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Abstract 

A primal-relaxed dual global optimization algorithm is presented along with an 
extensive review for finding the global minimum energy configurations of microclusters 
composed by particles interacting with any type of two-body central forces. First, the 
original nonconvex expression for the total potential energy is transformed to the difference 
of two convex functions (DC transformation) via an eigenvalue analysis performed for 
each pair potential that constitutes the total potential energy function. Then, a decomposition 
strategy based on the GOP algorithm [1-4] is designed to provide tight upper and lower 
bounds on the global minimum through the solutions of a sequence of relaxed dual 
subproblenas. A number of theoretical results are included which expedite the computational 
effort by exploiting the special mathematical structure of the problem. The proposed 
approach attains e-convergence to the global minimum in a finite number of iterations. 
Based on this procedure global optimum solutions are generated for small Leunard-Jones 
and Morse (a = 3) microclusters n < 7. For larger clusters (8 <N < 24 for Lennard-Jones 
and 8 < N < 30 for Morse), tight lower and upper bounds on the global solution are 
provided which serve as excellent initial points for local optimization approaches. 

1. Introduction 

1.1. MICROCLUSTERS 

Microclusters (or clusters) belong to an intriguing state of matter that encompasses 
different entities like microcrystallites, micmdroplets, colloid nucleii, aerosol particles, 
grains, etc. Hoare [5] defined microclusters as aggregates of  atoms, ions, or molecules, 
sufficiently small that a significant proportion of  these units is present on their 
surfaces. They correspond to systems that are neither single entities nor continua 
composed of  an infinite number of units, but lie somewhere in between, bridging 
the gap between single atoms or molecules and bulk matter. Typically, microclusters 
consist of two to several hundred atoms and pose the following questions that are 
central for disciplines like solid-state physics, chemistry, and the related field of  
material science: 

• How small must an aggregate of particles become before the character of  the 
substance they once formed is lost? 
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• How might the atoms reconfigure if freed from the influence of the matter 
that surrounds them? 

• If the substrate is a metal, how small must its cluster of atoms be to avoid 
the characteristic sharing of free electrons that triggers conductivity? 

• Do growing microclusters proceed gradually from one stable structure to 
another, largely through the simple addition of atoms, or do they undergo 
radical transformations as they grow? 

Perhaps the first reference to clusters was made in 1661 by Boyle, in his 
Skeptical Chymist, which speaks of: 

• . .  minute masses or clusters that were not easily dissipable into 
such particles as composed them 

Because of their minute size and typically large chemical reactivity, microclusters 
could not be studied with the techniques of traditional chemistry or even formed 
in the laboratory until the 1950's. In early efforts, an oven was used to vaporize 
a metal, which was precipitated as microclusters on a substrate. Since that time, 
chemists have developed a variety of methods of forming microclusters, each with 
advantages and disadvantages. For producing cluster beams of metals or semi- 
conducters a laser vaporization of the appropriate substances is performed within 
the flow of an helium carrier gas [6]. Another similar technique [7] called multiple 
expansion cluster source is used for producing microclusters of Cu, Ag, Au and Ni. 
In the matrix isolation technique microclusters are trapped in a solid environment 
by co-condensing the metal's vapor in the presence of rare gas on a cold surface 
[8]. The preparation of small microclusters involving quite uniform size distributions 
is based on well characterized metal-cluster complexes [9]. For the formation of 
microclusters supported on substates, the most widely used method is vapor deposition 
[10]. A different method [11] for producing colored powder-like microclusters is 
by growing them in solution until they reach the desired size, and then coating them 
with an organic outer layer that inhibits coalescence. Altematively, the microclusters 
can be precipitated inside porous glasses or polymers resulting in a solid material 
that contains millions of isolated microclusters. Finally, other researchers form 
microclusters inside zeolites which are crystalline structures with relatively large 
empty spaces in which the clusters are grown. The major problem with all of these 
chemical methods is that they cannot produce microclusters of a unique size, but 
instead they tend to produce microclusters whose size is distributed around a mean 
value. 

A key word pertaining to the novel features of microclusters is size effects 
[12]. The microscopic size of microclusters gives rise to unique properties in two 
ways. First, a large percentage of a cluster's atoms are on or close to the surface, 
and surface atoms do not arrange themselves in the same way as do atoms in bulk 
matter, but instead they tend to avoid being exposed on the surface. This effect 
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completely overwhelms the tendency of  atoms to arrange themselves in a regular 
crystalline array as they normally do in bulk matter. For instance, the ordering 
of  silicon atoms in the Silo cluster is completely different from the ordering in the 
silicon crystalline structure. Clusters differ from bulk matter not only in the variation 
of  the number of  atoms or molecules that they contain, but also in the number of  
atoms or molecules that reside on the surface. Assuming a spherical shape, the 
fraction of the number of  surface atoms is 4In lr~. For n = 102 this number is 86%, 
for n = 103 it is 40% and for n = 1 0  4 it is still 20%. For example, in a cluster of  
55 argon atoms at least 42 atoms are on the surface in some sense. Thus the 
structural, energetic and dynamic properties of the microsurface are of  considerable 
interest. 

Apart from the consequence on its geometry, a cluster's small size also 
affects its electronic structure. In bulk materials, electrons can move freely in any 
direction, but this is not the case in clusters since they are confined to a space that 
is only a few atoms width across. Presumably, the electronic structure is very 
sensitive to cluster size because the size determines how much room the electrons 
have to move around and consequently the possible energy of  the electrons. It 
appears that clusters consisting of  specific numbers of atoms are extremely stable, 
as they show up more prominently in the mass spectrum than neighboring cluster 
sizes. These numbers of  particles that enhance stability are called magic numbers 
and they are substance specific [13]. For instance [14] xenium clusters consisting 
of  N = 13, 19, 23, 25 . . . .  are particularly stable, although for sodium clusters the 
magic numbers are N = 8, 20, 40, 58, 92 . . . . .  

Small clusters of  atoms or molecules numbering from 4 - 5  to 100-200 can 
coexist as solids and liquids over a finite range of  temperatures and have distinctly 
different melting and freezing points. This occurs because due to the interplay of  
internal energy and entropy the free energy function for these clusters has two 
distinct minima, one in the liquid phase and one in the solid. Between them lies a 
finite range of temperatures within which both phases are stable. In other words, 
the melting and freezing points are disconnected since nothing dictates that these 
transitions must occur at the same temperature. An example of  clusters that display 
such phase coexistence is argon clusters of  7, 15 or 19 atoms [14]. These clusters 
exhibit a remarkable phenomenon; they randomly jump back and forth between the 
solid and the liquid state, staying for long periods of  time in each one. It should 
be pointed out, however, that not all clusters exhibit two-phase coexistence. For 
example, argon clusters composed by 6, 8 or 17 do not phase coexist [14]. The 
allowed energies of a cluster are quantized, which restricts the energy of  a cluster 
to a discrete set of  levels. These levels are widely spaced at low energies but are 
close together at high energies. Solid clusters typically occupy deep potential wells 
but liquid clusters reside at shallow ones. Therefore, solid clusters have relatively 
widely spaced energy levels while liquid clusters have densely spaced ones. Most 
quantum size effects are case specific and depend on the nature o f  the specific 
elementary excitation. 
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The considerable progress achieved in this area of research stems from two 
directions. First, the advent of supersonic cluster beams has had a remarkable 
impact on the experimental progress in this field. Second, classical and quantum 
mechanical simulations have provided a conceptual framework for the understanding 
of structural, energetic, dynamic, and thermodynamic effects in clusters. These two 
factors have contributed to the unified description of the interrelationship between 
molecular, surface, and bulk phenomena in large finite systems. 

1.2. APPLICATIONS 

The importance of microclusters ranges from catalysis to astrophysics and 
crosses the boundaries of subjects such as nucleation, crystal growth and surface 
physics. The remarkable increase of interest in microcluster physics in the last few 
years has been catalyzed by the emergence of several fields of direct application 
in the study of cluster properties. 

Perhaps the most promising application of microclusters is in industrial catalysis 
[11], which is central in petroleum refining for recovering of gasoline fractions 
from heavier distillates; in chemical industry for selectively favoring certain reactions; 
in pollution control for oxidizing or reducing pollutants; and in the synthesis of 
pharmaceuticals. The efficiency depends on its ability to attract reactants strongly 
enough for adsorption yet hold their products weakly enough for desorption. Critical 
for the entire process is the geometry of the active site, which remains an open 
problem for many catalytic reactions. Clusters are ideal for hosting active sites 
because their unfilled bonding capacity makes them adsorb readily, and their small 
size limits the number of possible adsorption geometries. These features make them 
likely to produce highly selective catalysts which are greatly valued in industry. 
Studies showed that cluster catalysis depends not only on the size and actual shape 
of the cluster, but also on its bond structure. The discovery that small changes in 
cluster size can produce large differences in adsorbing ability strengthens the notion 
that clusters represent a distinct state of matter. It also suggests that selectively 
adsorbing clusters can be chosen by size and deposited on a substrate for industrial 
catalysis, whereas unreactive clusters can form protective coatings. 

Clusters of certain metals have a great ability to absorb light due to their high 
density of valence electrons and large surface to volume ratio. Based on a cluster's 
size and chemistry it is possible to predict which wavelengths of light it will absorb. 
Because certain clusters are so photoreceptive, if suspended in a transparent medium 
they can be used as efficient radiation detectors, wavelength-specific light filters or 
even elements in an optical-memory system. In photographic processes when a 
photographic film is exposed, photons convert a tiny portion of the silver halide 
crystals into silver metal clusters. More sensitive clusters will result in the production 
of faster films. Furthermore, smaller but equally sensitive clusters could lead to 
films that can resolve sharper images. The precise photon-emission pattems of 
clusters are also of value as a chemical fuel for lasers [11]. A rather exotic as well 
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as unexpected implication of microclusters occurs in the area of astrophysics [5]. 
Recent astrophysical theories have put increasing emphasis on the role of small 
interstellar grains as a factor in the generation of chemical species and the regulation 
of hydrogen equilibria in the galaxy. A main reason for the shift of interest towards 
grains in the microcluster size region is the realization that certain processes of 
adsorption and desorption may owe their character entirely to the small size of the 
particles, irrespective of the detailed physical chemistry of their surfaces. 

Furthermore, microclusters correspond to a necessary vehicle for understanding 
nucleation processes in terms of atomistic rather than continuum models, explain 
crystal growth as a result of interactions between neighboring clusters, and account 
for the occurrence of condensation in supersonic flows. 

1.3. MINIMUM POTENTIAL ENERGY PROBLEM 

The study of the topography of the potential energy function of a microcluster 
in the internal configurational space was and still remains a central problem in this 
area of research [5, 15]. Even under simplifying assumptions about the interaction 
energy, the minimization of the potential energy is very difficult to solve because 
it corresponds to a nonconvex optimization problem involving numerous local minima. 
Hoare [5] claimed that the number of local minima of an n-atom microcluster grows 
as exp(n2). In fact, Wille [16] has shown, that the complexity of determining the 
global minimum energy of a cluster of particles interacting via two-body forces 
belongs to the class NP. In other words, there is no known algorithm that can solve 
this problem in non-exponential time [17]. A geometrical, possibly topological 
proof that a local minimum is both unique and global is not likely to be found 
because there still exist unsolved problems in the theory of sphere packings where 
difficulties are undoubtedly less acute [18-21] than those in the minimization 
problem at hand. 

Faced with these difficulties, current methods use physical intuition, 
approximation procedures, mimicking of physical phenomena, random searches, 
lattice optimization/relaxation, or local optimization approaches. Hoare in a series 
of papers [22-25, 15] proposed a method of finding minima of the total potential 
function of an 5 < N < 66 particle LJ cluster based on a growth scheme involving 
the following steps: First, a particular compact seed structure involving a small 
number of atoms is selected which is likely to appear in the N-particle structure. 
At each iteration an extra particle is placed at all packing vertices and the resulting 
structures are tested for geometrical uniqueness. The distinct structures are then 
relaxed and a local optimization procedure locates and records the local minima 
involved. Each of the minima then serves as a new seed structure in repetition of 
the procedure. Finally, all of the generated distinct local minima are tabulated in 
decreasing order of binding energies. A number of "growth rules" are incorporated 
in the procedure that alleviates the computational effort. Using this method Hoare 
generated a large number of local minima for structures from 5 to 66 particles. 
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However, no claim for complete enumeration of all local minima, and thus detection 
of global minimum, can be made. In fact, it has been reported [26] that solutions 
of low-symmetry are not likely to be found with this method. 

Piela's [27] method is based on the simple idea of smoothly deforming the 
potential energy hypersurface [28], in such a way as to make shallow potential wells 
disappear gradually, while the deeper ones grow at their expense. As the potential 
wells evolve they change their position and size. One then eventually ends up with 
a single potential well that has absorbed all the others which hopefully corresponds 
to the global minimum. A local optimization procedure then can easily find the 
single local minimum corresponding to the global one as well. The hypersurface is 
deforming using the diffusion equation, with the original shape of the hypersurface 
representing the initial concentration distribution. The main advantage of this method 
is that you do not have to explore the myriads of local optima, nor do you have 
to know their position beforehand. However, the approach depends on the conjecture 
that shallow potential wells disappear faster than deeper ones. In fact, it has been 
observed that when the global minimum lies on a narrow potential well of large 
depth, it might disappear faster than a wider, originally shallower, potential well. 

Simulation studies are the most widespread method in the study of clusters. 
There are three basic simulation methods that have been used in cluster research: 
molecular dynamics, Monte Carlo simulations and statistics. In the molecular dynamics 
(MD) technique, the equation of motion is solved numerically for the set of N 
particles that form the cluster. Depending on the type of the system and on the form 
of the employed potential energy function, there is a variety of numerical algorithms 
available for this purpose [29, 30]. All methods generate a time-ordered series of 
particle coordinates representing the motion of every particle in the system. Kinetic 
energies are incorporated within the calculation sequence, and therefore temperature 
effects are intrinsically included in the result. In principle, if given a large enough 
number of iterations, molecular dynamics simulations can describe the evolution of 
any time-dependent system towards equilibrium. 

Simulation calculations using the molecular dynamics technique were carded 
out by Heidi [31] and Jellinek [32] for studying the solid liquid changes in a 13- 
particle argon cluster. A systematic molecular dynamics simulation study of 
microclusters of 13-147 atoms was performed by Honeycutt and Andersen [33] 
using Lennard- Jones potential at constant temperature and constant energy calculations 
alternatively. Polymeropoulos and Brickmann [34] employed a molecular dynamics 
technique using two-body and three-body interactions calculating the stabilities of 
microclusters of various sizes and analyzing the effect of three-body interactions on 
the stability of the microcluster. In a more recent work Polymeropoulos and Brickmann 
[35] also analyzed ionized rare-gas clusters containing up to 26 atoms. Garzon et 
al. [36, 37] analyzed the effect of impurities on the structure and on the l iquid-solid 
transition of Lennard-Jones and Van der Waals crystals respectively, using molecular 
dynamics simulations. Eroc and Katircioglou [38] investigated the energetics and 
the structural stability of gold microclusters containing 3 -7  atoms. Molecular dynamics 
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were employed in the simulation, and the potential energy function used in the 
calculations included two as well as three-body interactions represented by Lennard-  
Jones and Axilrod-Teller  functions respectively. 

Monte Carlo techniques, employed in microcluster simulations, are in general 
based on the Metropolis procedure [39]. Starting from an initial random configuration, 
atoms are randomly displaced according to the MaxweU-Boltzmann distribution. 
After a sufficient number of Monte Carlo steps for sampling the phase space, the 
desired quantities are calculated as ensemble averages from position-dependent 
quantities estimated in every step. With this method any equilibrium quantity can 
be calculated as a function of temperature which is introduced via the Maxwel l -  
Boltzmann factor. Tsai and Abraham [40], using a Monte Carlo simulation technique, 
calculated the structure and thermodynamics of binary Lermard-Jones microclusters 
as a function of cluster size, composition and temperature. Quirke and Sheng [41] 
studied the melting behavior of microclusters of atoms using a Monte Carlo method 
based on Lennard-Jones potentials. Bohmer and Peyerimhoff [42] analyzed the 
stability and structure of single-charged argon clusters of 3 to 27 atoms using Monte 
Carlo calculations in the temperature range between 10 and 40 K. Freeman and Doll 
[43] performed a quantum Monte Carlo study of the thermodynamic properties, 
homogeneous nucleation, and "magic numbers" distribution in argon clusters. 

The static method is based on a simple minimization technique to find the 
configuration of a cluster corresponding to the nearest energy local minimum. It is 
a temperature-independent approach and can be regarded as the T = 0 case. Because 
of its simplicity and the moderate computational effort needed, it is often used to 
obtain local minima. However, depending on the initial configuration this method 
can provide only one energy local minimum associated with the cluster. Yang and 
Bambakidis [44] used the static method for finding the structural stability of small 
clusters by employing a two-body Morse interaction potential. Based on the static 
method, Halicioglu and White [45] solved for the most energetically stable structure 
of clusters consisting of up to 13 atoms interacting with two-body and three-body 
interactions. 

The simulated annealing method is a variant of the Monte Carlo method. It 
has been widely used either alone, or in conjunction with some other method(s). 
The motivation of this method stems from the fact that each time a crystal is grown 
or a compound is synthesized, nature somehow seems to solve an energy minimization 
problem by what could be called an analog computation. It was this observation that 
led Kirkpatrick et al. [46] to develop the simulated annealing method for discrete 
combinatorial optimization problems. Vanderbilt and Louie [47] extended this method 
to problems with continuous variables. 

Consider the potential energy to be minimized as a function of the position 
of the particles V(rl, r2 . . . . .  rN) where ri, i = 1 . . . . .  N, are the positions of the 
particles. The simulated annealing method uses the Metropolis et al. [39] Monte 
Carlo prescription to decide whether or not to accept a random step Ar. If the 
associated energy change AE is negative, the step is accepted. If AE is positive, the 
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step is accepted with a probability p = exp(-AE/T). The series of accepted steps 
generate a random walk on the potential energy surface attracted from the minima. 
The size of steps should be such that approximately half the steps are accepted. The 
parameter T plays the role of temperature; as T decreases the random walk becomes 
more likely to settle down to a minimum. By mimicking the process of annealing, 
the system is started in a random initial configuration at a sufficiently high temperature. 
After a number of steps M, which should be large enough that representative regions 
of the parameter space are sampled, the temperature is reduced by a constant factor 
Zr (typically 0.75-0.90). This process is repeated until no further improvements are 
made over a number of iterations. Considerable reductions in the computational 
effort are achieved by switching to some gradient based local optimization procedure 
when the energy drops below a certain value in the last stages of the procedure. The 
collection of the points from which the same local minimum is obtained by this 
algorithm is called the catchment region of the local minimum. This whole procedure 
is repeated a number of times from many random initial points and produces a list 
of local minima, the smallest of which is taken to be the global minimum. Obviously 
there is no guarantee that the actual global minimum will be found in this manner. 
Particularly, if the catchment region of the global minimum is narrow, this method 
is likely to miss it. A large number of researchers have been using this method for 
finding the global minimum of the potential energy function. Wille [26, 48] solved 
the potential minimization problem for up to 25 particles, interacting under two- 
body Lennard-Jones forces and he found two new minima for N = 24 that were 
better than the one reported by Hoare and Pal [5]. BaUone and Milani [49] using 
a semiempirical many-body potential, solved for the ground-geometries of carbon 
clusters in the range 50 < M < 72 and found that all the structures of low energy are 
hollow spheres with nearly graphitic atomic arrangement. Hohl and Jones [50] 
applied the same methodology also to phosphorus clusters P2 to Ps, arriving at a 
rather counter-intuitive most stable structure for Ps. Navon et al. [51 ] used a combined 
simulated annealing and a quasi-Newton-like conjugate-gradient method for determining 
the structure of mixed argon-xenon clusters interacting with two-body Lennard-  
Jones forces. Vlachos et al. [52, 53] studied the binding energy of Ni Lennard-  
Jones clusters using the simulated annealing method in a canonical ensemble Monte 
Carlo technique. 

The simulated annealing method can be viewed as a method for stochastically 
tracing the annealing process by Monte Carlo simulation. Shalloway [54, 55] presented 
a deterministic method for annealing the objective function by tracing the evolution 
of  a multiple-Gaussian-packet approximation and using notions from renormalization 
group theory. This method has been applied to microcluster conformation problems 
and it appears that in most of the test problems was able to identify the global 
minimum. 

It appears that lattice optimization techniques are the most efficient generating 
structures involving the lowest known potential energy. Farges et al. [56] proposed 
that the most energetically favored microclusters in the range 20 < N < 50 are the 
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ones that involve interpenetrating icosahedra (polyicosahedra) or (PIC). For N _< 55 
a double icosahedral (DIC) growth was introduced [57] and for 55 < N < 147 [58] 
a third layer icosahedral structure using two different surface arrangements was 
presented. Using these notions Northby [59] derived optimal configurations for LJ 
microclusters in the range 13 < N ~ 147 based on a lattice optimization/relaxation 
algorithm. First a heuristic procedure is employed for finding a set of lattice local 
minimizers assuming icosahedral IC or face-centered FC arrangements. Then, the 
currently best lattice minimizers are relaxed by using a local optimization algorithm. 
Xue [60] improved on Northby's [59] method by reducing the time complexity of 
the algorithm. Furthermore, by relaxing every lattice local minimizer a number of 
better optimal configurations were found in the range 13 < N < 147. However, it 
appeared that the best local lattice does not always relax to the structure involving 
the lowest total Lennard-Jones potential energy. A parallel implementation [61] 
allowed results on minimum energies for clusters of up to N = 1000 atoms. Also by 
employing a parallel version of a two-level simulated annealing algorithm [62] 
solutions for cluster sizes as large as N = 100,000 have been reported. Finally, 
Maranas and Floudas [64] transformed the initial nonconvex expression for the total 
potential energy of a Lennard-Jones microcluster into the difference of two convex 
functions through a convexification procedure. Then, a Primal-Relaxed Dual global 
optimization algorithm was implemented for finding the global minimum configuration 
of small LJ microclusters. For larger ones lower and upper bounds were derived by 
using a relaxation procedure. 

2. Problem discussion 

The problem which is to be addressed in this work can be stated simply as 
follows: 

Given N particles interacting with two-body central forces, find their 
configuration(s) in the three-dimensional Euclidean space involving 
the global minimum total potential energy. 

The employed simplifications in this work are the following: 

(1) Many-body and angle dependent interactions are not taken into account. 

(2) Quantum effects are not taken into consideration. 

(3) All particles are considered to be spherical and of the same size. 

Assumption (1) restricts the applicability of the global optimization approach 
as developed to systems of particles interacting with two-body central forces. Although 
this model is certainly quite restrictive for some real systems because it ignores 
angle dependent force contributions and many-body force terms, it provides a valuable 
prototype for the study of microcluster mechanics. Furthermore, the proposed approach 
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can conceptually be extended to systems of particles interacting with many-body 
forces if an analytical expression for the total potential energy is given as a function 
of the Euclidean distances. Assumption (2) implies that the total potential energy 
is a continuously varying quantity, in other words it is not quantized. Any formulation 
of  the problem that takes into account quantum effects must involve a number of 
discrete variables which further increase the already high complexity of the problem. 
Assumption (3) implies that all particles are identical and are of the same size. It 
has been introduced for the sake of simplicity and can be relaxed easily. 

Under the aforementioned assumptions the potential energy of an N-particle 
cluster can be written as: 

where 

and 

N-1  N 

v =  2 
i=I j = i + l  

rij = 1/(xi - x j )  2 + (Yi - yj)2 + (z i _ z j)2 

Xl = Yl = Zl = Y2 = z2 ---- z3 = 0.  

Here V is the total potential energy of the microcluster as the summation of all two- 
body interaction terms, v(rij) is the potential energy term corresponding to the 
interaction of particle i with particle j, and rij is the Euclidean distance between i 
and j. Note that in the double summation, j spans from i + 1 to N so that we avoid 
doublecounting pair interactions and the interaction of a particle with itself. Furthermore, 
by specifying xl = Yl = zl = 0, we fix the first particle at (0, 0, 0), eliminating all 
three translational degrees of freedom of the microcluster. By further imposing 
Y2 = z2 = z3 = 0 we eliminate the rotational degrees of freedom as well. 

Many different formulas for v(r) have been used in physical models since 
there is no single, rigorously derived from first principles, expression for v(r). In 
order for v(r) to have satisfactory behavior in the entire configurational space, it 
must comply with the following requirements in v(r) [5]. 

(1) v(r) --~ O- as r ~ ~ .  (No interaction at f ini te  separation.)  

(2) o(r) ~ ~, for r < rmi n and rmi n > 0. (Rigid core.) 

(3) v'(ro) = 0, v(ro)" > 0 for a unique ro. (Single stable state.) 

Pair potentials that have been used in cluster studies include the following [5]: 

(1) 

(2) 

(3) 

v(r) = (n - m) -1 [nr -'n - mr -~] (Mie). 

v(r) = 4e {(.~)12 _ (~.)6} (Lennard-Jones). 

v(r) = [1 -ca(l-r)] 2 -  1 (Morse). 
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(4) v(r) = Ae  -a'2 - Be  -b'~ (Gaussian). 

(5) v(r) = zazlJ/r + Ae -tIP (Born-Meyer).  

A necessary but not sufficient condition for local optimality is that all first order 
derivatives at the global minimum point must be zero [65]. Posing the problem on 
the xi, Yi, zi Cartesian coordinates we can write for any local minimum point: 

N • 

- x )  = o ,  
j=1 r// 

° ' ( r l j )  
(Yi - Yj)  = O, 

j--i rij 

~ /3 ' ( r / j )  (zi -- zj) = 0, 
j=l  r/j 

Vi = 2 . . . . .  N; 

'¢i = 3 . . . . .  N; 

Vi = 4  . . . . .  N. 

Note that v'(rij) is the first order derivative of v(rlj) with respect to the Euclidean 
distance rij. The points that conform with the above conditions are called stationary 
points, and their number increases more than exponentially with N [15]. However, 
only a fraction of the stationary points are indeed local minima, the rest of them 
are saddle points or local minima. The extra condition required in order to guarantee 
local minimality is that the Hessian matrix H must be positive definite at the point 
in question. The Hessian matrix contains the second order derivatives with respect 
to xl, Yl, zi of the total potential energy function. An equivalent condition with a 
positive definite Hessian matrix is requiring all eigenvalues ~,, to be positive at the 
point in question. A physical interpretation of the eigenvalues of H is that at any 
point they give the principal radii of the curvature, and the corresponding eigenvectors 
define the principal axes and the set of normal coordinates in terms of which the 
Hessian is diagonal. Note that the positivity of the elements of H is not a sufficient 
condition for local minimality, since there might be valleys falling away from a 
stationary point parallel to the principal directions. 

Since all particles are assumed to be identical, we must consider the multiplicity 
of configurations which differ only by permutations of the particles. In fact, for an 
N-particle cluster there ( N - 3 ) !  identical structures. These structures that differ 
only in labelling of particles are equivalent under proper symmetry operations in 
three-space, or they correspond to enantiomorphic configurations [5] and are called 
geometr ical ly  equivalent.  

The main difficulty in solving this problem arises from the fact that the 
objective is a nonconvex function of many variables. Any local optimization technique 
is likely to find only a local minimum at best. Any attempt to exhaustively enumerate 
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all stationary points or local minima is unlikely to succeed not only because of their 
very large number but also because there is no way of guaranteeing the enumeration 
of all of them. In the next section, a procedure is introduced for transforming the 
initial nonconvex objective function to the difference of two convex functions (DC 
transformation). Note that a number of expressions describing the two-body interactions 
are considered. Then, by exploiting the acquired DC structure of the problem, a 
global optimization algorithm is proposed. 

3. Eigenvalue analysis 

The main difficulty in solving the minimization problem as it has been presented 
in the previous section arises from the presence of nonconvexities in the objective 
function. In fact, it will be shown that even the expression for a single pair interaction 
potential is a nonconvex function. Let v(r01) be the general expression for the pair 
potential between particle (0) and particle (I). If now we pose the problem in the 
Cartesian coordinate space, v(rlo) becomes a function of six variables Xo, Yo, z0, xl, Yl, zl. 
However, particle (0) can be arbitrarily fixed at (x0, Y0, z0) and thus v(r01) is essentially 
a function of only three variables as shown in [64]. A necessary and sufficient 
condition for convexity is that all the eigenvalues of the Hessian matrix of V(rol) 
must be positive. The first and second order derivatives of v(rol) with respect to 
x~, Yt, zl are the following: 

h~ = v ' ( r ° l )  (x  1 - Xo), 
rol 

1)'(rol ) 
hy = (Yl - Yo), 

to1 

h~ = v ' ( rox )  (z l  - Zo),  
rot 

h~ = (v"(rol) 
v'(rol) ~ (xl - Xo)2 v,(rol) ~ -  + , 

: rol ro'l tO1 

rol 
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hx7 = (1)"(rol) lf(rol)) (x l -xO)(y l -yO)  
rol r 2 , 

hn = (v"(roO v ' (roO)(x~-xo)fz~-zo)  
ro 1 ro21 ' 

=(1),,(rol ) V'(rol) • ~(Yl- Yo)(zl- Zo) h,, 
l ro~ j r~ 

Here v'(r01), v"(rm) correspond to the first and second derivative of v(rol) with 
respect to the Euclidean distance rm. The three eigenvalues AI, ~z, ~ can then be 
calculated from the following equation. 

det h~ h.-A ~ ,  

, hxz hyz hzz _ 

=0.  

By expanding the determinant we obtain: 

- £  

+ ~(h~ + h~ + h;~ - h~h.  - h~hzz - h.h~,) 

+ (hxxh~hz z 2 2 
- h~zhxx + = - h~hzz 2h~hxxhyz) O. 

After substituting the expressions for h=, hrp h,,, hxy, hxz, hyz, the above equation 
becomes: 

-A3+A2Io"(rol) + 2 v ' ( rm) l -A  v'(r°l)(v"(rol)+ 2 v'(r°l)l + v"(rol)I v'(r°l) / 2=0. 
rol ) rol \ rol J t, rm ) 

By factoring the above equation we obtain the following simple formula, 

Z v'(r°1)12(Z - v"(rol))  = O, 
rol ) 

which yields the following expressions for the three eigenvalues: 
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~1.2 = v" ( ro~ ) , 
rol 

= v"(roO. 

COROLLARY 1 

v(rol) is convex if and only if v'(rol) and v"(rol) are nonnegative for every 
rol in (rmin, rm,x). 

v(rol) is convex in 

(train, rmax) ~=> v'(roO > O, v"(rol) > O, Vrol E (rmin, rmax). 

It is worthwhile to note that the above result is valid for any type of potential 
describing the interaction of two particles with central forces since no assumptions 
for the functionality between rol and V(ro~) have been made. Furthermore, convexity 
of v(ro0 in the r01 space is not a sufficient condition for convexity in the xl, Yl, zl 
Cartesian coordinate space. If v(r01) is convex in fox then v"(roO will be indeed 
positive; however, v'(roO might not be. Because the expression for v(r01) must 
comply with the requirements set by [5], v'(r01) is negative for r < ro and v"(r01) 
is negative for r > rl. Thus, v(rol) stays convex only within the narrow interval 
(ro, r0 .  Here ro corresponds to the value of r01 which zeroes the first derivative of 
v(rol) and rl to the value of r01 which zeroes the second derivative of v(r01). For 
different pair potential models table 1 summarizes the expressions for the eigenvalues 
~1,2, ~ and table 2 the analytical formulas (if they exist) for ro, rl. 

The very important property of convexity of v(rol) can be maintained by 
augmenting v(r01) with the addition of a "strongly" convex term. This term may 
have the following form: 

ao,(Xo 2 + y2 + z 2 + x 2 + y2 + z2). 

Note that ao~ is an arbitrary large positive number. The effect of this extra term in 
the Hessian matrix is to add the term 2a01 to all the diagonal elements of the matrix 
which, given a sufficiently large 0~1, forces all the eigenvalues to become non- 
negative by overpowering the original convexity characteristics of v(r01). Let ::(rol) 
be the summation of v(r01) and the extra term aol(X 2 + y2 + z 2 + x 2 + y2 + z2). 

~(rol) = l~(rol) + aol(x 2 + yo 2 + zo 2 + x 2 + y2 + z2). 

It is quite straightforward to find that the eigenvalues of the Hessian which corresponds 
to ¢(rol) are: 

;I.1. 2 = v'(rol______~) + 2aO1, 
tO1 

X 3 = v"(rol ) + 2aol. 
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Table 1 

Eigenvalues ;L1, 2, ~ for different potential models. 

Potential v(r ) ~.1.2 Ro 

z"z # zaz# 2z%# 
Coulomb 

r r 3 r 3 

1 2 (~-s r-iT) 12:13 - 7~  Scaled U]" rl 2 r6 12 - ~, rl 4 rS ) 

O.2 - 0.2 [ 26(~r) 14- 7 ('~'r)S l 

Mie _.____L ._~_~. i I nm./.(m+l) (n+1)] 
n -., r ;~* r "÷~' ,,-",L r "÷~ ~-~"J 

Morse [1- e'"-"]2- 1 2ae . ' l - r , [ l_ : -r , ]  2:o. ,~- . , [ :e° , l - .  _ 1] 
r 

Gaussian Ae -°'2 - B e  -~'2 2[bBe -b~2 - aAe  -~2 ] 4rZ(aZAe -°r2 - bZBe-~21 

-zaz  # A e_ri p 2zaz B Ae_r /p  Born-Meyer zaz"~# + Ae-rlp r 3 r''T'-+ p2 
r pr 

Table 2 

Convex interval (r0, rl) for different potential models. 

Potential v(r) ro rl 

Scaled l.J 

LJ 

Mie 

Morse 

1 2 
1 

r 12 i. 6 

[1-  ea(1-r)]2 -- 1 1 

( )"'_-I.1o8683 

re+l) 

In2 
+1 

a 
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Since we want all the eigenvalues to be nonnegative, we have the following inequality 
constraints for ao~. 

aol > 0 ,  

aOl >- l)'(rol), 
2rol 

aol >- v'(rol) 
2 

The min imum value of  aol that will maintain all eigenvalues of  ~r01) nonnegat ive 
can then be derived as the solution of  the fol lowing optimizat ion problem: 

[ v'(rol) 
/ 2rol 

m a x , 0  
a°'= ~°' [ .~o ,).v" 

if  rmi n < rol < r o , 

if r o < rol < rl, 

if  r 1 < rol < rm~. 

Note that at the global minimum all interparticle distances are never significantly 
less than one, because otherwise the corresponding pair potential resumes a large 
positive value which cannot occur at the global min imum.  In [64] rigorous lower  
bounds on the min imum interparticle distances are given for different cluster sizes. 
A sufficient value of  rmin for all practical purposes is about 0.9. If  we define P(rol) 
to be equal to 

W(rol) = o~ol(Xo 2 + y02 + %2 + Xl 2 + y? + z12), 

then the initial nonconvex expression for the pair has been t ransformed to the 
difference of  two convex functions, more specifically: 

v(r01) = ~(r01)-  V/(rol). 

By applying the same analysis to every pair potential interaction, the total potential  
energy expression can be written as the difference of  two convex functions (DC 
structure). 

4. Problem formulation 

The problem of  finding the global min imum energy of  N particles interacting 
with central two-body forces can be formulated as the following nonlinear optimization 
problem NLP:  
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(P1) 
N - I  N 

minimizeV= ~ Z 1 ) ( x i , Y i , Z i , x j , y j , z j )  
xt'Y~'Zt i=1 j : i + l  

subject to x~ < x i <. i f ,  i = 2 . . . . .  N,  

yi t" < y i < y [ ,  i = 3  . . . . .  N, 

zi z < z i < z f  , i = 4  . . . . .  N, 

xl = Yl = zl = Y2 = z2 = z3 = O, 

L L zL ' U U U where x i ,yi , xi ,Yi , zi define the box constraints for the xi, Yi, zi variables. In 
formulation (P1) the objective function is nonconvex so no guarantee for convergence 
to the global minimum can be made. In view of  the transformation presented in the 
previous section, (P1) can be reformulated as the following (DC) programming 
problem. 

(P2) 

minimizeV= ~ ~ _ , l ~ ( x i , Y i , Z i , x j , y j , z j ) + o t i j ( x 2 + y 2 + z 2 + x 2 + y 2 + z  
Xi°Yi'Zi i=1 j = i + l  

subject to 

' - ' '  

- Z Z O t i j ( x 2 + y 2 + z 2 + ~ + Y  2 + z  
i=1 j - - i + l  

x, L<-xi<x , i = 2  . . . . .  N, 

yi t" < yi < y f  , i = 3  . . . . .  N, 

zi L < z i < z~, i =4 ..... N, 

where 

and 

xl = Yl = zl = Y2 = z2 = z3 = 0, 

0~ 0 = m a x  ~ 
r# 

v'(rij) i f  rmin< r/j < ro, 
2r  0 

0 i f r o < r o < r  1, 

v"(ro) if rl < r 0 < rmax, 
2 

2 ~112 
rq = [ ( x i - x j )  2 + ( y i - y j ) 2  + ( z  i _ z j )  ] . 
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In this work an approach for finding the global minimum based on the global 
optimization algorithm GOP developed by Floudas and Visweswaran [1-4] is presented. 
The GOP algorithm can be applied to optimization problems that have or can be 
transformed to the following form, and it guarantees e-convergence to the global 
minimum in a finite number of  steps: 

minimize f ( x , y )  
x,y 

subject to g(x,y) < O, 

h(x,y) = O, 

x e X e Y .  

Here X, Y are non-empty, compact, convex sets and f (x ,  y), g(x, y) and h(x, y) are 
continuous, piecewise differentiable, and analytical functions over X x Y. The initial 
variable set is partitioned to the sets X and Y in such a way thatf(x ,  y) and g(x, y) 
are convex in x for every fixed y, and convex in y for every fixed x. And also, h(x, y) 
is linear in x for every fixed y, and linear in y for every fixed x. 

If these conditions cannot be satisfied with only partitioning of  variables, 
transformation of  variables can be employed. The GOP algorithm has been applied 
to optimization problems involving bilinear, quadratic, polynomial, or rational 
polynomial terms in the objective function and/or constraints [1-4] .  

In view of  the GOP requirements for convergence to the global minimum, 
the following transformation of  variables is performed on formulation (P2). The 
coordinate set of  variables xi, Yi, zi (x-type) is "mirrored" to Xi, Yi, Zi (y-type) so 
xi = Xi, Yi = Yi, zi = Zi, Vi = 1 . . . . .  N. Then, for each pair-potential, we add the term 
a(X, ~ + Yi 2 + Z~ + X~ + Y~ + Z~) to the total potential energy function. The purpose 
of  these added terms is to "convexify" each pair potential by transferring the 
nonconvexities to the terms that we subtract from each pair-potential contribution. 
The terms that we subtract have the following form; aij(xiXi + YiYi + ziZ i + xjXj + yjYj 
+ ziZj). Note that they are linear in xi, Yi, zi for fixed Xi, Yi, Zi and vice-versa. The 
values of a~j's are selected so that they are the minimum ones that guarantee 
convexification of  each pair-potential term with the addition of  the extra terms. 
Based on the above analysis formulation (P2) can be reformulated as follows: 

(P3) 

minimizeV = ~ E E1) (X i 'Y i 'Z i 'X j 'Y j 'Z j )+O~i j (X?  + y/2+ Z?+ X2+ yj2+ Z 2 
~. i=l j=i+l 

- E E Ot~i(xiXi+ YiYi + ziZi+ x jXj+ y j ~ +  zjZj 
i=l j=i+l 
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subject to x i = X i, i = 2 . . . . .  N, 

Yi = Y/, i = 3, . . . .  N, 

z i = Z i, i = 4 . . . . .  N, 

x~ <_ xi <- x L  i =  2 . . . . .  iv, 

Yi L < Yi < Y~, i =  3 . . . . .  N, 

zp < z i < z~,  i = 4 . . . . .  N, 

Xl =Yl =Zl =Y2 =z2  = z3 = 0 ,  

xi t" < X i < x.U, 

yit" < Yi < y~ ,  

z~ < Z i < zUi , 

/ = 2  . . . . .  N, 

i = 3  . . . . .  N, 

i = 4  . . . . .  N, 

x~ =Y~ =z~ =Y2 = ~  =z3 =o. 

Note that i f  we fix Xi, Yi, Zi and let xl, Yi, zi vary, formulat ion (P3) corresponds to 
a linear p rogramming problem. If  now we fix xl, Yi, zi and let Xi, Y~, Zz vary (P3) 
becomes  a convex NL P  programming problem. Thus,  all GOP requirements are 
satisfied. Let  us now consider a more  restrictive version of  (P3), where all y-type 
variables are fixed, namely,  X i = Xix,Yi = Yir,Zi  = Zi r ,  

(P4) 

N-I N K K K K K K } 
min imizeV=  t ~ ~ v(Xi  ,Yi ,Z~ ,X~ ,Yj ,Z~ ) 

xi'Yi'Zi ( i=l j=i+l 

['N-1 N K 2 } 

subject to 

[N-I N K } 

t 
xi = Xi K, i = 2  . . . . .  N,  

yi = Yi K, i = 3  . . . . .  N, 



104 C.D. Maranas, C.A. Floudas, Molecular conformation problems 

z / =  Z f ,  

_<x, _<x,", 

Yi t" < Yi < Y~, 

i = 4  . . . . .  N ,  

i = 2  . . . . .  N, 

i = 3  . . . . .  N, 

z~ < z i < z~,  i = 4 . . . . .  N,  

xl = Yl = zl = Y2 = z2 = z3 = O. 

Problem (P4) is called the p r i m a l  p rob l em  and its solution provides an upper bound 
to the solution of  (P3) since it corresponds to a more restricted form of  it. It is clear 
that (P4) is always feasible and its solution corresponds to a single function evaluation. 
By applying the KKT conditions [65] we obtain for the Lagrange multipliers ~i ,  
~i ,  ~ i  associated with the equality constraints in (P3): 

~,zi = ~ a i j  Xi K, i = 2  ..... N, 
j=l / 

:t,yi= ~Oti j  Y i , i = 3  . . . . .  N, 
jft ) 

/q, zi = ~ ot U Z i , i = 4  . . . . .  N. 
j=l J 

Problem (P3) can also be viewed as a two-level optimization problem, where the 
minimization over xi, Yl, zi and Xi, Yi, Zi occurs separately. By projecting in the 
space of  the Xi, Yi, Zi variables [66], we can reformulate 0P3) as an inner optimization 
problem over xi, Yi, zi and an outer optimization problem over Xi, Yi, Zi. 

(PS) 

minimize 
x~,r~,z~ 

subject to 
N-I N 

i=1 j=i+l 

rNl  )} 
xi,y, , , ,  i = l j  1 ~( + xjXj zjZj 



C.D. Maranas, C.A. Floudas, Molecular conformation problems 105 

x i = X  i , i = 2  . . . .  ,N, 

Yi = Y/, i = 3  . . . . .  N, 

z i = Z  i , i = 4  . . . . .  N, 

x~ < xi < x~ ,  i =  2 . . . . .  N,  

y~ <- yi <- y f  , i =  3 . . . . .  N, 

zi t" < z i < z~,  i = 4 . . . . .  N,  

Xl = Yl = Zl = Y2 = Z2 = Z3 = 0 ,  

x~ < X i < x ~ ,  i = 2  . . . .  ,N,  

y ~ < Y i < y ~ ,  i=3 . . . .  ,N, 

zi L <- Z i <- z~, i=4 ..... N, 

x, =~=z,=r 2=~=z3=o, 

VXi e ~ ,  VYi e ~J, Vz i  e ~ .  

~, ~d, ~ are the subsets of (x~, x U), (y/L, yU ), (z/L, z/U ) for which the outer optimization 
problem is feasible for some value of xi, Yi, zi. Note that the inner optimization 
problem is a parametric in Xi, Yi, Zi so the set of values that v(Xi, Yi, Z~) attains is 
known only implicitly. By dualizing the equality constraints in formulation (P5) we 
obtain the following dual representation. 

(P6) 
N-I N 

~x,, r,,z,> = Z Z ~(x,,~ ,z, ,xj,~ ,z~) + ~,,(x, ~ + Y: + z, ~ + x~ + r: + z~) 
i=l j=i+l 

[ N-I N 

. ~ " ]} 
i--2 i=3 i =4  
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xi L < xi <<- xVi , 

Yi L < Yi < Y~, 

i = 2  . . . . .  N,  

i = 3  . . . . .  N, 

z L < z i < z~, i = 4 . . . .  ,N,  

xl = Yl = zl = Y2 = z2 = z3 = 0, 

V X  l e a d ,  V Y  i e ~ ,  V Z  i e ~ .  

We can further relax (P6) by dropping the last implicit constraint on Xi, Yi, Zi, and 
not considering the maximization over ~i ,  h i ,  ;~,i. Instead, we substitute the values 
for ;qi, h i ,  ,1~i evaluated from the KKT conditions. By taking advantage of the fact 
that (P6) is separable in xi, Yi, zi we obtain the relaxed dual (RD) formulation. 
Clearly, the solution of this problem provides a lower bound to the solution of (P2) 
since it corresponds to its relaxation. 

( P 7 )  

Minimize #B 
x~, Y,., zt,/~a 

subject to 
N - 1  N 

l t s > - L ( x i ' Y i ,  z i ' X i , Y i , Z i )  = 2 ~ , ~ ( X i , Y i , Z I , X j , Y j , Z j )  
i = l j f f i i + l  

I + ~., otq 
i=2  x~ 

+ £t~i y~ 

I + ~ aij 
i = 4  zl " 

x~ < x i < x ~ ,  i =  2 . . . . .  N,  

yi L < yi < y~ ,  i : 3  . . . . .  N, 

z L < z i < z~ I, i =  4 . . . . .  N,  

Xl = Yl = Zl = Y2 = z2 = z3 = O, 
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x, <_ x, <- xV, 

yi  t" < Yi < Y?, 

i = 2  . . . .  ,N, 

i = 3 . . . .  , N, 

z iL<Zi<z~  I, i = 4  . . . . .  N, 

=r2 =z2 =z3 =0. 

Problem (P7) is linear in xi, Yl, zi so the minimum point xi, Yi, zi will be at an upper 
or lower bound depending on whether their coefficient is negative or positive, 
respectively. These variables xl, Yi, zi are called connected variables and the gradients 
of the Lagrange function in terms of the connected variables are called qualifying 
constraints which in problem (PT) have the following form: 

r K-r , z -zi. 

This suggests that instead of minimizing explicitly in terms of the connected variables 
xi, Yi, zi, it is sufficient to solve (P7) once for each combination of  their bounds and 
select the infimum over the calculated minima in all iterations. We have shown that 
the solution of  (P4) provides an upper bound and the solution of (P7) a lower bound 
on the actual solution of the problem. This calls for an alternative scheme between 
(P4) and (P7) to determine the global solution of (P2). 

Based on the above analysis, the solution of the initial nonconvex problem 
(P2) has been transformed to the solution of a series of convex nonlinear relaxed 
dual problems which can be solved efficiently with existing algorithms [63]. The 
solution of the primal problem, which corresponds to a single function, provides an 
upper bound to the global minimum, whereas the relaxed dual problems yield lower 
bounds. It has been proved [1, 2] that by iterating between the primal problem and 
the relaxed dual problems e-convergence to the global minimum is achieved in a 
finite number of steps. 

The main limitation with this approach is that for n connected variables, up 
to 2 n relaxed dual problems must be solved per iteration. These early observations 
motivated the development of a number of computational properties. First, if a 
qualifying constraint always maintains constant sign, then the relaxed dual problems 
involving the reverse qualifying constraint do not need to be solved [3]. Furthermore, 
if a qualifying constraint is rigorously equal to zero for some iteration k, then the 
corresponding connected variable can be set to either its lower or upper bound [3]. 

In this work, the bounds of the variables are updated because this results in 
tighter lower bounding of the objective function. More specifically, the bounds of 
the variables for the current iteration are derived from the bounds of the variables 
of  the relaxed dual problem whose solution is the current point. Based on this, we 
can define a 2n-tree with nodes corresponding to relaxed dual problems and levels 
corresponding to iterations. In the current iteration, only the Lagrange functions of 
relaxed dual problems which correspond to predecessor nodes for the node of the 
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current relaxed dual problem are incorporated. It is interesting to note that their 
number is rather small, typically of the order log2(K). The bounds for the current 
iteration are provided by the relaxed dual problem corresponding to the parent node 
of the current relaxed dual problems. Note also that no qualifying constraints are 
needed in the formulation. The application of this property greatly reduces the required 
number of iterations for convergence as well as improving the CPU time for each 
relaxed dual problem by including only a small number of previous Lagrange functions 
and by excluding all qualifying constraints from the current relaxed dual problem. 

5. Algorithmic procedure 

The basic steps of this procedure are as follows: 

Step 1: Initialization 

An initial point X°,Y/°,Z/° is selected, the iteration K is set to zero, and a 
convergence tolerance e is decided. Appropriate box constraints XiL,YiI',ZiL,X~,YiU,Z U 
for each variable xi,Yi,zi,Xi ,Yi ,Zi are selected, pUSO, R~D are defined as the 
minimum solution of the primal problems and the maximum solution of the relaxed 
dual problems so far, respectively. 

Step 2: Primal problem 

The primal problem (P5) is solved at Xf,Yix,Zi r for the variables xl, Yi, Zi 
and the Lagrange multipliers ~i ,  ~i, ~i. This corresponds to a single function 
evaluation. If the solution of the primal is less than pVSO then pVSO is equal to the 
solution of the primal problem. 

Step 3: Selection of previous Lagrange functions and update of bounds 

The Lagrange functions from relaxed dual problems in previous iterations 
(k = 1, 2 . . . . .  K -  1) corresponding to predecessor nodes for the current iteration 
are included to be constraints in the current iteration's relaxed dual problems. The 
box constraints of the current iteration are the ones of the relaxed dual problem 
corresponding to the parent node for the current tree level (iteration). 

Step 4: Update of aq parameters 

The convexification parameters ~ i  are updated in every iteration as follows: 

aiy  = m a x .  

v'(ny) 
2r/j if rmi n - r/j _ to, 

0 i f r  o ~r/j _<r 1, 

v"(r/j) i f r l <  < 2 _ F / j  _ rma x ; 
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rij = [(xi - x j )  2 + (Yi - y j ) 2  + (2i - zj)2] 1/2 

! <  < X  u, xi - xi - 

Y~ < Yi < Y~, 

l < 7, i < Z u , 7, i -- -- 

i = 2  . . . . .  N, 

i = 3  . . . . .  N, 

i = 4  . . . . .  N, 

xl =Yl =z l  =Y2 =z2 =z3 =0 .  

Here x~,y~,z~,x~,y~,z.~ are the current bounds on xi, Yi, zi. 

Step 5: Non- in ter ior  current  po in t  (XiX,YiK,zi  x )  

If any of  the Xix ,Y /c ,Z i  x is at its bound (lower/upper) then the appropriate 
relaxed dual problems are eliminated. 

Step 6: Solut ion o f  re laxed dual  prob lems  

For every combination of bounds B~, B : ,  B~ of the connected variables xi, Yi, zi 
respectively, that has not been found to activate the checks in step 5 the following 
relaxed dual problem is solved. 

(p8) 

Minimize 
Xi,Yi,Zi,l~s 

subject to 

f iB 

12a >>. X a , y i  '*, zi *', X i ,  Yi, , 

]2B >- Lk~Xi  ,Yi  ,7"i , A i , I i , Z ' i  ) ,  

xi ~'t <- xi <- xi K'', 

y:,l  <_ri <_ f f ,~,  

z :  : <_ zi <- z :  .u, 

x~ =~ =z~ =r2 =z2 =z3 =0. 

Vk = 1,2 . . . . .  K - 1, 

i = 2  . . . . .  N, 

i = 3  . . . . .  N, 

i = 4  . . . . .  N, 

Here Lkare the Lagrange functions from the previous iterations, and LK the current 
K g g one. B~i,B~i,B~i are the set of values of  the connected variables xi, y;, zi in the 

K,l K,l K 1 K,u K,u ~,u Lagrange function from the kth iteration and x i ,y~ ,z  i " , x  i ,y~ , z  i are the  
bounds on Xi, Yi, Zi in the current iteration K. 
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Step 7: Update R LB°, XiK,yiK,Zf 

After all relaxed dual problems have been solved, a new lower bound R LB° 
for the global minimum is selected which corresponds to the lowest value of the 
stored solutions of all relaxed dual problems from all iterations so far. At the same 
time, the values of Xi, Yi, Zi of the minimum stored solution are selected for the next 
current point. Once selected, the stored solution is deleted from the list. This 
ensures that no relaxed dual problem will return to the same solution during successive 
iterations. 

Step 8: Check for convergence 

If pUBD_ RLBO< 0, then rigorous convergence has been achieved, and the 
algorithm stops. If pVSO _ RLSO < e, then e-convergence has been achieved and the 
algorithm terminates. Otherwise, we set K = K + 1 and we return to step 2. 

This global optimization algorithmic procedure has been applied to a number 
of problems which are presented in the next section. 

6. Examples for N < 7 

By using the global optimization procedure presented earlier along with the 
convexification procedure the global minimum potential energy configurations of 
small microclusters 2 _< N < 7 are generated. Two different potential expressions 
have been employed, the scaled Lennard-Jones potential and the Morse potential 
due to their simplicity and wide acceptance. The value of the parameter a for the 
Morse potential has been chosen to be a = 3.0. Table 3 summarizes the total minimum 
potential energies for Lennard-Jones microclusters and table 4 the ones for Morse 
microclusters. 

It is quite interesting that both expressions for the potential yield the same 
global minimum total potential energy configurations. The global minimum structure 

Table 3 

Global minimum potential energies 2 _< N < 7 
for Lennard-Jones microclusters. 

LJ 
N 

2 -1.000 

3 -3.000 

4 -6.000 

5 - 9 . 1 ~  

6 -12.712 

7 -16.505 

Table 4 

Global minimum potential energies 2 -< N <_ 7 
for Morse microclusters. 

II Morse 
N Vtota l 

2 -1.000 

3 -3.000 

4 -4.000 

5 -9.019 

6 -12.530 

7 -15.893 
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for N = 2 corresponds to two particles "touching" each other. For N = 3 three particles 
form a unit equilateral triangle at the global minimum. For N = 4 the four particles 
are placed at the vertices of a regular tetrahedron. For N = 5 a trigonal bipyramid, 
slightly contracted along the symmetry axis and distended in the symmetry plane 
corresponds to the global energy structure. For N = 6 a regular octahedron with 
slightly contracted sides yields the global optimum configuration. Finally, for N = 7 
the regular icosahedron (pentagonal bipyramid) with slightly distended edges and 
contracted axial distances is the structure involving the global minimum total potential 
energy. 

For larger N, the complexity of the problem limits the use of the general 
global optimization procedure. In the next section, a "relaxation" of the global 
optimization procedure is presented which for larger microclusters yields tight 
lower and upper bounds on the global minimum total potential energy as well as 
excellent initial points for a possible local optimization approach. 

7. A relaxation of the global optimization approach 

As it has been mentioned earlier, the bottleneck of the employed global 
optimization approach is the large number of connected variables of the problem 
which gives rise to a potentially very high number of relaxed dual problems that 
have to be solved per iteration. This motivates the employed relaxation of the global 
optimization approach which stems from the fact that usually the global minimum 
potential energy configuration of an N-particle cluster is composed by the slightly 
perturbed global minimum configuration for N -  1 particles plus an extra particle. 
This means that when solving for the global minimum structure of N particles and 
the global minimum configuration for N - 1 particles is known, tight bounds for the 
coordinate variables of the first N - 1  particles can be used around the global 
minimum positions of an (N - 1)-particle microcluster and only for the Nth particle 
"loose" bounds are required. Based on this, the global minimum potential energy 
problem in (P1) can be reformulated as: 

(P9) 
r N-1 N 

minimizeV= t ~ j=~i+Ol ( x i ' y i ' z i ' x j ' y j ' z j )  

subject to x~ - e __. xi < x* + e, i = 2 . . . . .  N - 1, 

y~-e<_yi<y*+e, i = 3  . . . . .  N - l ,  

z ~ - e < z i ~ z  i +e,  i = 4  . . . . .  N - l ,  

- E  < x N < E, - E  < y N < E, - E  < z N < E, 

xl = Yl = zl =Y2 = z2 = z3 =0 .  
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Here e = 0.01-0.05 accounts for the perturbation around the nomial point x~,y*,z* 
which corresponds to the global minimum potential energy configuration of an N -  1 
microcluster. Also, E = 2.0-4.0 defines a cube where the Nth particle is expected 
to vary. Since x*,y~,z~ corresponds to the global minimum potential energy point 
of an N -  1 microcluster, V in formulation (Pg) must be convex in terms of xi, Yi, zi, 
i = 1 . . . . .  N -  1 in a neighborhood of x~,y~,z'[. By assuming that e in formation 
(P9) is sufficiently small, then in order to transform V to the difference of two 

N 2 + y / ~ +  convex functions only the term ~j=loti,j(xN z~) is required. Thus, the 
Lagrange function resumes the following form: 

(PIO) 
N-1 N 

L(xi,Yi,zi, Xi,Yi,Zi) = ~.~ ~_. l~(Xi ,Yi ,Zi ,Xj,Yj ,Zj) 
i=1 j=i+l 

+ - x )Cx,  - 

+ O~i, N 

I 
N 

+ ~ Oli,N 
i=l 

(Yff - YN)(YN - YN) 

z )lz - 

Note that formulation (P10) involves only three connected variables xN, YN, z~t which 
means that irrespective of how large N is, only up to 23 = 8 relaxed dual problems 
must be solved per iteration. By combining the Lagrange function in formulation 
(P10) with the presented global optimization procedure a number of examples 
8 < N < 24 has been considered for the scaled Lennard-  Jones case. Tight lower and 
upper bounds on the global minimum solutions were first established by selecting 
the tolerance to be between 0.01-0.05. Then, by switching to a local optimization 
algorithm the global minimum potential energy structures were found. All these 
results are summarized in table 5 where E L, E u correspond to the lower and upper 
bounds on the global minimum energy E* and Iter is the total number of iterations 
for obtaining the bounds. 

A further relaxation of this procedure can be realized by "fixing" the first N - 1 
particles to the coordinates of the global minimum total potential energy configuration 
of an N -  1 microcluster. This implies that the Lagrange function becomes now a 
function of only three variables XN, YN, ZN. 
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Table 5 

Bounds md global minimum potential energies for LI mieroelusters. 

N E L E U e E Iter E" 

8 -20.633 -19.683 0.01 1.0 12 -19.822 

9 -28.321 -24 . I l l  0.01 1.0 21 -24.113 

10 -29.783 -28.326 0.01 1.5 26 -28.423 

11 -34.233 -32.559 0.02 1.5 31 -32.766 

12 -39.522 -37.557 0.02 1.5 29 -37.968 

13 -44.487 -42.290 0.02 1.5 15 -44.327 

14 -49.469 -47.218 0.02 1.5 10 -47.845 

15 -52.655 -52.083 0.02 1.5 11 -52323 

16 -57.612 -56.601 0.02 1.5 21 -56.816 

17 -62.463 -61.222 0.05 1.5 32 -61.318 

18 -67.591 -65.615 0.05 1.5 20 -66.531 

19 -73.567 -72.117 0.10 1.5 22 -72.660 

20 -78.485 -76.972 0.10 1.5 21 -77.177 

21 -83.265 -81.427 0.10 1.5 14 -81.685 

22 -87.754 -86.116 0.10 1.5 16 -86.810 

23 -92.949 -91.276 0.10 1.5 8 -92.844 

24 -98.920 -96.997 0.10 1.5 19 -97.349 

(Pll) 
N-1 

iffil 

N K 

N K 

N-2 N- l  

i=1 jffii+l 
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Note that the point X~,Yi*,Z7 corresponds to the global minimum for an N -  1 
microcluster. This new formulation results in substantial reduction on the CPU time 
per relaxed dual problem due to the reduction of  the number of  variables. However, 
because the N -  1 atoms are "fixed" the obtained lower bounds might no longer be 
valid for the original problem. Nevertheless, by solving this formulation one can 
quickly generate points that are quite close to the global minimum one. A local 
optimization can then easily relax to the global minimum candidate. This calls for 
a two-stage procedure where the relaxed global optimization procedure generates 
a configuration which is likely to be close to the global minimum one and then a 
local optimization algorithm "relaxes" this configuration to the nearest minimum 
one. By applying this procedure for Morse microclusters 8 _< N _< 30 a number of  
minima have been obtained which are summarized in table 6 where E inlt is the initial 

Table 6 

Minimum potential energies of Morse (a = 3) mieroclusters. 

N E ~u E ~una E ~st 

8 -21.494 -22.043 -22.043 
9 -26.307 -26.778 -26.778 

10 -31.149 -31.274 -31.889 
11 -36.350 -37.931 -37.931 
12 -42.605 -44.098 -44.098 
13 -51.653 -51.737 -51.737 
14 -56.366 -56.660 -56.755 
15 -62.746 -63.162 -63.162 
16 -68.863 -69.036 -69.036 
17 -75.041 -75.662 -75.662 
18 -81.855 -82.579 -82.579 
19 -89.087 -90.647 -90.647 
20 -96.605 -97.417 -97A17 
21 -103.960 -104.337 -104.337 
22 -111.741 -112.041 -112.041 
23 -120.546 -120.787 -120.787 
24 -127.642 -127.885 -127.885 
25 -135.272 -136.073 -136.073 
26 -144.696 -145.322 -145.322 
27 -152.161 -152.51A -152.514 
28 -160.294 -160.773 -160.773 
29 -169.909 -170.115 -170.115 
30 -177.285 -177.579 -177.579 

point provided by the relaxed global optimization procedure, E f°'nd the obtained 
solution from the local optimization algorithm, and E best the best reported value in 
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the literature. It appears that this procedure is successful at generating all best 
known configurations except for N = 10 and N = 14 because in these cases more 
than one particle has to be relocated. In fact, by fixing N -  2 particles this time and 
applying the relaxed global optimization procedure on the last two, the global 
minimum structures for N = 10, 14 as well have been reproduced. 

Although these simplifications cannot guarantee convergence to the global 
minimum it appears that the second relaxation approach behaves very well for 
microclusters N < 30. Note that these approaches can be readily extended to larger 
microclusters by allowing more than one particle to have "loose" coordinate bounds. 
In this case, if M particles involve "loose" coordinate bounds then up to 2 TM relaxed 
dual problems must be solved per iteration. 

8. Summary and conclusions 

In this work an overview of the minimum total potential energy of microclusters 
problem has been presented and a global optimization approach was introduced for 
finding the global minimum potential energy configuration of small microclusters 
interacting with central forces. It involved the transformation of the initial nonconvex 
total potential energy expression to the difference of two convex functions (DC 
transformation) through a novel eigenvalue analysis and the application of a Primal- 
Relaxed Dual global optimization approach to the resulting formulation guaranteed 
to converge to the global optimum in a finite number of iterations. For larger 
microclusters, two different relaxations of this approach yielded tight lower and 
upper bounds on the global minimum and initial points very close to the global 
optimum. It should be emphasized that the developed DC transformation as well as 
the employed global optimization procedure are not restricted to the specifics of the 
problem at hand. Instead, they can conceptually be extended for systems of many 
different particles interacting with complex angle-dependent and/or many-body forces. 
Work in this direction is currently under way. 
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