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Abstract

In location-routing problems, the objective is to locate one or many depots
within a set of sites (representing customer locations or cities) and to construct
delivery routes from the selected depot or depots to the remaining sites at least
system cost. The objective function is the sum of depot operating costs, vehicle
acquisition costs and routing costs. This paper considers one such problem in which
a weight is assigned to each site and where sites are to be visited by vehicles having
a given capacity. The solution must be such that the sum of the weights of sites
visited on any given route does not exceed the capacity of the visiting vehicle. The
formulation of an integer linear program for this problem involves degree con-
straints, generalized subtour elimination constraints, and chain barring constraints.
An exact algorithm, using initial relaxation of most of the problem constraints, is
presented which is capable of solving problems with up to twenty sites within a
reasonable number of iterations.
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1. Introduction

The design of distribution systems frequently involves selecting sites on a net-
work for a number of depots and establishing delivery routes from the depots to sets
of other sites. In such contexts, location and routing decisions are closely interrelated
and can not be made separately without running the risk of arriving at a suboptimal
solution.

The sites can represent service locations, customer locations, or even cities, de-
pending on the level of resolution. Location-routing problems are frequently encountered
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in practice. Several interesting applications are described in the surveys by Madsen
[15], Perl [21] and Laporte and Nobert [11]. These are related to the food industry
[24], store delivery planning [23], optimal location of regional blood banks [20], the
rubber industry in Malaysia [18], the optimal location of NATO air bases [16], etc.

Solution methods for these problems are at an early stage of development
when compared with the number of available algorithms for pure location or pure
routing problems (see [4,5,6] for surveys of location problems and [1] for a survey
of routing problems). This is due in large part to the difficulty of these problems,
pointed out by some researchers ([22, p. 248], [4, p. 189]). Most algorithms for
location-routing problems are approximate. The heuristic approach which is most
often used (see [21,23,24]) consists of initially allocating customers to depots and
of then constructing delivery routes. These location and routing decisions are then
changed if a modification leads to an overall cost reduction. The process ends when
no marginal improvement can be achieved by further modification.

The authors are aware of only two papers reporting the development of exact
algorithms for location-routing problems. Laporte and Nobert [9] consider the prob-
lem of simultaneously locating one depot among » sites and of establishing m delivery
routes from the depot to the remaining n — 1 sites. The problem is formulated as an
integer linear program (ILP) which is solved by a constraint relaxation method; inte-
grality is obtained by branch and bound. The largest problem solved contains fifty
sites. In a more recent paper, Laporte et al. [14] study more general location-routing
situations involving simultaneous choice of several depots among » sites and the
optimal routing of vehicles through the remaining sites. As in Laporte and Nobert [9],
the problems are formulated as ILPs which are handled by a constraint relaxation
method. In Laporte et al. [14], however, integrality is reached through the gradual
introduction of Gomory cutting planes (see [3] and [7]). In a first series of problems,
each site may be visited only once and no route may connect two depots. The diffi-
culty of the problem is shown to be strongly related to the nature of the distance
matrix and to other factors such as the absence or presence of fixed costs on the
depots and the existence of an upper bound on the number of depots which may be
used. In a second series of problems, multiple visits to the same site are allowed but
no fixed costs or upper bounds on the number of depots are imposed. The authors
show that this problem is relatively easy to solve and constitutes in fact a relaxation
of the problem of finding the shortest complete cycle in a graph, as previously ana-
lyzed by Miliotis et al. [17] .

This paper considers a situation which is at the same time more general and
more realistic than those studied by Laporte and Nobert [9] and by Laporte et al.
[14] . A situation is considered in which the following conditions exist:

(i)  the set of potential depots is disjoint from the set of sites;
(ii) multiple passages through the same site are allowed if they result in
distance savings;
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(iii) a non-negative weight may be assigned to each site and the total weight of
each route may never exceed vehicle capacity.

It is necessary at this stage to introduce some notation. Let G = (N, E, C) be
a graph, where N = {1, ... ,n} is a set of nodes (representing the sites), where E is a
set of undirected edges (7, j), and where C = (Cii) is the symmetrical matrix of least
cost routes associated with the edges C and therefore always satisfies the triangle
inequality (i.e. ¢; < ¢ t ¢; for all ;,j,k € N). Note that (i, j) and ¢; are only de-
fined if i < j. Let R C N be a set of potential depots. The number P of such nodes
used as depots in the optimal solution must lie between two prespecified bounds
P> 1and P < |R|. The cost of using node r as a depot is equal to g,. There are
m, identical vehicles based at depot r, each with the same capacity D but with dif-
ferent fixed costs f,. To each node of N — R, that is, the nodes that were not poten-
tial depot sites, we associate a non-negative service requirement d; (< D). Note that
if any of the potential depot sites 7 are not used as depots, they need not be con-
sidered further. The potential depot sites have no service requirement like the nodes
of N — R. Also note that since d; < D, there will never be a need for a node to be
visited by more than one vehicle to satisfy its service requirement.

The problem consists of selecting depot sites (when P < |R]), of determining
how many vehicles are based at each selected depot, and of establishing vehicle routes
in such a way that

(i) each route starts and ends at the same depot;

(ii) all of the service requirement at a node is met by only one vehicle (the
same site i may be visited more than once if this saves distance, but only
one of the vehicle visits is used to meet the service requirement of the
node);

(iii) the sum of all requirements satisfied by any vehicle does not exceed D;

(iv) the number of nodes used as depots lies between two prespecified bounds
Pand P: 1S PSP P< |R|;

(v) for each node r used as a depot, the number of vehicles lies between
two prespecified bounds m, and m,: 1< m, < m,< m,;

(vi) the total cost is minimized.

This problem is a generalization of many well-known problems studied in the
operational research literature. When P = |R|, and according to the value of |R1, it
reduces to either the travelling salesman problem [2], the multiple travelling salesman
problem [8], the capacitated vehicle routing problems [10], or a family of multi-
depot vehicle routing problems recently treated by the authors [12].

Our purpose is to provide an ILP formulation and an exact algorithm for this
problem.
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Formulation

In addition to the notation already introduced, we define

S : asubsetof N—R.
L : an arbitrarily large number.
the smallest integer greater than or equal to tif > 0
e =
1 otherwise.
X a variable indicating the number of times edge (7, j) is used in the
optimal solution. x;; is not defined if i > j, if i,j € R or if
d; +d; > D. x;; must be interpreted as x;; whenever i > j.
Y, ¢ abinary variable indicating whether node r is used as a depot (y, = 1)
ornot (y, =0).
z : the total system cost.

The problem can be formulated as follows:

minimize z = Z G + z (gryr+frmr)
i,jEN reR
subject to
2 x, * z.xkl. =2 (kEN-R)
i<k k<j
z x, t Z X, = 2m, (r€ER)
i<r r<j
2. 4,
s
2 x . <IsI- |55 (SCN-R, 151> 3)
ijes
xll‘2 + 3xi2i3 x1314 4 (i,,i, €ER; i,,i;€ N=R)

)

€))

3

“)

(5)
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y, <m <Ly, (r€R) ©)
m, < m < ?71}_ (reéR) )
P< 2 y <P @®
reRr
y, = 0,1 (r€R) ©)
X = (10)
0,1,2 (i or fJER)

In this formulation, the objective function is defined as the sum of travel costs,
depot operating costs and vehicle costs. Constraint (2) specifies that each site not used
as a depot must be serviced exactly once by any given vehicle. Of course, any site may
be visited more than once if this saves distance, but this need not appear explicitly in
the formulation. For example, if site k lies on two shortest paths (between i; and j;
and between i, and j,, say), then it may be visited twice, but only once will a service
be provided. Similarly, constraint (2) expresses the fact that m, vehicles must leave
and enter each depot in R. Constraint (3) ensures that the solution does not contain
any illegal subtours, i.e. subtours disjoint from R or subtours having a total weight
exceeding D. These constraints generalize the subtour elimination constraints used by
Dantzig et al. [2] for the travelling salesman problem; their derivation is provided in
[10] and [19, p. 48]. Constraints (4) and (5) are chain barring constraints. They
ensure that each route starts and ends at the same depot. As their development is
relatively lengthy, it is explained in the next section. Constraint (6) means that no
vehicle can be based at a node which is not used at a depot; moreover, if a node is
used as a depot, it must have at least one vehicle assigned to it. Constraint (7) indi-
cates that the number of vehicles assigned to any given depot must lie between pre-
specified bounds. Similarly, constraint (8) expresses the fact that the total number of
nodes used as depots must lie between two bounds. Constraint (9) is used to deter-
mine which potential depot sites are used in the optimal solution. Finally, constraint
(10) indicates how many times each edge (i, /) is used in the optimal solution; x;; =2
corresponds to a return trip between i and j.

3. Chain barring constraints

Consider a relaxed problem (P’) obtained from (P) by removing constraints
(4) and (5). The optimal solution to (P') may contain chains between two depots,
i.e. sequences of nodes (i, . . ., i) where
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@) i,i, €ER; i €EN-R; i #1i;

ol 17

27 h-1
i x., =1 (t=1,...,h=1).

Tthen

We wish to generate constraints that will eliminate such chains without cutting off
any feasible solution to (P). This will be accomplished for chains of various sizes.

3.1 CHAINS INVOLVING AT LEAST 4 NODES

First assume that # > 4. Consider a chain H = (i, i5,...,i,). For> k,we
define Sy o =liy, fpyy, oo ot Let X =y 1, Y=y _ g and Z=32; e85, ,_\ Xy
and let X, Y, Z be the values taken by X, Y, Z, respectively. In a feasible solution,
X, Y € {0,1,2} and Z is an integer in [0, u(X, Y)], where u(X, ¥) is an upper
bound on Z whose value depends on X and Y. In the following development, it is
assumed that the u(X, Y)s are known constants. Later in this section, we indicate
how to determine the smallest bound for given X and Y. Let

Q=X Y Z): X, Y €{0,1,2}, Z € [0,u(X, V)], Z integer}. (11)
A valid cut is a constraint of the form

aX +bY +Z < d (12)
(where g, b € R and d > 0), which satisfies

d-aX -bY > uw(X, Y) (X, Y €1{0,1,2}) (13)

while cutting the current solution characterized by X =1, Y =1 and Z =h — 3.

We seek the constraint which provides the deepest cut, i.e. the constraint that
minimizes (d — a — b), the value taken by the left-hand side of (13) when X = ¥ =1.
The coefficients of the cut are given by the solution of (P*):

(P*) minimize d —a -5
subjectto d —aX — bY > u(X, V) (X, Y €{0,1,2) (14)

a, b free, d= 0. (15)
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The optimal values of a, b and d can be obtained by means of the simplex method
or by using a physical model. When (P™) possesses an infinite number of optimal
solutions, we retain only the constraints which define facets of Q. Note that the cut
is effective only if it eliminates the current infeasible solution, i.e. if

d-a-b<h-3. (16)

It is straightforward to check [constraints (4) and (5)] that this condition is always
satisfied. We now proceed to the generation of chain barring constraints in some
particular cases.

3.2. CHAINS INVOLVING 4 NODES

Consider a chain H = (i, i,, i3, is). Here, X = x; 4,, Y =Xy, and Z = X, 5.
We first observe that in any feasible solution to (P), Z can only take a positive value
if X+ Y < 1. Otherwise, edge (i,, ;) can not enter the solution. The values of
u(X, Y) are therefore

1 ifX+Y<1
u(X,Y) = an
0  otherwise.

It is easy to verify that the optimal cutting plane (12) is uniquely determined by the
following three points of Q: (0, 1, 1), (1, 0, 1) and (2, 2, 0). This plane can be ex-

pressed in terms of the x,;’s as

< 4, (18)

i.e. constraint (4).

3.3, CHAINS INVOLVING AT LEAST 5 NODES

Now consider a chain H = (i, i,,...,i,), where h > 5. As above, X = x;; 4,
Y=xi_,ipand Z=2yjes, ,_, X Since constraint (3) is satisfied, it is feasible to
use only one vehicle to service all nodes of S, ,_, in the optimal solution (otherwise
the current values of X and Y would exceed 1).

We will first illustrate the computation of (X, Y¥) by taking a special case.

Let X =2 and Y + 2; any feasible solution for (P) must satisfy

2. x, =0 (19)

) i
i€8S3 .y 2
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and therefore

Z= 2 X, = > x, < (h=4) = u(X, ). (20)
i,iESzjh_l i,jES3’h_l

By applying the same kind of reasoning, it is possible to obtain bounds u(X, ¥) on
Z for all combinations of X and ¥:

h-5 ifX+Y =4
u(X,Y) = { h-4 if2<X+Y<3 @2n
h-3 ifX+7Y<1.

In order to find a chain barring constraint, it suffices to substitute in (P*)
X, Y and u(X, Y) by their values given by (21), to make the change of variable
d' =d—h+ 5 and to solve the program.

The resulting constraint is given by

X+Y+2Z<2n-5, (22)

i.e. constraint (5).
The two constraints described by (18) and (22) constitute facets of Q and
provide the deepest cut.

34. CHAINS INVOLVING LESS THAN 4 NODES

The only chains left out of the above analysis are those involving 2 or 3 nodes.
Illegal chains containing only 2 nodes can not occur since x;; is not defined when i and
j € R. There is only one type of solution which could theoretically contain chains
involving 3 nodes after all other types of chains have been eliminated: these would
occur in subtours made up of an alternance of nodes from R and of nodes from N -R.
Let (i}, /i, i3, ja, - - . »ig, Jo, iy) be such a subtour where i, i,,...,i € R and
Jir» 72, - - - ,Jg € N — R. However, we need not consider this case since it is never
disadvantageous to replace this subtour by £ subtours of the form (i, i, iy ), where

i\ if g, <¢; (o =179
!;: = k/k ki/k -1 (23)
Je-,  otherwise,

since
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26‘- x K

. fe .
it S iy T S (24)

4. Algorithm
The algorithm developed to solve (P) can be summarized as follows.

Step 0: Obtain a first feasible solution by means of an appropriate heuristic. Let z*
be the total system cost of that solution.

Step 1: Select a subproblem from the list. (The first subproblem will include con-
straints (1), (2), (6), (7) and (8) of (P) as well as the upper bounds on the variables.)

Step 2: Solve the subproblem using the simplex method. (We used the Land —Powell
code [7].) Let Z be the cost of the least cost solution to the subproblem.

Step 3: 1f 7 > z*, proceed to step 9.

Step 4: The current solution contains

(i) sets of nodes {i;, ... ,ig} (> 1) corresponding to chains (i, ..., ip)
such that {i,,...,ip_,} N R =¢if €> 2 and for which all variables
Xiyigr Xigigs -+ 2 Xig_y ig have been previously fixed at 1, and

(i) nodes of N — R not belonging to such chains (we define for each such
node i a set {i}).

For convenience, we refer to these sets of nodes S, (corresponding to chains
or single nodes) as components. Each S, has an associated weight w(S,) defined as

ws) = 2 d,. (25)

i€eS;

Consider a component S, . If it corresponds to a chain, let p, and g, be the end nodes
of that chain; if it corresponds to a node i, let p, =g, = i. In the first case, xp, 4, can
be forced to zero as long as p,, g € N — R. Now consider two components S, and S;
and let i € {p,,q,}, j € {p,, q,}. Then x;; can be forced to zero if i, j € N—R and
w(S,)+ w(S;)> D.

If step 4 has resulted in forcing any variable to zero, proceed to step 2.

Step 5: Check whether the current solution contains illegal subtours (i.e. subtours
disconnected from R or having a total weight exceeding D). If there are no illegal
subtours, proceed to step 6. Otherwise, generate a type (3) constraint for each illegal
subtour and proceed to step 2.
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Step 6: Check whether the current solution contains illegal chains between depots
(in this context, a depot is a node r of R for which y, = 1). If there are no illegal
chains, proceed to step 7. Otherwise, generate for each chain a subtour elimination
constraint (3) or a chain barring constraint [(4) or (5)] and proceed to step 2.

Step 7: If the solution is integer, store it and set z* =Z ; proceed to step 9. Otherwise,
execute the next step.

Step 8: Select a fractional variable to branch upon and create new branches in the
search tree according to the procedure described in [7]. Go to step 10.

Step 9: Back up in the search tree. This consists of modifying the level of the search
tree (from A to A, where X' = \) by freeing all variables either forced to zero or
fixed at some integer value at levels A, A+ 1,..., \. Here we used the BACKUP sub-
routine of the Land —Powell code [7].

Step 10: Update the list of subproblems. If the list is empty, terminate and print the
best solution. Otherwise, proceed to step 1.

5. Computational results

The algorithm was tested on a number of randomly generated problems for
various parameter choices. In all problems, the c;;’s were defined as the straight line
distance between points (X;, ;) and (X, Y;) generated according to a uniform
distribution on [0, 100]?. We then carried out three series of tests.

Test series 1: Problems involving no capacity restrictions, no vehicle costs and no
fixed costs on the depots. In these problems, constraints (7) were removed and P was
set equal to 1 (see table 1).

Test series 2: Weights d; were generated according to a uniform distribution on
[0, 100] . As in previous studies [10,13], the vehicle capacity D was defined as

D=0- d;p + ,
(- ién}\?}-(R{ l} o iENZ_R d, (26)

when « is a parameter chosen in [0, 1]. The remaining parameters were selected as
in test series 1. Note that fixing « at 1 is equivalent to removing the capacity restriction.

Setting « at a low value results in tight and relatively hard to solve problems (see
table 2).

Test series 3: Problems were generated as in test series 2, but then the effect of
fixed costs on vehicles and on depots was studied. These two types of fixed costs
were never used simultaneously so that the effect of each type could be isolated
(see table 3).
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In each case, three problems were attempted for various combinations of »
(number of sites), |R| (number of potential depot locations), and P (maximum
number of depots in the solutions).

All problems were solved on the University of Montreal CYBER 855 computer,
using an FTNS compiler. Problems “failed” when they could not be solved within
300 CPU seconds. Tables 1, 2 and 3 report the results obtained.

These results indicate that problems containing up to twenty sites can be
solved exactly by our algorithm within our solution time criterion. To the authors’
knowledge, this is the first reported attempt in the operational research literature
to provide an optimal solution to problems of such complexity and possessing the
characteristics of (i) simultaneous location and routing, (ii) capacity constraints,
(iii) fixed costs on vehicles or on depots, (iv) bounds on the number of depots, and
(v) bounds on the number of vehicles per depot. The main factor explaining the
success of the algorithm lies in the initial relaxation of most of the problem con-
straints. It can be observed that the maximum number of effective constraints in the
course of the algorithm generally lies between 21 and 3n, while the number of poten-
tial constraints is of the order of 2”.

As observed in other studies [10,13], the difficulty of the problem is-inversely
related to the size of a which controls the vehicle capacity. Imposing large depot costs
(see table 3) tends to produce easier problems, but the same can not be said about
vehicle costs, which do not seem to affect computation times one way or the other.

6. Conclusions

We have provided an integer linear programming formulation and an exact
algorithm for the solution of an important class of capacitated location-routing prob-
lems. The formulation incorporates, as do many problems of the same family, (i) degree
constraints, (ii) generalized subtour elimination constraints (see [10]), and (jii) chain
barring constraints.

Our results using the exact algorithm show that problems involving up to about
twenty nodes can be solved optimally within a reasonable time. This appears to be
the first time such complex problems have been dealt with by means of an exact
algorithm.
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