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Applying tabu search to the job-shop scheduling 
problem* 

Mauro Dell'Amico and Marco Trubian 

Politecnico di Milano, 1-20133 Milano, Italy 

Abstract 

In this paper, we apply the tabu-search technique to the job-shop scheduling 
problem, a notoriously difficult problem in combinatorial optimization. We show that 
our implementation of this method dominates both a previous approach with tabu search 
and the other heuristics based on iterative improvements. 

1. In t roduct ion  

The job-shop scheduling problem which can be described as Jll Cm~, using the 
three fields classification introduced in Graham et al. [9], is the following. A set 
M of  m machines and a set J of n jobs are given. The ith job consists of  a chain 

. . . . .  Ekffilmk. Each operation i c O  of mi operations from set O = { 1, N} with N = ,t 
belongs to job Ji and has to be processed on machine #i for di consecutive time 
instants. The problem is to assign the operations to time intervals in such a way that: 

• no one job is pre-empted, 

• the precedences given by the chain relations are respected, 

• no two jobs are processed at the same time on the same machine, 

• the maximum of  the completion times (Ci) of all operations (makespan) is 
minimized. 

This problem, which has been studied for a long time, is known to be 
NP-hard [6] and has the well-earned reputation of being one of the more difficult 
combinatorial problems considered to date. An indication of  its difficulty is given by 
the fact that the famous 10 x 10 instance formulated for the first time by Muth and 
Thompson in 1963 was exactly solved only in 1989 by Carlier and Pinson with a 
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branch and bound algorithm which required about 5 hours of computing time on a 
PRIME 2655. More recently, other branch and bound algorithms have been proposed 
by Applegate and Cook [2], and Brucker et al. [3], which drastically improve the 
computational performance of the previous one on the 10 x 10 instance (372 seconds 
on a SUN Sparcstation 1). However, these algorithms are quite sensitive to the 
particular instance considered. In addition to exact methods, many heuristics have 
been developed; the most popular are List Schedule algorithms which assign one 
operation at a time from a list ordered by some priority rule (see, e.g. [15] for a 
comprehensive survey). A more sophisticated algorithm, called Shifting Bottleneck, 
was given by Adams et al. [1]. The algorithm builds up and improves a schedule by 
iterative solutions of a single bottleneck machine problem. Better solutions than the 
ones given by deterministic algorithms were found using simulated annealing [12,18] 
but at the cost of longer computations. Tabu search was first applied to job shop by 
TaiUard [17], who proposed a sequential and a parallel algorithm. The first solves 
the 10 x I0 instance exactly in more than 9 hours of computing time on a VAX 785. 
TaiLlard observed that this algorithm has a worse computational performance than the 
branch and bound method for squared problems (n = m), but has a higher efficiency 
for rectangular instances (n > m). More recently, the problem has been approached 
by a conventional genetic algorithm [14]. In this paper, we propose a randomized 
procedure, based on a priority rule, for generating feasible starting solutions and a 
randomized local search algorithm, based on the tabu-search technique, for solving 
the problem. We study the performance of our method by means of a well-known 
set of benchmark instances. In section 2, we introduce tabu search and a useful 
formulation of the problem. In section 3, we describe a new procedure for generating 
feasible starting solutions, and in the following section, we describe the neighborhood 
structures we have adopted. Section 5 presents the tabu-search approach as we used 
it, and in the final section we give the computational results and some final remarks. 

In the following we will assume, as is usually done, that all input data of the 
problem are non-negative integers. 

2. A tabu-search framework for job shop 

Any instance of a combinatorial optimization problem is associated with a 
finite set of feasible solutions; each of which is characterized by a cost. The goal 
is to find a solution of minimum (or maximum) cost. 

Given a problem P, let S denote the set of feasible solutions to P and c: S --> R 
its cost function. In order to derive a local search based algorithm for P, it is 
necessary to define a neighborhood structure, that is, a function N : S ---> 2 s which 
associates a set of solutions N(s) with each solution s E S obtainable by a predefined 
partial modification of s, usually called move. Starting from an initial solution 
generated independently, a local search algorithm repeatedly replaces the current 
solution by a neighboring one until a superimposed stopping criterion becomes true. 
The algorithm returns the best solution found, with respect to the cost function. 
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Tabu search is a local search based optimization method: the search moves from 
one solution to another, choosing the best not forbidden element in the neighborhood. 
This method forbids solutions with certain attributes with the goals of  preventing 
cycling and guiding the search towards unexplored regions. Without using the 
technique of  forbidden solutions, starting from a local optimum s (i.e. a solution 
such that all elements in N(s) have a worse cost than s), the method chooses the 
best solution in N(s) and then conceivably at the next step falls back into the local 
optimum again. However, storing complete solutions in a forbidden list and testing 
if a candidate solution belongs to the list is generally too expensive, both for 
memory and for computational time requirements. Usually, a tabu list is defined 
which stores only the opposite of  the move applied during the search to transform 
a solution into a new one (i.e. the move which leads from the new solution to the 
old one). A solution s '  is considered forbidden if the current solution s can be 
transformed into s" by applying one of the moves in the tabu list. In addition to a 
tabu status, a so-called aspiration criterion is associated with each move. If a 
current tabu move satisfies the associated aspiration criterion, it is considered an 
admissible move. 

For a precise and complete description of this method, the interested reader 
can refer to the papers of Glover [7, 8]. Here, we present the general framework of 
our tabu-search algorithm, while the details will be discussed in section 5. 

PROCEDURE TS 

begin 
(find an initial feasible solution s); 
best := c(s); 
S* : =  S; 

Tabu_list := 9 ;  
repeat 

Cand(s) := {s' EN(s): the move from s to s '  does not belong to Tabu_list 
or it satisfies an aspiration criterion}; 

(choose ~ E Cand(s) : ~ has the minimum estimation of the cost function); 
(put a move which leads from Y to s in Tabu_list); 
S : =  ~'; 

if c(s) < best then 
begin 

S* : = $; 

best := c(s) 
end 

until  stopping_criteria = TRUE; 
return s* 

end 



234 M. Delr Amico, M. Trubian, The job-shop scheduling problem 

In order to describe our procedure for generating feasible starting solutions 
and the neighborhood structures adopted, we introduce the disjunctive graph theory 
model for the problems which is due to Roy and Sussmann [16]. 

Given an instance of JIICmax, we can associate with it a disjunctive graph 
G = (V, A, E), with V = set of nodes, A = set of conjunctive directed arcs, E = set of 
disjunctive undirected arcs (edges), defined as follows: 

V = O u {0} u {N + 1 ], ({0} and {N + 1 } are special nodes which identify the star t  
and completion of the overall job shop); 

A = {(i,j) : operation i is an immediate predecessor of operation j in the chain of 
job u { (0 , j ) : j eO}  u {(i, N+ l ) : i  EO}; 

E =  {( i , j ) : / z i=# / ,  i, j EO}. 

With each vertex i E O, a weight d i is associated, vertices 0 and N + 1 have weight 
zero. The starting time and the completion time of vertices 0 and N + I represent, 
respectively, the starting and finishing times of the overall job shop. Directed arcs 
between vertices associated with operations represent the precedence relation; the 
edges represent the machine capacity constraints. One can see that any orientation 
of the edges which does not create cycles corresponds to a feasible sequencing of 
the operations on the machines. 

Once the length of a path is defined as the sum of the weights of the vertices 
in the path, solving the job shop corresponds to finding an acyclic orientation of G 
so that the length of the longest path between 0 and N + 1 (criticalpath) is minimized. 

3. A starting solution 

Our procedure for finding feasible starting solutions is a new List Schedule 
algorithm. This class of algorithms first defines a rule of assigning priorities to the 
operations, then schedules the operation each time with maximum priority in subsequent 
stages. Usually, the operations are scheduled by increasing or decreasing time. In 
the first case, the operations which can be feasibly assigned are those for which all 
predecessors are already scheduled; in the second case, an operation can be assigned 
if all its successors have been scheduled. Our algorithm mixes the two approaches 
and schedules one from the beginning (time increasing) and one from the end (time 
decreasing). This bi-directional method finds a justification in the following argument. 
On average, when a single-direction algorithm is applied it is able to find "good" 
partial schedules when many more operations have to be scheduled, but the scheduling 
of the last operations strongly depends upon the previous assignments, and in the 
last stages the solutions generally worsen considerably. Our bi-directional algorithm 
operates as two single-direction procedures which construct two "half-schedules", 
one from the beginning and the second from the end. These two partial schedules 
are "good" and generally the complete one obtained combining them is still good 
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enough. The computational results (see section 6) confirm the effectiveness of our 
approach. 

Let us describe the algorithm more precisely. An operation is said to be 
schedulable if either all its predecessors or its successors are scheduled. Let L 
denote the set of scheduled operations in order of increasing time and S the set of 
schedulable operations with predecessors in L. Let R and T denote the corresponding 
sets for the reverse order. Let PJ[i] and SJ[i] denote the immediate predecessor and 
the immediate successor of operation i of the job Ji. Let PM[i] and SM[i] denote 
the immediate predecessor and the immediate successor of operation i on the machine 
#i if they are defined in the current partial schedule, PM[i] = O, SM[i] = 0 otherwise. 
Let ri denote the earliest starting time of operation i (i.e. ri is the length of a longest 
path from 0 to i minus di) and let ti denote the queue of operation i (i.e. the length 
of a longest path from i to N + 1 minus dl). 

PROCEDURE Bidir 

begin 
0. initialization 

L := {0}, R := {N+ 1}; 
S := {i : i is the first operation of job J/}, T := {i : i is the last operation of 

job J/}; 
ri :=O Vi  ES,  ti :=O Vi ET; 

1. repeat 
2. (choose an operation i ~ S using a priority rule); 
3. (put i on machine/zi in the first position free from the beginning 

i.e. orientate all edges [i, k] with k ~ L from i to k); 
4. S := S -  {i}; L := L +  {i}; 
5. if i ET  then T:= T -  {i}; 
6. if (SJ[i] ¢~R) then S := S + {SJ[i]}; 
7. (update ri Vi  E S); 
8. i f l L u R l # N + 2 t h e n  

begin 
9. (choose an operation i E T using a priority rule); 
10. (put i on machine #i in the first position free from the end 

i.e. orientate all edges [i, k] with k ~ R from k to i); 
11. T := T -  {i}; R := R + {i}; 
12. if i ES then S := S -  {i}; 
13. if (PJ[i] ~ L) then T := T + {PJ[i]}; 
14. (update ti Vi E T); 

end 
15. until IL u RI = N + 2; 

end 
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THEOREM 3.1 

Procedure Bidir always produces feasible solutions. 

P r o o f  

Let U = (W, V \ W ) ,  W c V be a (0, N + 1) cut, i.e. a cut so that 0 ~W,  
N + 1 ~ V \ W .  From steps 3, 4 and 6 we can see that at each stage of  the procedure 
any arc ( i , j )  E U ,  with W ~ L ,  is oriented from W to VkW.  From steps 10, 11 and 
13, all arcs ( i , j )  ~ U with ( V \ W )  ~ R are oriented from W to V \ W .  Since L and 
R are disjoint by construction, when the algorithm terminates each (0, N + 1) cut  
contains only arcs directed from W to V k W  and no cycle can exist. [] 

The crucial points in this procedure are steps 2 and 9. We are going to 
describe in some detail only step 2, since step 9 is basically the same if we interchange 
vectors r, t, sets S, T and sets L, R. Our priority rule consists in ordering the operations 
according to nondecreasing values of  a lower bound est(i) of the length of  a longest  
path in G from 0 to N + 1 going through i, on the hypothesis  that i will be the next  
operation sequenced on/~i,  i.e. i will be the next operation selected from S and put  
in L. 

When the schedule is completed and values r, t computed consequently,  a 
longest  path passing through node i in the acyclic graph G has a length of  ri + di + ti. 
At each iteration of  our procedure,  we know the exact values r i for all i ~ L and 
for each i ES,  if it is scheduled in the current iteration. So we need to estimate ti 
for each i ~ S. Since each node i in G has at most  two successors on the longest  
path from i to N + 1, the first on the chain of  operations belonging to the same job  
and the second on the same machine, the fol lowing results: 

t i = max {dsy[i I + tsiii 1, dsM[i ] + tSM[i]}. (1) 

We know the exact value of  tl for all i ~R ,  while we can use a lower bound ~,. for 
i ~ VkR. In the first part of the max in (1), we can substitute tsg[i] for ts~tq; 
unfortunately,  the same is not possible for the second part since SM[i] is not defined 
for i ~S .  However,  we can estimate dsM[q + tsMtiJ as maxjEv{d  j + ~j}, where V 
= {j ~ V \ ( L  u {i}) : # j  = #i} is the set of  operations to be performed on machine  
#i  after operation i if this one is scheduled in the current iteration. The lower  bound 
~/is defined as the value of  the longest path from i to N + 1 in the directed acyclic 
subgraph of  G determined by the arc set A and by the already oriented edges of  set 
E. The  est imation of  the longest path from 0 to N + 1 through i ~ S is then: 

est(i) = r i + d i + max {dMti] + tsJ[i], max {dj + tj} }. 
jGV 

Given the bound est(i), we choose the next operation to schedule using a cardinality- 
based semi-greedy heuristic with parameter  c [ 10]. With this approach, a decision 
from a set of  candidates is randomly selected among the c decisions with lower 
estimation. I f  c = 1, the procedure has the same behavior as a greedy heuristic based 
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on a priority rule. We decided to choose the randomized approach since we have 
experimentally observed that it gives, on average, better solutions than the corresponding 
deterministic version. A final observation about the algorithm is that, as pointed out 
in [5], this kind of  randomized procedure does not guarantee to produce a local 
optimum with respect to even simple neighborhood structures. 

4. Neighborhood structures 

Given a set of  feasible solutions, in order to apply local search one has to 
define a neighborhood structure N : S --> 2 s, where S denotes the set of  solutions of  
the problem. Up to now, two different kinds of functions N have been proposed, 
denoted by N1 and N2 later on. Both of  these neighborhoods are based on the 
following properties [18]: 

(1) if s ~ S  is a feasible solution, then reversing one of  the oriented edges on a 
critical path of  s can never lead to an infeasible solution; 

(2) if  the reversal of  an oriented edge of  a feasible solution s that does not belong 
to a critical path leads to a feasible solution s', then the critical path in s '  
cannot be shorter than the critical path in s. 

With N1 [18], a neighboring solution s '  of the current solution s is obtained 
by permuting two successive operations v and w assigned to the same machine and 
for which the arc (v, w) is on a critical path in s. 

Neighborhood N2 [12] selects two operations with the same rules as before 
among those couples (v, w) for which at least one of  the arcs (PM[v], v) and 
(w, SM[w]) is not on a critical path. This restriction is motivated by the fact that 
the swap of  (v, w), when both (PM[v], v) and (w, SM[w]) are on a longest path, 
cannot improve the makespan directly since the minimum starting time of  SM[w] 
does not change. Moreover, for each candidate arc (v, w), the arcs (SJ[v], SM[SJ[v]]) 
and (PM[PJ[w]], PJ[w]) are also checked to see if reversing one of  them and (v, w) 
at the same time can lead to a shorter critical path. 

For the first neighborhood, the following connectivity property holds: 

THEOREM 4.1 [18] 

For each feasible solution s it is possible to construct a finite sequence of 
moves, using NI, which will lead from s to a globally minimal solution. 

The following counterexample shows that the same property does not hold 
for N2. 

EXAMPLE 4.1 

Consider an instance of a job shop with two machines and four jobs, each 
of which consists of a chain of two operations to be performed on machines one 
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and two, respectively. The processing times of the operations on machine one are 
all equal to a positive integer k, while for the second machine the processing time 
of./'1 is k, that of J2 and -/3 is 3k/4, and that of J4 is k/2. Given the feasible solution 
of fig. 1 with makespan 19k/4 and the optimal solution with value 9k/2 (fig. 2), 
it is easy to see that it is impossible to schedule -/4 as the last job on the first machine 
starting from the first solution and using only swaps of neighborhood N2. (Note that 
in this example we have a flow shop with 2 machines which can be solved in 
polynomial time with the algorithm proposed by Johnson [19].) 

We have developed two new neighborhood structures NA and NB, and for the 
first one a restricted version named RNA. Neighborhood NA is an extension of N1 
which considers the possible inversion of more than one arc at the same time. In 
particular, given two operations i, j assigned to the same machine and such that arc 
(i, j )  belongs to a critical path, we consider all possible permutations of {PM[i], i, j} 
and {i,j, SM[j]} in which arc (i , j)  is inverted. To estimate the value of the new 
solutions, we use an approach similar to that used in TaiUard [17]. To evaluate the 
effect of inverting a single oriented edge (i , j) ,  Taillard computes the exact value 
of the longest path which contains at least one of the vertices i, j in the graph 
associated with the new solution. The length of this path is a valid lower bound on 
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the value of the new solution. Similarly, for each possible new solution s '  generated 
by NA, starting from solution s we compute the exact value of  the longest path in 
s" which contains at least one of  the nodes involved in the inversion of  the arcs. 
Given an operation k, let rk,tk and r~,t~ be the minimum starting time and the 
longest path from k to N + 1 in schedule s and s', respectively, and let PM'[k] and 
SM'[k] be the predecessor and successor of  operation k in s'. Moreover, let 
Q = {Q1 . . . . .  Qq} be a set of operations to be permuted in order to obtain solution 
s '  from s. Observing that rk = rE for all predecessors of QI and tk = t~ for all successors 
of  Qq, w e  can compute the longest path going through one of  the nodes in Q with 
the following procedure. 

PROCEDURE lpath(q, Q) 

begin 
a : = Q 1 ;  

r~ : = max { rpjia ] + dps[al, reM'[,] + dJ'M'ta] } ; 
f o r i = 2 t o q d o  
begin 

b : =  Qi; 
r~ := max{restbl + destbl, r'~ + da}; 
a : = b  

end; 
b : =  Qq; 
tt~ := max {tsstb] + dsstb], tsu'tb] + dsm'[b]}; 
f o r i = q - 1  to 1 do 
begin 

a := Qi; 
t" := max {tssta] + dsJtal, t[, +db}; 
b : = a  

end 
r e tu rn  (max/ffil . . . . .  q{r~. i + dQi + t(2i} ) 

end 

For each arc (u, v) belonging to a critical path such that u and v have to be 
processed on the same machine, the estimation of  the value of  the new solution 
obtained by applying NA is given by: 

PROCEDURE estim(u, v) 

begin 
el := lpath(2, {v, u}); 
if exists PM[u] then 
begin e2 := lpath(3, {v, PM[u], u}); 

e3 := lpath(3, {v, u, PM[u]}) 
end; 
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if exists SM[v] then 
begin e4 := lpath(3, {v, SM[v], u}); 

e5 := lpath(3, {SM[v], v, u}) 
end; 
(output the sequence i with the lowest ei, in the case of tie 
output the sequence with lowest index i) 

end 

The properties of connectivity and feasibility of neighborhood NA are given 
by the following two theorems. 

THEOREM 4.2 

For each feasible solution s, it is possible to construct a finite sequence of 
moves, using NA, which lead from s to a globally minimal solution. 

Proof 
N1 c NA. [] 

THEOREM 4.3 

For each candidate arc, procedure estim outputs a sequence corresponding to 
a feasible solution. 

Proof  
Given a candidate arc (u, u) of the critical path, it is sufficient to prove that 

the value returned by procedure lpath, when only arc (u, v) is inverted (which 
always produces a feasible solution (theorem 4.1)), is not greater than the value 
returned by lpath for any infeasible solution obtained with the inversion of more 
than one arc. In particular, we will completely describe the proof that lpath(2, { u, u }) 
< lpath(3, {v, PM[u] ,  u}). The other cases considered in the procedure estim can be 
proved with similar arguments. Let x = PM[u ]  and suppose the permutation v, x, u 
produces an infeasible solution. Since the inversion of the only arc (u, v) cannot 
produce infeasibility (fig. 3), a path from SJ[x] to PJ[v]  must exist (fig. 4). Let ri" t [  
and ri", t "  be the new values of ri and ti as computed by lpath when the inversion 
of the only arc (u, u) of the permutation v, x, u is considered, respectively. Looking 
at fig. 3 and fig. 4, it is easy to see that ' -  " t, - t=. Moreover, we have r~ = r~' since 
rpj[v ] > r x + d x . From these observations it follows that: 

and 

r;, = max{r , + a.,. rpj[.,] + de Jr.,i}. 

r/,'= max{C+ rpj[,,] + dejt.]} 

C> C+d  
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It fol lows that r,~ _< r,,': Similar ly,  

t~, = max{t~ + d u, t~[vl + d~[vl } , 

t~,' = maxit~' + d x, tsj[~,l + dsttvl}, 

~___ ~+a~ = g +d~ 
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and so t~ < t~j': From the above observations, it follows that: 

lpath(2, {v, u}) = max{(r~ + d v + t'), (r u + d u + tu)} 

H H < max{(C+ do + tu),(r u + d u + t'u')} 

< max{(C+ d v + t~'),(r~+ d u + t',,),(rx'+ d x + t'x')} 

= lpath(3, {v, x, u}). [] 

The analysis of neighborhood NA can be done in time O(N) since each call 
to procedure tpath requires a constant time for q ~ {2, 3} and no more than N arcs 
can belong to the critical path. 

The restricted version RNA follows from the same considerations reported 
in [12]. In RNA, arc (v, w) is not considered as candidate when both (PM[v], v) and 
(w, SM[w]) are on a longest path in the current solution. In this way, one of  the two 
tests in our procedure estim is always false and we have to compute for each 
candidate arc three estimations at most. 

With a slight modification to the counterexample used for neighborhood N2, 
we can prove that the connectivity property does not hold even for RNA. 

The second neighborhood we propose is called NB. Once two operations are 
defined adjacent so that the completion time of the first is equal to the starting time 
of  the second, we call block a maximal sequence of adjacent operations to be 
processed on the same machine and belonging to a critical path of the current 
solution s. For all operations x in a block, we consider as neighboring s those 
solutions that can be generated by moving x in the first or in the last position of  
the block to which it belongs, if the corresponding solution is feasible, otherwise 
moving x in the position inside the block closest to the first or last one and such 
that the feasiblity is preserved. The estimation of  the new sequences can be computed 
directly using the procedure lpath, while an exact feasibility test can be done in 
O(N) with the labeling algorithm described in [1]. For computational reasons, we 
preferred to adopt a simpler but not exact test. Given an operation x in block 
b = (b', x, b"), we show how to determine the possible infeasibility of  the sequence 
(x, b ' ,  b"); a similar method can be adopted for the other sequences. The set of  arcs 
reverted is {(x, i) : i ~ b ' }  and a cycle in the new solution can exist if and only if 
there is a path from SJ[k], k ~ b" to PJ[x]. If such a path exists, then operation SJ[k] 
must be scheduled before operation PJ[x] and the inequality Csstkj < CesExl- des[xj 
must be satisfied. Testing the above condition for all k ~b"  prevents the 
generation of  infeasible solutions, but it forbids legal moves too. However, these 
moves are, at best, not improving ones and the probability they were selected is 
very small. 

For the neighborhood NB, we can prove that the connectivity property 
holds. 



M. Dell'Amico, M. Trubian, The job-shop scheduling problem 243 

THEOREM 4A 

For each feasible solution s, it is possible to construct a finite sequence of  
moves, using NB, which will lead from s to a globally minimal solution. 

Proof 
Let s be the current feasible solution, cp = {bl, bE, . . . .  bq} a critical path in 

s, of  q blocks (where a block is defined as above) and let A and li be the first and 
the last operation in bi (i = 1 . . . .  q). Since path cp is critical, it is (/i,A+D 

A(i = 1 . . . . .  q - 1), while (k, h) E E(k, h ~ bi). Given the globally optimal solution 
sop, if  the operations {bi\{fi ,  li}} are scheduled between 3~ and li in sopt (for 
i = 1 . . . . .  q), then the current solution is optimal too, since the length of  the critical 
path in sopt can not be less than the length of cp. Otherwise, at least a block bi and 
an operation k ~ bi exist such that the arc (A, k) or (k, li) is reversed in soet. We 
consider the case in which (3~, k) is reversed; a similar argument can be used for the 
other case. We claim that at least a move in NB exists which strictly decreases the 
number of arcs with different orientation (distance) in s and Sopt. Let k ~ bl be the 
first operation such that arc (3~, k) is reversed in Soet. If the solution obtained, 
scheduling operation k in the first block bi, is feasible we can produce such a solution 
with a move in NB, and the distance between s and soet decreases. Otherwise, l e t j  ~ bi 
be the last operation preceding k such that the reversal of  arc (j ,  k) and of  all arcs 
(h, k), for each h E bi scheduled betweenj  and k, produces an infeasible solution. Let 
us call/~ the operations of block bi between j and k. Observe that/~ contains at least 
one operation since a single swap inside bi can never lead to an infeasible solution 
(prop^erty (1) of neighborhood N1). Since arc (k,f/) ~Sopt and the arcs (h,J~) ~ soj,~, 
h E b (by definition of  k and b), then k precedes any h E b in sopt. Therefore, the 
feasible sequence (j ,  k,/~) decreases the distance between s and Sop, but this is one 
of the sequences we can produce with a move in NB. [] 

Finally, we propose a neighborhood structure, denoted NC later on, which 
combines the ideas of neighborhoods RNA and NB. Given a feasible solution s, the 
set NC(s) is equal to R N A ( s ) u  NB(s). For this neighborhood, the connectivity 
property trivially holds. 

5. Tabu list and strategies 

The main components of a tabu-search algorithm are memory structures, in 
order to have a trace of  the evolution of the search, and strategies, in order to use 
the memorized information in the best possible way. In the following, we are going 
to explain how we applied the tabu-search ideas to the job-shop scheduling problem. 

The fundamental memory structure in tabu search is the so-called tabu list. 
We associate with each move leading from the current solution s to a solution 
s" ~N(s )  a set of  attributes. We memorize in the tabu list the attributes of  the 
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applied moves and, at each iteration, we select the best move among the set of  
candidates whose attributes do not belong to the tabu list. The tabu list has a finite 
dimension and we handle it with an FIFO strategy: at each iteration, the algorithm 
memorizes a new set o f  attributes and it forgets the oldest one. The basic idea is 
that we can avoid cycles in the evolution of  the search by preventing the algorithm 
from repeating more recently made moves. With the neighborhood NA, a move 
consists in swapping one, two or three arcs involving two or three operations. Given 
a candidate arc (i, j )  and the associated move, we memorize the attributes in the 
following way: 

• if  neither SM[j] nor PM[i] belong to a current critical path, then a move 
consists in the reversal of  the only arc (i, j )  and we memorize as forbidden 
the reversal of  arc ( j ,  i); 

• i f  one of  the nodes SM[j] and PM[i] belongs to a current critical path, then 
the move consists in the reversal of  one, two or three arcs, but the estimation 
always considers the reversal of  three arcs, so we memorize in the tabu list 
the reversal of  all arcs considered. 

In order to establish a candidate move tabu, we divide it into swaps of  single 
arcs and we forbid it if  at least one swap is currently tabu. 

With the neighborhood NB, we consider each move as a sequence of elementary 
swaps which put operation x in the first (or last) position of  its block. For each 
move, we memorize in the tabu list the sequence of  single arcs swapped, forbidding 
their inversion. A candidate move is considered forbidden if its last swap is forbidden. 

The data structure we used is conceptually the same as in [17], that is, a 
square matrix TM with dimensions equal to the maximum number  of  operations. 
The element TMi, j contains the count of  the iteration in which the arc (i, j )  has been 
reversed last time. We forbid a swap of  arc (i, j )  i f  the value of  TMj, i plus the length 
of  the tabu list is greater than the count of  current iteration. Note that matrix TM 
is very sparse and it is convenient to memorize its information using specialized 
data structures in order to save memory. 

In our implementation the length of  the tabu list, i.e. the number  of  iterations 
a move maintains a tabu status, varies according to the following rules: 

• i f  the current objective function value is less than the best value found before, 
then set the list length to 1; 

• i f  we are in an improving phase of  the search (i.e. the value of  the objective 
function o f  the current solution is less than the value at the previous iteration) 
and the length of  the list is greater than a threshold min, then decrease the 
list length by one unit; 

• if  we are not in an improving phase of  the search (i.e. the value o f  the 
objective function of  the current solution is greater than or equal to the value 
at the previous iteration) and the length of  the list is less than a given max, 
then increase the list length by one unit. 
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If the value of the threshold min is too large, it can lead to forbid too many 
moves at each iteration; on the other hand, if the value of min is too small, the 
search of the algorithm can be trapped into cycles. In a cyclic situation, a solution 
s(i) after i iterations is equal to a solution s(i + k) after i + k iterations, for some 
positive k, and the algorithm selects the same move in order to go from s(i) to 
s(i + 1) or from s(i + k) to s(i + k + 1). In order to detect this cycle, we select a 
witness arc for each move and associate with it the value of the current objective 
function. Before making a move, we determine the witness of the move and test if 
the current value of the objective function is equal to the value associated with the 
witness (i.e. the value of the last solution which was modified with a move having 
the same witness). If the test is true for the same arc for more than Tcycle consecutive 
iterations, we suppose we are in a cycle. 

Another usual strategy in tabu search is the definition of an aspiration 
criterion, that is, a rule which cancels the effect of a tabu status on a move in 
particular situations. In our implementation, we adopt the following basic aspiration 
criterion: 

• make a forbidden move candidate if its estimation is less than the value of the 
best solution found before the current iteration. 

Besides the fact that tabu search in its canonical form [7] does not make 
randomized choices, we introduced randomization in our algorithm motivated by 
computational experiences. One randomized step was introduced to solve the "critical" 
situations occurring when, at a given iteration, all possible moves belong to the tabu 
list and not one of them satisfies the aspiration criterion. In this case, we randomly 
select a move among the possible ones. A second kind of critical decision concerns 
the length of the tabu list and, in our algorithm, the values min and max used to 
determine this length. Every A iterations, we randomly choose the value min 
between two positive integers a and b, and the value max between the positive 
integers A and B. 

In order to improve the performance of our algorithm, we adopted one more 
strategy: restarting. Given a positive integer A, restarting is the following: 

• if in the last A iterations the algorithm did not improve the best solution found 
up to the current iteration, then set the current solution to the best one. 

This is quite a simple way to memorize in a long-term fashion the attributes associated 
with a good solution. Note that we can apply this strategy since our method does 
not have a completely deterministic behavior. 

Our stopping rule is based on a limit to the maximum number of iterations 
and on the restarting strategy just explained. The algorithm continues to execute a 
series of A iterations and terminates if the more recent improvement to the best 
solution found did not occur during the last A iterations and the current iteration 
count is greater than or equal to a global parameter Maxiter. 
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6. C o m p u t a t i o n a l  results  and  final remarks 

6.1. RESULTS 

We coded algorithms Bidir and TS in PASCAL and ran them on a PC 386 with 
a clock of 33 MHz. Algorithm TS was implemented with neighborhood NC, according 
to sections 2, 4, 5. 

For the parameters of the procedures, we used the following values. 
The parameter c of procedure Bidir was set to 3 (with a smaller value, the 

procedure generates too narrow a range of feasible solutions, and with values larger 
than 3, the quality of the solutions worsens, on average). For the tabu search, we 
set the restarting parameter A to 800 and the global number of iterations Maxiter 
to 1200 (=A × 15). 

The parameter Tcycle was set to 3 (with this value, the algorithm can detect 
cyclic behavior quite early). 

The parameter A was set to 60, while for the values a, b, A and B, we applied 
/"+m/  |n+m/" A:=min+6;  B : = A + L  3 J" the following rule: a : = 2, b : = a + L"3--J' 

We tested our algorithms on a set of 53 problem instances: three from Muth 
and Thompson [13] (MT6, MT10, MT20), five from Adams et al. [1] (ABZ5-9) ,  
forty from Lawrence [11] (LA01-40),  and five from Applegate and Cook [2] 
(ORB1-5).  The optimal solution value is known for 46 of the 53 instances, while 
problems ABZ7, ABZ8, ABZ9, LA21, LA27, LA29 and LA38 are still open. 

The non-deterministic nature of our algorithms makes is necessry to carry out 
multiple runs on the same problem instance in order to obtain meaningful results. 
We ran algorithm TS five times from different starting solutions, each of which was 
determined by a run of procedure Bidir. 

The computational results are given in tables 1-4;  all times are in seconds 
of a PC 386. Tables 1 and 2 compare the behavior of procedure Bidir with five list 
schedule algorithms using the following priority rules: 

• S /  : 

• L/  : 

• S R  : 

• L R  ; 

• LRM: 

select 

select 

select 

the job with the shortest imminent operation time; 

the job with the longest imminent operation time; 

the job with the shortest remaining processing time; 

select the job with the longest remaining processing time; 

select the job with the longest remaining processing time excluding the 
operation under consideration. 

Tables 1 and 2 contain the following information: 

Opt(t , un) 

n 

= optimum value if known, otherwise, in brackets, the best lower and 
upper bound found up to now; 

= number of jobs; 



M. Dell'Amico, M. Trubian, The job-shop scheduling problem 247 

Table 1 

Problem /'1 
ZLs 

m Opt ZB Ts 
(LB, UB2 SI LI SR LR LRM 

rLs 

ABZ5 10 10 

ABZ6 10 10 

ABZ7 20 15 

ABZ8 20 15 

ABZ9 20 15 

MT6 6 6 

MT10 10 10 

MT 20 20 5 

ORB1 10 10 

ORB2 10 10 

ORB3 10 10 

ORB4 10 10 

ORB5 10 10 

1234 1359 0.18 2073 1877 2093 1890 1890 0.01 

943 1025 0.24 1500 1377 1397 1306 1250 0.02 

(651,681) 785 1.93 1117 985 1080 1019 1070 0.06 

(627, 670) 804 1.96 1039 998 1014 1 0 2 1  1029 0.08 

(650, 706) 821 1.93 1094 1029 1159 1077 973 0.06 

55 56 0.01 87 73 94 67 67 0.01 

930 1076 0.16 1 3 9 9  1534 1530 1272 1420 0.01 

1165 1310 0.27 1 5 2 1  1610 1513 1544 1534 0.01 

1059 1281 0.17 1434 1583 1489 1 3 9 1  1314 0.02 

888 1035 0.22 1 3 0 3  1376 1370 1320 1 2 4 1  0.02 

1005 1214 0.16 1 4 0 5  1466 1463 1360 1327 0.03 

1005 1161 0.18 1760 1376 1556 1 5 5 1  1464 0.02 

887 1049 0.20 1 1 9 9  1251 1296 1180 1212 0.02 

m 

ZB 
TB 
ZLs 
T,.s 

= number of  machines; 

= value of  the best solution found by Bidir out of  five runs; 

= computing time for the five runs of  procedure Bidir; 

= value of  the solution found by each list schedule algorithm; 

= computing time for the five list schedule algorithms. 

Tables 1 and 2 show that algorithm Bidir always produces better results than 
the simple list schedule algorithms, but at the cost of  greater computational times. 

Tables 3 and 4 contain the following information: 

Opt(LB, liB), n, m 

Zo, 

Az.% 

T,, 
Tmax 

= as in table 1; 

= value of  the best solution found by TS out of  5 runs; 

= average solution value over 5 runs or nothing if all runs gave 
the optimum value: 

= ((Z~a-Opt)lOpt)x 100 if the optimum value is known, 
((Z~a- LB)ILB) x 100 otherwise; 

= average computing time; 

= maximum computing time for one run. 
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Table 2 

Problem 
z~ 

n m Opt Za TB rLs 
(LB, UB2 SI LI SR LR LRM 

LA01 I0 5 666 724 0.01 859 889 1210 948 907 0.01 

LA02 I0 5 655 739 0.01 1080 858 966 882 882 0.01 

LA03 I0 5 597 710 0.01 770 748 897 843 927 0.01 

LA04 I0 5 590 664 0.05 895 848 976 930 815 0.01 

LA05 10 5 593 593 0.06 827 787 905 689 712 0.01 

LA06 15 5 926 940 0.22 1369 1105 1498 1120 1042 0.02 

LA07 15 5 890 946 0.17 1128 1079 1282 1098 1062 0.01 

LA08 15 5 863 984 0.16 1168 1102 1348 I003 1085 0.02 

LA09 15 5 951 1017 0.11 1332 1111 1384 1280 1280 0.01 

LAI0 15 5 958 958 0.11 1312 1136 1509 1151 I087 0.01 

LAl l  20 5 1222 1259 0.33 1654 1472 1653 1 3 8 7  1 4 0 9  0.02 

LA12 20 5 1039 1044 0.33 1 3 2 8  1222 1622 1 1 5 3  1239 0.01 
LA13 20 5 1150 1160 0.27 1 7 4 7  1246 1517 1344 1 4 0 1  0.01 
LA14 20 5 1292 1294 0.33 1 7 5 7  1477 1679 1388 1357 0.03 
LA15 20 5 1207 1304 0.33 1 5 3 8  1516 1900 1508 1504 0.01 

LA16 10 10 945 1045 0.16 1 4 8 0  1244 1371 1262 1212 0.01 
LA17 10 10 784 838 0.17 1141 1157 1416 1167 958 0.02 

LA18 10 10 848 973 0 . 1 1  1 2 5 9  1264 1353 1117 1 1 2 5  0.01 
LA19 10 10 842 941 0.22 1352 1326 1302 1 1 4 6  1370 0.03 
LA20 10 10 902 1050 0.17 1331 1293 1447 1230 1230 0.01 

LA21 15 10 (1040, 1050) 1210  0.44 1 6 9 0  1519 1806 1452 1 5 0 3  0.02 
LA22 15 10 927 1087 0.44 1392 1409 1736 1312 1 5 0 7  0.01 
LA23 15 10 1032 1093 0.55 1 6 8 1  1330 1526 1414 1662 0.01 
LA24 15 10 935 1132 0.55 1 5 2 1  1472 1623 1606 1 4 3 5  0.02 
LA25 15 10 977 1175 0.49 1 6 9 1  1546 1849 1 4 6 5  1270 0.05 
LA26 20 10 1218 1355 0.93 1 8 6 7  1746 1989 1918 1792 0.02 
LA27 20 10 (1235, 1269) 1470 1.04 1964 1 7 7 3  2161 1844 1860 0.05 

LA28 20 10 1216 1415 1,03 1991 1 6 6 8  2145 1 8 6 7  1 9 6 7  0.05 
LA29 20 10 (1120, 1195) 1401 0.99 1 9 6 9  1 8 3 3  2154 1 6 1 8  1 6 3 3  0.02 

LA30 20 10 1355 1493 0.88 2084 1 8 0 9  2444 1 8 2 3  1 8 0 5  0.03 

LA31 30 10 1784 1840 2.80 2352 2410 2783 2422 2403 0.01 
LA.32 30 10 1850 1928 2.74 2749 2544 2899 2464 2518 0.04 

LA33 30 10 1719 1802 2.80 2329 2302 2514 2306 2346 0.06 
LA34 30 10 1721 1837 2.86 2581 2480 2743 2464 2416 0.02 
LA35 30 10 1888 1983 2.69 2406 2468 2842 2439 2397 0.09 
LA36 15 15 1268 1383 0.76 2070 1789 2218 1920 1 8 7 1  0.01 
LA37 15 15 1397 1657 0.82 2086 1940 2176 1 7 3 1  1940 0.01 
LA38 15 15 (1171, 1184) 1362  0.83 1 7 4 6  1841 1928 1 7 5 2  1 7 3 1  0.01 

LA.39 15 15 1233 1502 0.82 1790 2064 2102 2065 2080 0.01 
LA40 15 15 1233 1389 0.88 2 0 2 1  1829 2231 1 7 2 6  1756 0.01 
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Table 3 

Opt Zbe,, AZ% Zav Tar T,~ Problem n m (LB, UB) 

ABZ5 10 10 1234 1236 0.16 1237.6 139.5 140.1 
ABZ6 10 10 943 (3) 943 0 943.8 86.8 128.3 
ABZ7 20 15 (651,681) 667 2.45 675.6 320.1 328.8 
ABZ8 20 15 (627, 670) 678 8.13 684.2 336.1 351.6 
ABZ9 20 15 (650, 706) 692 6.46 700.2 320.8 325.5 

MT6 6 6 55 (5) 55 0 - 2.4 6.6 

MT10 10 10 930 935 0.53 948.4 155.8 156.6 
MT20 20 5 1165 (4) 1165 0 1166.8 I60 .1  260.2 

ORB1 10 10 1059 1064 0.47 1080.0 157.6 166.1 
ORB2 10 10 888 889 0.11 893.4 136.4 137.7 
ORB3 10 10 1005 1016 1.09 1032.2 157.3 160.5 
ORB4 10 10 1005 1013 0.79 1018.2 156.8 158.8 
ORB5 10 10 887 889 0.22 895.8 140.1 141.1 

Tables 3 and 4 show that our tabu-search algorithm finds an optimal solution 
for 33 of 46 problems for which the optimal solution is known. For the 13 remaining 
problems, the distance from the optimum (tuY,%) is smaller than one percent, with 
only one exception: problem ORB3, having AZ% = 1.09. Concerning the 7 open 
problems, algorithm TS improves the best known upper bound for 5 of them. The 
larger value of AZ% associated with those instances is probably due to the lower 
bound value, which is generally not so close to the optimum. Comparing the value 
Zt,,~t with value Zav, we can see that algorithm TS is quite robust O.e. the differences 
between the solution values of the runs are small) and the quality of the solutions 
is weakly dependent upon the random choices. The computing times are generally 
small (no run required more that 6 minutes) and increase almost linearly with the 
number of operations for "difficult" problems. Moreover, the behavior of algorithm 
TS is not different for square (n = m) or rectangular instances, or for different instances 
of the same shape. With regard to the neighborhood N1, we compared our algorithm 
with the serial version of the tabu search proposed by TaiUard [17]. Our computational 
experience with that approach, with a time limit equal to Tav as a stopping criterion, 
showed that the neighborhood N1 leads to good solutions for squared instances, but 
definitely gives poor results for the "difficult" rectangular ones (i.e. MT20 and 
LA26-30). This is because with neighborhood N1 a local search algorithm spends 
a lot of  time making unfruitful moves, i.e. changing the order of operations internal 
to critical sequences. On the other hand, neighborhood N2 has a weaker theoretical 
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Table 4 

Problem Opt Z~t A7~% Z,~ T,, T,,~ 
n m (LB. l iB) 

LA01 
LA02 

LA03 

LA04 
LA05 

LA06 

LA07 
LA08 

LA09 

LA10 

LA11 

LA12 

LA13 
LA14 

LA15 

LA16 

LA17 

LA18 

LA19 
LA20 

LA21 

LA22 

LA23 

LA24 

LA25 
LA26 

LA27 

LA28 

LA29 

LA30 
LA.31 
LA32 

LA33 

LA.34 

LA35 

LA36 

LA37 
LA38 

LA39 

LA40 

10 5 666 (5) 666 0 - 0.1 0.5 

10 5 655 (5) 655 0 - 18.8 54.4 

10 5 597 (4) 597 0 598.2 21.6 38.3 

10 5 590 (5) 590 0 - 32.2 35.1 
10 5 593 (5) 593 0 - 0.3 0.6 

15 5 926 (5) 926 0 - 0.3 0.6 

15 5 890 (5) 890 0 - 0.6 1.1 
15 5 863 (5) 863 0 - 0.3 0.5 

15 5 951 (5) 951 0 - 0.2 0.5 

15 5 958 (5) 958 0 - 0.2 0.4 

20 5 1222 (5) 1222 0 - 0.4 0.5 

20 5 1039 (5) 1039 0 - 0.2 0.6 

20 5 1150 (5) 1150 0 - 0.4 0.5 
20 5 1292 (5) 1292 0 - 0.4 0.6 

20 5 1207 (5) 1207 0 - 1.2 4.4 

10 10 945 (2) 945 0 946.0 97.4 157.2 

10 I0 784 (5) 784 0 - 21.7 32.7 

10 10 848 (5) 848 0 - 63.1 90.5 

10 10 842 (1) 842 0 846.6 103.8 128.8 
10 10 902 (4) 902 0 903.0 71.7 132.7 

15 10 (1040, 1050) 1048 0.76 1057.0 198.8 204.3 

15 10 927 933 0.64 936.6 191.4 202.2 

15 10 1032 (5) 1032 0 - 1.8 4.4 

15 10 935 941 0.64 943.8 181.8 183.3 

15 10 977 979 0.20 980.4 191.7 193.3 

20 10 1218 (5) 1218 0 - 22.1 34.4 

20 10 (1235, 1269) 1242 0.56 1252.4 254.2 256.6 

20 10 1216 (3) 1216 0 1216.8 186.4 260.5 

20 10 (1120, 1195) 1182 5.53 1194.6 281.3 311.6 
20 10 1355 (5) 1355 0 - 10.4 18.8 

30 10 1784 (5) 1784 0 - 2.1 2.3 
30 10 1850 (5) 1850 0 - 2.2 2.9 

30 10 1719 (5) 1719 0 - 1.8 2.4 

30 10 1721 (5) 1721 0 - 5.1 7.8 

30 I0 1888 (5) 1888 0 - 1.3 2.4 

15 15 1268 1278 0.78 1289.4 238.4 240.1 

15 15 1397 1409 0.85 1423.0 242.2 250.5 
15 15 (1171, 1184) 1203 2.73 1210.0 256.6 291.6 

15 15 1233 1242 0.72 1254.8 237.8 266.6 

15 15 1233 (1) 1233 0 1235.4 236.6 250.5 
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support (the connectivity property does not hold) and furthermore, a tabu-search 
algorithm, both with the complete version of N2 as proposed in [12] and with the 
restricted one (only one arc reversed at each iteration), leads to good solutions for 
rectangular and square instances of small size and it becomes increasingly worse than 
our method for instances of larger size (i.e. LA26-30 and LA36-40). 

The simulated annealing approach of Van Laarhoven et al. [18] produces 
solutions with values comparable to the one of TS only with very large computation 
times (greater than 5200 seconds of a VAX-785 for the instances LA36-40).  The 
simulated annealing algorithms of Matsuo et al. [12], which is a spurious implementation 
of this approach mixed with a local search technique, is always dominated by TS 
with the only exception of instance LA22. 

With regard to computation times, the best branch and bound algorithms 
presented in the literature show a strong dependence on the instance, for problems 
of the same size, and on the shape (all but one of the seven open problems have 
n > m). Moreover, the computation times become enormous for some of the instances 
LA21-30  and LA36-40 (more than 240,000 seconds on a Sun 4/20 workstation). 

6.2. FINAL REMARKS 

In this paper, we have presented a tabu-search based algorithm for solving 
the job-shop scheduling problem and a new heuristic procedure for generating 
feasible starting solutions. Our approach uses two new powerful neighboring structures 
for which we proved the connectivity property, which is that, given any feasible 
solution, there always exists a sequence of transitions inside the neighborhood 
which leads to a global optimum. 

We ran our algorithm on a set of 53 benchmark problem instances. In many 
cases we found the optimal solution, and in others the distance from the optimum 
was very small, exhibiting a robustness not common to previously presented local 
search based algorithms or exact branch and bound methods. The computing times 
required by our algorithm are small, never exceeding 6 minutes for a single run. 

We believe that it is possible to tune the algorithm in order to increase the 
number of  optimal solutions found maintaining a low threshold to the maximum 
computation time allowed. There are two research directions: decreasing the level 
of  randomization and increasing the use of memory structures of the long-term type. 
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