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Global convergence of the affine scaling algorithm for
primal degenerate strictly convex quadratic
programming problems*

Takashi Tsuchiya

The Institute of Statistical Mathematics, 4-6-7 Minami-Azabu, Minato-ku,
Tokyo 106, Japan

In this paper we deal with global convergence of the affine scaling algorithm for
strictly convex QP problems satisfying a dual nondegeneracy condition. By means
of the local Karmarkar potential function which was successfully applied to demon-
strate global convergence of the affine scaling algorithm for LP, we show global
convergence of the algorithm when the step-size 1/8 is adopted without requiring
any primal nondegeneracy condition.

0. Introduction

Since Karmarkar [S5] proposed the projective scaling algorithm for linear pro-
gramming in 1984, a number of interior point algorithms have been proposed and
implemented. The affine scaling algorithm, originated by Dikin [3] and rediscovered
by several authors including Barnes [2], Vanderbei et al. [12], and Adler et al. [1] is
one of the most popular interior point algorithms obtained by substituting the affine
scaling transformation in place of the projective transformation in Karmarkar’s
algorithm.

One of the major problems in the theoretical analysis of the affine scaling
algorithms is global convergence under the existence of degeneracy. Global
analysis of the algorithm reduces to the analysis of the behavior near the boundary
of the feasible polyhedron. Global convergence of the affine scaling algorithm for
linear programming was shown in [10, 11], by introducing the local Karmarkar
potential function as a tool to analyze the behavior of the algorithm near a
degenerate boundary of the feasible region.

In this paper we deal with global convergence of the affine scaling algorithm
for convex quadratic programming problems proposed by Dikin and Zolkaltsev [4]
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August 5-9, 1991, in Amsterdam, The Netherlands.
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and Ye [13]. We focus our analysis on strictly convex quadratic programming prob-
lems satisfying a certain dual nondegeneracy condition, and extend the analysis
given in [10, 11] to demonstrate that the step-size 1/8 is sufficient in guaranteeing
the global convergence of the algorithm.

In view of the nondegeneracy conditions, the best global convergence result
so far is obtained by Sun [8] for general convex quadratic programming problems
with the choice of the step-sizes as small as 272 (L is the input size of the pro-
blem) without requiring any nondegeneracy conditions, where he demonstrated
the ergodic convergence of the dual estimate following the proof of the global con-
vergence of the algorithm for linear programming by Tseng and Luo [9]. If we
assume the primal nondegeneracy condition and restrict the problem to strictly
convex quadratic programming, the global convergence with a step-size less than
one follows by adding a little argument to the convergence results in [15]. Though
our result is for strictly convex quadratic programming and requires the dual non-
degeneracy condition, it may still be of interest because the analysis does not require
any primal nondegeneracy condition, i.e., the feasible region may be primal
degenerate, and because the step-size 1/8 is a considerable improvement compared
with 27£. This is an intermediate result towards a proof of global convergence
of the affine scaling algorithm with the step-size, say, 1/8, for convex quadratic
programming without requiring nondegeneracy assumptions.

1. Problem and the main result

Let us consider the following strictly convex quadratic programming problem
(D) to minimize a strictly convex quadratic function F(x) over a polyhedron
PecR™
minimize  F(x),
subject to x € 2,
P ={xecR"4A"x-b >0},
A=(a,...,a, eR”" xeR", beR"

(1.1)

where we assume the following:
(A1) The feasible region £ has an interior point and Rank(A) = n.

For a vector v, we denote by [v] the diagonal matrix whose diagonal entries
are elements of v. We denote the slack variables 4"x — b by £(x), and define the

“metric” matrix G(x) for the affine scaling algorithm as follows:

G(x) = A[¢(x)] 24" (12)
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1 and I denote the vector of all ones and the identity matrix of proper dimen-
sion, respectively. We use || - || (without subscript) for the 2-norm. For the sequence
(Y (v =1,...;x" € RY), we abbreviate { f(x*)}, {g(x))} etc. as { fM}, {g}
etc. We denote by x™ the new point obtained by performing one iterative step at the
point x € R", and use f*,g*, etc. to denote f(x™),g(x"), etc. We do not indicate
arguments of functions when they are obvious from the context.

Let x*) be an interior point of the polyhedron 2. In the affine scaling
algorithm for (D), we determine the next iterate x“*!) as the optimal solution for
the following minimization problem

minimize, F(x),
(13)
subject to  {(x — x*)'G(x")(x — x*)}2 < ),

where 4 is a constant such that 0 < pmin < g < pmax < 1.

It is well-known that x**! also remains an interior point if 0 < p® < 1. If
x#+1) = x)_ then we terminate the iteration. In this case, since x® is an interior
point, x'*) is the global minimum point of F over R”. Note that the optimization
problem of this type appears in the context of the trust region algorithms [6].
Recently, Ye [14] gave a remarkable result that the problem can be solved in
O(loglog (1/¢)) iterations to the precision e by a combination of Newton’s method
and a binary search, where each iteration solves a system of linear equations. Thus,
(1.3) can be solved efficiently. In terms of the slack variables, we may write the
problem (1.3) as

minimize, F(x),

(1.4)
subject to  [|[6(x")] 7 (£(x) — €PN < p.
The Karush—Kuhn-Tucker condition for (1.3) is
oF
7y () =26 (x - ) =0,
A{ (e = ¥NTG() (x — X} 12 = @) = o, (1.5)

A2>0,

and it is not difficult to see that x**! can be written as follows (except for the

special case where x!**!) happens to be exactly the optimal solution of (D)):

G(x("))_lg(x(""'l))
{g(x(VH))TG(X(”))—lg(x(”'*‘l))}l/z )

XD ) _ ) (1.6)
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where g(x) = 9F(x)/0x. Because of the convexity of F(x), we have the following
relation

F(x(u+1)) _ F(x(u)) < g(x(u+l))T(x(u+l) _ x(u))
= —pN{g(x" ) TG(xM) g (x¥ )}, (1.7)

To describe our main result, it is necessary to introduce a dual nondegeneracy
condition for (D). Let Z be a face of 2. We define “the subproblem (Dy4) associated
with Z as follows:

minimize F(x), subjecttoxe€ Z. (1.8)

A point x € 2 is said to be “a face-optimal point™ if x is the optimal solution for the
subproblem associated with a face of 2.

Given a face-optimal point x*, let Z be the face that contains x* as its interior
point, and let g* = &F(x")/0x. It is easily seen that the linear function g*Tx is
constant on Z. If there exists no other face of # than & containing £ on which
g'Tx is constant, we refer to x* as “a dual nondegenerate face-optimal point”.
We require the following nondegeneracy condition concerning the face-optimal
points.

(A2) Every face-optimal point of (D) is dual nondegenerate.

When applied to the case of linear programming, (A2) is equivalent to the
assumption of dual nondegeneracy required in [11]. Hence we refer to this assump-
tion as “the assumption of dual nondegeneracy’. Now, we are ready to describe the
main theorem in this paper.

THEOREM 1.1

Let (D) be a problem satisfying the assumptions (A1) and (A2), and apply the
affine scaling algorithm with 0 < ppin < fimax < 1/8. Then, the algorithm either (I)
terminates after a finite number of iterations yielding the global minimum point of
F(x) over R", or (II) generates an infinite sequence that converges to the optimal
solution of (D).

We emphasize that this theorem does not require the primal nondegeneracy
condition. It applies to the cases where the feasible region is primal degenerate,
provided that the problem satisfies the dual nondegeneracy condition (A2). Since
case (I) is trivial, in the remaining part, we focus on case (II), assuming that the
algorithm generates an infinite sequence.
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2. Preliminaries

In this section we introduce some more notations and describe basic
results obtained in [10, 11] which will be used in this analysis. We also make some
preliminary observations.

(1) We use the letters o#, 4, ..., Z to denote the faces of 2. We do not treat the
empty set as a face. For a face Z of 2, we denote by E(Z) the set of indices of
the constraints which are always satisfied with equality on the face. We
sometimes abbreviate E(Z) as E when the face & which is associated with
the notation E is obvious from the context.

(2) Givenaset X C {1,...,m} of indices, we denote by AY, by the matrix and the
vector composed of the corresponding coefficient vectors and constants. We
use £x(x) for A%x — by. Analogously, for a vector v, we denote by vy the
vector which is composed of the part of v associated with X. A matrix with
a pair of index sets as the lower indices, Cy, x,, say, represents a matrix whose
rows and columns are associated with the first set X; and the second one X,
respectively.

(3) A point x on a face & of 2 is referred to as an “interior point of & if
£pa)(x) = 0 and §(x) > 0 (i € E(%)). The interior point of a vertex is the
vertex itself. The face Z is characterized as the smallest face (as a set) among
the faces which contain the point x as their element.

(4) For anindex set X, we use | X| to denote its cardinality. If X is a (proper) sub-
set of another index set Y, we denote X' C (C)Y. Then we denote by Y — X the
set consisting of the indices which belong to X but not to Y. The complement
of X, which is defined as {1,...,m} — X, is written by X*.

See [7] for the basic theory of polyhedra. Given an index set X, we define

By) G _ el

Cominggx&(x)  minge g &(x)

2.1)

The following lemma relates the existence of a sequence of interior points to the
existence of a face with the quantity (2.1).

LEMMA 2.1 (LEMMA 3.2 OF [10])

Let X be a nonempty index set of constraints, and let {x(")} be a sequence of
interior points of 2. If

)
(i) {f;{') —0 and (i) ®x(x) = ﬁ—“—(v—) converges to zero,
min;qz y &

then there exists a face & such that E(Z) = X. O
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Let Z be an index set of constraints. We can choose the index set B C Z such
that the columns of 4z form a basis for the range space of 4. Since Rank(A) = n,
due to the elementary theory of linear algebra, we can choose the index set B from
the complement of Z such that 4, 5 is a nonsingular matrix. Then £, 5 is regarded
as another coordinate system, where the coordinate transformation is given by

Epus(x) = Aguﬁx —bgup and x(pup) = (AEUE)_I(sB v t+bgug) (2.2)

We refer to the pair (B, B) as a “pair of basis index sets associated with the index set
Z”. In this paper we use the letters B and B as the notation for such pairs of basis
index sets. When we want to make clear that the pair is associated with the index set
Z, we write them as B(Z) and B(Z). We refer to (£z(z),€5z)) as the “slack
coordinate associated with the index set Z”’. We denote by R(Z, B) the index set
Z — B. Due to the definitions, there exists a matrix Tpg such that

AR = ABTBR' (23)

Thus, with the index set Z and its associated pair of basis index sets (B, B)
determined, we define the matrices 47y and A7) as

(222) = (4sz) Anz)” = (Aszyuba) (2.4)
Then, we have
(‘ZB(Z)AB(Z) Apz)Ap(z) (10
Apz)4m2) ’ZB(Z)AB(Z)>_<O 1)’ 2.5)

Apz)Asz) + ABz)ABz) = I

Note that A g )47y and Agz) A5z are projection matrices. With these notations,
the constraints can be categorized into four groups:

Axz.8* = brz,s) €r(x)
Appx —b
()= ATx—b= | “EOFTORO | &) | (2.6)
Agzyx — bpz) €5(x)

Anz.5* = bz Enix)

where N(Z,B) = {1,....m} —-Z—-B={1,...,m} —R—BUB. We use Rand N
also as global notations in this paper. We omit the arguments (Z, B) of R and
(Z, B) of N if they are obvious from the context.
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We abuse notation by introducing the abbreviation Vg = 0/0€p, where
B' C B(Z)U B(Z). We define

n(x) = (nr(x), ns(x), na(x),n(x)) = (0, Vpy 5£(x),0). (2.7)

When Z is an index set for the always-active constraints on a face Z, say, i.e.,
in the case of Z = E(Z), we use conventional notations B(Z) and B(Z) for
B(E(%)) and B(E(Z)), respectively.

Let x* be a face-optimal point of (D) which is an interior point of the face Z
of 2. The point x* is the minimum point of F over the face Z. Choose a pair of the
basis index set (B(%), B(Z)) associated with E(Z’) to take the slack coordinate
(€sa) Ea(a))- We have the following proposition.

PROPOSITION 2.2

The objective function F is represented as follows, in terms of the slack
coordinate (£z2), {5(x)):

H Hpg;
Ao -4e @-aN (8 50 )(, ) v 09
BB

Here H is the Hessian matrix of F with respect to (£5,£3), and £*, ", F™ are the slack
variables, the gradient and the function value of F at x*, respectively.

Proof
By Taylor’s expansion, it is easy to see that F(x) is written as
R Hpg Hpp 3
F(x) =5(65 (65— €p)") (

Hps Hgg ) \&—&

+ (5§ ( E_£B€*> +F*. (2.9)
B~ SB

It is enough to show 75 = 0. Assume, by contradiction, 73 # 0. Since Ap 5 is an
invertible matrix, there exists a vector y such that

0
A§U§y=—< ) (2.10)
U



516 T. Tsuchiya/Global convergence of the affine scaling algorithm

Since £ge(qy > 0 while {4y = 0, we have, for sufficiently small € > 0,
F(x"+ey) < F(x"), (x*+e) €, (2.11)
which is a contradiction. Thus we have n; = 0. O

We introduce another coordinate here, which has its origin at the
face-optimal point x* and in terms of which we have a simpler form of F(x):

() = (oo, 1) (8) ()= (ar) 0

We refer to the coordinate (6z,605) as ‘“the local coordinate associated with
(x*, (&s,€5))”. It is easy to verify the following lemma.

LEMMA 2.3

With the notations above, the objective function is written as follows:

F(x) =%051?3303+%0§Hﬁ05+nET93+F*, (2.13)

where
Hpp = Hpp — HppHol Hyp. (2.14)
O

Let 7)(x) be a vector in R” such that A7j(x) = g(x) = 8F(x)/0x. The iteration
(1.5) is written as follows in the space of slack variables £(x):

G(x)"'g(x")
{g(x")TG(x) g (x*)}'?
G(x)”'4n(x")
{A(x*) AT G(x)™" 47i(x*)} V2
P(x)a(x)
{a(x)TP(x)a(x)}'/*’

£y =A"xT —b=ATx—b— pd"

=A"x—b—pA"

= §(x) — plé(x)] (2.15)

where

P(x) = [6(x)] 7' AT6(x) " 4le(x)] ™ and  a(x) = [E(x)]7i(x"). (2.16)
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Note that P(x) is a projection matrix. Multiplying both sides of (2.15) by [¢]”!, we
have

Pao

[f]—1€+ =1- MW-

(2.17)

From this formula, one easily verifies the following proposition.

PROPOSITION 2.4

For each component of the slack variables in the iteration (2.15), we have
(1 - u®e? <€D < (14 u")e?. (2.18)

We analyze the asymptotic properties of {x(")} on the basis of (2.15). Hence it
is necessary to obtain an asymptotic formula of P when {x*)} approaches to a face.
This subject was studied extensively in [11]. From lemmas 4.1, 4.2, 4.3 of [11] we
obtain the following lemma.

LEMMA 2.5

Let & be a face, and choose a pair of basis index sets (B(Z),B(Z))
associated with E(Z) to take a slack coordinate (£p),{s4))- Let x be an
interior point of # and let the slack variables £(x) be put in order as

£(x) = (Epa) (%), E5(a) (%), Enay (%)) = (Eri) (%), Epeary (%), €5y (%), Enary(x)). Then
the matrix P(x) is written as follows:

E(®¥) EY%)

Px)=E&) | Pee 0 ) 1AP, (2.19)
EZ)\ 0  Ppee
where
T

. SEr _
PEE=< / >(I+SBRSER) Y(Sgr ),

. I _
Pgege = ( T )(1 +SavSin) " (I Saw), (2.20)
Sen

Szr = [€5]ApARlER] ",
Say = [€alApANIEN]",

Here Pgg and Pg.g. are projection matrices. ||AP(x)| = O(®x(x)) as ®g(x) — 0.
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Further, we have

Pre(x)1g = 1. (2.21)

3. Convergence of the sequence

In this section we demonstrate that the sequence {x*} generated by the
algorithm converges to a face-optimal point x* of (D), and observe properties of
the sequence in the limit. As noted at the end of section 1, we assume that {x)}
is an infinite sequence. The assumption (A2) is used only for lemma 3.6 and lemma
3.7. To make clear the role of (A2), we state explicitly which assumptions among
(A1) and (A2) are necessary for each result to hold.

LEMMA 3.1

Let {x)} be a sequence generated by the affine scaling algorithm for (D)
under the assumption (A1). The sequence converges to a face-optimal point of (D).

Proof

Since the level set of F(x) is compact and {F(x*))} is a monotone decreasing
sequence bounded below, the sequence {x*’} has an accumulation point, say, x*.
We observe that x* is a face-optimal point. Denote by & the face that contains x*
in its interior, and take a slack coordinate (g4, £p(s) associated with the index
set E(). Let {x*)} a subsequence converging to x*. Then, we have

lim g¥tVTG(x#)) =g+ = Jim )T p(x#))o ) = 0, (3.1)
T 00 T—00
where
o = [E(")]n("+l). (3.2)

On the other hand, from lemma 2.5, we have

g(V-r“‘l)TG(x(V-r))“]g(l’r"‘l) — a(Vr)TP(VT)a(VT)

= oA + AP ol T + 200 TA Y0l

( T)T (Vr) ( T)T ‘1 Yy vy T Vr Y
+a (14 55085l + ol TAPYGEY. (33)

Since ® (4 (x*)) > 0, Hag’{g)r) | = 0and ||o*|| is bounded, we see, by using lemma
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2.5, that the first, the second and the fourth term on the rightmost hand side
converges to zero, and hence, the third term, which is bounded below by

v, 'y 'y vy 1 Ve )1— 4 )1~ 4 - Vr
T+ S5 SeT)  al) = iy (€ + Ap Anlel) P ARy
{vr) (v, +1) 2
>M 3.4
{%&)5 } Izl (3.4)

where M is an appropriate positive constant, also conver es to zero. Since
min; ¢ gq) &7 converges to a positive number, we see that e ) tends to 0 as
T — oco. From proposition 2.4, we see that each component of 55(} is
multiplied at most by the factor of 1+ u*) (< 2), and hence §E @) 0 (1t — o0)
immediately implies £ E(g)l) — 0, then, every accumulation point X* of {x ""’”)}
satisfies the conditions

Moy (%) = Ve F(X) =0, £5a)(X) 20, &pa)(%7)=0. (3.5)

Since (3.5) implies that X" is the unique face-optimal point where F is mmlmlzed
over Z, the accumulation point of x »+1) is unique, thus x D converges to x*.
We show x* = ¥*. If not, since both x" and %" are on &', we have F(x*} > F(x"),
then F(x*) cannot be an accumulation point. Hence, we have x* = ¥".

From the dlscussmn above, we see that, for any subsequence {x "’)} con-
vergent to x*, ||x***! — x()|| converges to zero as T — oco. This means that, for
any given é > 0, we can choose € > 0 such that

[ = x*|| < e =[x+ - x¥)| < 6. (3.6)

Thus every accumulation point is an optimal solution for some subproblem
where the displacement vector converges to zero as the iterate approaches the
accumulation point. Since the number of subproblems is finite, the number of
accumulation points also is finite.

Now, we assume that there are two accumulation points x] and x3. Taking
note of F(x]) = F(x3) and the fact that the displacement vector converges to zero
as the sequence approaches x] and x3, we see that there exists an accumulation
point that is not a face-optimal point. However, this contradicts the fact that every
accumulation point is a face-optimal point. Thus the sequence has a unique
accumulation point. O

In the remaining part of this paper we denote the lxmltlng point of {x(")}
by x* and F(x*) by F*. We investigate the properties of {x™)} when it converges
to x*.
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LEMMA 3.2

Let {x*)} be the sequence generated by the affine scaling algorithm under the
assumption (A1), and let x" be the limiting point of the sequence, which is an interior
point of the face . Choose a slack coordinate (£z(x), {5(a)) associated with E(Z').
Let (63,03) be the local coordinate associated with (x*, (£5,£5)). We have

(v+1)T (v+1)
04T oY

B
(3%

(3.7)

for sufficiently large v, where M > 0 is a constant.
Proof
In terms of the local coordinate, the objective function is represented as

F(x) = 105(x")Hpg0p(x™)) + 105(x) T Hzz05(x™) + 03 05(x™) + F*.
(3.8)

Consider the point y such that
(85(»),65(»")) = (85(x""),0) = (£3(x*),0), (3.9)
and let 2 = {x| [[€"))7 (¢(x) - €")]| < u¥}.
For the time being, we assume that y* € Q) for sufficiently large v,
and observe that this implies the lemma. Since 63(y™)) = 0 and 05(»y™) = 05(x"),
from lemma 2.3, we have
F(y)) = §05(x"")) Hpp0p(x")) + 15 05(x")) + F". (3.10)
Since x**! is the point that minimizes F over Q) (cf. (1.4)), we obtain
F(x(v+l}) — %9B(X(V+I))Tg8863(x(v+l)) + %Gg(x(””)THﬁGg(x("H})
+15 65(x¥*V) + F* < F(31)
=165(x") T Hpp0p(x") + nz 05(x")) + F™. (3.11)

From proposition 2.4, we have

1651 = e (x** )| < (14 p®)IEs ()] = (1 + 1) 105(x1)], (3.12)
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and, together with (3.11), this implies that
105" )T Hzz05(x")) < Mllgg(x™)]), (3.13)
where M is a positive constant, which is the desired result.

We complete the proof by showing y* € Q™ for sufficiently large v. To this
end, observe the following relation:

E5(0")) — £5(x") = 05(y™)) — Hzh HE505(™)
= 05(y™)) — Hgj H3505(x")
—Ho3 Hys€5(x™). (3.14)

Since £x(y™)) — £5(x)) € Im (4F), it follows from (2.3) that

T
ee(y™) - €(x) = (T j’* ) (€3(»™) — £5(x)) = 0. (3.19)

With this relation, we see:

e e - e
< MG (™) — €N + e X)) (e (W) — g (x|
= I€e- N M I g (P™) — € (x|

&(»") — &a(x") )

&5(y") — €a(x"

_ ()11 T 0

= ||[€e- ()] 1l || 4 ‘(ABUB) (ﬁg(y(”))-ﬁg(x(”)))

< s N I AE(45 0 8) 7 1€ () — €M)

< N NN AR (AR 0 8) 1 1€ (P™) = €GN + 11Ea(x") — €)1}
(3.16)

< [€pe (N7 || AE=(4F u5) (

Since the last expressmn m 3. 16; converges to zero because of (3.14) and
£(x) — ¢, we have ||[€®) 7 (€(»"™) — £(x™))|| — 0. This implies y* € Q¥ for
sufficiently large v, and completes the proof O
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The following corollary immediately follows from lemma 3.2 and
proposition 2.4.

COROLLARY 3.3

Under the assumptions and the notations of lemma 3.2, there exists a
constant é > 0 such that

v)T 12
0" g6y < 81640l (3.17)

LEMMA 34

Let {x(")} be the sequence generated by the affine scaling algorithm under the
assumption (A1), and let x* be the limiting point of the sequence which is an interior
point of the face . Choose a slack coordinate ({4, £5()) associated with E(Z),

and let (f,05) be the local coordinate associated with (x*, (£,£3)).
There exists a positive constant § such that

651 < &y | (3.18)
for all v.

Proof

If such a & does not exist, we can find a subsequence {x"} where

o1
(3.19)
e
We show that there exists a positive constant § satisfying
g(Vr+1)G(x(Uf))_‘g(Vr+l) _ a(UT)TP(Vf)a(VT) (3 20)

v+1 - v,
6%+ 6%+

for all T, where a(”*) = [.5("’)] 0+ If such a 6 does not exist, we can choose a
subsequence {x"~)} of {x*”)} such that

a(”ﬂ)TP(Vv)a(Vo‘)

———— 0 (3.21)
165712
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as o — oo. Let &™) = ol /||g%*V||. Since

()| [

&% < IIn Tk (3.22)

we see, by using (3.19),
&%) -0 (3.23)
as o — oo. On the other hand, because of 6z = BBnB (cf. (2.12)), || )|| is

bounded by a constant as follows:

(v5) (vs)

L) < ey JEED ey _lEE?] :

50 < IOl < W™l e < ot g1 (320
B B

Applying lemma 2.5, we obtain
(I/,,)TP(V,) (Va) ( a)T(P(Vv) + APEE )aE Vg) + 2a(b§/a)TAP(V0) Vg)

+ &I+ S sEIN T 4 APYYaY). (3.29)
Taking note of the fact <I> ) — 0 and using (3.23), (3.24), we see the first and the
second term on the right hand side converge to zero. Smce ||APB" || converges to
zero while the minimum singular value of (+ Sy ("")S (V/g/)T) is bounded below by a
constant (this follows from the definition of Sgy and 13 "), 5(") is uniformly bounded
below by a positive constant), the third term is bounded as follows:

(-4 VUT Ud U
&I+ 8% sYOT) !+ APYYEE

> 1a0IT(1 4 S SLeTy 1500

N
i (u +1)T 77(1/,+1)
al|— ol A 1
=5 2 (E57) " + Apanley”) P Apdp) ™ — B
165+ 6%+
(vt1))12 2
M, ”77 | { min éh(,,‘,)}
Z Hgl_;/ -+-1)||2 i¢ E()
(_u,,+l) 2 vy+1)
Il P oo, 526)

8 @ _—>
2 ] vet1)y 2 =
10802 e DR
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where M, M,, M; are appropriate positive constants, contradicting (3.21). Thus,
we see (3.20) holds for all 7 by choosing § appropriately.

Now the lemma is readily seen as follows. Due to lemma 2.3 and corollary
3.3, we have

F(x¥) — F* = 0(Jl¢1l), (3.27)
where F* = F(x"). Together with (3.20), we see, by using (1.7),
0 < F(xtt)y — F* < F(x®)) — F* — p#) {o#)Tpllglny /2
< MllEE )| = 8211651, (3.28)

where M, is an appropriate positive constant. However, this contradicts (3.19).
Thus, (3.18) holds by choosing § > 0 appropriately, completing the proof. O

The following corollary immediately follows from lemma 3.4 and
proposition 2.4.

COROLLARY 3.5

Under the assumptions and notations of lemma 3.4, there exists a positive
constant 6 such that

165711 < lletoy I (3.29)
holds for all v.

The last two results in this section are proved under the dual nondegeneracy
assumption (A2).

LEMMA 3.6

Let {x!)} be the sequence generated by the affine scaling algorithm under the
assumptions (A1) and (A2), and let x* be the limiting point of the sequence. Denote
by % the face that contains x” in its interior. Take the slack coordinate (£5a), £5(a))
associated with E(%). Then

g(u+l)TG(x(V))*1g(V+1) > 5”“555"()3[) ]|2, (3.30)

where §” is a positive constant.
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Proof

Let

[+
v+1
I I+ el

() —

(3.31)

Take the local coordinate (6,85) associated with (x*, (£z,£5)). From lemma 3.4
and (2.12), we see that

1 v+1
1€ I+ IS0 = Sy Il + 115565 1)l
( ) ()
v v+1
<l ‘mn + || Hgll 1165+

= O(ll€bm ). (3.32)

It is enough to show that

(u+l)T[£ v ]P(u) [g(u)]n(u+l) B g(v+l)TG(x(v))—l (v+1)

(T p(v) . (v)
=y = =PV (3.33)
Sl + ImG ) I* leRpl + Imgee 1)

is bounded below by a positive constant.
We have

v v+1 v+1
€5l Iy | + Nyl Iyl _
1
€50 1 + g

v 1
) < < gy Il + gl (3:34)

By contradiction, assume that a subsequence {x { ”)} exists where A Tpla)a () _,
as o — co. We can choose a subsequence {x"“)} from {x"*~)} such that each

é("‘r)

s = -
15 I + lInia

(3.35)

either converges to a finite value or diverges to 1nﬁn1ty Let Y be the index set
consisting of the indices such that the limit of {s } is zero. By using lemma 2.1,
we see that there exists a face % such that E(%) = Y. (If Y = {), we have % = 2.)
Recall that & is contained in every face that contalns the point x*, and hence
that we have % D &. In view of (3.32), we have ¢ E@ / ]]E E g)|| — 0, thus we have
YOX.
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Let us choose another slack coordinate (), {5a)) associated with E(%).
We simply denote E(%), B(%), B(%), N(@) by E, B, B, N, respectively. (Here we
note that the argument below holds even in the “special” case % = £.) By using
lemma 2.5, we have

(o)

v. v, V, AV, V T_(v-)T\ plve ryﬂ

v
+ V(VT)AP(”T),Y(VT). (336)

Since @f&g} — 0 and ||[¥*”| is bounded above as was shown in (3.34), it follows
from lemma 2.5 that the first and the third terms on the right hand side converge
to zero, which implies the convergence of the second term to zero. Substituting
the definition of ), % (=) the second term is bounded below by

BN>
(o)
N Yp
n v N\T plvs B
o
(vs)
RAY

= (W7 4 LA T+ 8L SUIT) T () S84 )
= (g™ + Ag Ay )T

% ([sg’-r)]"z +1ZEAN[S(VT)]—2AT;4' ) (n(l/ 1) +ABAN77 I/T+l))

>M (v, +1) A A {VT+1) 2 .
> {’;n;(%)s }Hn +Ap " (3.37)

where M is an appropriate positive constant. Since min, ¢ g sﬁ”’)

positive number, we have

converges to a

ISy + A @) Anymiyian I — 0 (3.38)
as T — o0. Since 7* = lim,_,, n**Y, we have
Az + As@Ase)Ane)Tve) = 0. (3.39)
Subtracting (3.39) from
An" = Apa)Mp@) + A@)Np@) + An@)vg) (3.40)

and using the second relation of (2.5), we see

A’f]* €Im (AE(@))’ (341)
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which implies that the linear function 77 €(x) (= (OF(x*)/0x)T(x — x*)) takes a
constant value over % D & (if % = 2, then we have An* = 0). However, this is a
contradiction to the assumption €A2 , which comes from assuming the existence
of the subsequence such that y“)TP®)y%) _, 0 as o — co. This means that
AT ) is uniformly bounded below by a positive constant, completing the
proof of the lemma. O

LEMMA 3.7

Let {x*)} be the sequence generated by the affine scaling algorithm under the
assumptions (A1), (A2), and let x" be the limiting point of the sequence. Denote by
Z the face that contains x* in its interior. Choose a slack coordinate (£p(ay, &5(a))
associated with E(Z). Then, for sufficiently large v, we have

T o (1)

& s s0, (3.42)
)

1€eia

where 6 is a positive constant.

Proof

We take the local coordinate (6, 0;) associated with (x*, (§,£5)). Due to
lemma 2.3, lemma 3.6 and (1.7), we have

0 < M(V)CS”&(E%{)H < N{V){g(u-{-l)TG(x(u))-1g(v+1)}1/2
< F(x(u)) _F(x(u+l))
< F(x) = F* =169 T Hpp6l) + 169 HZz0Y + 03¢, (3.43)

where § is a positive constant. Dividing this relation by ||§§;’|| and using corollary
3.5, we obtain (3.42) for sufficiently large v, completing the proof. O

4, Proof of global convergence

In [10, 11], we introduced the local Karmarkar potential function to analyze
the behavior of the affine scaling algorithm for linear programming in the vicinity of
degenerate faces. In this section we show that substantially the same technique can
be applied to show global convergence of the affine scaling algorithm for the strictly
convex quadratic programming problems. For this purpose, we make use of the
following lemma, which is immediately seen from lemma 5.1 of [14].

LEMMA 4.1

Let x* be a face-optimal point of (D), which is an interior point of the
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face ¥ of 2, and choose a slack coordinate (£z4),{5a)) associated with E(%).
Let

i = (fir, g, g, iv) = (0, Va F(x"), V5 F(x7),0)
= (0, Vg F(x"),0,0). (4.1)
Consider the linear programming problem
minimize 7'7¢, subject to £ = ATx — b >0, (4.2)

and define the local Karmarkar potential function associated with & as follows:

fo(&) = |E@)|log (777) — > logg;

i€ E(%)

= |E(@)|log (iia\ére) — D logé&, (4.3)
i€ E(%)

where E(%) is the set of indices of constraints satisfied with equality on %, and
|E(%)| is the number of those constraints. We denote by d¢™F the unit displacement
vector

E1Pleli »
{#T[EPlE7}

of the affine scaling algorithm for (4.2) represented in the space of the slack
variables. If

dELP:—

(i)  ®ga)(x) is sufficiently small,

(i)  x" is not the optimal solution for (D),
i) 77 (€ + pdg™") >0,

(iv) p<11/80,

then, we have

Sole+ ude™®) ~ fo(€) < —§( %ﬂ) <0 @3

Proof

The condition (ii) implies that x* (or &(x*)) is not an optimal solution for
(4.2). If we replace the condition (iv) u < 11/80 for the upper bound of p by
p < 1/8, the lemma immediately follows from lemma 5.1 of [14]. Since the con-
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dition p < 1/8 in lemma 5.1 of [14] is not tight, we may loosen it a little bit to obtain
this lemma, as we see by slightly modifying the final argument in the proof of lemma
5.1 of [14]. O

With the help of this lemma, we are now in a position to prove the main
result.

THEOREM 1.1

Let (D) be a problem satisfying the assumptions (A1) and (A2), and apply the
affine scaling algorithm with 0 < ppi < pmax < 1/8. Then, the algorithm either (I)
terminates after a finite number of iterations yielding the global minimum point of
F(x) over R, or (II) generates an infinite sequence that converges to the optimal
solution of (D).

Proof

As noted at the end of section 1, we focus on the case (II). We denote by {x(")}
the infinite sequence generated by the algorithm. Due to lemma 4.1, the sequence
converges to the limiting point x* that is a face-optimal point. Denote by Z the
face that contains x* in its interior. We assume that x* is not the optimal solution
for (D), and derive a contradiction.

Let us take a slack coordinate (£pq),{5(a)) associated with E(Z), and put
£ = £(x*). We denote n(x*) by n*. Note that n* is a constant vector with nj =0
because x* is a face-optimal point (cf. proposition 2.2), while n(x) changes its value
as a function of x, so that nz(x) is not usually 0.

We already observed in lemma 3.7 and lemma 3.4 that

*T (V) AT (V)
nb_ Ik s (4.6)
€l 1€

and

v v+l v
15565 1l = Ingay | < 6l1E5m @7)

hold for sufficiently large v, where 6, § are positive constants. We further introduce
the notations

*(v V)], * (v [f(y)]ﬂ*
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and

W) o)

vy _ relvhy, (v+1) {(v) _
(41 - [é ]77 ? ,3 E )T’I’,* - *(U)Tl ) (4.9)
where, by definition, we have
gW=0 AY=0 and o =0 Y =0 (4.10)

(NB: o) # 0, 8% # 0.) Note that 8*) and g**) are wen-deﬁned after a sufficiently
large number of iterations because the denominator n*TJE is guaranteed to be
strictly positive by lemma 3.7. Also define

(v) +(v) {v+1)
) _ qv) _ gy Y @ ) 4N
d)@ - ﬂ - ﬁ - g(,,)'rn* [5 ] T * ! (41 l)
where

d‘f]R 0
dng Hppép + Hppdp

dn = = m=n—n 4.12
dng N3 T (4.12)
d‘f]N 0

and dé =€ — 5*; By using (4.6), (4.7), we have

IHMMWWJ#W
3 I

46| < < M, (4.13)

for sufficiently large v, where M, is a constant. In the same manner, since
dn®* = 0, it is not difficult to see that
14BY| — 0 (4.14)

as v — oo. It follows from (4.6), (4.7) and (4.14) that ||g**) || and || g || are bounded
as follows as v — 00:

o @mxm%mn

18] = my < s <M, (4.15)
£m 51X ‘

WWMWWHWWSM+HM, (4.16)

where M, is a positive constant.
In terms of the notations above, at the current iterate x("), the
unit displacement vector dePY) of the affine scaling algorithm for “the LP



T. Tsuchiya/Global convergence of the affine scaling algorithm 531

problem”
minimize *7¢, subjectto £ =A"x—5>0 (4.17)

is written, in the space of the slack variables, as follows:

dgLP(v) _ _[g(v)} P(u) [6{'})} n* _ _[&(V}] P(V) a*(l/)
{n*T[é(u)]P(u) [g(u)]n*}l/z {a*(V)TP(V)a*(V)}l/Z
P(V)ﬁ*(")
— 1)
€] {ﬁ*(v)TP(V)ﬁ*(u)}lz’z ’ (4.18)

On the other hand, the unit displacement vector deFW) of the affine scaling
algorithm for (D) is written as

P oW
{a®T PW @)1/

p) [£(V)],7(V+1)
(DT PO+ DY 72

dg%) = —[e¥)] —1€¥)
P gw)

)
=k ]{ﬁ(mp(u)g(u)}l/z'

(4.19)

Applying lemma 2.5 and taking note of the fact that ﬂ(y) = 0, we see that
P30 and P 3™ are written as

PEE + APEE APEB
P=| APy |Be+| (U+SeSE) ' +APm |8 (4.20)
APEy Sin(I+ SgyShy) ' + APy
and
Prp+ APggp
P3 = APL; Bk, (4.21)
APLy

where we omit the upper index v indicating the number of iterative steps. Putting

PEE = PEE + APEE? (422)
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we have
B'PB = BEPrr By + 2BEAPps B + Fp{(I+ SanSin) ™' + APgg}fs,  (4.23)
BTPB = By Ppp B, (4.24)
and
B PB = B PrpBe + BE APrsBs. (4.25)

Now, let us consider the local Karmarkar potential function fy defined as in
(4.3) associated with & and the LP problem (4.17), and observe the asymptotic
reduction of the local Karmarkar potential function by one iteration of (1.5), which
is written as

S (€Y + pWded®) — fo(eM)

i€ E(Z)

= (lﬁ(f?f )| log nia) (Eyy + pVdeTW) = S log (gﬁ”‘%ﬁ”dg?”‘”))

—(IE( ) log Mitm Eogy — 9 logaﬁ”)

i€E(X)
P g0
= _ W) ar()T
P(b’)ﬂ{!f')
B ZH; Iog{ - {ﬂMT PO [ (4.26)

Note that f(£"), f4(€*“*") are well-defined because of lemma 3.7 for sufficiently
large v. We will show that (4.26) is bounded from above asymptotically by a
negative constant under the assumptions of theorem 1.1 and the condition that x*
is not the optimal solution for (D). For this purpose, we rewrite (4.26) as

€ + pdEFY) — f7(€Y)

P 3w
= — ) g T
IE('%‘N log (1 1 ,B {/B*(V)TP(V),B*(")}I/Z
P g)
- —_ W
ie;(sr) log{ Lo { gT pl) ﬂ*(u)}l /2 i’ (4.27)
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by introducing the new step-size
@ _ W {ﬂ*(V)TP(U),B*(V)}l/Z
{IQ(V)TP(V)g(V) }1/2 )

In the following we give a bound for the reduction of f5 per iteration. We
show this in several steps of observations.

(1) Wehave

" (4.28)

By — 0 (4.29)

as v — oo, where ‘I)gsu()sr) = 0(”5%”()3[)”)

Proof

This immediately follows from the fact that {x)} converges to an interior
point of &

(2) For sufficiently large v,

n*T €(u+l) e ﬂ*(V)T pW ﬂ(v)

n*Té‘(u) = l‘l' {/B*(U)TP(V)ﬂ*(U)}I/Z

(4.30)

is bounded below by a positive constant, say, (.
Proof

If such ¢ does not exist, we can take a subsequence {x*~)} of {x*)} such that

*T (v, +1)
nt o (431)
7 §(vf)
On the other hand, since
HEe eVl > (1 = m@) el = (1 = pmac) |Exy I, (4.32)

we have

g Tett) Tt el

T gt gl _n et )
Vr B *T Vr T T - * T p— - *T T —_— )

e e el e T o TE®) 1T T 1 e

(4.33)
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Then we obtain

*Tg(l/,-&-l)
—_— (4.34)
33
as T — 0o, which, however, is a contradiction to lemma 4.7.
(3) For sufficiently large v, we have
1
ﬂ*(u)TP(u)IH*(U) _ *(V)TP(U) *(v) > ‘ (435
EEFE 2‘ E(.‘%‘)‘ )

Since g5 TBY) g1 = giT (ng + APY) B, 8 is bounded, and APY) — 0 as
@) _, 0, it is enough to show B ")TP%" ) > 1/|E(&)|, which can be seen easily
by taking note of 1 EP;} 2(") 15 ﬂ*(" l (cf. lemma 2.5).

(4) «()T
o ﬂ() (PYWY, ﬂ*(“)T(P(”)ﬁ(”))__l iae
m 50 20 e T PO ) (4.36)
v—00 ﬂ PEEJB v—oo 3 P¥ij3

Proof

This easily follows from (4.35), (4.25), iy, — 0, B4y — 0, and the
boundedness of |||

5
(5) e N BT P gy 112
u(*"} {ﬁ(")TPf"3,8(”)}I/2 -

asymptotically as v — oo, where 7' is a constant and §* is a sequence that tends to
Zero as v — oo.

<1+46¥ (4.37)

0<n <

Proof

As shown in (4.23), we have

5(V)T P 5(9) — g’)T }S(V) 6(") +2 ﬂ(V)T A P(V) B(v)

+ 05 (U + SpaSpy )+ APEYAD. (4.38)

We observed in (4.16) that || l} is bounded above by a constant. Since <I>( ey — 0
we see HAP(" || = 0 and {[AP_H — 0 as v — oo. Taking account of the fact that
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Y — 0 and [|(I+ SLISUT)!|| < 1, we have

ﬂ*(V)T P(v) ﬂ*(V) _ 6(u) - ﬂ;s(y)T pg_g_ ﬂz(V) _ E(u)
< BT plv) g»)
< BT B 1 11BLP (I + SLSETY| 4 )

*(v vy nx(v 14 v)T 14
= g TP GO L 8O (1 + SEASUT ! + e (4.39)

where ¢ tends to zero as v — oo, which, together with ﬂ*(" P(") *(") >
1/(2|E(Z)|), immediately implies (4.37).

(6)
[ BT
+(1)T p(v) g*(v)11/2
im (T PIFI} (4.40)
v—0o | — ,LL*(V){,@*(”)TP(V),B*(”)}I/Z
Proof
This follows from observations (2) and (4).
(7) Foreachie E(Z), we have
) ( PV,
+ u) «(v)11/2
lim v ﬂ } - 1. (4.41)
v—00
1 _ #*(u) ( )l

{6 ”>TP gy 2

Proof

It is not difficult to see that (P*g*) — p) ﬂ l’)) tends to zero as v — oo for
each i € E(Z). Since p® < piax < 1 and [PV g0/ {3*¥ PV g*0IY12|| = 1, the
denominator of (4.41) is bounded below by a positive constant Taking note of
these facts and using (4.35), we see (4.41).
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(8) For sufficiently large v, we have

S (€7 + P de®) — fo.(eM)

PV w)
{AW PW) AYE

= IE(%){log(l _ Wt

) )
- log{l”“(y) (V)P <u;8 ) x/z}f“s’f’
{8 PV g} |,

i€ E)

where 6" is a positive constant.
Proof

From (4.27), (4.40) and (4.41), we see

Sa (€ + pdg®) — fr(€Y)

PY ﬂ(l’)
{8 P ) }1/2

= |E(Z)| log(l — “(V),B*(V)T

B Z log I—M(”) P(u)ﬁ(v)
{,3(1/)19(1/)5(11)}1/2 ;

ie E(T)
PW ﬂ(V)
_ ) pr ()T
|E(%‘)l log (1 H ﬁ {ﬂ*(u) P(V)IB*(V)}I/Z
p» ,B(U)
- logd 1 — ™
i;ﬂ;{) g{ K {3+ p®) B2 i

< |E@) log (1 - wH{g PV} 12)

PY )
— _ @
Z log{ I—n {ﬂ*(")P(")ﬂ*(")}l/z i+€

i€ E(&)

< fa (€ + PO — £ (69)) + €

(4.42)

(4.43)

holds for sufficiently large v, where € is an (arbitrary) positive constant given in

advance.
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Recall that we assumed that x* is not the optimal solution of (D), and apply
lemma 4.1 to obtain an upper bound for fy(£¥) + p*®derPM)) — £, (6™ in the
rightmost hand side of (4.43). Taking account of the observation (5) and the
assumption that 0 < g < g < pmax < 1/8, we see that p** is asymptotically
bounded from below by a strictly positive number and from above by 11/80.
Furthermore, it is easily checked by using observations (2) and (6) that

«T 1 #(v) *(v) 3.LP(v) LP(v)
lim infT—& T E ) i inf 1+p*(">n*T-‘?€—-—
Vo0 77*1-6(”) v—o0 n*Tg(V)

— lim inf (1 — 4@ (3T pi) g 172
= lim inf (1 — ™ {™" P g7} 7%)

= lim inf

V=00

YT plv
(1 _ u*(”) ,3*(1/ Pl ),3(")

{ﬂ*(u)T PW) ﬂ*(u)}l/2> >, (4.44)

where ( > 0 is a constant, then the condition (iii) of lemma 4.1 is satisfied if v is
sufficiently large. Now we may apply lemma 4.1 to obtain

fr (€Y + prdePO)y — £ (V) < —8" (4.45)

for sufficiently large v, where §” is a positive constant. Since we can choose € in
(4.43) sufficiently small in advance, the inequality (4.42) holds for sufficiently large
v, by choosing §” > 0 appropriately. This completes the proof of the reduction of fy
when v is sufficiently large.

Now, we are ready to complete the proof of theorem 1.1. Recall that we
assumed that the limiting point x* is not the optimal solution of (D). Since x* is
not the optimal solution, from the observation (8), we see

fr(€¥)) - —o0 (4.46)

as v — 0o. By using the well-known inequality

o \E@)
W) 7 Te"
exp (f¢(£§")) 2 | |E(Z)] — ; (4.47)
“55(3[)”1
we obtain
*T ~(v)
im 1 & o (4.48)

Gl 3N
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However, this is a contradiction to lemma 3.7 (cf. (3.42)), coming from assuming
that x* is not the optimal solution. Thus, x* has to be the optimal solution of
(D). This completes the proof of the theorem. O

5. Concluding remark

So far we demonstrated the global convergence of the affine scaling algorithm
for strictly convex quadratic programming problems satisfying the dual non-
degeneracy condition. We hope that the dual nondegeneracy condition is removed
by developing this approach.
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