown that in a certain right-hand neigh- 

bourhood of a 't2'>Y' and so ~ > y. Applying the finite Taylor formula we 
have 

y (x) = y' (a) ( x -  a) + 2 y" (a + o ( x -  a)) ( x -  a?, 
(0<0 ,  O' < 1). 

1 
,~ (x) = ,((a) (x- -  a) + ~- '7 (a + o' (x- -  a)) ( x -  a) 2 

Being '('(x), y"(x) continuous (see (1) and (2)) 

Y ( x ) = y ' ( a ) ( x - - a ) + ~  i (x--,a-4-O) (being ~"(a)-- .y"(a)=O) 
~(x) = ~' (a) ( x - - a )  + o ( ( x - a )  ~) , 

and 
~(x)- -y(x)  = (~'(a)--y'(a)) (x - -a)  + o((x--a)  2) (x --, a +0). 
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Now we have two cases: 

1. r((a)>y'(a),  thus i f ( x ) > y ' ( x )  and ~l(x)>y(x) for sufficiently small 
x - - a > 0 ;  

2. rl' ( a ) =  y' (a), consequently 

,~ (x) - y (x) = o ( ( x -  a) ~) (x --, a + o) 

and we get similarly 
, ; ( x ) - y '  (x) = o ( ( x - a ) )  (x ---, a + o). 

By virtue of these and 2- -3  we obtain 

I f01  ( x ) ) - - f ( y  (x)) I <= K~ ]~ (x)--y(x)[ = o ( ( x - -  a)~), 
[ h (r[ (x) ) - - h  (y' (x) ) [ <= K2] ~l' ( x ) "  y' (x) ] = o(x--a) ,  i 

A~ (x)) = f ( y  (x)) + o ( ( x -  a)2), } (x --. a + o), 
h(,~'(x)) = h(y'(x)) + o ( x - a ) ,  [ 

f(~ (x))hO/(x)) = f ( y ( x ) ) h  (y'(x)) + o((x- -a)  2) I 

being f(y(x))  = O(x--a) .  Therefore 

r[ ' (x)--  y" (x) ~--- 9(x)f(y)h(y ')--~(x)f( ,~l)h(f f )  = 
= [9 (x) - -w(x) l f (Y)h  (y') + o((x--a)  ~) 

but 

consequently 

hence 

finally 

f ( y )  = O ( x - a ) ,  ~(x) -V, (x)  >- O ( x - a )  

~i" > y", 

~l' > y', 

whence 

(3) 

( x - . a + O )  

(x -+a+O),  

for sufficiently small x - - a  > O. 

r~>y 

It will easily be found from equations (1) and (2) that 

~ " y - y " ~  = ~ (x ) f (y )  h (y') ~ - -  V' (x)f(Oh ('DY 
o r  

J 
W 

 lr,, "x" . . . . .  x"  

Taking 1--3 into consideration we have for sufficiently small x - - a  > 0 (at 
least as long as *l" >= Y' >= O) 

A(x) -~ ~i' y--~ly'  > 0. 

We state that ~' >y '  holds up to x =  max(x,%, xm~)§ at least .with some 

7 Acta Mathematica IX/I--2 
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6 > O. In the opposite case there would exist a first place c ( a<  c< b)where  

,/(c)=y'(c), y(c)>O 
and 

3(c) = ,/ (c)y (c)--y '  (c),~ (c) > O, 
what is a contradiction, provided that f f (c )~y ' (c)>= O. Therefore x,,~,~ > x , ~  
and t i '>  y' for a < x < xm,~+d and c > x,~,7 when c exists at all. 

See now the sign of A(x). This could be negative only for x >x , , , .  
We state that A(x) remains non-negative at least up to b. In the opposite 
case there would be a first place d (x,~< c < d < b) where 

~'(d) _ y'(d) ~l'(d) < O, y'(d) < 0 
y ( d ) '  

hold but A(x)--=y~ ~l - < 0  in a certain right-hand neighbourhood 

of d. *l increases up to d, thus ~ ( d ) > y ( d ) > O ,  Ir/(cl)l>ly'(d)[, conse- 
Y 

quently the integrand of (3) is positive at d and in some right-hand neigh- 
bourhood of it. Therefore 

g 

+ ;  . . . .  ; . . . . . .  >0  (x>d) ,  
c~ d d 

what is in contradiction to the definition of d. Moreover A(d)>0 .  For, if 
A ( d ) = 0 ,  the function A(x) has a minimum at d where A'(x) (the integrand 
of ( 3 ) a t  x = d )  must vanish in contradiction to the above statement. Thus 
the theorem is proved. 

W e  cannot decide whether or not ~' remains greater than y' for 
a <  x =< b. Assuming ~l'(a)>y'(a) the functions 5o(x) and ~ ( x ) m a y  be iden- 
tical, i. e. a solution of (1) having a greater initial slope remains greater up 

to b, provided that at least one of f ( y )  and h(u) is strictly monotone. 
Y 

w  

Now we can solve the problem of the quarter and half-waves. We 
shall prove the following 

THEOREM 62 All the half-waves of the solution, obtained in w 1, of the 
equation 

(1) y" -[- ~(x) f (y)h(y ' )  = 0 

9 This is a generalization of a theorem of E. MAKAI concerning the linear equation 
y " - ~ ( x ) y ~ O :  On a monotonity property of certain Sturm--Liouville functions, Acta 
Math. Acad. Sci. Hung., 3 (1952), pp. 165--172. 
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may be rotated (in the sense of ,~ 5). over the succeeding one (see Fig. 7), 
PrOvided that the premises of w  hold, further one of D+q~(x) and D_cr(x ) 
is positive at every place x >--_ a (D+_~(x) mean the one-sided derivatives). 
A similar statement is valid concerning the quarter-waves too (without supposing 
that h(u) is even). 

PROOF. As we have seen, placing the common endpoint in the origin, 
the ordinates of the rotated curve satisfy the equation 

(2) 'l" + rf (--  x)f(9) h Ol') ~- O. 

Let e. g. the left-hand half-wave be under the x axis. Now we have 

, f  (a)-= y'(a) > O, r ~ ( a ) ~ y ( a ) ~ 0 ,  lira ~/ (x)- -1 ,  ~(x)>q~(- -x)  ( x > a )  
.,~-+o y(x) 

and 

q~(x)--q~(--x)~-( q~(x)--q~x (0) ~ q~ (O) ~q~ (--  x)) x 

but 

lira q~(x)--rf(O)--D+q~(O) and lira q~,O--q~(--X)=D_cf(O),C~ 
~ - ~ + 0  X a~-+ + 0  X 

thus ~(x) - -q~( - -x )~  O(x) (x---~-]-O) and Theorem 5 can be applied whereby 
Theorem 6 is proved. 

Fig. lo 

Denoting the areas and "lengths" of the successive quarter-waves by 
Tz and d~ (i-~-1, 2, 3, . . . ) ,  respectively, we have (Fig. 10) 

TI > T~ > T3 > ..., 

d~ > d~ > d3 > .." (convexity of the zeros). 

Of course, all these are valid in the MILNE'S case and in the linear case, too. 
Simultaneously, the present proof is a new one concerning the decrease of 
the amplitudes too (although making use of more restrictive conditions). 

7* 
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w  

Consider again the equation of w 3 

,(1) (py')' @ qf(y) h (py') = 0 

with the premises assumed there a n d  further let us assume _f(u)_ to be as u 

in w 6 and p(x) a decreasing function. Then the decrease of the area of the 
half-waves holds. 

dx 
Namely, as we have seen in w 3, by the transformation - - - - d ~  equa- 

tion (1) will be of the form P 

d2Y t_f igl f(~)h(dY) ,(2) 2 -d?-, = o. 

The results of w 7 concerning ~(~) hold, i. e. denoting the zeros of y(~) by 
~1, ~,  ~a, r . . . . . .  and those of y(x) by xl, x~, xa, , the sequence 

~i+1 xi+l 

f~(~)d~. = y (x) - p ~  

[ 

1 ] ( y(x) dx is decreasing. Omitting the increasing factor p - ~  the sequence .~! 

{ i ~  1, 2, 3 . . . .  ) is a fortiori decreasing. 

We cannot decide in this way whether over-rotation of the half-waves 
is possible or not, because by the above transformation the distances of the 
zeros increase compared to the corresponding ones of ~(~), hence the distan- 
ces in question can be increased too (while the amplitudes remain decreasing). 
Proofs and results of w167 4- -7  may be extended to the equation 

Y" + ~ q:i(x)f~(y)hdy') = 0 

inclusive the decrease of the amplitudes what we could not prove in w 3. 
STURM'S theorem can also be formulated and proved. The above Sturm theo- 
rem may otherwise be extended to the equations 

y"q- ~;(x)fi(yr ~- 0 (i ~-- 1, 2) 
'with different ~,, f~ and h;, but we do not deal with this. 

w 
J 

The question arises how STURM'S comparison theorem 
concerning the equation 

(1) (py') '  ~- q(x)f(y)h (py') = O. 

will be formed 
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Holding the premises already often used relative to p, q, f(u), .f(u) , h(u} 
u 

and the initial conditions of {} 6 we have for the solutions Yl and Y2 of the 
equations 

(py~)'+ q,f(yOh (pyT) -~ 0 (q2 ~ q~) 
(i = 1, 2) 

(but not identically in any interval) the inequalities 

y~ > y;. (a < x ~ x,,,~-k 6), 

Xm~ ~ Xmy, 

y~ > y,~ (a < x <= b). 
It is more interesting that assuming q l = q ~ = q  (a unique equation) these 
inequalities hold, provided that y~ (a) = y,2(a) = 0, y~ (a) > y;~ (a) > 0 and that 

one of the functions f(Y) , h(u) is strictly monotone. The proof follows pre- 
Y 

vious lines. 

COROLLARIES. Two particular solutions of (1) can have a zero in common, 
without having only common zeros (differently from the linear case). 

In fact, y~(a)-~y~(a) and y2(a)=y'2(a) imply Y~-Y2 by virtue of the 
uniqueness of the solution, but y l ( a )=y~(a )  and y~(a) > y~.(a) > 0 result in 
Yl >Y~ up to the next zero of y~. Hence two consecutive zeros of y~ cannot 
be consecutive zeros of Y2. Y2 cannot twice intersect y~ without vanishing 
one or other between these points of intersection. If y is a solution, - - y  
is also that. Therefore, comparing the zeros of y~ and Y2, these functions may 
be assumed of the same sign in the initial part of the interval of the com- 
parison and so the comparison can be carried out. 

In order to compare the solutions of the equations 

(pzy~)'-}- q~f(y~)h (p~y~) : 0 ( i :  1, 2) 

one can deduce in the usual way the analogues of the formulae of STUR~t 
and PlCONE. These are the following: 

dx (P~YlY2--P2Y~Y~) : qo, f(Y2~) h(p2y~)--q~ f(Y~) h(p~y;) Y~Y~+(P~--P~)YlY2, 
Y2 Ya 

\ Yl Y2 

~--- [ ~ h  q2 (P2Y~)--qa' f(Y')h(p~Y~']Y~-t-(Pa--P2)Y';2+P2(Y~Ys~Ys ~ y-~-- ~ ] .  

However, applying these either in this form or taking pl =P2 ,  q~---q2 (con- 
sidering one equation with two particular solutions) it will not be obtained 
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new results because the first term of the right-hand member of the Picone 
formula cannot be asserted to be positive when q.~ > ql and p, >p2. 

r a  b 

Fig. 11 

According to Sturm's theorem we 
can enclose any solution of  

y" + fp(x)f(y)h(y') • 0 

by the solutions o f  the equations 

y~' -1- (rain fp) f (yl) h ( y~) = O, 

y~' + (max cp)f(y2)h(y~) = 0 

with the same initial conditions, i. e. we 
have (Fig. 11) 

Y2 < Y < Yl (a < x ~ b). 

A separability theorem in the sense of Sturm is not valid here. Rather there 
are particular solutions of (1) situated to each other as on the Figures 12. 
The existence of the first and second configurations is obvious. It will be 
shown the existence of the third too. Corollary 5 of w 1 ensures that the 
value of a maximum and the slope on the next zero may be made as small 
as wanted by decreasing the slope at the zero preceding the maximum place. 

Fig. 12a Fig. 12b 

Fig. 12c 

Corollary 8 of the same w shows that the distance of two consecutive zeros 
tends to zero with this slope, provided that cp(x) is constant, but also for 
variable q)(x) on account of our statement relative to enclosing of a solution 
by solutions of the equations with constant q~(x). Thus we obtain the inter- 
esting result: given a solution y(x) of  (1), then there are also solutions 
having an arbitrary number of  zeros between two consecutive zeros of  y(x). 
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Appl ica t ion  o f w  1. On account of the decrease of 1~ Q(x) - H ~ y ' )  ( § 
-I-F(y), we have 

H(y')  < FOi)9(x,O < LF(~). 
This implies ~ a bound for ]y'[ and considering that ly'l assumes its maxi- 
mum at the zeros the mentioned bound of [y',[ is that of [y'] too. The ine- 

quality F(yn) > ~L(--~ a) F(~) involves 

a lower bound for l Y,,]. In the linear 
case we have 

r 

Let d be the distance between the 
zero xn and the next extremum place 
(Fig. 13). Then 

I'~]V Zz~> lY~l g~> Yn> I / ~ l ~ l .  

/ 1  
/ 

/ 
/ 

t / 

i I 

d 

Fig. 13 

Thus we obtain a lower bound for A and for the distances of the zeros: 

V jW) 2 W(~ A> - -  and 
I_ L ' 

respectively. E.g. ,  the function Vx]~,(x) satisfies 

Y" -F 9 (x) y : O. 
1 

The function 9 ( x ) :  1 -+ 4 1 x2 is increasing for Iv[ > ~ - .  Denot ingamaxi-  

mum place, where already 9 ( x ) >  0, by a,,, the distances of the zeros of 
VxJ~,(x) and those of J,,(x) (which are the same) remain greater than 

V 1 - - 4 ~  2 V1 2 -E. __ -k 4(a , , - -~ ' )  ( L = I ) .  2 1-[- 4a~ a,, 

I. e. A >  1 and the distances of the zeros are greater than 2. The increase 
of P(x) and decrease of Q(x) imply 

F(yi-1) > F(yi)> 9(a~-~)F(yi-1). 
9 ~qi) 

In the linear case 

V g(ai-,). 
.,9i-1 > yi > ~ yi-t. 

lo See the nota t ions  in w t. 
11 Viz. H(u) and F(u) are increasing functions for u > 0 and have also increasing 

inverse functions. 
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Appl ica t ion  of w 7. Let us denote any solution of the Bessel equation 

y , , +  1 r ~ 
x y ' + ( 1 - ~ ) y ~ 0  

by Z,,(x). The function YxZ,,(x) satisfying the equation 

1--4r2~ y"+ 1 + ~ r - ) y = O  

1 
is of character of w 7 for lv[ > ~ -  and x _>--0 being qr 0. 

function VxZ,, 2vx ~ for o 

Similarly, the 
1 

l - - - 2  
< v < -if,  x ~ 0 (this satisfies y"-]- x"  y = O) 

1 

for a >  1, x >  4a2(g__l ) and arbitrary v and, in general, g-xZ~,(x ~) 

(this satisfies y" + 1-4a2r2 + 4a2x2a ) 4x 2 -  y = 0 are also of this character. Con- 

cerning fi,(x) the decrease of the area of the half-waves holds, provided that 
x>--0 and r > - - 1  as R. COOKE 12 showed. E. MA~113 proved the same for Z~(x), 

1 
provided that ]r] > - i f ,  x-->0, moreover also the same is shown by G. SZEGO 14 

3 

for all ~, but 

Of course, for r < 0  the lower limit of x is positive in all the above 
cases. The property of the quarter-waves of VxZ,,(x) etc. cannot be extended 
to Z~(x). 

(Received 2 December 1957) 

a~ R. COOKE, A monotonity property of Besscl functions, Journal London Math. Soc., 
12 (1937), pp. 180--185. 

13 Loc. cit. in w 7. 
14 Still unpublished. 


