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primal degenerate strictly convex quadratic 

programming problems* 
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In this paper we deal with global convergence of the affine scaling algorithm for 
strictly convex QP problems satisfying a dual nondegeneracy condition. By means 
of the local Karmarkar potential function which was successfully applied to demon- 
strate global convergence of the affine scaling algorithm for LP, we show global 
convergence of the algorithm when the step-size 1/8 is adopted without requiring 
any primal nondegeneracy condition. 

O. Introduction 

Since Karmarkar  [5] proposed the projective scaling algorithm for linear pro- 
gramming in 1984, a number of interior point algorithms have been proposed and 
implemented. The affine scaling algorithm, originated by Dikin [3] and rediscovered 
by several authors including Barnes [2], Vanderbei et al. [12], and Adler et al. [1] is 
one of the most popular interior point algorithms obtained by substituting the affine 
scaling transformation in place of the projective transformation in Karmarkar 's  
algorithm. 

One of the major problems in the theoretical analysis of the affine scaling 
algorithms is global convergence under the existence of  degeneracy. Global 
analysis of the algorithm reduces to the analysis of the behavior near the boundary 
of the feasible polyhedron. Global convergence of the affine scaling algorithm for 
linear programming was shown in [10, 11], by introducing the local Karmarkar  
potential function as a tool to analyze the behavior of the algorithm near a 
degenerate boundary of the feasible region. 

In this paper we deal with global convergence of the affine scaling algorithm 
for convex quadratic programming problems proposed by Dikin and Zolkaltsev [4] 
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and Ye [13]. We focus our analysis on strictly convex quadratic programming prob- 
lems satisfying a certain dual nondegeneracy condition, and extend the analysis 
given in [10, 11] to demonstrate that the step-size 1/8 is sufficient in guaranteeing 
the global convergence of the algorithm. 

In view of the nondegeneracy conditions, the best global convergence result 
so far is obtained by Sun [8] for general convex quadratic programming problems 
with the choice of the step-sizes as small as 2 -L (L is the input size of the pro- 
blem) without requiring any nondegeneracy conditions, where he demonstrated 
the ergodic convergence of the dual estimate following the proof of the global con- 
vergence of the algorithm for linear programming by Tseng and Luo [9]. If we 
assume the primal nondegeneracy condition and restrict the problem to strictly 
convex quadratic programming, the global convergence with a step-size less than 
one follows by adding a little argument to the convergence results in [15]. Though 
our result is for strictly convex quadratic programming and requires the dual non- 
degeneracy condition, it may still be of interest because the analysis does not require 
any primal nondegeneracy condition, i.e., the feasible region may be primal 
degenerate, and because the step-size 1/8 is a considerable improvement compared 
with 2 -L. This is an intermediate result towards a proof of global convergence 
of the affine scaling algorithm with the step-size, say, 1/8, for convex quadratic 
programming without requiring nondegeneracy assumptions. 

I. Problem and the main result 

Let us consider the following strictly convex quadratic programming problem 
(D) to minimize a strictly convex quadratic function F(x) over a polyhedron 
9~ E I~n: 

minimize F(x), 

subject to x E ~,  

= {x  ~ R" IA'rx - b > 0}, 

A = ( a l , . . . ,  am) E ~n×m, x E R n, b E ][~m, 

(1.1) 

where we assume the following: 

(A1) The feasible region ~ has an interior point and Rank(A)  = n. 

For a vector v, we denote by [v] the diagonal matrix whose diagonal entries 
are elements of v. We denote the slack variables A'rx - b by ~(x), and define the 
"metric" matrix G(x) for the affine scaling algorithm as follows: 

G(x) = A[~(x)]-2A T. (1.2) 
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1 and I denote the vector of all ones and the identity matrix of proper dimen- 
sion, respectively. We use 11- II (without subscript) for the 2-norm. For the sequence 
{x (~)} (v = 1,. . .  ;x (~) E ]Rn), we abbreviate {f(x("))), {g(x(~))} etc. as {f(~)}, {g(~)} 
etc. We denote by x + the new point obtained by performing one iterative step at the 
point x E R',  and u s e f + , g  +, etc. to d e n o t e f ( x + ) , g ( x + ) ,  etc. We do not indicate 
arguments of functions when they are obvious from the context. 

Let x (v) be an interior point of the polyhedron ~ .  In the affine scaling 
algorithm for (D), we determine the next iterate x ("+1) as the optimal solution for 
the following minimization problem 

minimizex F(x) ,  
(1.3) 

subject to { ( x  - x(~'))tG(x(~'))(x - x(~'))) 1/2 _< ~z (v), 

where #(v) is a constant such that 0 < Panin ~-- / z(v) ~-- #max < 1. 
It is well-known that x (~+1) also remains an interior point if 0 < #(~) < 1. If 

x (~+l) = x (~), then we terminate the iteration. In this case, since x (") is an interior 
point, x (v) is the global minimum point of F over R'.  Note that the optimization 
problem of this type appears in the context of the trust region algorithms [6]. 
Recently, Ye [14] gave a remarkable result that the problem can be solved in 
O(log log (1/e)) iterations to the precision e by a combination of Newton's method 
and a binary search, where each iteration solves a system of linear equations. Thus, 
(1.3) can be solved efficiently. In terms of the slack variables, we may write the 
problem (1.3) as 

minimizex 

subject to 

F(x) ,  

I I [ ~ ( x ( ~ ) ) ] - ~ ( ~ ( x )  - ~ ( x ( " ) ) ) l l  _</~(") .  

(1.4) 

The Karush-Kuhn-Tucker condition for (1.3) is 

-•(x) - - = o ,  AG(x(~'))(x X (v)) 

~ ( {  (x - x(~)) Tr(x(~))(x - x (~)) ) ~/2 _ ~(~))  = o,  

A_>O, 

(1.5) 

and it is not difficult to see that x (~+1) can be written as follows (except for the 
special case where x (~+l) happens to be exactly the optimal solution of (D)): 

x (v+x) = x 0") _ #(.) G(xC~'))-lg(x (~'+1)) 
{g(x(V+I))TG(x(V))-lg(x(~+I))].I/2' 

(1.6) 
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where g(x) = OF(x)/Ox. Because of the convexity of F(x), we have the following 
relation 

F(x(~+l)) _ F(x (v)) <_ g(x(V+l))T(x (~+I) _ x(V)) 

= --#(~'){g(x(~'+l))VG(x(~'))-lg(xO'+l))}l/2. (1.7) 

To describe our main result, it is necessary to introduce a dual nondegeneracy 
condition for (D). Let ~ be a face o f ~ .  We define "the subproblem (D~r) associated 
with A r as follows: 

minimize F(x), subject to x E 5f. (1.8) 

A point x E ~ is said to be "a face-optimal point" ifx is the optimal solution for the 
subproblem associated with a face of ~'. 

Given a face-optimal point x*, let 5f be the face that contains x* as its interior 
point, and let g* = OF(x*)/Ox. It is easily seen that the linear function g*Tx is 
constant on •. If there exists no other face of ~ than ~ containing X on which 
g*Xx is constant, we refer to x* as "a dual nondegenerate face-optimal point". 
We require the following nondegeneracy condition concerning the face-optimal 
points. 

(A2) Every face-optimal point of (D) is dual nondegenerate. 

When applied to the case of linear programming, (A2) is equivalent to the 
assumption of dual nondegeneracy required in [11]. Hence we refer to this assump- 
tion as "the assumption of dual nondegeneracy". Now, we are ready to describe the 
main theorem in this paper. 

THEOREM 1.1 

Let (D) be a problem satisfying the assumptions (A1) and (A2), and apply the 
affine scaling algorithm with 0 </-/~nin ~ #max ~ 1/8. Then, the algorithm either (I) 
terminates after a finite number of iterations yielding the global minimum point of 
F(x) over ]R n, or (II) generates an infinite sequence that converges to the optimal 
solution of (D). 

We emphasize that this theorem does not require the primal nondegeneracy 
condition. It applies to the cases where the feasible region is primal degenerate, 
provided that the problem satisfies the dual nondegeneracy condition (A2). Since 
case (I) is trivial, in the remaining part, we focus on case (II), assuming that the 
algorithm generates an infinite sequence. 
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2. Preliminaries 

In this section we introduce some more notations and describe basic 
results obtained in [10, 1 I] which will be used in this analysis. We also make some 
preliminary observations. 

(1) We use the letters d ,  ~ , . . . ,  .~ to denote the faces of ~ .  We do not treat the 
empty set as a face. For a face X o f ~ ,  we denote by E(~)  the set of indices of  
the constraints which are always satisfied with equality on the face. We 
sometimes abbreviate E(X)  as E when the face ~ which is associated with 
the notation E is obvious from the context. 

(2) Given a set X c_ { 1 , . . . ,  m} of indices, we denote by A~,, bx the matrix and the 
vector composed of the corresponding coefficient vectors and constants. We 
use ~x(X) for AXxx - bx. Analogously, for a vector v, we denote by Vx the 
vector which is composed of the part of v associated with X. A matrix with 
a pair of index sets as the lower indices, Cx, x2, say, represents a matrix whose 
rows and columns are associated with the first set X1 and the second one )(2, 
respectively. 

(3) A point x on a face X of ~ is referred to as an "interior point of X"  if 
~e(~r)(x) = 0 and ~i(x) > 0 (i q~ E(X)) .  The interior point of a vertex is the 
vertex itself. The face X is characterized as the smallest face (as a set) among 
the faces which contain the point x as their element. 

(4) For an index set X, we use lXl to denote its cardinality. If X is a (proper) sub- 
set of another index set Y, we denote X c_ (C) Y. Then we denote by Y -  Xthe  
set consisting of the indices which belong to X but not to Y. The complement 
of X, which is defined as { 1 , . . . ,  m} - X, is written by X c. 

See [7] for the basic theory of polyhedra. Given an index set X, we define 

II x(x)ll II x(x)ll (2.1) 
~x(X) = min icx~ i (x  ) = mJni~x ~ ~i(x) " 

The following lemma relates the existence of a sequence of interior points to the 
existence of a face with the quantity (2.1). 

LEMMA 2.1 (LEMMA 3.2 OF [10]) 

Let X be a nonempty index set of constraints, and let {x (")} be a sequence of 
interior points of  ~ .  If  

(i) ~(x ~) ~ 0 and (ii) ~ x ( x  (~)) - tl  )lt 
mini x   

converges to zero, 

then there exists a face X such that E(X)  = X. [] 
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Let Z be an index set of constraints. We can choose the index set B C_ Z such 
that the columns of As form a basis for the range space of Az. Since Rank(A) = n, 
due to the elementary theory of linear algebra, we can choose the index set/~ from 
the complement of Z such that Asu ~ is a nonsingular matrix. Then ~su~ is regarded 
as another coordinate system, where the coordinate transformation is given by 

~su~(x)=ATuBx--bBu~ and X(~BtJB)=(ATuB)-I(~BuB+bI~tj~). (2.2) 

We refer to the pair (B,/~) as a "pair of basis index sets associated with the index set 
Z" .  In this paper we use the letters B and/~ as the notation for such pairs of basis 
index sets. When we want to make clear that the pair is associated with the index set 
Z, we write them as B(Z) and /~(Z). We refer to (~s(z),~(z)) as the "slack 
coordinate associated with the index set Z" .  We denote by R(Z, B) the index set 
Z - B. Due to the definitions, there exists a matrix TsR such that 

A n = ABTBR. (2.3) 

Thus, with the index set Z and its associated pair of basis index sets (B,/~) 
determined, we define the matrices/is(z) and -4~(z) as 

( -- (As(z) A~(z)) -t = (As(z)u~(z)) -1. (2.4) 

Then, we have 0) 
.,4~(z)AB(z) A~(z)A~(z) I 

AB(z)71s(z) + A~(z)71B(z) = I. 

(2.5) 

Note that As(z)AB(z) and AB(z)A~(z) are projection matrices. With these notations, 
the constraints can be categorized into four groups: 

( 
/ 4(=)x- 

~ ( x ) = A T x - b =  i AT(z)x--bB(z) |~D(x) ' (2.6) 

where N(Z,/~) = {1 , . . . ,m}  - Z - / ~  = { 1 , . . . , m }  - R -  BU/~. We use R and N 
also as global notations in this paper. We omit the arguments (Z, B) of R and 
(Z,/~) of N if they are obvious from the context. 
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We abuse notation by introducing the abbreviation VB, = 0/0~B,, where 
B' c_ B(Z) U B(Z). We define 

r/(x) = (r/n(x), r/B(x), r/B(x), r/(x)) = (0, V~uaF(x), 0). (2.7) 

When Z is an index set for the always-active constraints on a face ~ ,  say, i.e., 
in the case of Z = E(~) ,  we use conventional notations B(~)  and /~(.~) for 
B(E(~)) and/~(E(~)) ,  respectively. 

Let x* be a face-optimal point of (D 1 which is an interior point of the face 5f 
of ~ .  The point x* is the minimum point of F over the face X. Choose a pair of the 
basis index set (B(~),/~(~r)) associated with E(Sf) to take the slack coordinate 
(~B(X), ~(~r))- We have the following proposition. 

PROPOSITION 2.2 

The objective function F is represented as follows, in terms of the slack 
coordinate (~B(~'/, ~(~r/): 

F(xt=½(   F*. H~aH~-~J(  {a - {B ) + r/ff{B + (2.8) 

Here H is the Hessian matrix of Fwith respect to (in, {a), and {*, rf,  F* are the slack 
variables, the gradient and the function value of F at x*, respectively. 

Proof 

By Taylor's expansion, it is easy to see that F(x) is written as 

( ( B )  F*. (2.9) + 

It is enough to show r/~ = 0. Assume, by contradiction, r/~ 7~ 0. Since AT u~ is an 
invertible matrix, there exists a vector y such that 

A ~ u ~ y = -  ( r / 0 ) .  (2.10) 



516 T. Tsuchiya/Global convergence of  the affine scaling algorithm 

Since (~rc(x) > 0 while (~r(x) = 0, we have, for sufficiently small e > 0, 

F ( x * + e y ) < F ( x * ) ,  (x* + ey) E 5f, (2.11) 

which is a contradiction. Thus we have r/~ = 0. []  

We introduce another  coordinate here, which has its origin at the 
face-optimal point x* and in terms of  which we have a simpler form of F(x): 

(OB) ( I OI)(~B ) (0) ( ~B ) 
We refer to 
(x*, (~B, ~))".  It is easy to verify the following lemma. 

L E M M A  2.3 

With the notations above, the objective function is written as follows: 

F(x) = 1 T -  1 T • OBHBBO B + ~ O~ H~-~ OB + rl*BT OB + F , 

(2.12) 

where 

the coordinate (Os, 0~) as " the local coordinate associated with 

, %  = 

(2.13) 

(2.14) 
[]  

Let ~(x) be a vector in IR r" such that AFT(x) = g(x) = OF(x)/Ox. The iteration 
(1.5) is written as follows in the space of  slack variables ((x): 

~(x +) = ATx  + -- b = ATx  -- b - #A T G(x)- lg(x+)  
{g(x  + ) T G(X)-l  g(x  +) } 1/2 

= ATx  -- b - #A  T G(x)-lAFl(x+) 
( ¢7(x+ )t Ata(x)-l a~(x+ ) } l/2 

~'(x)~(x) 
= ~(x) - #[~(x)] { a ( x ) t p ( x ) a ( x ) }  1/2, (2.15) 

where 

P(x) = [~(x)]-lATG(x)-lA[~(x)]-I  and o~(x) = [~(x)]~(x+). (2.16) 
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Note that P(x) is a projection matrix. Multiplying both sides of (2.15) by [~]-1, we 
have 

Pot 
[~]-l~+ = 1 - # (2.17) 

(otTeot) l/2" 

From this formula, one easily verifies the following proposition. 

PROPOSITION 2.4 

For each component of the slack variables in the iteration (2.15), we have 

__ #.(v+ 1) ]£(v))~Iv). (1-/z(~))~l~) <-. i  < (1 + (2.18) 

We analyze the asymptotic properties of {x (~) } on the basis of (2.15). Hence it 
is necessary to obtain an asymptotic formula of P when {x (~) } approaches to a face. 
This subject was studied extensively in [11]. From lemmas 4.1, 4.2, 4.3 of [11] we 
obtain the following lemma. 

LEMMA 2.5 

Let A r be a face, and choose a pair of basis index sets (B(Sf),/~(Sf)) 
associated with E(X) to take a slack coordinate (~s(~r),~(x)). Let x be an 
interior point of ~ and let the slack variables ~(x) be put in order as 
~(X) = (~e(~)(X), ~(~r)(X), ~N(~f)(X)) = (~R(~)(X), ~S(~)(X), ~j~(~e)(X), ~N(~r)(X)). Then 
the matrix P(x) is written as follows: 

where 

e(~) e c ( ~ )  

P(x)=E(tY) ( peg ^0 ) + AP, 
Ec(x) 0 PECFj 

(2.19) 

PFW.= (S~R)(I+ SBRsTI~)-I(sBR I), 

^ ( I)(I+SsNST~v)-'(I S$lv), (2.20) PECEC = s T  

SBR = [~B]ABAR[~R] -~, 

S ~  = [~]A~a~[~N] -~, 

Here Pee and/Se,ec are projection matrices. I I A e ( x ) l l  = O(¢dx)) as CE(x) ~ 0. 
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Further, we have 

/~eE(X)IE = 1E- (2.21) 
[ ]  

3. Convergence ofthe sequence 

In this section we demonstrate that the sequence {x (")} generated by the 
algorithm converges to a face-optimal point x* of (D), and observe properties of 
the sequence in the limit. As noted at the end of section 1, we assume that {x (")} 
is an infinite sequence. The assumption (A2) is used only for lemma 3.6 and lemma 
3.7. To make clear the role of (A2), we state explicitly which assumptions among 
(A1) and (A2) are necessary for each result to hold. 

LEMMA 3. l 

Let {x (")} be a sequence generated by the affine scaling algorithm for (D) 
under the assumption (A1). The sequence converges to a face-optimal point of (D). 

Proof 

Since the level set of F(x) is compact and {F(x (")) } is a monotone decreasing 
sequence bounded below, the sequence {x (") } has an accumulation point, say, x*. 
We observe that x* is a face-optimal point. Denote by ~ the face that contains x* 
in its interior, and take a slack coordinate ((a(~r), ~(~r)) associated with the index 
set E(Y'). Let {x ("T) } a subsequence converging to x*. Then, we have 

l im g(U~+l)TG(x(U~))-lg(u'+l) = l im a(u')Tp(x(U~))a(u') = 0, (3.1) 
T - - ~ I ~  T---* OO 

where 

a ( " ) =  [~(")]r/('+1). (3.2) 

On the other hand, from lemma 2.5, we have 

g(u,+l)T G(x(U, ))-l g(u~+l) = a(vT)Tp(u,) O~(u~) 

= ~E~(V')T tb(v~)~--EE + aXreE  ̂,-,(v,),)aE(U~)T + 2ot(u~)TAp(U,)o~(u~)E E[~ 

.t_Ot(U,)T(i..~,-,(u,.),.,(uT)T,-1 (u,)_ (u~.)TA,-,(u,) (u,) O~. N O~N ) O~ "1- a 9 z.x.t'~--~ aB . (3.3) 

a(-,) Since ~E(~r)(x("d) ~ O, E(~') 1] -* 0 and [[a ("d 1[ is bounded, we see, by using lemma 
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2.5, that the first, the second and the fourth term on the rightmost hand side 
converges to zero, and hence, the third term, which is bounded below by 

A rc(v~)]-2A t " ~ T x - 1  (v~+l )  ~(u~)T(i_]._o(l~r)e~(vr)T\-i ( u r ) = T l ( U r + l ) T ( [ ~ ( u r ) ] - 2  .+.XaBrXN[qN ] ~tN.eel~ ) ~ °~lv 3f~N ) oe~ 

¢ v "~ 2 
> M ~  min ~ )~ (~,+l) 2 t.iCe(~r) J r/~(~) , (3.4) 

where M is an appropriate positive constant, also converges to zero. Since 
mmice(~) converges to a positive number, we see that rl~('~ 1) tends to 0 as 
r--* co. From proposition 2.4, we see that each component of ¢(~¢) is 
multiplied at most by the factor of 1 + #(~¢) (< 2), and hence ~()~ ~ 0 s~(er) 
immediately implies ~(e~ l) --4 0, then, every accumulation poin't ~* of {x (~+1)} 
satisfies the conditions 

r/~(~r)(~*) = V~(~r)F(-~*) = 0, (B(~r)(~*) >__ 0, ~B(~r)(~*) = 0. (3.5) 

Since (3.5) implies that ~* is the unique face-optimal point where F is minimized 
over ~ ,  the accumulation point of x C~'~+l) is unique, thus x C~+1) converges to ~*. 
We show x* = ~*. If not, since both x* and ~* are on 5f, we have F(x*) > F(~*), 
then F(x*) cannot be an accumulation point. Hence, we have x* = ~*. 

From the discussion above, we see that, for any subsequence {x C~)} con- 
vergent to x*, IIx C~+1) - x C~'~) II converges to zero as r ~ co. This means that, for 
any given 8 > 0, we can choose e > 0 such that 

II - x* II E ~ II x (~+l )  - x II (3.6) 

Thus every accumulation point is an optimal solution for some subproblem 
where the displacement vector converges to zero as the iterate approaches the 
accumulation point. Since the number of subproblems is finite, the number of 
accumulation points also is finite. 

Now, we assume that there are two accumulation points x~ and x~. Taking 
note of F(X*l) = F(x~) and the fact that the displacement vector converges to zero 
as the sequence approaches Xl and x2, we see that there exists an accumulation 
point that is not a face-optimal point. However, this contradicts the fact that every 
accumulation point is a face-optimal point. Thus the sequence has a unique 
accumulation point. [] 

In the remaining part of this paper we denote the limiting point of {x (~)} 
by x* and F(x*) by F*. We investigate the properties of {x (~')} when it converges 
t o  * x . 
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LEMMA 3.2 

Let {x (~) } be the sequence generated by the affine scaling algorithm under the 
assumption (A1), and let x* be the limiting point of the sequence, which is an interior 
point of the face Y'. Choose a slack coordinate (~s(~r), ~(~)) associated with E(~r). 
Let (0s, 0~) be the local coordinate associated with (x*, (~B, ~ ) ) .  We have 

O(u+I)T it. ~ A(.+ I ) 
"'E~ vB _< M (3.7) 
f(~)ll 

for sufficiently large u, where M > 0 is a constant. 

Proof  

In terms of the local coordinate, the objective function is represented as 

F(x (")) = lOB(x(V))HBsOa(x(V) ) + ½0B(x(V)) TH-~0~(x 0')) + r/)TOB(x (u)) + F*. 

(3.8) 

Consider the point y(") such that 

(0n(y(")), OB(y("))) = (Os(x(")), 0) = (~s(x(")), 0), (3.9) 

and let f~0,) = {x I ii[(./]-l(~(x)_ ("))11 --- u("/}. 
For the time being, we assume that y( ) E f~(") for sufficiently large u, 

and observe that this implies the lemma. Since O~(y ("1) = 0 and On(y ("1) = Os(x("l), 
from lemma 2.3, we have 

F(y  (v)) = l Os(x(~'))'r[-IBsOa(x(")) + rlgOs(x (")) + F*. (3.10) 

Since x ("+l) is the point that minimizes F over f~(") (cf. (1.4)), we obtain 

F(x(.+l)) = ½0a(X(.+I))T fleBOB(x(.+I)) _~ l ,o_:...(.+l),(r r--r. tj_:..(.+1)', ~ ~ ' B ~ ,  ~ : 1 1 - ~ t ' B k . ' ~ ,  ) 

+ ,ffOB(x I"+1)) + F* <__ r(y  (~)) 

-- :Oa(x(U))TB, sOa(x (")) + r/)T0a(x (")) + F*. (3.11) 

From proposition 2.4, we have 

IIOs(x("+~))ll--II~s(x("+l))ll __ (1 + #("))l[(s(xO'))l I = (1 + uf"))llOs(x("))ll, (3.12) 
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and, together with (3.11), this implies that 

1 ~ _ [ . . . ( v + l ) ~ T  l_~ ~ _ [ v ( v + l ) ~  _ ~ ' s ~  : , , - ~ v B ~  : < MIl~e(X(~))l I, (3.13) 

where M is a positive constant, which is the desired result. 
We complete the proof by showing y(~) E f2 (v) for sufficiently large u. To this 

end, observe the following relation: 

~csi(y (")) - (B(x*) = Os(y (")) - H--~n H~BOs(y (~')) 

= Oa(y (")) - H-~B HTBOs(x <")) 

-I T (v) =-H~-~sH:~B~B(x ). (3.14) 

Since (z(y (~)) - (E(x (~)) E I m  (AXe), it follows from (2.3) that 

(e(y(~'))-(e(x("))=(T:R)((s(y("))-(s(x(~')))=O. (3.15) 

With this relation, we see: 

ll[¢(x("))]-~(~(y 0')) - ~(x(")))ll 

_< [l[~E(x("))]-l(~z(y(") ) -~r(x(~)))ll + t][~e~(x("))]-~(~E~(y("))- ~z~(x(")))[l 

= II[~c(x("))]-lll ll~ec(y (~)) - ~eo(x(~))l I 

< H[,E~(X(V')]-IH]AT~(ATuB)-I('B(y(V')--'B(x(V')~[ 
- \ (a(y(")) - ~CD(x(")) ,] 

0 

I IA~(AB~)  II II~(Y/")) - Ca(~(~))ll 

_< ii[~e~(~/.))]-~ll T T -~ I I A ~ ( A ~ B )  II (II¢~(Y/">) - ~(~*)11 + I1¢~(~*) - ~a(x/~))ll}" 

(3.16) 

Since the last expression in (3.16) converges to zero because of (3.14) and 
((x (")) ---+ ~*, we have II[~<~)]-l(~(y (">) - ~(x(~)))ll ~ 0. This  implies y(V) ~ f~(~) for 
sufficiently large v, and completes the proof. [] 
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The following corollary immediately follows from lemma 3.2 and 
proposition 2.4. 

COROLLARY 3.3 

Under the assumptions and the notations of lemma 
constant 6 > 0 such that 

0(v)T ~._....q(v) 6tl(   r)ll. h "'BBv~ < 

3.2, there exists a 

(3.17) 

LEMMA 3.4 

Let {x (") } be the sequence generated by the affine scaling algorithm under the 
assumption (A1), and let x* be the limiting point of the sequence which is an interior 
point of the face 5f. Choose a slack coordinate ((B(~r), (~(~r)) associated with E(Af), 
and let (08, 0~) be the local coordinate associated with (x*, ((B, (~)). 

There exists a positive constant 6' such that 

(3.18) 

for all v. 

Proof 

If such a 6' does not exist, we can find a subsequence {x (~') } where 

II0 '+')11 
~(.~-) 

I1 tl 
~ o o .  (3.19) 

We show that there exists a positive constant 6 satisfying 

g(V" + l ) G(  x(Ur) ) - l  g(U" + l ) .= a (u~)T PCu~) oz(v~) 

iio "-+'>112 11o "-+')112 
> 6 (3.20) 

for all r, where a (~) = [sc("~)]r/('+1). If such a 6 does not exist, we can choose a 
(v.) (..) subsequence {x } of {x } such that 

IIO "o+')112 --~0 (3.21) 
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as cr ~ o~. Let &(') = ~(~'~)/110(~÷1)11. Since 

I1~')11 ___ 11~7~+1)11 II~(e~')ll 
II0(B'+l)ll ' 

(3.22) 

we see, by using (3.19), 

~(~) ~ 0 (3.23) 

as g c~. On the other  hand,  because of  0B = -1 n ~ r / ~  (cf. (2.12)), I1~(~°)11 is 
b o u n d e d  by a cons tant  as follows: 

I1~:)11 I1~)11 _< IIn~0(~"°+~)ll _< IIn~l l  I1~(~°/11 • (3.24) II0(~"o+1)11 II0~o+1)11 

Applying  lemma 2.5, we obtain 

&(u~)Tp(v.)&(vo) = ~E~(U~)Tt'b(v')~--EE q- "--EEAP(~)~ ~-("°):ct E h- 2~( ' )TAp( ' )~  ( v ' ) E  EB 

-F &(v.)T{(i+ ,~(v~) q,(v~)T~-I (~,~) .~(~,o) - ~ - B N  , + A e - ~  ) ~  . (3.25) 

Taking  note  of  the fact ~(") ~ 0 and using (3.23), (3.24), we see the first and the e(~') 
second term on the right hand  side converge to zero. Since IIAP-~)II converges to 
zero while the m i n i m u m  singular value of  (I  + S(s~)S(~)T) -1 is bounded  below by a 
constant  (this follows f rom the definit ion of  SBN and ~']"), (~) is uniformly bounded  
below by a positive constant) ,  the third term is bounded  as follows: 

~.o)T{(I + -8:¢ -BN , - - "  ~ , ~  

_(v#+l)T (v~÷1) 
I ,i~ ::~c~o>:-: - :~o)-: ~-~-i vB 

-- 2 ii0(.o+1)11 , t s B ,  + ABAN[(N ] ANAs) II'B ~ ll''Otu+l)'' 

> M1 ii0(.o÷1)112 t.;¢E(~) j 

Mz II@B"=+I)II2 -- M= 11~"=+1)112 ~ M3 > 0, (3.26) 
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where M1, ME, M3 are appropriate positive constants, contradicting (3.21). Thus, 
we see (3.20) holds for all ~- by choosing 6 appropriately. 

Now the lemma is readily seen as follows. Due to lemma 2.3 and corollary 
3.3, we have 

F(x (")) - F* = O(ll(e )ll), (3.27) 

where F* = F(x*). Together with (3.20), we see, by using (1.7), 

0 _ F(x (u'+l)) - F* <_ F(x  (~'~)) - F* - #(u'){a(~')TP0")oL(~T)}1/2 

_< M411 g' )II_ p~i.rl/2110(b~,+lll[ ' (3.28) 

where M4 is an appropriate positive constant. However, this contradicts (3.19). 
Thus, (3.18) holds by choosing 6' > 0 appropriately, completing the proof. []  

The following corollary immediately follows from lemma 3.4 and 
proposition 2.4. 

COROLLARY 3.5 

Under the assumptions and notations of lemma 3.4, there exists a positive 
constant 15 such that  

6 ((~) I (3.29) 

holds for all u. 

The last two results in this section are proved under the dual nondegeneracy 
assumption (A2). 

LEMMA 3.6 

Let {x (") } be the sequence generated by the affine scaling algorithm under the 
assumptions (A1) and (A2), and let x* be the limiting point of the sequence. Denote 
by ~ the face that contains x* in its interior. Take the slack coordinate ((s(eO, (~(~r)) 
associated with E(~) .  Then 

gO'+l)TG(x(V))-lg("+l)>_ g'll   )ll 2, (3.30) 

where 6" is a positive constant. 
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Proof  

Let 

.yc.) = [~c.)]n(-+,) 
(u) (u+l) " 

II~c~)ll + mac~/II 
(3.31) 

Take the local coordinate (0s, 0Z) associated with (x*, (~a ,~) ) .  F rom lemma 3.4 
and (2.12), we see that 

~<,.I ii,oc.+~)ll ,~o.') ec~r) + = II + IIH~OC~+I)II E(~') 

It is enough to show that 

,,Tc,.,+~)'r[~/,)]e(,.,) [~c,,')]~c-+~) 
( ,~ (~ , )  _(.+I) 

~c~)ll + ',B(~)II) ~ 

_ ¢.(u) (u+l) 
< ,~c~)ll + IIn~ll I1% II 

= 0(11¢~)~)11). (3.32) 

= gCu+l)TG(xCu))-lg(u+l) : 7(u)TpCu)7(u) 

(~(") I _(~+i) ~2 
ECS:) + 't~(g:) : 

is bounded below by a positive constant. 
We have 

(3.33) 

II C._~) II ~s(~)(~+1), + -B(~)II:~-~) (v-I-l)  I 

I1"~(")11-< "~t~)" i~(.) (~+l) ~ ( ~ )  - < ~(.+l)e(~) + II~C~)~)ll • (3.34) 

By contradiction, assume that a subsequence (x  (~') } exists where ~,(~")TP(~)7(~') ---+ 0 
as a ~ c~. We can choose a subsequence {x t~')} from {x ("°) } such that each 

:%) 
.C~) ~, 

~ i  - -  ~(~1 _(~,~+11 (3.35) 
~(~)11 + ,l~c~r ) II 

either converges to a finite value or diverges to infinity. Let Y be the index set 
consisting of  the indices such that the limit of  {sl "~)} is zero. By using lemma 2.1, 
we see that there exists a face ~ such that E ( ~ )  = Y. (If Y = 0, we have ~ = ~ . )  
Recall that 5f is contained in every face that contains the point x*, and hence 
that we have ~ D 5f. In view of (3.32), we have ~C~) /ll~C~) II - e(~/)/, eC~r), ~ 0, thus we have 
~ D S f .  
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Let us choose another  slack coordinate (~s(~,), ~Ce/)) associated with E (~ ) .  
We simply denote E ( ~ ) ,  B(aJ) , /~(~) ,  N ( ~ )  by E, B, B, N, respectively. (Here we 
note that the argument  below holds even in the "special" case aj = ~ . )  By using 
lemma 2.5, we have 

7(v~)Tp(vT)@v,) (v~)T.~(v.) (vr) , (v.)T (v~)T,,~(v.) "YB 
= T E  rEETE + tT~  7N )rEbEc 7 ~  ) 

+ ,7(~T)AP(~d7 (~T) . (3.36) 

Since ~(~') ~ 0 and [lT(~')l[ is bounded above as was shown in (3.34), it follows E(~,) 
from lemma 2.5 that the first and the third terms on the right hand side converge 
to zero, which implies the convergence of  the second term to zero. Substituting 
the definition of  3' , S~N, the second term is bounded below by 

(~[(v~) . , ,(v~).~T~(vT)(. . /(vr)~ 

,,(vd (~,), r,(v~) (v~) ,T , . - -  ,~,(.vr)~,(v~)T)-I (~f(vr) + '3BN 7N ) 

- ;  -- (v~+l)~T _~ (?7(vr+l) ~ A B A N ~  N ) 

-;  -- r (v~) l -2~T~T~- l{~(v~+l)  X ~ (v~+l)x 
X ([S(BU~)] -2 "['- A~AN[S N ] AN~'aB) kll~ -4- A B A N ~  N ) 

M~ 
( "[ (~ 

_ (~+1) ,2 (3.37) > min s/'~)r2llrl~+U+ A~AN~7 N , 
l,¢E(e/) J 

" -(~'~) converges to a where M is an appropriate positive constant.  Since mm;~e (e )~  
positive number,  we have 

T l (v r+ l  - :  - -  ~ ( v ~ + l )  2 --~ 0 (3.38) ~(q/) + A~(ql)AN(qt),IN(~/) 

as r -* c~. Since 77* = l im~o~ 77 (v'+U, we have 

A~(~)r/~(~/) + AB(~/)A~(~)AN(~/)~N(~/) = O. (3.39) 

Subtracting (3.39) from 

At/* = As(~)r/;(~) + As(~)~7~(~) + AN(~)~I*N(~/) (3.40) 

and using the second relation of  (2.5), we see 

At/* ~ Im (A~(e)), (3.41) 
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which implies that the linear function r/*T((x) (= (OF(x*)/Ox)T(x- x*)) takes a 
constant value over ~ D 5f (if °3t = ~ ,  then we have At/* = 0). However, this is a 
contradiction to the assumption (A2), which comes from assuming the existence 
of the subsequence such that 7(")TP(~")7(~")--, 0 as o---, o¢. This means that 
7(")TP(~')7(~) is uniformly bounded below by a positive constant, completing the 
proof of the lemma. [] 

LEMMA 3.7 

Let {x (")} be the sequence generated by the affine scaling algorithm under the 
assumptions (A1), (A2), and let x* be the limiting point of the sequence. Denote by 
5f the face that contains x* in its interior. Choose a slack coordinate ((B(~r), (~(~r)) 
associated with E(~) .  Then, for sufficiently large u, we have 

,Q,T~Cv) 
- - > 6 > 0 ,  ~(~) - 

(3.42) 

where 6 is a positive constant. 

Proof 

We take the local coordinate (0n, 0~) associated with (x*, ((B, (~)). Due to 
lemma 2.3, lemma 3.6 and (1.7), we have 

_ #(~')6 ~(~') 0 < E(~) <- li(V){gCu+l)TG(x(")) -lg(v+l)}l/2 

< F(x  (u)) -- F(x(u+l)) 

<F(x(V))-F * In(~)T~ a(~)!n(u)T~--a (y) ~T~(BU) , (3.43) 
__ : ~ v  B . t I B B V B  -F" 2 , . B  * * B B V B  -F- 

where 6 is a positive constant. Dividing this relation by ]]~(e ~) 11 and using corollary 
3.5, we obtain (3.42) for sufficiently large u, completing the proof. [] 

4. Proof  o f  global convergence 

In [10, 11], we introduced the local Karmarkar potential function to analyze 
the behavior of the affine scaling algorithm for linear programming in the vicinity of 
degenerate faces. In this section we show that substantially the same technique can 
be applied to show global convergence of the affine scaling algorithm for the strictly 
convex quadratic programming problems. For this purpose, we make use of the 
following lemma, which is immediately seen from lemma 5.1 of [14]. 

LEMMA 4.1 

Let x* be a face-optimal point of (D), which is an interior point of the 
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face ~ of •, and choose a slack coordinate ((s(e),(~(~,)) associated with E(~).  
Let 

rl * = (gl*g, gl*n, gl*~, gl}) = (0, VBF(x*) ,  VBF(x*) ,  O) 

= (O, VBF(x*),O,O ). (4.1) 

Consider the linear programming problem 

minimize o,'r(, subject to ( = ATx  -- b > O, (4.2) 

and define the local Karmarkar potential function associated with ~ as follows: 

f~/(~) = [E(~)llog(#*r~)- ~ log(i 
i E E(a~) 

- * T  = [E(~)llog(r/e(~,)(e(~) ) - ~ log¢i, 
i • e(~/) 

(4.3) 

where E(~)  is the set of indices of constraints satisfied with equality on ~ ,  and 
IE(~)I is the number of those constraints. We denote by d~ Lv the unit displacement 
vector 

a~Lp = [~]?[~]~* 
{7~,T [~] p[~] ~. )1/2 (4.4) 

of the affine scaling algorithm for (4.2) represented in the space of the slack 
variables. If 

(i) ~e(~/) (x) is sufficiently small, 
(ii) x* is not the optimal solution for (D), 
(iii) ~).T(( + #d(LP) > 0, 

(iv) #_< 11/80, 

then, we have 

~ (  /(IE(~)I - 1)) 
f~(~ + #de LP) - f~ (~ )  < - ~  1 - V ~ - ~  < O. (4.5) 

Proof 

The condition (ii) implies that x* (or ~(x*)) is not an optimal solution for 
(4.2). If we replace the condition (iv) # < 11/80 for the upper bound of # by 
# < 1/8, the lemma immediately follows from lemma 5.1 of [14]. Since the con- 
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dition/z < 1/8 in lemma 5.1 of [14] is not tight, we may loosen it a little bit to obtain 
this lemma, as we see by slightly modifying the final argument in the proof of lemma 
5.1 of [14]. [] 

With the help of this lemma, we are now in a position to prove the main 
result. 

THEOREM I.1 

Let (D) be a problem satisfying the assumptions (A1) and (A2), and apply the 
atone scaling algorithm with 0 </Zmin </Zmax < 1/8. Then, the algorithm either (I) 
terminates after a finite number of iterations yielding the global minimum point of 
F(x) over R n, or (II) generates an infinite sequence that converges to the optimal 
solution of (D). 

Proof 

As noted at the end of section 1, we focus on the case (II). We denote by {x (") } 
the infinite sequence generated by the algorithm. Due to lemma 4.1, the sequence 
converges to the limiting point x* that is a face-optimal point. Denote by ~ the 
face that contains x* in its interior. We assume that x* is not the optimal solution 
for (D), and derive a contradiction. 

Let us take a slack coordinate (~s(~r), ~(~)) associated with E(X), and put 
~* = ~(x*). We denote r/(x*) by rl*. Note that r/* is a constant vector with r/~ = 0 
because x* is a face-optimal point (cf. proposition 2.2), while r/(x) changes its value 
as a function of x, so that r/s(x) is not usually 0. 

We already observed in lemma 3.7 and lemma 3.4 that 

~(~') ~(~') - 
e( )ll e(ar) 

(4.6) 

and 

(~+l) 6' ~C~) (4.7) 

hold for sufficiently large u, where 6, 6' are positive constants. We further introduce 
the notations 

a *(v) = [~¢ ]r/, fl*(~) (4.8) 
- -  ~(~,)l-rl, 
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and 

c~{") = [{("}]rl {"+~) fl(") -[{(~)]r/("+~) - c~(~) (4.9)  
' ~ ( u ) T T ] *  a*(u)T1 ' 

where, by definition, we have 

a)(~) = 0, ~)(~) = 0 and a~) = 0, /J(~) = 0. (4.10) 

~ B :  o~(s ") -¢ 0, ¢/(~) # 0.) Note  that/~(~'} and ¢~*{~'} are well-defined after a sufficiently 
large number of  iterations because the denominator  r/*r{ 0') is guaranteed to be 
strictly positive by lemma 3.7. Also define 

where 

ot(~') o~*(v) 
dfl{ ~) = fl{v) _ fl*{~) _ - {£(u)TT]* 

-- [{{~}] dr/(~+l) (4 .11)  
~(u)TTI* ' 

0 ) 
d,7= d,7~] ~ = , 7 -  

d~A, / 0 

and d~ = ~ - ~*i By using (4.6), (4.7), we have 

~ I1 < < M0 lldZ¢£/ll < i1[(~)]11 (~+t) 11(£/t16, 

(4.12) 

(4.13) 

for sufficiently large u, where M0 is a constant. In the same manner,  since 
dr/(~+l) ~ 0, it is not  difficult to see that 

tld~(E~) II--.0 (4.14) 

as v ~ o0. It follows from (4.6), (4.7) and (4.14) that 11~*("/11 and II/¢~111 are bounded 
as follows as v ~ c~: 

ll[(~/]~*tl II(B~)II II~NII IlZr(~)ll = ~ _  ~ M I ,  
~{I ~ 1 1  ~ II 

I1~(~)11 = tl/~*(~)ll + IId~(~)ll ~ M, + 1.1Mo, 

(4.15) 

(4.16) 

where M1 is a positive constant. 
In terms of the notations above, at the current iterate x (~'), the 

unit displacement vector d~ LP(~) of  the affine scaling algorithm for "the LP 
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problem" 

minimize T/*T~, subject to ( = ATx -- b > 0 

is written, in the space of the slack variables, as follows: 

d~LP(v) = _[~(v)] P(V)[~(v)]l] * 
{~],T[~(v)]p(v)[~(v)]~7, } 1/2 

p(~) a*(v) 
{a,(u)Tp(u)a,(v) } 1/2 

(4.17) 

and 

On the other hand, the unit displacement vector d~ QP(v) of the affine scaling 
algorithm for (D) is written as 

e(~)[~(~)]'7(~+'/ = _[¢(,/] 
d~QP(v) = _[~(v)] {@v.-bl)T[~(v)]p(v)[~(v)]@v+l)}l/2 

p(v) fi(~,) (4.19) 
= - [C/ ]  {~(~)Tp(~)~(./}I/2 

Applying lemma 2.5 and taking note of the fact that j3~ ") = 0, we see that 
P(")t3 (~) and P(~)j3 *(~') are written as 

( peE+ Apee~ { Ape~ 
Pfi: ! APTe~ IfiE+ ~ ('+SB, S~tv)-'+AP~-~ / ~B  (4.20) 

\ ApTeN ] s~T(I + S~NS~TN) -1 "F ApTN / 

Peg + APee 
P/3*= [ ApT~ ) /5~r, (4.21) 

\ AP N 

where we omit the upper index v indicating the number of iterative steps. Putting 

Pee = PeE + APee, (4.22) 

p(")a(~) 
{o~(v)T p(v) a(v) } I/2 

P(V)/3*(") (4.18) = _[~(v)] {t~*(v)Tp(v)~*(v)} 1/2" 
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we have 

flTPI3=/3TPeEflE+2flTApes/3S+t3T{(I+SsNSTN)-I + AP~--~ }/53, (4.23) 

fl,Tpfl, a*Tb a* (4.24) : M E  *EEME) 

and 

(4.25) 

Now, let us consider the local Karmarkar potential functionf~r defined as in 
(4.3) associated with Y" and the LP problem (4.17), and observe the asymptotic 
reduction of the local Karmarkar potential function by one iteration of (1.5), which 
is written as 

f~((') + ~(~)a~ oP(~)) -f~((~)) 
\ 

= IE(£r) l .'s,~E(.)~,.E(~r) + Z + 
i e E(~r) / 

{ p(~')/30') '~ 
= IE(,~)I l o g ( t  - #(~,)p.(~,)T I/2'] 

-- iZE (*) log 1-lz(~'){15(~,)rp(v)fl(~,)}l/2 i" (4.26) 

Note that f ,  (~(~)), f~r (~(~,+l)) are well-defined because of lemma 3.7 for sufficiently 
large v. We will show that (4.26) is bounded from above asymptotically by a 
negative constant under the assumptions of theorem 1.1 and the condition that x* 
is not the optimal solution for (D). For this purpose, we rewrite (4.26) as 

fer(~ (') +/.t(~')d~ QP(~')) _f .(~("))  

{ P(~)I 3(~) 
= IE(,~)I log ~ 1 -/.z *<~')/3 *<~')T 

} 1 /2 ) 
% 

p(v) ~(v) "~ 
(4.27) 
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by introducing the new step-size 

#,(v) = iz(v) {•,(v)V p(v) fl,(v)} l/2 
{l~(v)Tp(v)3(v)}112 " (4.28) 

In the following we give a bound for the reduction o f f~  per iteration. We 
show this in several steps of observations. 

(1) We have 

~(~) ---)0 (4.29) E(~r) 

as v ---* o0, where ~(~') (~) e(~) = o(II~E(~)II). 

Proof 

This immediately follows from the fact that {x (")} converges to an interior 
point of 5f. 

(2) For sufficiently large v, 

7*T~(v+l) f~*(~lTp(v) f~(v) 
- -  1 - -  #*(~) 7*T~ (v) (3*(v)Tp(v)3*(v)) I/2 

is bounded below by a positive constant, say, ~. 

Proof 

(4.30) 

If such ¢ does not exist, we can take a subsequence {x (~') } of {x (~) } such that 

7*T~(vT+l) "--+ 0. (4.31) 
7*T~(v,) 

On the other hand, since 

~(v+l) ~(v) e(~) II -> (1 - ~(~))11~)~)11 >_ (1 - / . t ~ n a x  ) e(~)ll, 

we have 

7*T~(~+l) 7"T~(~,+1) 

•(vr+l) 7*T~(v~) E 

(4.32) 

I1~')11 7*T~/~) 7*T~ (~'÷l) 117"11 7*T~/~'÷~) 117"11 
~#(~,+I) < 
e II I1~')11 7"T5(~,) 1 - #(") <-- - 7"T5(~0 1 -- ~aax 

(4.33) 
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Then we obtain 

~./*T~(v~+l) ~ 0 
(4.34) 

as r ~ oo, which, however,  is a contradic t ion to l emma 4.7. 

(3) For  sufficiently large v, we have 

,q*(v)T ~(v) f4*(v) 
fl*(v)Tp(v)fl*(v) = mE -- EEmE > - -  21E(X)I" 

(4.35) 

• *(v)T-(v) *(v) *(v)T ^(v) (v) * (v )  *(v)" (v) 
Since  f~ PEEflE = fie (PEE + APEE)flE , f lS bounded ,  a n d  APEE --+ 0 as 

(v) *C~)T (~) ,(v) q~ --~ 0, it is enough  to show fiE__~/5 f > 1/IE(Er)] , which can be seen easily E E E -- 
by taking note  of  1T/5(E~f~0') = l~f~t~O = 1 (cf. l emma 2.5). 

(4) 
flE(V)T ( p(v) fl(V)) E fl,(v)T ( p(v) fl(v)) 

l i m  ~,(v)T[gCv)a,(v) = lim 
v--.o¢ mE ~EEmE v~oo f,(v)Tp(v)fl.Cv) 

= 1. (4.36) 

Proof 

This easily follows f rom (4.35), (4.25), d3 (~) ~ 0, eP (v) ~ 0, and  the 
boundedness  o f  I l l  (~')ll. ~'e(~') E(~) 

(5) 
#,(v) {f,(v)T p(v) f , (v))  1/2 

0 < ff < #(---~ -- {f(~)Tp(~)f(v)}l/2 -< 1 + 6 (~) (4.37) 

asymptot ical ly  as v -~ c~, where ff is a cons tant  and  3(v) is a sequence that  tends to 
zero as v ~ c~. 

Proof 

As shown in (4.23), we have 

fl(v)T p(v) fl(v) = mE[~(v}T it~(v)" eEmER(V) + "-mE") (4(V}TAp(V),...~_Ej~ mBR(V) 

+ f ( v ) T ( ( I  + ,~,(v) ~,(v)T,l-I (v) (v) (4.38) 

We observed in (4.16) tha t  llf(V)/l is b o u n d e d  above by a constant .  Since ~ } ~ )  ~ 0, 
we see IIAP  tl --, 0 and  IIAP It 0 as v c~. Tak ing  account  o f  the fact tha t  



T. Tsuchiya/Global convergence of  the affine scaling algorithm 535 

---> N(v),~ (v)Tl-lll < 1, we have d/3(e ~) 0 and II(X + - n N - Z N ,  ,, - 

fl*(v)Tp(v)fl*(v) _ e(v) f4*(v)T SS(v)f4*(v) _ e(v) 
= t-'E ~EEt-'E 

_< ,O(")Tp(") O(") 

_ ,q*(v)Tl3(v ) f./*(v) 4-  .K'(v) .K'(v)T/-1 II e (v) 
< -E - c e d e  + I1~)112 I1(I-  - - ~ ' ~ N  , ,, + 

=/3*(v)TP(~)/3*(v) + II~(f II 2 I1(I + --BN--BN'm(Y)'m(Y)TS-1 I I ,  + '(~), (4.39) 

where e (~) tends to zero as v ~ oo, which, 
1/(2[E(X) [), immediately implies (4.37). 
( 6 )  

together with 

1 - U *(~) ~,(~)T(p(~,)~(~,)) 
{ f l , (v)r p(v) fl,(v) } l /2 

lim ~ 1. ,,--,oo 1 - #,(v){~,(v)T p(v)/~,(v)}]/2 

~,(~)Tb(~)  r4,(~,) 
E - 'EEt 'E  >-- 

(4.40) 

Proo f  

This follows from observations (2) and (4). 

(7) For  each i E E(Sf), we have 

1 - #*(~) (p0')~(~')) i  
{~,(~,)Tp(~)/3,0, ) } 1/2 

lim ~ 1. (4.41) 
v--*~ (p(v)~*(v))i  

1 -- p,(v) {~,(v)Tp(v)~,(v)}l/2 

Proo f  

It is not  difficult to see that  (p(v)~(~) _ p(v)fl,(v)) i tends to zero as v ~ cx~ for 
each i E E(X).  Since #(~) _</-*max < 1 and IIe(v)~*(~)/{~*C~)e(~)~*(~)}l/211 -- 1,  the 
denominator  of  (4.41) is bounded below by a positive constant.  Taking note of  
these facts and using (4.35), we see (4.41). 
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(8) For sufficiently large v, we have 

f~((~) +/")d(~p(~)) - f~( (~) )  

p(v)fl(v) 
----IE(X)llog 1 - #(v)/3*(~')T{/3(v)p(v)fl(v) )1/2] 

ie E(~r) {/3(,) p(v) fl(v) } 1/2 i < 
(4.42) 

where 6" is a positive constant. 

Proof 

From (4.27), (4.40) and (4.41), we see 

f~ ((~) + ~,(~)d~ QP(~)) - f~r ((~)) 
{ pCv) flO,) 

---- [E(X)[ log ~, 1 - #(")/3 *(v)T { / 3 ( v ~  ) } 1/2] 

-,ee~(~r) log{ 1 - #(") e0')/30") • {~(v)  p(v)~(v)} 1/2 ) i  

p(v) fl(v) 
= [E(gY)llog(1--1Z*O')3*(v)T {3,(~,)p(v)f,(v)},/2) 

p(v)~(v) 
--i, .)Iog,1 ~ (__/,(v) { f l , ( ~ , ~ , ) }  l/: Ji 

< IE(~)[ log (1 - #,(v){fl*(~,)pO,)fi*(~,)} 1/2) 

P(~) 3*(v) } 
- iee(~)Z log(k 1 - #*0'){fl,(u)p(v)fl,(v)}l/Z +e. 

< f~r (~ (~') + #*(~)d~ Le(~')) - f~r (~(~')) + e (4.43) 

holds for sufficiently large v, where e is an (arbitrary) positive constant given in 
advance. 
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Recall that we assumed that x* is not the optima! solution of  (D), and apply 
lemma 4.1 to obtain an upper bound for f~-(~(~) +/z (~)d~ LP(~)) -f~r(~ (~)) in the 
rightmost hand side of (4.431~ Taking account of the observation (5) and the 
assumption that 0 < #rain < / z( ) </Anax < 1/8, we see that/z *(~) is asymptotically 
bounded from below by a strictly positive number and from above by 11/80. 
Furthermore, it is easily checked by using observations (2) and (6) that 

*T (v) 
lim inf r/ (~ + #*(V)d~LP(v)) 

v-"*cx~ 7/*T~(v) 
d~LP(u)~ 

= lim ~ f ( 1  +/~*(~')r/*T ~ )  

= lim inf (1 - / z  *0') {/3*(~')TP (~')/3 *(`') }1/2) 
V---*OO 

( 13*(v)Tp(~)l 3(v) 
= lim ioonf~l - ~ * ( ~ ) { / 3 ~ , / 2  j > ¢, (4.44) 

where ¢ > 0 is a constant, then the condition (iii) of lemma 4.1 is satisfied if v is 
sufficiently large. Now we may apply lemma 4.1 to obtain 

+ < - 8 "  (4.45) 

for sufficiently large v, where 6" is a positive constant. Since we can choose e in 
(4.43) sufficiently small in advance, the inequality (4.42) holds for sufficiently large 
v, by choosing 6" > 0 appropriately. This completes the proof of  the reduction offer 
when v is sufficiently large. 

Now, we are ready to complete the proof of theorem 1.1. Recall that we 
assumed that the limiting point x* is not the optimal solution of (D). Since x* is 
not the optimal solution, from the observation (8), we see 

f~c(~ (v)) ~ - c ~  (4.46) 

as v ---, o0. By using the well-known inequality 

we obtain 

> IE( )I II 

r/*r(") 
lim ~(,------y~ = 0. 

(4.47) 

(4.48) 
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However, this is a contradiction to  lemma 3.7 (cf. (3.42)), coming from assuming 
that x* is not the optimal solution. Thus, x* has to be the optimal solution of 
(D). This completes the proof of  the theorem. []  

5. Concluding remark 

So far we demonstrated the global convergence of the affine scaling algorithm 
for strictly convex quadratic programming problems satisfying the dual non- 
degeneracy condition. We hope that the dual nondegeneracy condition is removed 
by developing this approach. 
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