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A b s t r a c t  

In location-routing problems, the objective is to locate one or many depots 
within a set of sites (representing customer locations or cities) and to construct 
delivery routes from the selected depot or depots to the remaining sites at least 
system cost. The objective function is the sum of depot operating costs, vehicle 
acquisition costs and routing costs. This paper considers one such problem in which 
a weight is assigned to each site and where sites axe to be visited by vehicles having 
a given capacity. The solution must be such that the sum of the weights of sites 
visited on any given route does not exceed the capacity of the visiting vehicle. The 
formulation of an integer linear program for this problem involves degree con- 
straints, generalized subtour elimination constraints, and chain barfing constraints. 
An exact algorithm, using initial relaxation of most of the problem constraints, is 
presented which is capable of solving problems with up to twenty sites within a 
reasonable number of iterations. 

Keywords and p h r a s e s  

Capacitated location-routing, integer programming, algorithm, least cost. 

1. I n t r o d u c t i o n  

The design o f  distribution systems frequently involves selecting sites on a net-  

work  for  a number  o f  depots  and establishing delivery routes f rom the depots  to sets 

o f  o ther  sites. In such contexts ,  location and routing decisions are closely interrelated 

and can not  be made separately wi thout  running the risk o f  arriving at a subopt imal  

solution. 
The sites can represent service locations, customer  locations, or even cities, de- 

pending on the level o f  resolution. Location-routing problems are frequently encountered  
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in practice. Several interesting applications are described in the surveys by Madsen 
[15], Perl [21] and Laporte and Nobert [11]. These are related to the food industry 
[24], store delivery planning [23], optimal location of regional blood banks [20], the 
rubber industry in Malaysia [ 18], the optimal location of NATO air bases [ 16], etc. 

Solution methods for these problems are at an early stage of development 
when compared with the number of available algorithms for pure location or pure 
routing problems (see [4,5,6] for surveys of location problems and [1] for a survey 
of routing problems). This is due in large part to the difficulty of these problems, 
pointed out by some researchers ([22, p. 248], [4, p. 189]). Most algorithms for 
location-routing problems are approximate. The heuristic approach which is most 
often used (see [21,23,24]) consists of initially allocating customers to depots and 
of  then constructing delivery routes. These location and routing decisions are then 
changed if a modification leads to an overall cost reduction. The process ends when 
no marginal improvement can be achieved by further modification. 

The authors are aware of only two papers reporting the development of exact 
algorithms for location-routing problems. Laporte and Nobert [9] consider the prob- 
lem of simultaneously locating one depot among n sites and of establishing m delivery 
routes from the depot to the remaining n - 1 sites. The problem is formulated as an 
integer linear program (ILP) which is solved by a constraint relaxation method; inte- 
grality is obtained by branch and bound. The largest problem solved contains fifty 
sites. In a more recent paper, Laporte et al. [14] study more general location-routing 
situations involving simultaneous choice of several depots among n sites and the 
optimal routing of  vehicles through the remaining sites. As in Laporte and Nobert [9], 
the problems are formulated as ILPs which are handled by a constraint relaxation 
method. In Laporte et al. [14], however, integrality is reached through the gradual 
introduction of Gomory cutting planes (see [3] and [7] ). In a first series of problems, 
each site may be visited only once and no route may connect two depots. The diffi- 
culty of the problem is shown to be strongly related to the nature of the distance 
matrix and to other factors such as the absence or presence of fixed costs on the 
depots and the existence of an upper bound on the number of depots which may be 
used. In a second series of problems, multiple visits to the same site are allowed but 
no fixed costs or upper bounds on the number of depots are imposed. The authors 
show that this problem is relatively easy to solve and constitutes in fact a relaxation 
of the problem of  finding the shortest complete cycle in a graph, as previously ana- 
lyzed by Miliotis et al. [ 17]. 

This paper considers a situation which is at the same time more general and 
more realistic than those studied by Laporte and Nobert [9] and by Laporte et al. 
[14]. A situation is considered in which the following conditions exist: 

(i) the set of  potential depots is disjoint from the set of sites; 
(ii) multiple passages through the same site are allowed if they result in 

distance savings; 
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(iii) a non-negative weight may be assigned to each site and the total weight of  
each route may never exceed vehicle capacity. 

It is necessary at this stage to introduce some notation. Let G = (N, E, C) be 
a graph, where N = { 1, . . . , n } is a set of  nodes (representing the sites), where E is a 
set of  undirected edges ( i , / ) ,  and where C = (ci/) is the symmetrical matrix of least 
cost routes associated with the edges C and therefore always satisfies the triangle 
inequality (i.e. cti ~< qk + cki for all i,j, k E N).  Note that ( i , j )  and cti are only de- 
fined if i < j. Let R C_ N be a set of potential depots. The number P of such nodes 
used as depots in the optimal solution must lie between two prespecified bounds 
_P/> 1 and ff ~< IRI. The cost of using node r as a depot is equal to gr" There are 
m r identical vehicles based at depot r, each with the same capacity D but with dif- 
ferent fixed costs fr- To each node of N - R, that is, the nodes that were not poten- 
tial depot sites, we associate a non-negative service requirement d i (<~ D). Note that 
if any of the potential depot sites r are not used as depots, they need not be con- 
sidered further. The potential depot sites have no service requirement like the nodes 
of N - R. Also note that since d i <~ D, there will never be a need for a node to be 
visited by more than one vehicle to satisfy its service requirement. 

The problem consists of  selecting depot sites (when _P < I R I), of  determining 
how many vehicles are based at each selected depot, and of establishing vehicle routes 
in such a way that 

(i) each route starts and ends at the same depot; 
(ii) all of  the service requirement at a node is met by only one vehicle (the 

same site i may be visited more than once if this saves distance, but only 
one of the vehicle visits is used to meet the service requirement of the 
node); 

(iii) the sum of all requirements satisfied by any vehicle does not exceed D; 
(iv) the number of nodes used as depots lies between two prespecified bounds 

Pand f f "  l <~p<<.P<~ff <~ IRI; 
(v) for each node r used as a depot, the number of vehicles lies between 

two prespecified bounds m r and mr: 1 ~< m r ~< m r ~< mr; 
(vi) the total cost is minimized. 

This problem is a generalization of many well-known problems studied in the 
operational research literature. When P = I RI,  and according to the value of I RI ,  it 
reduces to either the travelling salesman problem [2], the multiple travelling salesman 
problem [8], the capacitated vehicle routing problems [10], or a family of multi- 
depot vehicle routing problems recently treated by the authors [12]. 

Our purpose is to provide an ILP formulation and an exact algorithm for this 

problem. 
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. Formulation 

In addition to the notation already introduced, we define 

S . 

L : 

l - t 7  = 

xt/ : 

y ,  : 

Z 

a subset of  N -  R. 

an arbitrarily large number.  

the smallest integer greater than or equal to t if t > 0 

1 otherwise. 

a variable indicating the number of times edge (i, ] )  is used in the 
optimal solution, xq is not  defined if i >t ], if i , / E  R or if 
d i + d i > D. xq must be interpreted as x/i whenever i > / .  

a binary variable indicating whether node r is used as a depot (Yr = 1) 
or not  (Yr = 0). 

the total system cost. 

The problem can be formulated as follows: 

minimize z = ~ cqxq + ~ (gryr + f r m r )  
i , / E N  r E R  

subject to 

~"2., xik + ~ xkl = 2 (k E N -  R) 
t<J¢ k < i  1 

~.  Xir + ff'~ xrj = 2m r ( r e R )  
i < r  r < j  

~. xq<~ I S I -  k ~ s  
D i, j E 8  

(SC_ N - R ,  ISI /> 3) 

(1) 

(2) 

(3) 

Xili2 + 3xi2i3  + Xi3i4 ~ 4 (il, i 4 E R; i 2, i 3 E N - R )  (4) 

xil i2 + xih - 1 ih + 2 i , / ~ { i T ~  "' ' ' in- l}xq<<. 2h - 5 

(h i>  5 ; i  1, i n E R; 

i 2 . . . . .  ih_ , E N - R ;  (5) 
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Yr <~ mr <~ LYr (r E R) (6) 

m ~< m ~< ~ ( r E R )  (7) 
- - g  / '  r 

f <  Z y < F  (8) 
r ~ R  

y,  = o, 1 (r e R)  (9) 

x.. = / / 0 ' 1  ( i , ] E N - R )  

'! 0 , 1 , 2  (i or ] E R )  
(10) 

In this formulation, the objective function is defined as the sum of  travel costs, 
depot operating costs and vehicle costs. Constraint (2) specifies that each site not used 
as a depot must be serviced exactly once by any given vehicle. Of course, any site may 
be visited more than once if this saves distance, but this need not appear explicitly in 
the formulation. For example, if site k lies on two shortest paths (between i I and ]1 
and between i 2 and ]2, say), then it may be visited twice, but  only once will a service 
be provided. Similarly, constraint (2) expresses the fact that m r vehicles must leave 
and enter each depot in R. Constraint (3) ensures that the solution does not contain 
any illegal subtours, i.e. subtours disjoint from R or subtours having a total weight 
exceeding D. These constraints generalize the subtour elimination constraints used by 
Dantzig et al. [2] for the travelling salesman problem; their derivation is provided in 
[10] and [19, p. 48] .  Constraints (4) and (5) are chain barring constraints. They 
ensure that each route starts and ends at the same depot. As their development is 
relatively lengthy, it is explained in the next section. Constraint (6) means that no 
vehicle can be based at a node which is not used at a depot; moreover, if a node is 
used as a depot, it must have at least one vehicle assigned to it. Constraint (7) indi- 
cates that the number of  vehicles assigned to any given depot must lie between pre- 
specified bounds. Similarly, constraint (8) expresses the fact that the total number of  
nodes used as depots must lie between two bounds. Constraint (9) is used to deter- 
mine which potential depot sites are used in the optimal solution. Finally, constraint 
(10) indicates how many times each edge (i, ])  is used in the optimal solution; xq = 2 
corresponds to a return trip between i and ]. 

3. C h a i n  ba r r ing  c o n s t r a i n t s  

Consider a relaxed problem (P ' )  obtained from (P) by removing constraints 
(4) and (5). The optimal solution to (P ' )  may contain chains between two depots, 
i.e, sequences of  nodes (i 1 . . . . .  ih) where 
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(i) i l ,  i n E R;  i 2 . . . . .  in-1 E N - R ;  i 1 4= in; 

(ii) xitit+ l = 1 ( t  =1 . . . . .  h - l ) .  

We wish to generate constraints that will eliminate such chains without cutting off 
any feasible solution to (P). This will be accomplished for chains of various sizes. 

3.1. CHAINS INVOLVING AT LEAST 4 NODES 

First assume that h t> 4. Consider a chain H = (i 1, i 2 . . . . .  ih). For £ > k, we 
define S k ~ - ! i ~  i k + 1 . . . . .  i~ }. Let X = xil i2, Y = xih _ 1 in and Z = F,i,/~ s2, h - 1 xi/ 
and let X, Y, Z be the values taken by X, Y, Z, respectively. In a feasible solution, 
X, Y E I 0, 1, 2} and Z is an integer in [0, u(X ,  Y)] ,  where u(X,  Y )  is an upper 
bound on Z whose value depends on )~ and Y. In the following development, it is 
assumed that the u(X ,  Y)s are known constants. Later in this section, we indicate 
how to determine the smallest bound for given ,~ and Y. Let 

Q = t (x ,  Y, z ) "  x ,  Y E t0 ,  1,2}, 2 E [0, u(X, Y)] ,  Z integer}. (11) 

A valid cut is a constraint of the form 

a X + b Y + Z < . d  

(where a, b E IR and d t> 0), which satisfies 

d - a X  - b Y  >i u (X ,  Y )  (X, Y E {0, 1,2}) 

(12) 

(13) 

subject to d - a X  ~ - b Y  >t u(X, Y) (X, Y E {0, 1,2}) (14) 

a, b free, d~> 0. (15) 

(P*)  minimize d - a - b  

while cutting the current solution characterized by ,~ = 1, Y = 1 and Z. = h - 3. 
We seek the constraint which provides the deepest cut, i.e. the constraint that 

minimizes (d - a - b), the value taken by the left-hand side of (13)  when ,~ = P = 1. 
The coefficients of  the cut are given by the solution of  (P*): 
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The optimal values of  a, b and d can be obtained by means of the simplex method 
or by using a physical model. When (P*) possesses an infinite number of optimal 
solutions, we retain only the constraints which define facets of Q. Note that the cut 
is effective only if it eliminates the current infeasible solution, i.e. if 

d - a  - b  < h - 3 .  (16) 

It is straightforward to check [constraints (4) and (5)] that this condition is always 
satisfied. We now proceed to the generation of chain barring constraints in some 
particular cases. 

3.2. CHAINS INVOLVING 4 NODES 

Consider a chain H = (i t , i 2, i a, i4)- Here, X = xil i2, Y = xi3 i4 and Z = xi2 ia. 
We first observe that in any feasible solution to (P), Z can only take a positive value 
if X + Y ~< 1. Otherwise, edge (i2, i3) can not enter the solution. The values of  
u ( X ,  Y )  are therefore 

= ] 1 if X + Y < 1 
u(/~ r, P) / 0 otherwise. 

(17) 

It is easy to verify that the optimal cutting plane (12) is uniquely determined by the 
following three points of  Q: (0, 1, 1), (1, 0, 1) and (2, 2, 0). This plane can be ex- 
pressed in terms of  the xq's  as 

X i l i  2 + 3 X i 2 i 3  + X i 3 i 4  ~ 4, (18) 

i.e. constraint (4). 

3.3. CHAINS INVOLVING AT LEAST 5 NODES 

Now consider a chain H = (i 1, i 2 , .  • • , i h ) ,  where h ~> 5. As above, X = Xil t2, 
Y = xih - 1 ih and Z = ~,i,j~S2 h 1 Xi]" Since constraint (3) is satisfied, it is feasible to 
use only one vehicle to service' all nodes of $2, h - 1 in the optimal solution (otherwise 
the current values of  X and Ywould exceed 1). 

We will first illustrate the computation of u(X ,  Y )  by taking a special case. 
Let X = 2 and Y :~ 2; any feasible solution for (P) must satisfy 

Z xz2. i = 0 (19) 
JES3,h-1 
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and therefore 

Z = Z x.. = Z x.. ~< ( h - 4 )  = u(X, Y) .  (20) 
Zl tl 

t ' J ~ S 2 , h  - 1 i , j ~  S3,  h _  1 

By applying the same kind of reasoning, it is possible to obtain bounds u(X, Y) on 
Z for all combinations of  .~ and Y: 

u(X, r )  = 

h - 5  i f . ~  + Y = 4  

h - 4  if 2 ~<X + Y ~< 3 

h - 3  i f X  + Y ~< 1. 

(21) 

In order to find a chain barring constraint, it suffices to substitute in (P*)  
X, Y and u(X,  Y )  by their values given by (21), to make the change of variable 
d' = d - h + 5 and to solve the program. 

The resulting constraint is given by 

X +  Y +  2Z <~ 2 h - 5 ,  (22) 

i.e. constraint (5). 
The two constraints described by (18) and (22) constitute facets of  Q and 

provide the deepest cut. 

3.4. CHAINS INVOLVING LESS THAN 4 NODES 

The only chains left out of  the above analysis are those involving 2 or 3 nodes. 
Illegal chains containing only 2 nodes can not occur since Xq is not defined when i and 
j E R. There is only one type of solution which could theoretically contain chains 
involving 3 nodes after all other types of chains have been eliminated: these would 
occur in subtours made up of  an altemance of nodes from R and of nodes from N -  R. 
Let (i l, Jr, i2, J2 . . . . .  i~, /~, i 1) be such a subtour where i l ,  i 2 . . . .  , i~ E R and 
Jl, J2 . . . . .  j~ E N - R. However, we need not consider this case since it is never 

.~. 
disadvantageous to replace this subtour by £ subtours of  the form (i~, ik, t k), where 

. .  [ Jk if cik & < cik &_ 1 (J0 = 
1 k = / Jk - 1 otherwise, 

(23) 

since 
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2 % ¢  ~< qtdk-~ + e/~&. (24) 

4. Algorithm 

The algorithm developed to solve (P) can be summarized as follows. 

Step O: Obtain a first feasible solution by means of an appropriate heuristic. Let z* 
be the total system cost of that solution. 

Step 1: Select a subprobtem from the list. (The first subproblem will include con- 
straints (1), (2), (6), (7) and (8) of  (P) as well as the upper bounds on the variables.) 

Step 2: Solve the subproblem using the simplex method. (We used the Land-Powetl  
code [7] .) Let ~ be the cost of  the least cost solution to the subproblem. 

Step 3: If ~ />  z*, proceed to step 9. 

Step 4: 

or single 

The current solution contains 

(i) sets of  nodes {i 1 . . . . .  i~} (£ > 1) corresponding to chains (i I . . . . .  i~) 
such that { i 2 . . . . .  i~ _ 1 } A R = ¢ if £ > 2 and for which all variables 

X i l i 2 '  X i 2 i 3 '  " " " " X i ~ l -  I i~ have been previously fixed at 1, and 

(ii) nodes of  N - R not belonging to such chains (we def'me for each such 
node i a set { i }). 

For convenience, we refer to these sets of  nodes S k (corresponding to chains 
nodes) as components. Each S k has an associated weight w(S~) defined .as 

w ( S k )  = d i . (es) 
i ~ s  k 

Consider a component S k. If it corresponds to a chain, let Pk and qg be the end nodes 
of that chain; if it corresponds to a node i, let Pk = qk = i. In the first case, xpkqk can 
be forced to zero as long as Pk, qk E N -  R. Now consider two components S r and S s 
and let i E { Pr, qr }, / E { Ps, qs }. Then xij can be forced to zero if i, j E N -  R and 
w(S,) + w(SD > D. 

If step 4 has resulted in forcing any variable to zero, proceed to step 2. 

Step 5: Check whether the current solution contains illegal subtours (i.e. subtours 
disconnected from R or having a total weight exceeding D). If there are no illegal 
subtours, proceed to step 6. Otherwise, generate a type (3) constraint for each illegal 
subtour and proceed to step 2. 
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Step 6: Check whether the current solution contains illegal chains between depots 
(in this context, a depot is a node r of  R for which Yr = 1). If there are no illegal 
chains, proceed to step 7. Otherwise, generate for each chain a subtour elimination 
constraint (3) or a chain barring constraint [(4) or (5)] and proceed to step 2. 

~r 
Step 7: If  the solution is integer, store it and set z 
execute the next step. 

= ~-; proceed to step 9. Otherwise, 

Step 8: Select a fractional variable to branch upon and create new branches in the 
search tree according to the procedure described in [7]. Go to step 10. 

Step 9: Back up in the search tree. This consists of  modifying the level of  the search 
tree (from X' to X, where X' 1> X) by freeing all variables either forced to zero or 
fixed at some integer value at levels X, X + 1 . . . . .  X'. Here we used the BACKUP sub- 
routine of the Land-Powell  code [7]. 

Step 10: Update the list of  subproblems. If the list is empty, terminate and print the 
best solution. Otherwise, proceed to step 1. 

5. C o m p u t a t i o n a l  resul ts  

The algorithm was tested on a number of randomly generated problems for 
various parameter choices. In all problems, the cq's were defined as the straight line 
distance between points (Xi, Yi) and (X), Y/) generated according to a uniform 
distribution on [0,100] : .  We then carried out three series of  tests. 

Test series 1" Problems involving no capacity restrictions, no vehicle costs and no 
fixed costs on the depots. In these problems, constraints (7) were removed and _P was 
set equal to I (see table 1). 

Test series2: Weights d i were generated according to a uniform distribution on 
[0, 100]. As in previous studies [ I0 ,13] ,  the vehicle capacity D was defined as 

D = ( l - a )  max {di} + a Z d i (26) 
i ~ N - R  i E N - R  

when a is a parameter chosen in [0, 1]. The remaining parameters were selected as 
in test series 1. Note that fixing a at 1 is equivalent to removing the capacity restriction. 
Setting a at a low value results in tight and relatively hard to solve problems (see 
table 2). 

Test series 3: Problems were generated as in test series 2, but then the effect of  
fixed costs on vehicles and on depots was studied. These two types of fixed costs 
were never used simultaneously so that the effect of  each type could be isolated 
(see table 3). 
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In each case, three problems were attempted for various combinations of n 
(number of sites), I RI (number of potentiM depot locations), and ff (maximum 
number of depots in the solutions). 

All problems were solved on the University of Montrdal CYBER 855 computer, 
using an FTN5 compiler. Problems '~failed" when they could not be solved within 
300 CPU seconds. Tables 1,2 and 3 report the results obtained. 

These results indicate that problems containing up to twenty sites can be 
solved exactly by our algorithm within our solution time criterion. To the authors' 
knowledge, this is the first reported attempt in the operational research literature 
to provide an optimal solution to problems of such complexity and possessing the 
characteristics of (i) simultaneous location and routing, (ii) capacity constraints, 
(iii) fixed costs on vehicles or on depots, (iv) bounds on the number of depots, and 
(v) bounds on the number of vehicles per depot. The main factor explainingthe 
success of the algorithm lies in the initial relaxation of most of the problem con- 
straints. It can be observed that the maximum number of effective constraints in the 
course of the algorithm generally lies between 2n and 3n, while the number of poten- 
tial constraints is of  the order of 2 n . 

As observed in other studies [ 10,13 ], the difficulty of the problem is.inversely 
related to the size of a which controls the vehicle capacity. Imposing large depot costs 
(see table 3) tends to produce easier problems, but the same can not be said about 
vehicle costs, which do not seem to affect computation times one way or the other. 

6. Conc lus ions  

We have provided an integer linear programming formulation and an exact 
algorithm for the solution of an important class of capacitated location-routing prob- 
lems. The formulation incorporates, as do many problems of the same family, (i) degree 
constraints, (ii) generalized subtour elimination constraints (see [10] ), and (iii)chain 
barring constraints. 

our  results using the exact algorithm show that problems involving up to about 
twenty nodes can be solved optimally within a reasonable time. This appears to be 
the first time such complex problems have been dealt with by means of an exact 
algorithm. 
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