
Annals of Operations Research 41(1993)231-252 231

Applying tabu search to the job-shop scheduling
problem*

Mauro Dell'Amico and Marco Trubian

Politecnico di Milano, 1-20133 Milano, Italy

Abstract

In this paper, we apply the tabu-search technique to the job-shop scheduling
problem, a notoriously difficult problem in combinatorial optimization. We show that
our implementation of this method dominates both a previous approach with tabu search
and the other heuristics based on iterative improvements.

1. In t roduct ion

The job-shop scheduling problem which can be described as Jll Cm~, using the
three fields classification introduced in Graham et al. [9], is the following. A set
M of m machines and a set J of n jobs are given. The ith job consists of a chain

. Ekffilmk. Each operation i c O of mi operations from set O = { 1, N} with N = ,t
belongs to job Ji and has to be processed on machine #i for di consecutive time
instants. The problem is to assign the operations to time intervals in such a way that:

• no one job is pre-empted,

• the precedences given by the chain relations are respected,

• no two jobs are processed at the same time on the same machine,

• the maximum of the completion times (Ci) of all operations (makespan) is
minimized.

This problem, which has been studied for a long time, is known to be
NP-hard [6] and has the well-earned reputation of being one of the more difficult
combinatorial problems considered to date. An indication of its difficulty is given by
the fact that the famous 10 x 10 instance formulated for the first time by Muth and
Thompson in 1963 was exactly solved only in 1989 by Carlier and Pinson with a

* Partially supported by research contracts MPI 40% and 60% of the Italian Ministry of University and
Scientific Research.

© LC. Baltzer AG, Science Publishers

232 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

branch and bound algorithm which required about 5 hours of computing time on a
PRIME 2655. More recently, other branch and bound algorithms have been proposed
by Applegate and Cook [2], and Brucker et al. [3], which drastically improve the
computational performance of the previous one on the 10 x 10 instance (372 seconds
on a SUN Sparcstation 1). However, these algorithms are quite sensitive to the
particular instance considered. In addition to exact methods, many heuristics have
been developed; the most popular are List Schedule algorithms which assign one
operation at a time from a list ordered by some priority rule (see, e.g. [15] for a
comprehensive survey). A more sophisticated algorithm, called Shifting Bottleneck,
was given by Adams et al. [1]. The algorithm builds up and improves a schedule by
iterative solutions of a single bottleneck machine problem. Better solutions than the
ones given by deterministic algorithms were found using simulated annealing [12,18]
but at the cost of longer computations. Tabu search was first applied to job shop by
TaiUard [17], who proposed a sequential and a parallel algorithm. The first solves
the 10 x I0 instance exactly in more than 9 hours of computing time on a VAX 785.
TaiLlard observed that this algorithm has a worse computational performance than the
branch and bound method for squared problems (n = m), but has a higher efficiency
for rectangular instances (n > m). More recently, the problem has been approached
by a conventional genetic algorithm [14]. In this paper, we propose a randomized
procedure, based on a priority rule, for generating feasible starting solutions and a
randomized local search algorithm, based on the tabu-search technique, for solving
the problem. We study the performance of our method by means of a well-known
set of benchmark instances. In section 2, we introduce tabu search and a useful
formulation of the problem. In section 3, we describe a new procedure for generating
feasible starting solutions, and in the following section, we describe the neighborhood
structures we have adopted. Section 5 presents the tabu-search approach as we used
it, and in the final section we give the computational results and some final remarks.

In the following we will assume, as is usually done, that all input data of the
problem are non-negative integers.

2. A tabu-search framework for job shop

Any instance of a combinatorial optimization problem is associated with a
finite set of feasible solutions; each of which is characterized by a cost. The goal
is to find a solution of minimum (or maximum) cost.

Given a problem P, let S denote the set of feasible solutions to P and c: S --> R
its cost function. In order to derive a local search based algorithm for P, it is
necessary to define a neighborhood structure, that is, a function N : S ---> 2 s which
associates a set of solutions N(s) with each solution s E S obtainable by a predefined
partial modification of s, usually called move. Starting from an initial solution
generated independently, a local search algorithm repeatedly replaces the current
solution by a neighboring one until a superimposed stopping criterion becomes true.
The algorithm returns the best solution found, with respect to the cost function.

M. Dell'Amico, M. Trubian, The job-shop scheduling problem 233

Tabu search is a local search based optimization method: the search moves from
one solution to another, choosing the best not forbidden element in the neighborhood.
This method forbids solutions with certain attributes with the goals of preventing
cycling and guiding the search towards unexplored regions. Without using the
technique of forbidden solutions, starting from a local optimum s (i.e. a solution
such that all elements in N(s) have a worse cost than s), the method chooses the
best solution in N(s) and then conceivably at the next step falls back into the local
optimum again. However, storing complete solutions in a forbidden list and testing
if a candidate solution belongs to the list is generally too expensive, both for
memory and for computational time requirements. Usually, a tabu list is defined
which stores only the opposite of the move applied during the search to transform
a solution into a new one (i.e. the move which leads from the new solution to the
old one). A solution s ' is considered forbidden if the current solution s can be
transformed into s" by applying one of the moves in the tabu list. In addition to a
tabu status, a so-called aspiration criterion is associated with each move. If a
current tabu move satisfies the associated aspiration criterion, it is considered an
admissible move.

For a precise and complete description of this method, the interested reader
can refer to the papers of Glover [7, 8]. Here, we present the general framework of
our tabu-search algorithm, while the details will be discussed in section 5.

PROCEDURE TS

begin
(find an initial feasible solution s);
best := c(s);
S* : = S;

Tabu_list := 9 ;
repeat

Cand(s) := {s' EN(s): the move from s to s ' does not belong to Tabu_list
or it satisfies an aspiration criterion};

(choose ~ E Cand(s) : ~ has the minimum estimation of the cost function);
(put a move which leads from Y to s in Tabu_list);
S : = ~';

if c(s) < best then
begin

S* : = $;

best := c(s)
end

until stopping_criteria = TRUE;
return s*

end

234 M. Delr Amico, M. Trubian, The job-shop scheduling problem

In order to describe our procedure for generating feasible starting solutions
and the neighborhood structures adopted, we introduce the disjunctive graph theory
model for the problems which is due to Roy and Sussmann [16].

Given an instance of JIICmax, we can associate with it a disjunctive graph
G = (V, A, E), with V = set of nodes, A = set of conjunctive directed arcs, E = set of
disjunctive undirected arcs (edges), defined as follows:

V = O u {0} u {N + 1], ({0} and {N + 1 } are special nodes which identify the star t
and completion of the overall job shop);

A = {(i,j) : operation i is an immediate predecessor of operation j in the chain of
job u { (0 , j) : j eO} u {(i, N+ l) : i EO};

E = {(i , j) : / z i=# / , i, j EO}.

With each vertex i E O, a weight d i is associated, vertices 0 and N + 1 have weight
zero. The starting time and the completion time of vertices 0 and N + I represent,
respectively, the starting and finishing times of the overall job shop. Directed arcs
between vertices associated with operations represent the precedence relation; the
edges represent the machine capacity constraints. One can see that any orientation
of the edges which does not create cycles corresponds to a feasible sequencing of
the operations on the machines.

Once the length of a path is defined as the sum of the weights of the vertices
in the path, solving the job shop corresponds to finding an acyclic orientation of G
so that the length of the longest path between 0 and N + 1 (criticalpath) is minimized.

3. A starting solution

Our procedure for finding feasible starting solutions is a new List Schedule
algorithm. This class of algorithms first defines a rule of assigning priorities to the
operations, then schedules the operation each time with maximum priority in subsequent
stages. Usually, the operations are scheduled by increasing or decreasing time. In
the first case, the operations which can be feasibly assigned are those for which all
predecessors are already scheduled; in the second case, an operation can be assigned
if all its successors have been scheduled. Our algorithm mixes the two approaches
and schedules one from the beginning (time increasing) and one from the end (time
decreasing). This bi-directional method finds a justification in the following argument.
On average, when a single-direction algorithm is applied it is able to find "good"
partial schedules when many more operations have to be scheduled, but the scheduling
of the last operations strongly depends upon the previous assignments, and in the
last stages the solutions generally worsen considerably. Our bi-directional algorithm
operates as two single-direction procedures which construct two "half-schedules",
one from the beginning and the second from the end. These two partial schedules
are "good" and generally the complete one obtained combining them is still good

M. Dell'Amico, M. Trubian, The job-shop scheduling problem 235

enough. The computational results (see section 6) confirm the effectiveness of our
approach.

Let us describe the algorithm more precisely. An operation is said to be
schedulable if either all its predecessors or its successors are scheduled. Let L
denote the set of scheduled operations in order of increasing time and S the set of
schedulable operations with predecessors in L. Let R and T denote the corresponding
sets for the reverse order. Let PJ[i] and SJ[i] denote the immediate predecessor and
the immediate successor of operation i of the job Ji. Let PM[i] and SM[i] denote
the immediate predecessor and the immediate successor of operation i on the machine
#i if they are defined in the current partial schedule, PM[i] = O, SM[i] = 0 otherwise.
Let ri denote the earliest starting time of operation i (i.e. ri is the length of a longest
path from 0 to i minus di) and let ti denote the queue of operation i (i.e. the length
of a longest path from i to N + 1 minus dl).

PROCEDURE Bidir

begin
0. initialization

L := {0}, R := {N+ 1};
S := {i : i is the first operation of job J/}, T := {i : i is the last operation of

job J/};
ri :=O Vi ES, ti :=O Vi ET;

1. repeat
2. (choose an operation i ~ S using a priority rule);
3. (put i on machine/zi in the first position free from the beginning

i.e. orientate all edges [i, k] with k ~ L from i to k);
4. S := S - {i}; L := L + {i};
5. if i ET then T:= T - {i};
6. if (SJ[i] ¢~R) then S := S + {SJ[i]};
7. (update ri Vi E S);
8. i f l L u R l # N + 2 t h e n

begin
9. (choose an operation i E T using a priority rule);
10. (put i on machine #i in the first position free from the end

i.e. orientate all edges [i, k] with k ~ R from k to i);
11. T := T - {i}; R := R + {i};
12. if i ES then S := S - {i};
13. if (PJ[i] ~ L) then T := T + {PJ[i]};
14. (update ti Vi E T);

end
15. until IL u RI = N + 2;

end

236 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

THEOREM 3.1

Procedure Bidir always produces feasible solutions.

P r o o f

Let U = (W, V \ W) , W c V be a (0, N + 1) cut, i.e. a cut so that 0 ~W,
N + 1 ~ V \ W . From steps 3, 4 and 6 we can see that at each stage of the procedure
any arc (i , j) E U , with W ~ L , is oriented from W to VkW. From steps 10, 11 and
13, all arcs (i , j) ~ U with (V \ W) ~ R are oriented from W to V \ W . Since L and
R are disjoint by construction, when the algorithm terminates each (0, N + 1) cut
contains only arcs directed from W to V k W and no cycle can exist. []

The crucial points in this procedure are steps 2 and 9. We are going to
describe in some detail only step 2, since step 9 is basically the same if we interchange
vectors r, t, sets S, T and sets L, R. Our priority rule consists in ordering the operations
according to nondecreasing values of a lower bound est(i) of the length of a longest
path in G from 0 to N + 1 going through i, on the hypothesis that i will be the next
operation sequenced on/~i, i.e. i will be the next operation selected from S and put
in L.

When the schedule is completed and values r, t computed consequently, a
longest path passing through node i in the acyclic graph G has a length of ri + di + ti.
At each iteration of our procedure, we know the exact values r i for all i ~ L and
for each i ES, if it is scheduled in the current iteration. So we need to estimate ti
for each i ~ S. Since each node i in G has at most two successors on the longest
path from i to N + 1, the first on the chain of operations belonging to the same job
and the second on the same machine, the fol lowing results:

t i = max {dsy[i I + tsiii 1, dsM[i] + tSM[i]}. (1)

We know the exact value of tl for all i ~R , while we can use a lower bound ~,. for
i ~ VkR. In the first part of the max in (1), we can substitute tsg[i] for ts~tq;
unfortunately, the same is not possible for the second part since SM[i] is not defined
for i ~S . However, we can estimate dsM[q + tsMtiJ as maxjEv{d j + ~j}, where V
= {j ~ V \ (L u {i}) : # j = #i} is the set of operations to be performed on machine
#i after operation i if this one is scheduled in the current iteration. The lower bound
~/is defined as the value of the longest path from i to N + 1 in the directed acyclic
subgraph of G determined by the arc set A and by the already oriented edges of set
E. The est imation of the longest path from 0 to N + 1 through i ~ S is then:

est(i) = r i + d i + max {dMti] + tsJ[i], max {dj + tj} }.
jGV

Given the bound est(i), we choose the next operation to schedule using a cardinality-
based semi-greedy heuristic with parameter c [10]. With this approach, a decision
from a set of candidates is randomly selected among the c decisions with lower
estimation. I f c = 1, the procedure has the same behavior as a greedy heuristic based

M. Delr Amico, M. Trubian, The job-shop scheduling problem 237

on a priority rule. We decided to choose the randomized approach since we have
experimentally observed that it gives, on average, better solutions than the corresponding
deterministic version. A final observation about the algorithm is that, as pointed out
in [5], this kind of randomized procedure does not guarantee to produce a local
optimum with respect to even simple neighborhood structures.

4. Neighborhood structures

Given a set of feasible solutions, in order to apply local search one has to
define a neighborhood structure N : S --> 2 s, where S denotes the set of solutions of
the problem. Up to now, two different kinds of functions N have been proposed,
denoted by N1 and N2 later on. Both of these neighborhoods are based on the
following properties [18]:

(1) if s ~ S is a feasible solution, then reversing one of the oriented edges on a
critical path of s can never lead to an infeasible solution;

(2) if the reversal of an oriented edge of a feasible solution s that does not belong
to a critical path leads to a feasible solution s', then the critical path in s '
cannot be shorter than the critical path in s.

With N1 [18], a neighboring solution s ' of the current solution s is obtained
by permuting two successive operations v and w assigned to the same machine and
for which the arc (v, w) is on a critical path in s.

Neighborhood N2 [12] selects two operations with the same rules as before
among those couples (v, w) for which at least one of the arcs (PM[v], v) and
(w, SM[w]) is not on a critical path. This restriction is motivated by the fact that
the swap of (v, w), when both (PM[v], v) and (w, SM[w]) are on a longest path,
cannot improve the makespan directly since the minimum starting time of SM[w]
does not change. Moreover, for each candidate arc (v, w), the arcs (SJ[v], SM[SJ[v]])
and (PM[PJ[w]], PJ[w]) are also checked to see if reversing one of them and (v, w)
at the same time can lead to a shorter critical path.

For the first neighborhood, the following connectivity property holds:

THEOREM 4.1 [18]

For each feasible solution s it is possible to construct a finite sequence of
moves, using NI, which will lead from s to a globally minimal solution.

The following counterexample shows that the same property does not hold
for N2.

EXAMPLE 4.1

Consider an instance of a job shop with two machines and four jobs, each
of which consists of a chain of two operations to be performed on machines one

238 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

J1 I ,, ,

M~

, I , I
0 k 2k

I , I ,
3k 4k

Fig. 1.

1
5k

I I I I

M~

1 , , t , l I '
0 k 2k 3k 4k

Fig. 2.

I
5k

and two, respectively. The processing times of the operations on machine one are
all equal to a positive integer k, while for the second machine the processing time
of./'1 is k, that of J2 and -/3 is 3k/4, and that of J4 is k/2. Given the feasible solution
of fig. 1 with makespan 19k/4 and the optimal solution with value 9k/2 (fig. 2),
it is easy to see that it is impossible to schedule -/4 as the last job on the first machine
starting from the first solution and using only swaps of neighborhood N2. (Note that
in this example we have a flow shop with 2 machines which can be solved in
polynomial time with the algorithm proposed by Johnson [19].)

We have developed two new neighborhood structures NA and NB, and for the
first one a restricted version named RNA. Neighborhood NA is an extension of N1
which considers the possible inversion of more than one arc at the same time. In
particular, given two operations i, j assigned to the same machine and such that arc
(i, j) belongs to a critical path, we consider all possible permutations of {PM[i], i, j}
and {i,j, SM[j]} in which arc (i , j) is inverted. To estimate the value of the new
solutions, we use an approach similar to that used in TaiUard [17]. To evaluate the
effect of inverting a single oriented edge (i , j) , Taillard computes the exact value
of the longest path which contains at least one of the vertices i, j in the graph
associated with the new solution. The length of this path is a valid lower bound on

M. DelrAmico, M. Trubian, The job-shop scheduling problem 239

the value of the new solution. Similarly, for each possible new solution s ' generated
by NA, starting from solution s we compute the exact value of the longest path in
s" which contains at least one of the nodes involved in the inversion of the arcs.
Given an operation k, let rk,tk and r~,t~ be the minimum starting time and the
longest path from k to N + 1 in schedule s and s', respectively, and let PM'[k] and
SM'[k] be the predecessor and successor of operation k in s'. Moreover, let
Q = {Q1 Qq} be a set of operations to be permuted in order to obtain solution
s ' from s. Observing that rk = rE for all predecessors of QI and tk = t~ for all successors
of Qq, w e can compute the longest path going through one of the nodes in Q with
the following procedure.

PROCEDURE lpath(q, Q)

begin
a : = Q 1 ;

r~ : = max { rpjia] + dps[al, reM'[,] + dJ'M'ta] } ;
f o r i = 2 t o q d o
begin

b : = Qi;
r~ := max{restbl + destbl, r'~ + da};
a : = b

end;
b : = Qq;
tt~ := max {tsstb] + dsstb], tsu'tb] + dsm'[b]};
f o r i = q - 1 to 1 do
begin

a := Qi;
t" := max {tssta] + dsJtal, t[, +db};
b : = a

end
r e tu rn (max/ffil q{r~. i + dQi + t(2i})

end

For each arc (u, v) belonging to a critical path such that u and v have to be
processed on the same machine, the estimation of the value of the new solution
obtained by applying NA is given by:

PROCEDURE estim(u, v)

begin
el := lpath(2, {v, u});
if exists PM[u] then
begin e2 := lpath(3, {v, PM[u], u});

e3 := lpath(3, {v, u, PM[u]})
end;

240 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

if exists SM[v] then
begin e4 := lpath(3, {v, SM[v], u});

e5 := lpath(3, {SM[v], v, u})
end;
(output the sequence i with the lowest ei, in the case of tie
output the sequence with lowest index i)

end

The properties of connectivity and feasibility of neighborhood NA are given
by the following two theorems.

THEOREM 4.2

For each feasible solution s, it is possible to construct a finite sequence of
moves, using NA, which lead from s to a globally minimal solution.

Proof
N1 c NA. []

THEOREM 4.3

For each candidate arc, procedure estim outputs a sequence corresponding to
a feasible solution.

Proof
Given a candidate arc (u, u) of the critical path, it is sufficient to prove that

the value returned by procedure lpath, when only arc (u, v) is inverted (which
always produces a feasible solution (theorem 4.1)), is not greater than the value
returned by lpath for any infeasible solution obtained with the inversion of more
than one arc. In particular, we will completely describe the proof that lpath(2, { u, u })
< lpath(3, {v, PM[u] , u}). The other cases considered in the procedure estim can be
proved with similar arguments. Let x = PM[u] and suppose the permutation v, x, u
produces an infeasible solution. Since the inversion of the only arc (u, v) cannot
produce infeasibility (fig. 3), a path from SJ[x] to PJ[v] must exist (fig. 4). Let ri" t [
and ri", t " be the new values of ri and ti as computed by lpath when the inversion
of the only arc (u, u) of the permutation v, x, u is considered, respectively. Looking
at fig. 3 and fig. 4, it is easy to see that ' - " t, - t=. Moreover, we have r~ = r~' since
rpj[v] > r x + d x . From these observations it follows that:

and

r;, = max{r , + a.,. rpj[.,] + de Jr.,i}.

r/,'= max{C+ rpj[,,] + dejt.]}

C> C+d

M. Dell'Amico, M, Trubian, The job-shop scheduling problem 241

eJ[vl

\

/ S J[x]

©

Fig. 3. Inversion of the only arc (u, v).

P:["I

\

4) ~ ;0

"11 -k._J

s:[~l

Fig. 4. Inversion of arcs (u, la) and (x, v).

It fol lows that r,~ _< r,,': Similar ly,

t~, = max{t~ + d u, t~[vl + d~[vl } ,

t~,' = maxit~' + d x, tsj[~,l + dsttvl},

~___ ~+a~ = g +d~

242 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

and so t~ < t~j': From the above observations, it follows that:

lpath(2, {v, u}) = max{(r~ + d v + t'), (r u + d u + tu)}

H H < max{(C+ do + tu),(r u + d u + t'u')}

< max{(C+ d v + t~'),(r~+ d u + t',,),(rx'+ d x + t'x')}

= lpath(3, {v, x, u}). []

The analysis of neighborhood NA can be done in time O(N) since each call
to procedure tpath requires a constant time for q ~ {2, 3} and no more than N arcs
can belong to the critical path.

The restricted version RNA follows from the same considerations reported
in [12]. In RNA, arc (v, w) is not considered as candidate when both (PM[v], v) and
(w, SM[w]) are on a longest path in the current solution. In this way, one of the two
tests in our procedure estim is always false and we have to compute for each
candidate arc three estimations at most.

With a slight modification to the counterexample used for neighborhood N2,
we can prove that the connectivity property does not hold even for RNA.

The second neighborhood we propose is called NB. Once two operations are
defined adjacent so that the completion time of the first is equal to the starting time
of the second, we call block a maximal sequence of adjacent operations to be
processed on the same machine and belonging to a critical path of the current
solution s. For all operations x in a block, we consider as neighboring s those
solutions that can be generated by moving x in the first or in the last position of
the block to which it belongs, if the corresponding solution is feasible, otherwise
moving x in the position inside the block closest to the first or last one and such
that the feasiblity is preserved. The estimation of the new sequences can be computed
directly using the procedure lpath, while an exact feasibility test can be done in
O(N) with the labeling algorithm described in [1]. For computational reasons, we
preferred to adopt a simpler but not exact test. Given an operation x in block
b = (b', x, b"), we show how to determine the possible infeasibility of the sequence
(x, b ' , b"); a similar method can be adopted for the other sequences. The set of arcs
reverted is {(x, i) : i ~ b ' } and a cycle in the new solution can exist if and only if
there is a path from SJ[k], k ~ b" to PJ[x]. If such a path exists, then operation SJ[k]
must be scheduled before operation PJ[x] and the inequality Csstkj < CesExl- des[xj
must be satisfied. Testing the above condition for all k ~b" prevents the
generation of infeasible solutions, but it forbids legal moves too. However, these
moves are, at best, not improving ones and the probability they were selected is
very small.

For the neighborhood NB, we can prove that the connectivity property
holds.

M. Dell'Amico, M. Trubian, The job-shop scheduling problem 243

THEOREM 4A

For each feasible solution s, it is possible to construct a finite sequence of
moves, using NB, which will lead from s to a globally minimal solution.

Proof
Let s be the current feasible solution, cp = {bl, bE, bq} a critical path in

s, of q blocks (where a block is defined as above) and let A and li be the first and
the last operation in bi (i = 1 q). Since path cp is critical, it is (/i,A+D

A(i = 1 q - 1), while (k, h) E E(k, h ~ bi). Given the globally optimal solution
sop, if the operations {bi\{fi , li}} are scheduled between 3~ and li in sopt (for
i = 1 q), then the current solution is optimal too, since the length of the critical
path in sopt can not be less than the length of cp. Otherwise, at least a block bi and
an operation k ~ bi exist such that the arc (A, k) or (k, li) is reversed in soet. We
consider the case in which (3~, k) is reversed; a similar argument can be used for the
other case. We claim that at least a move in NB exists which strictly decreases the
number of arcs with different orientation (distance) in s and Sopt. Let k ~ bl be the
first operation such that arc (3~, k) is reversed in Soet. If the solution obtained,
scheduling operation k in the first block bi, is feasible we can produce such a solution
with a move in NB, and the distance between s and soet decreases. Otherwise, l e t j ~ bi
be the last operation preceding k such that the reversal of arc (j , k) and of all arcs
(h, k), for each h E bi scheduled betweenj and k, produces an infeasible solution. Let
us call/~ the operations of block bi between j and k. Observe that/~ contains at least
one operation since a single swap inside bi can never lead to an infeasible solution
(prop^erty (1) of neighborhood N1). Since arc (k,f/) ~Sopt and the arcs (h,J~) ~ soj,~,
h E b (by definition of k and b), then k precedes any h E b in sopt. Therefore, the
feasible sequence (j , k,/~) decreases the distance between s and Sop, but this is one
of the sequences we can produce with a move in NB. []

Finally, we propose a neighborhood structure, denoted NC later on, which
combines the ideas of neighborhoods RNA and NB. Given a feasible solution s, the
set NC(s) is equal to R N A (s) u NB(s). For this neighborhood, the connectivity
property trivially holds.

5. Tabu list and strategies

The main components of a tabu-search algorithm are memory structures, in
order to have a trace of the evolution of the search, and strategies, in order to use
the memorized information in the best possible way. In the following, we are going
to explain how we applied the tabu-search ideas to the job-shop scheduling problem.

The fundamental memory structure in tabu search is the so-called tabu list.
We associate with each move leading from the current solution s to a solution
s" ~N(s) a set of attributes. We memorize in the tabu list the attributes of the

244 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

applied moves and, at each iteration, we select the best move among the set of
candidates whose attributes do not belong to the tabu list. The tabu list has a finite
dimension and we handle it with an FIFO strategy: at each iteration, the algorithm
memorizes a new set o f attributes and it forgets the oldest one. The basic idea is
that we can avoid cycles in the evolution of the search by preventing the algorithm
from repeating more recently made moves. With the neighborhood NA, a move
consists in swapping one, two or three arcs involving two or three operations. Given
a candidate arc (i, j) and the associated move, we memorize the attributes in the
following way:

• if neither SM[j] nor PM[i] belong to a current critical path, then a move
consists in the reversal of the only arc (i, j) and we memorize as forbidden
the reversal of arc (j , i);

• i f one of the nodes SM[j] and PM[i] belongs to a current critical path, then
the move consists in the reversal of one, two or three arcs, but the estimation
always considers the reversal of three arcs, so we memorize in the tabu list
the reversal of all arcs considered.

In order to establish a candidate move tabu, we divide it into swaps of single
arcs and we forbid it if at least one swap is currently tabu.

With the neighborhood NB, we consider each move as a sequence of elementary
swaps which put operation x in the first (or last) position of its block. For each
move, we memorize in the tabu list the sequence of single arcs swapped, forbidding
their inversion. A candidate move is considered forbidden if its last swap is forbidden.

The data structure we used is conceptually the same as in [17], that is, a
square matrix TM with dimensions equal to the maximum number of operations.
The element TMi, j contains the count of the iteration in which the arc (i, j) has been
reversed last time. We forbid a swap of arc (i, j) i f the value of TMj, i plus the length
of the tabu list is greater than the count of current iteration. Note that matrix TM
is very sparse and it is convenient to memorize its information using specialized
data structures in order to save memory.

In our implementation the length of the tabu list, i.e. the number of iterations
a move maintains a tabu status, varies according to the following rules:

• i f the current objective function value is less than the best value found before,
then set the list length to 1;

• i f we are in an improving phase of the search (i.e. the value of the objective
function o f the current solution is less than the value at the previous iteration)
and the length of the list is greater than a threshold min, then decrease the
list length by one unit;

• if we are not in an improving phase of the search (i.e. the value o f the
objective function of the current solution is greater than or equal to the value
at the previous iteration) and the length of the list is less than a given max,
then increase the list length by one unit.

M. Dell'Amico, M. Trubian, The job-shop scheduling problem 245

If the value of the threshold min is too large, it can lead to forbid too many
moves at each iteration; on the other hand, if the value of min is too small, the
search of the algorithm can be trapped into cycles. In a cyclic situation, a solution
s(i) after i iterations is equal to a solution s(i + k) after i + k iterations, for some
positive k, and the algorithm selects the same move in order to go from s(i) to
s(i + 1) or from s(i + k) to s(i + k + 1). In order to detect this cycle, we select a
witness arc for each move and associate with it the value of the current objective
function. Before making a move, we determine the witness of the move and test if
the current value of the objective function is equal to the value associated with the
witness (i.e. the value of the last solution which was modified with a move having
the same witness). If the test is true for the same arc for more than Tcycle consecutive
iterations, we suppose we are in a cycle.

Another usual strategy in tabu search is the definition of an aspiration
criterion, that is, a rule which cancels the effect of a tabu status on a move in
particular situations. In our implementation, we adopt the following basic aspiration
criterion:

• make a forbidden move candidate if its estimation is less than the value of the
best solution found before the current iteration.

Besides the fact that tabu search in its canonical form [7] does not make
randomized choices, we introduced randomization in our algorithm motivated by
computational experiences. One randomized step was introduced to solve the "critical"
situations occurring when, at a given iteration, all possible moves belong to the tabu
list and not one of them satisfies the aspiration criterion. In this case, we randomly
select a move among the possible ones. A second kind of critical decision concerns
the length of the tabu list and, in our algorithm, the values min and max used to
determine this length. Every A iterations, we randomly choose the value min
between two positive integers a and b, and the value max between the positive
integers A and B.

In order to improve the performance of our algorithm, we adopted one more
strategy: restarting. Given a positive integer A, restarting is the following:

• if in the last A iterations the algorithm did not improve the best solution found
up to the current iteration, then set the current solution to the best one.

This is quite a simple way to memorize in a long-term fashion the attributes associated
with a good solution. Note that we can apply this strategy since our method does
not have a completely deterministic behavior.

Our stopping rule is based on a limit to the maximum number of iterations
and on the restarting strategy just explained. The algorithm continues to execute a
series of A iterations and terminates if the more recent improvement to the best
solution found did not occur during the last A iterations and the current iteration
count is greater than or equal to a global parameter Maxiter.

246 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

6. C o m p u t a t i o n a l results and final remarks

6.1. RESULTS

We coded algorithms Bidir and TS in PASCAL and ran them on a PC 386 with
a clock of 33 MHz. Algorithm TS was implemented with neighborhood NC, according
to sections 2, 4, 5.

For the parameters of the procedures, we used the following values.
The parameter c of procedure Bidir was set to 3 (with a smaller value, the

procedure generates too narrow a range of feasible solutions, and with values larger
than 3, the quality of the solutions worsens, on average). For the tabu search, we
set the restarting parameter A to 800 and the global number of iterations Maxiter
to 1200 (=A × 15).

The parameter Tcycle was set to 3 (with this value, the algorithm can detect
cyclic behavior quite early).

The parameter A was set to 60, while for the values a, b, A and B, we applied
/"+m/ |n+m/" A:=min+6; B : = A + L 3 J" the following rule: a : = 2, b : = a + L"3--J'

We tested our algorithms on a set of 53 problem instances: three from Muth
and Thompson [13] (MT6, MT10, MT20), five from Adams et al. [1] (ABZ5-9) ,
forty from Lawrence [11] (LA01-40), and five from Applegate and Cook [2]
(ORB1-5). The optimal solution value is known for 46 of the 53 instances, while
problems ABZ7, ABZ8, ABZ9, LA21, LA27, LA29 and LA38 are still open.

The non-deterministic nature of our algorithms makes is necessry to carry out
multiple runs on the same problem instance in order to obtain meaningful results.
We ran algorithm TS five times from different starting solutions, each of which was
determined by a run of procedure Bidir.

The computational results are given in tables 1-4; all times are in seconds
of a PC 386. Tables 1 and 2 compare the behavior of procedure Bidir with five list
schedule algorithms using the following priority rules:

• S / :

• L/ :

• S R :

• L R ;

• LRM:

select

select

select

the job with the shortest imminent operation time;

the job with the longest imminent operation time;

the job with the shortest remaining processing time;

select the job with the longest remaining processing time;

select the job with the longest remaining processing time excluding the
operation under consideration.

Tables 1 and 2 contain the following information:

Opt(t , un)

n

= optimum value if known, otherwise, in brackets, the best lower and
upper bound found up to now;

= number of jobs;

M. Dell'Amico, M. Trubian, The job-shop scheduling problem 247

Table 1

Problem /'1
ZLs

m Opt ZB Ts
(LB, UB2 SI LI SR LR LRM

rLs

ABZ5 10 10

ABZ6 10 10

ABZ7 20 15

ABZ8 20 15

ABZ9 20 15

MT6 6 6

MT10 10 10

MT 20 20 5

ORB1 10 10

ORB2 10 10

ORB3 10 10

ORB4 10 10

ORB5 10 10

1234 1359 0.18 2073 1877 2093 1890 1890 0.01

943 1025 0.24 1500 1377 1397 1306 1250 0.02

(651,681) 785 1.93 1117 985 1080 1019 1070 0.06

(627, 670) 804 1.96 1039 998 1014 1 0 2 1 1029 0.08

(650, 706) 821 1.93 1094 1029 1159 1077 973 0.06

55 56 0.01 87 73 94 67 67 0.01

930 1076 0.16 1 3 9 9 1534 1530 1272 1420 0.01

1165 1310 0.27 1 5 2 1 1610 1513 1544 1534 0.01

1059 1281 0.17 1434 1583 1489 1 3 9 1 1314 0.02

888 1035 0.22 1 3 0 3 1376 1370 1320 1 2 4 1 0.02

1005 1214 0.16 1 4 0 5 1466 1463 1360 1327 0.03

1005 1161 0.18 1760 1376 1556 1 5 5 1 1464 0.02

887 1049 0.20 1 1 9 9 1251 1296 1180 1212 0.02

m

ZB
TB
ZLs
T,.s

= number of machines;

= value of the best solution found by Bidir out of five runs;

= computing time for the five runs of procedure Bidir;

= value of the solution found by each list schedule algorithm;

= computing time for the five list schedule algorithms.

Tables 1 and 2 show that algorithm Bidir always produces better results than
the simple list schedule algorithms, but at the cost of greater computational times.

Tables 3 and 4 contain the following information:

Opt(LB, liB), n, m

Zo,

Az.%

T,,
Tmax

= as in table 1;

= value of the best solution found by TS out of 5 runs;

= average solution value over 5 runs or nothing if all runs gave
the optimum value:

= ((Z~a-Opt)lOpt)x 100 if the optimum value is known,
((Z~a- LB)ILB) x 100 otherwise;

= average computing time;

= maximum computing time for one run.

248 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

Table 2

Problem
z~

n m Opt Za TB rLs
(LB, UB2 SI LI SR LR LRM

LA01 I0 5 666 724 0.01 859 889 1210 948 907 0.01

LA02 I0 5 655 739 0.01 1080 858 966 882 882 0.01

LA03 I0 5 597 710 0.01 770 748 897 843 927 0.01

LA04 I0 5 590 664 0.05 895 848 976 930 815 0.01

LA05 10 5 593 593 0.06 827 787 905 689 712 0.01

LA06 15 5 926 940 0.22 1369 1105 1498 1120 1042 0.02

LA07 15 5 890 946 0.17 1128 1079 1282 1098 1062 0.01

LA08 15 5 863 984 0.16 1168 1102 1348 I003 1085 0.02

LA09 15 5 951 1017 0.11 1332 1111 1384 1280 1280 0.01

LAI0 15 5 958 958 0.11 1312 1136 1509 1151 I087 0.01

LAl l 20 5 1222 1259 0.33 1654 1472 1653 1 3 8 7 1 4 0 9 0.02

LA12 20 5 1039 1044 0.33 1 3 2 8 1222 1622 1 1 5 3 1239 0.01
LA13 20 5 1150 1160 0.27 1 7 4 7 1246 1517 1344 1 4 0 1 0.01
LA14 20 5 1292 1294 0.33 1 7 5 7 1477 1679 1388 1357 0.03
LA15 20 5 1207 1304 0.33 1 5 3 8 1516 1900 1508 1504 0.01

LA16 10 10 945 1045 0.16 1 4 8 0 1244 1371 1262 1212 0.01
LA17 10 10 784 838 0.17 1141 1157 1416 1167 958 0.02

LA18 10 10 848 973 0 . 1 1 1 2 5 9 1264 1353 1117 1 1 2 5 0.01
LA19 10 10 842 941 0.22 1352 1326 1302 1 1 4 6 1370 0.03
LA20 10 10 902 1050 0.17 1331 1293 1447 1230 1230 0.01

LA21 15 10 (1040, 1050) 1210 0.44 1 6 9 0 1519 1806 1452 1 5 0 3 0.02
LA22 15 10 927 1087 0.44 1392 1409 1736 1312 1 5 0 7 0.01
LA23 15 10 1032 1093 0.55 1 6 8 1 1330 1526 1414 1662 0.01
LA24 15 10 935 1132 0.55 1 5 2 1 1472 1623 1606 1 4 3 5 0.02
LA25 15 10 977 1175 0.49 1 6 9 1 1546 1849 1 4 6 5 1270 0.05
LA26 20 10 1218 1355 0.93 1 8 6 7 1746 1989 1918 1792 0.02
LA27 20 10 (1235, 1269) 1470 1.04 1964 1 7 7 3 2161 1844 1860 0.05

LA28 20 10 1216 1415 1,03 1991 1 6 6 8 2145 1 8 6 7 1 9 6 7 0.05
LA29 20 10 (1120, 1195) 1401 0.99 1 9 6 9 1 8 3 3 2154 1 6 1 8 1 6 3 3 0.02

LA30 20 10 1355 1493 0.88 2084 1 8 0 9 2444 1 8 2 3 1 8 0 5 0.03

LA31 30 10 1784 1840 2.80 2352 2410 2783 2422 2403 0.01
LA.32 30 10 1850 1928 2.74 2749 2544 2899 2464 2518 0.04

LA33 30 10 1719 1802 2.80 2329 2302 2514 2306 2346 0.06
LA34 30 10 1721 1837 2.86 2581 2480 2743 2464 2416 0.02
LA35 30 10 1888 1983 2.69 2406 2468 2842 2439 2397 0.09
LA36 15 15 1268 1383 0.76 2070 1789 2218 1920 1 8 7 1 0.01
LA37 15 15 1397 1657 0.82 2086 1940 2176 1 7 3 1 1940 0.01
LA38 15 15 (1171, 1184) 1362 0.83 1 7 4 6 1841 1928 1 7 5 2 1 7 3 1 0.01

LA.39 15 15 1233 1502 0.82 1790 2064 2102 2065 2080 0.01
LA40 15 15 1233 1389 0.88 2 0 2 1 1829 2231 1 7 2 6 1756 0.01

M. Dell'Amico, M. Trubian, The job-shop scheduling problem 249

Table 3

Opt Zbe,, AZ% Zav Tar T,~ Problem n m (LB, UB)

ABZ5 10 10 1234 1236 0.16 1237.6 139.5 140.1
ABZ6 10 10 943 (3) 943 0 943.8 86.8 128.3
ABZ7 20 15 (651,681) 667 2.45 675.6 320.1 328.8
ABZ8 20 15 (627, 670) 678 8.13 684.2 336.1 351.6
ABZ9 20 15 (650, 706) 692 6.46 700.2 320.8 325.5

MT6 6 6 55 (5) 55 0 - 2.4 6.6

MT10 10 10 930 935 0.53 948.4 155.8 156.6
MT20 20 5 1165 (4) 1165 0 1166.8 I60 .1 260.2

ORB1 10 10 1059 1064 0.47 1080.0 157.6 166.1
ORB2 10 10 888 889 0.11 893.4 136.4 137.7
ORB3 10 10 1005 1016 1.09 1032.2 157.3 160.5
ORB4 10 10 1005 1013 0.79 1018.2 156.8 158.8
ORB5 10 10 887 889 0.22 895.8 140.1 141.1

Tables 3 and 4 show that our tabu-search algorithm finds an optimal solution
for 33 of 46 problems for which the optimal solution is known. For the 13 remaining
problems, the distance from the optimum (tuY,%) is smaller than one percent, with
only one exception: problem ORB3, having AZ% = 1.09. Concerning the 7 open
problems, algorithm TS improves the best known upper bound for 5 of them. The
larger value of AZ% associated with those instances is probably due to the lower
bound value, which is generally not so close to the optimum. Comparing the value
Zt,,~t with value Zav, we can see that algorithm TS is quite robust O.e. the differences
between the solution values of the runs are small) and the quality of the solutions
is weakly dependent upon the random choices. The computing times are generally
small (no run required more that 6 minutes) and increase almost linearly with the
number of operations for "difficult" problems. Moreover, the behavior of algorithm
TS is not different for square (n = m) or rectangular instances, or for different instances
of the same shape. With regard to the neighborhood N1, we compared our algorithm
with the serial version of the tabu search proposed by TaiUard [17]. Our computational
experience with that approach, with a time limit equal to Tav as a stopping criterion,
showed that the neighborhood N1 leads to good solutions for squared instances, but
definitely gives poor results for the "difficult" rectangular ones (i.e. MT20 and
LA26-30). This is because with neighborhood N1 a local search algorithm spends
a lot of time making unfruitful moves, i.e. changing the order of operations internal
to critical sequences. On the other hand, neighborhood N2 has a weaker theoretical

250 M. DelrAmico, M. Trubian, The job-shop scheduling problem

Table 4

Problem Opt Z~t A7~% Z,~ T,, T,,~
n m (LB. l iB)

LA01
LA02

LA03

LA04
LA05

LA06

LA07
LA08

LA09

LA10

LA11

LA12

LA13
LA14

LA15

LA16

LA17

LA18

LA19
LA20

LA21

LA22

LA23

LA24

LA25
LA26

LA27

LA28

LA29

LA30
LA.31
LA32

LA33

LA.34

LA35

LA36

LA37
LA38

LA39

LA40

10 5 666 (5) 666 0 - 0.1 0.5

10 5 655 (5) 655 0 - 18.8 54.4

10 5 597 (4) 597 0 598.2 21.6 38.3

10 5 590 (5) 590 0 - 32.2 35.1
10 5 593 (5) 593 0 - 0.3 0.6

15 5 926 (5) 926 0 - 0.3 0.6

15 5 890 (5) 890 0 - 0.6 1.1
15 5 863 (5) 863 0 - 0.3 0.5

15 5 951 (5) 951 0 - 0.2 0.5

15 5 958 (5) 958 0 - 0.2 0.4

20 5 1222 (5) 1222 0 - 0.4 0.5

20 5 1039 (5) 1039 0 - 0.2 0.6

20 5 1150 (5) 1150 0 - 0.4 0.5
20 5 1292 (5) 1292 0 - 0.4 0.6

20 5 1207 (5) 1207 0 - 1.2 4.4

10 10 945 (2) 945 0 946.0 97.4 157.2

10 I0 784 (5) 784 0 - 21.7 32.7

10 10 848 (5) 848 0 - 63.1 90.5

10 10 842 (1) 842 0 846.6 103.8 128.8
10 10 902 (4) 902 0 903.0 71.7 132.7

15 10 (1040, 1050) 1048 0.76 1057.0 198.8 204.3

15 10 927 933 0.64 936.6 191.4 202.2

15 10 1032 (5) 1032 0 - 1.8 4.4

15 10 935 941 0.64 943.8 181.8 183.3

15 10 977 979 0.20 980.4 191.7 193.3

20 10 1218 (5) 1218 0 - 22.1 34.4

20 10 (1235, 1269) 1242 0.56 1252.4 254.2 256.6

20 10 1216 (3) 1216 0 1216.8 186.4 260.5

20 10 (1120, 1195) 1182 5.53 1194.6 281.3 311.6
20 10 1355 (5) 1355 0 - 10.4 18.8

30 10 1784 (5) 1784 0 - 2.1 2.3
30 10 1850 (5) 1850 0 - 2.2 2.9

30 10 1719 (5) 1719 0 - 1.8 2.4

30 10 1721 (5) 1721 0 - 5.1 7.8

30 I0 1888 (5) 1888 0 - 1.3 2.4

15 15 1268 1278 0.78 1289.4 238.4 240.1

15 15 1397 1409 0.85 1423.0 242.2 250.5
15 15 (1171, 1184) 1203 2.73 1210.0 256.6 291.6

15 15 1233 1242 0.72 1254.8 237.8 266.6

15 15 1233 (1) 1233 0 1235.4 236.6 250.5

M. Dell'Amico, M. Trubian, The job-shop scheduling problem 251

support (the connectivity property does not hold) and furthermore, a tabu-search
algorithm, both with the complete version of N2 as proposed in [12] and with the
restricted one (only one arc reversed at each iteration), leads to good solutions for
rectangular and square instances of small size and it becomes increasingly worse than
our method for instances of larger size (i.e. LA26-30 and LA36-40).

The simulated annealing approach of Van Laarhoven et al. [18] produces
solutions with values comparable to the one of TS only with very large computation
times (greater than 5200 seconds of a VAX-785 for the instances LA36-40). The
simulated annealing algorithms of Matsuo et al. [12], which is a spurious implementation
of this approach mixed with a local search technique, is always dominated by TS
with the only exception of instance LA22.

With regard to computation times, the best branch and bound algorithms
presented in the literature show a strong dependence on the instance, for problems
of the same size, and on the shape (all but one of the seven open problems have
n > m). Moreover, the computation times become enormous for some of the instances
LA21-30 and LA36-40 (more than 240,000 seconds on a Sun 4/20 workstation).

6.2. FINAL REMARKS

In this paper, we have presented a tabu-search based algorithm for solving
the job-shop scheduling problem and a new heuristic procedure for generating
feasible starting solutions. Our approach uses two new powerful neighboring structures
for which we proved the connectivity property, which is that, given any feasible
solution, there always exists a sequence of transitions inside the neighborhood
which leads to a global optimum.

We ran our algorithm on a set of 53 benchmark problem instances. In many
cases we found the optimal solution, and in others the distance from the optimum
was very small, exhibiting a robustness not common to previously presented local
search based algorithms or exact branch and bound methods. The computing times
required by our algorithm are small, never exceeding 6 minutes for a single run.

We believe that it is possible to tune the algorithm in order to increase the
number of optimal solutions found maintaining a low threshold to the maximum
computation time allowed. There are two research directions: decreasing the level
of randomization and increasing the use of memory structures of the long-term type.

Acknowledgements
We are indebted to Professor Francesco Maffioli and Professor Jan Karel

Lenstra for useful suggestions, and to Professor William Cook who provided us
with data sets of job-shop test problems.

References

[1] J. Adams, E. Balas and D. Zawack, The shifting bottleneck procedure for job-shop scheduling,
Manag. Sei. 34(1988)391-401.

252 M. Dell'Amico, M. Trubian, The job-shop scheduling problem

[2] D. Applegate arid W. Cook, A computational study of the job-shop scheduling problem, ORSA J.
Comput. 3(1990)149-156.

[3] P. Brucker, B. Jurisch and B. Sievers, A fast branch and bound algorithm for the job-shop scheduling
problem, Internal Report 136, Fachbereich MathematikAnformatik, Universi~t Osnahrtlck (1991).

[4] L Carlier and E. Pinson, An algorithm for solving the job-shop problem, Manag. Sci. 35(1989)
164-176.

[5] T. Feo, K. Venkatraman and J.F. Bard, A GRASP for single machine scheduling with due dates and
earliness penalties, Internal Report, OR Group, Department of Mechanical Engineering, University
of Texas, Austin, "IX (1989).

[6] M.R. Garey, D.S. Johnson and R. Sethi, The complexity of flowshop and jobshop scheduling, Math.
Oper. Res. 1(1976)117-129.

[7] F. Glover, Tabu search, Part I, ORSA J. Comput. 1(1989)190-206.
[8] F. Glover, Tabu search, Part II, ORSA J. Comput. 2(1990)4-32.
[9] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rirmooy Kan, Optimization and approximation

in deterministic sequencing and scheduling: a survey, Ann. Diser. Math. 5(1979)287-326.
[10] J.P. Hart and A.W. Shogan, Semi-greedy heuristics: an empirical study, Oper. Res. Lett. 6(1987)

107-114.
[11] S. Lawrence, Resource constrained project scheduling: an experimental investigation of heuristic

scheduling techniques, GSIA, Carnegie-Mellon University (1984).
[12] H. Matsuo, C.J. Suh and R.S. Sullivan, A controlled search simulated annealing method for the

general jobshop scheduling problem, Working Paper 03-44-88, Graduate School of Business, University
of Texas, Austin, TX (1988).

[13] J.F. Muth and G.L. Thompson, Industrial Scheduling (Prentice-Hall, Englewood Cliffs, 1963).
[14] R. Nakano and T. Yamada, Conventional genetic algorithm for job shop problems, Proc. 4th Int.

Conf. on Geneting Algorithms, San Diego, CA (1991) pp. 474-479.
[15] S.S. Panwalker and W. Iskander, A survey of scheduling rules, Oper. Res. 25(1977)45-61.
[16] B. Roy and B. Sussmann, Les Probl~mes d'ordonnancement avec contraintes disjonctives, Note DS

n.9 bis, SEMA, Montrouge (1964).
[17] E. TalUard, Parallel taboo search technique for the jobshop scheduling problem, Internal Report

ORWP 89/11, D6partement de Math6matiques, Ecole Polytechnique F6d~rale de Lausanne, Lausanne
(1989).

[18] P.J.M. van Laarhoven, E.H.L. Aarts and J.K. Lenstra, Job shop scheduling by simulated annealing,
Report OS-R8809, Centre for Mathematics and Computer Science, Amsterdam (1988).

[19] S.M. Johnson, Optimal two- and three-stage production schedules with setup times included, Naval
Res. Logist. Quart. 1(1954)61-68.

