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Abstract  

A hierarchical algorithm for the flexible job shop scheduling problem is described, 
based on the tabu search metaheuristic. Hierarchical strategies have been proposed in the 
literature for complex scheduling problems, and the tabu search metaheuristie, being able 
to cope with different memory levels, provides a natural background for the development 
of a hierarchical algorithm. For the case considered, a two level approach has been 
devised, based on the decomposition in a routing and a job shop scheduling subproblem, 
which is obtained by assigning each operation of each job to one among the equivalent 
machines. Both problems are tackled by tabu search. Coordination issues between the two 
hierarchical levels are considered. Unlike other hierarchical schemes, which are based on 
a one-way information flow, the one proposed here is based on a two-way information 
flow. This characteristic, together with the flexibility of local search strategies like tabu 
search, allows to adapt the same basic algorithm to different objective functions. Preliminary 
computational experience is reported. 

1. Introduct ion:  the flexible j o b  shop scheduling problem 

In the classical Job Shop (JS) scheduling problem [15] the process plan o f  
a part consists o f  the sequence of  the machines the part must visit: there is an a 
priori assignment of  operations to machines. In the Flexible Job Shop (FJS) scheduling 
problem the assignment of  operations to machines is not a priori fixed. For  each 
job a process plan is given consisting of  a sequence of  operations. For  each operation 
a set o f  equivalent machines is available with possibly different processing times, 
and a joint  routing and scheduling problem must be solved. 

The problem is characterized by the following data: 

• a set of  jobs  Ji(i = 1 . . . . .  N); 

• a set o f  machines mi( j = 1 . . . . .  M); 

• for each job  Ji a sequence ~i o f  n i operations is given forming its process 
plan; the j th  operation ( j  = 1 . . . . .  ni) of  j ob  Ji is denoted by oij; 

• for each operation oij the set ~gij o f  machines able to perform it is given; 
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• for each machine mt ~ %ij able to execute operation oij, a processing time Pijt 
is given (it may be the case that the processing time is the same for every 
machine in ~gij or not). 

The problem consists of: 

• a routing subproblem, that is, assigning each operation oii to a machine 

• a scheduling subproblem, that is, sequencing the assigned operations on each 
machine in order to obtain a globally feasible schedule minimizing a given 
objective function. 

A wide class of objective functions can be devised based on the completion 
of the jobs. Let Ci be the completion time of Ji; here we will consider the times 

following two objective functions: 

• minimum makespan, i.e. 

min(  max Ci); 
i = l  . . . . .  N 

• minimum (total) weighted tardiness, i.e. 

N 

m i n ~  ofT/, 
i=1 

where the tardiness Ti = max {0, Ci - dl } is the amount by which the completion 
time exceeds the due date d i and the weight vi measures the priority of jobs. 

These objective functions have been chosen since they seem to be good 
representatives of the different evaluation criteria that could be considered: the first 
one deals with machine utilization issues and is of the minmax type, the second 
one deals with customer service and is of the minsum type. The focus of the paper 
is on the minimum makespan, which is the objective function traditionally considered 
in most literature on JS/FJS scheduling, but the possibility of adapting the proposed 
method to the minimum weighted tardiness has been a major concern. 

1.1. OVERVIEW OF THE LITERATURE 

When facing a complex problem, like scheduling a flexible job shop or a 
flexible manufacturing system (FMS), two basic approaches are available. 

(1) A concurrent approach, which is based on the idea of solving the routing and 
scheduling problems together; this approach is followed for example in [22, 28]. 

(2) A hierarchical approach, the more common one, which is based on the idea 
of decomposing the original problem in order to reduce its complexity. This 
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approach is followed, for example, in [2, 5, 11, 38]. The decomposition into 
subproblems may be based on hierarchical control ideas [2], on the statement 
of a logical sequence of subproblems [11,38] or on the separation of "easy" 
and "difficult" constraints [5]. In the FJS case the simplest hierarchical approach 
is based on the observation that when a routing is chosen, the flexible job 
shop problem turns into the classical job shop problem. Therefore routing and 
scheduling can be separated. Hierarchical architectures can be further classified 
according to the information flow among the different levels: in a one-way 
scheme a higher level problem is first solved, and then a lower level problem 
is solved once; alternatively, in a two-way approach, there is an iteration 
between the two steps, and from the solution of the lower level problem some 
indications are obtained for the solution of the higher level problem. The 
architecture described here can be classified as a two-way one; another example 
of a two-way hierarchical scheme can be found in [9]. 

It is worth noting that often a one-way scheme is feasible only if the scheduling 
objective is somewhat surrogated by an objective at the higher hierarchical levels: 
for example, balancing the workloads and then finding a schedule minimizing the 
makespan [38] is a sensible approach, since balancing the workloads means minimizing 
the makespan after having relaxed the precedence constraints among the operations 
of the process plan of each part. In the context of lot sizing by family aggregation 
and disaggregation [40], the aggregated objective function is essentially the same 
as the disaggregated one. However, when dealing with due dates, it is not obvious 
how to surrogate such an objective at the higher hierarchical level. 

Advocates of the different approaches reason in terms of quality of the solution 
obtained, computational complexity and so on. However, many important practical 
aspects are usually overlooked. In fact, the Operations Research practitioner must 
face real-life issues such as the difficulty in collecting the data, the lack of a clear 
statement of the problem (i.e. of its constraints and of the objective), the difficulty 
of implementing the devised algorithm in software, and the difficulty of gaining the 
commitment of  some managers. 

All the issues lead to the necessity of being able to develop a working 
prototype quickly and then to refine it without disrupting its structure. The solution 
approach must therefore be: 

• easy to implement; 

• simple enough to be understood by the management; 

• able to allow some form of interaction with the user; 

° sufficiently general to allow low-effort adjustments (e.g. if it is realized that 
the wrong objectives have been chosen); 

• open to future improvements; 

• able to yield reasonably good solutions with a reasonable computational effort. 
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Local search algorithms (see section 2), such as simulated annealing [23,41] 
and tabu search [16,17], seem very well suited to meet the above requirements. 
Indeed, the amount of literature devoted to applications of local search to scheduling 
is growing: applications of simulated annealing are described in [6, 32, 42], whereas 
tabu search has been adopted in [4, 18,24-26,39,44,45] (this list of references is 
far from complete). 

The tabu search metaheuristic has been adopted here for many reasons, among 
which are the following: 

• it enjoys the generality and conceptual simplicity of local search based algorithms; 

• it can be used as a hierarchical algorithm due to its ability to deal with 
different memory levels (e.g. short, medium and long term memory); according 
to the principle of increasing-precision/decreasing-intelligence [36], the 
hierarchical structure allows to isolate the more specific knowledge in the 
higher levels: these can be modified or improved without affecting the lower 
levels; 

• it actually encompasses a range of different implementations, which can be 
rather naive or quite sophisticated, thus allowing relatively smooth enhancements. 

The purpose of this paper is to demonstrate these points. 

1.2. OVERVIEW OF THE PAPER 

Section 2, which is included for the sake of completeness, reviews some 
heuristic principles which can be used for the FJS problem, including dispatching 
rules (subsection 2.1) and the disjunctive graph representation (subsection 2.2). 

Section 3 is devoted to the description of a hierarchical architecture for the 
FJS problem, based on the decomposition into a job shop scheduling subproblem 
(subsection 3.1) and a routing subproblem (subsection 3.2); two interaction schemes 
between the subproblems are discussed, resulting in a one-way and a two-way 
architecture. The emphasis is on the minimum makespan problem, but the adaptability 
of the proposed method to the minimum weighted tardiness problem is the subject 
of subsection 3.3. 

In section 4 limited (although promising) computational results are described; 
in particular, issues related to the coordination of the two hierarchical levels are 
discussed in subsection 4.2. 

Finally some conclusions are drawn in section 5, where directions for further 
research are outlined. 

2. Heuristic principles for flexible job shop scheduling 

The job shop scheduling problem is known as one of the hardest discrete 
optimization problems. The FJS scheduling problem is even harder. It is, therefore, 
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natural to look for heuristic algorithms able to provide good solutions for this 
problem. 

Scheduling problems related to a FJS has been studied (among others) in 
[10, 12, 20, 30, 37]. It is not the purpose of this section to review these approaches 
in detail: it is rather meant to describe which general heuristic principles can be 
used for the solution of the FJS problem. 

Usually general heuristic algorithms are classified as follows [35]. 

• Truncated exponential schemes 

They are derived from exact algorithms, when the conditions assuring the 
optimality of the solutions are relaxed: an example is a heuristic version of the 
branch and bound methods. In an exact branch and bound scheme for a minimization 
problem ~ ,  a subproblem @k of @ can be eliminated from further consideration only 
if a lower bound Ls(~D for its optimal value is found which is not less than the 
value of a known upper bound Us(~) for the optimal solution of ~ .  In a truncated 
exponential scheme one relaxes the condition 

by requiring only 

t-B( k) >-- Ua( ) 

Ls(~D > (1 - e) UB(~), 

where 0 < e < 1. Unlike other heuristic strategies, truncated exponential schemes 
provide a guarantee on the quality of the solution found: i.e. one is sure to find a 
solution within a given e% from the optimal one. However, truncated exponential 
schemes require good lower bounding procedures like their exact counterpart, which 
is not always possible with reasonable computational efforts and is usually highly 
problem dependent. Therefore, they will not be considered here. 

• Greedy algorithms 

In this class of methods a discrete optimization problem is dealt with as a 
sequential decision problem in which the locally optimal decision is taken at each 
step, usually at the expense of global optimality. Very similar to greedy algorithms 
are the well-known dispatching rules [34], which assign a (possibly time-dependent) 
priority to each job waiting on a machine. Actually some dispatching rules are 
obtained by applying a priority discipline which is optimal for a single machine. 
Some rules are treated in subsection 2.1. 

In order to reduce the myopy of the greedy algorithms, one could consider 
at each step not only the best decision, but some among the best ones: this is the 
idea behind the beam search method [33]. In [10] a beam search strategy is used 
to minimize the makespan in a FMS similar to the FJS considered here (there, 
transportation times are considered). The algorithm relies on the concept of the 
critical path in the graph of operation precedences described in [3] for the job shop 
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problem. This concept is heavily used in the following, and, for those unfamiliar 
with it, it is briefly described in subsection 2.2. 

• Local search algorithms are based on the idea of exploring the set of feasible 
solutions by perturbing a given solution and comparing the new solution with the 
old one. The main advantage of this idea is that, at least in principle, it works for 
any objective function. 

The simplest local search algorithm is local improvement. Given a current 
feasible solution whose cost is Cou, a simple perturbation is applied to it, obtaining 
a candidate solution slightly different from the old one (a solution in its neighborhood). 
Let 

AC = C,,w - Cou 

be the difference between the cost of the candidate solution and the current one. 
When AC < 0, i.e. the candidate solution is the better than the current one, the old 
solution is discarded in favour of candidate solution. The new current solution is 
perturbed and the cycle repeats until no improving candidate is found and a locally 
optimal solution is obtained. To avoid getting stuck in a local minimum, schemes 
like simulated annealing [23,41] and tabu search [16, 17] have been proposed. 

2.1. DISPATCHING RULES 

Dispatching rules are a distributed sequencing strategy, by which a priority 
is assigned to each job waiting for service on a machine: when the machine is ready 
to process a job, the one with maximum priority is selected. 

Some dispatching rules are applications of rules which are optimal for the 
single machine case; others are based on heuristic insights into the scheduling 
problem. 

In the FJS case, dispatching rules can also be used for the routing problem: 
when the operation oij of the process plan of Ji is to be executed, Ji is considered 
as waiting on each machine mt e ~q. The operation is assigned to the first machine 
on which Ji is ranked at top priority and removed from the queues of other machines. 

There is a large number of such rules, oriented to different objective functions. 
In [34] a survey of dispatching rules can be found; their application in manufacturing 
systems enjoying a certain degree of flexibility is described in [21, 29]. 

Here the following rules will be considered: their purpose will be to find an 
initial schedule and to provide a comparison for the proposed scheduler. 

• The Shortest Processing Time (SPT) rule, by which the priority of job Ji 
waiting on machine mt for the execution of operation oij is 

1 
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When a weight is given to a job (as in the weighted tardiness case), the 
weighted SPT (WSPT) rule can be used, which assigns a priority 

I) i 

Pijt " 

• The Least Work Remaining (LWKR) rule, which assigns a priority 

qe s~ij "Piq 

where sdij is the set of operations following oij in the process plan of Ji and 

1 ,~  Pigt 
P/q = ~utlte~, ~ 

is the mean processing time* for operation oiq (l~iql denotes the cardinality 
of the set %iq). 

• The Most Work Remaining (MWKR) rule, which assigns a priority 

q e ,~ ij 

• The Earliest Due Date (EDD) rule, which assigns a priority 

1 

• The Apparent Tardiness Cost (ATC) rule, proposed in [43], For the JS case, 
the priority of Ji on machine mj at time t is 

kp 

where X+~=max{O,X}, Plj is (for the JS case) the processing time of Ji on 
mj, k is a given parameter, p is the mean processing time of the jobs waiting 
on mj at time t, ,~ij is the set of machines on which Ji must be processed 

*This rule, like othe~ ones, has been processed for the JS case; to adapt it to the FJS case, a possible choice 
is to estimate the processing time of next operations, for which no routing has been taken yet, as the 
mean processing time over the alternative machines. 
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after mj, and piq and Wiq are the processing time and the estimated waiting 
time, respectively, on the next machines. 

The numerator of the argument of the exponential is an estimation of the 
time slack remaining before missing the due date. Note that when the shop 
is heavily loaded, and the job is late, the slack is negative and the ATC rule 
turns into the WSPT rule. 

To estimate the waiting time, the following formula is suggested in [43]: 

Wiq= bpiq, 

where b is an appropriate parameter. 
This rule can be adapted for the FJS problem as follows: 

vi 
Pijl 

exp 

where j refers to the operation oij, ~ij is the set of operations following oij, 
and ":iq is then the mean processing time for each operation oiq, computed as 
in the LWKR and MWKR cases. 

Again, the waiting time for operation O~q is estimated as 

The last rule, unlike the previous ones, is time dependent. Furthermore it is 
an example of a rule depending on some parameters, which should be provided by 
the user. Local search algorithms can be used to learn such parameters by repeatedly 
simulating the application of the rule, thus yielding a one-way hierarchical scheduler 
(although the module setting the weights is run iteratively, we cannot speak of  a 
two-way architecture unless the scheduling results are effectively used to guide the 
learning process). In [13] genetic algorithms (another class of local search algorithms, 
see [19]) are proposed for this purpose. 

2.2. THE DISJUNCTIVE GRAPH REPRESENTATION FOR THE JOB SHOP PROBLEM 

The disjunctive graph representation was introduced as a useful representation 
of operations precedence in the context of minimizing the makespan in a job shop 
[3]. 

We will not give a formal definition of the disjunctive graph (it can be found 
e.g. in [42]), but a simple example will illustrate its role in the optimal or heuristic 
solution of JS problems. 

Given a JS problem, we associate to it a disjunctive graph as follows: 
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• for each operation of  each job a node is created with a weight  equal to its 
processing time; 

• two d u m m y  nodes,  corresponding to an "initial" and a "final" operation are 
created with null weight; 

• an arc is created from the initial node to the nodes corresponding to the first 
operation of  each job; for each operation of each job an arc is created from 
the node corresponding to that operation to the node corresponding to the 
next  operation (the last operation of  each job is l inked to the final node); such 
arcs represent technological  precedence constraints among operations o f  the 
same job; 

• the nodes corresponding to operations to be executed on the same machine  
are l inked to each other (yielding a complete subgraph for each machine)  by 
"disjunctive" arcs, i.e. arcs whose direction must  be chosen in order to represent 
precedence constraints induced by sequencing decisions on each machine.  

In fig. 1 a disjunctive graph is shown (for simplicity the node weights are omitted). 

Fig. 1. A disjunctive graph for a 3-jobs 3-machines job shop problem. Nodes 0 artd 9 
correspond to the initial and final dummy operations. There are three jobs J1,-/2, ./3 
whose process plan consists of operations (1,2,3), (4, 5) and (6,7, 8), respectively. 
Operations {1, 6} must be executed on the same machine; similarly operations {2,5,8} and 
{3, 4, 7}. Dotted lines show the disjunctive arcs corresponding to the sequencing decisions 
to be taken for each of these operation sets. The processing times are not shown. 

When the direction of  disjunctive arcs is chosen, a directed graph is obtained: 
if the directed graph is acyclical, it represents the operation precedences of  a 
feasible schedule. The weight  of  a path connecting the first and the final nodes is 
the sum of  the weights o f  the traversed nodes; the maximum-weigh t  path is the 
critical path and its weight  equals the makespan of  the corresponding schedule. 
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One of  the possible corresponding precedence graphs obtained for our example 
is shown in fig. 2. 

) 

) 
Fig. 2. An operation precedence graph for a job shop problem. The directions of 
the disjunctive arcs have been chosen. The resulting precedence graph corresponds 
to the following sequences on the machines: (Ji, J3), (J1,J2,J3) and (J1,J2,J3). 

Actually, the precedence graph shown in fig. 2 is redundant, since it is 
sufficient to consider, among the precedence constraints between operations on the 
same machines, only the precedence constraints among adjacent jobs in the sequence; 
due to an obvious "triangularity" property, the critical path of this reduced graph 
is the same as the previous one. As stated in [1], considering the reduced graph has 
a great impact on any algorithm exploiting the disjunctive graph idea. The reduced 
precedence graph is shown in fig. 3. 

,) 

Fig. 3. Reduced operation precedence graph corresponding to the graph shown in fig. 2. 
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The disjunctive graph has been used both for special purpose heuristic algorithms 
for the JS problem [1] and for local search based methods [4,39,42]. This is due 
to two reasons: 

• in order to reduce the makespan, the operations on the critical path of the 
precedence graph must be rescheduled; 

• reversing an arc on the critical path never results in a cyclical graph (see 
subsection 3.1) 

The disjunctive graph has also been exploited for the FJS problem: the routing 
can be improved by rerouting critical operations (i.e. operations whose corresponding 
nodes lie on the critical path) to alternative machines (see subsection 3.2). A beam 
search based scheduling approach based on this idea has been proposed in [10]. 

3. A hierarchical tabu search architecture for the flexible job shop problem 

A characteristic of tabu search is its ability to cope with different hierarchical 
memory levels, acting on different time scales (e.g. short, medium and long term 
memory). 

The FJS problem lends itself to a hierarchical scheme since routing and 
scheduling subproblems can be separated. Once a routing is chosen, a job shop 
problem remains to be solved. 

It is therefore natural to think of a two-level tabu search algorithm, with one 
level dealing with routing issues and the other one dealing with job shop scheduling. 
This decomposition approach is also followed in [11, 12, 20, 37] among others. In 
[20] a branch and bound procedure for the optimal solution of the joint routing and 
scheduling problem is described, and, by comparing it with the decomposition 
approach, it is claimed that the deterioration of the solution obtained with the 
second method is limited. 

A tabu search based FJS scheduler can be structured on three layers: 

• long term memory, which deals with routing selection; 

• medium term memory, which could specify the neighborhood structure, set 
some parameters of the tabu navigation algorithm and monitor the search 
progress; at present, in the prototype scheduler developed, the functionalities 
of this level have not been exploited; however, as shown in the following, 
both preliminary computational experience with the makespan problem and 
the need to extend the algorithm to the weighted tardiness problem call for 
a full development of this memory level; 

• short term memory, which deals with low level tabu navigation for the job 
shop problem given a neighborhood structure. 

In order to implement such a scheduler, the following issues must be considered: 
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(1) how to find an initial routing and an initial schedule: to this aim dispatching 
rules have been used; 

(2) how to solve the JS scheduling subproblem (see subsection 3.1); 

(3) how to solve the routing subproblem (see subsection 3.2); 

(4) how to coordinate the scheduling and the routing levels (see subsection 4.2). 

3.1. SOLVING THE JOB SHOP SCHEDULING SUBPROBLEM 

There is a significant amount of literature on solving the JS problem, concerning 
both exact and heuristic methods: clearly, any heuristic algorithm, like the shifting 
bottleneck procedure [1], could be adopted; for small problem instances one could 
even use an exact method. However, a local search approach enjoys the following 
advantages: 

• it can be adapted to different objective functions more easily; 

• as shown in subsection 4.2, it is not necessary to find an extremely good 
solution for the JS subproblem, but it must be done quickly; the tabu search 
approach, with respect to similar strategies like annealing, is very appropriate 
to this aim, since it keeps the search process biased towards good solutions. 

These reasons justify the selection of a tabu search approach for the JS subproblem. 
Having selected the tabu search metaheuristic, the neighborhood structure 

must be chosen. The most natural neighborhood structure is obtained by exchanging 
two adjacent jobs in the sequence on a machine. Other types of neighborhood 
structures are based on exchanging arbitrary jobs and on shifting and inserting 
operations, as suggested in [24] for a single machine and in [31,45] for a permutation 
flow shop case. 

When choosing a neighborhood structure one has to pay attention to the 
following issues. 

• The size of the candidate set must be limited. When dealing with a difficult 
scheduling problem, considering all the possible operations swaps would 
result in a huge neighborhood to explore. Furthermore many moves in this 
neighborhood do not affect the objective function: in the JS case, operations 
not lying on the critical path do not affect the makespan. 

Therefore the neighborhood must be somewhat restricted, without negatively 
affecting the performance of the search process. In the JS case, when the 
objective function is the makespan, a suitable neighborhood structure is obtained 
by considering only the operations lying on the critical path, whose length 
is the makespan [4, 39, 42]. Similar issues are considered for a parallel machines 
case in [18,26]. 

• Also the feasibility of the candidate solutions is an issue in complex problems. 
In a single machine case with no precedence constraints, any schedule obtained 
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by operations swapping is feasible. However, in the job shop case, arbitrary 
perturbations of the sequence on a machine can yield a globally infeasible 
schedule, i.e. a schedule whose precedence graph is cyclical, even if the 
single machine schedules are feasible (see fig. 4). 

Fig. 4. A cyclical precedence graph. Job J1 must visit machines 
m 1, m 2 for the execution of  operations 1 and 2. Job J2 must visit 
machines m, z, m I for the execution of operations 3 and 4. Operations 
0 and 5 are dummy. The sequence on machine m 1 is (J2,Jl) .  The 
sequence on machine n~ z is (J1,J2). A deadlock situation occurs. 

It seems reasonable to avoid scrambling the sequences too much, since 
many infeasible sequences would result; therefore swapping nonadjacent 
operations or shifting/'mserting will not be considered. Even if adjacent operations 
swapping is considered, one has to make sure that the resulting precedence 
graph is acyclical. In the minimum makespan case, the critical path of the 
precedence graph is again helpful: it can be shown that reversing an arc on 
the critical path never results in a cyclical graph [42]. 

The above points suggest the following possible neighborhood structures. 

(1) In neighborhood NI a random sampling of the potential exchanges is selected; 
this neighborhood structure is characterized by the size of the sample set. 

(2) In neighborhood ,/~'2 a job is randomly selected and it is exchanged on each 
machine with the adjacent jobs in each machine sequence. 

(3) In neighborhood dq3 a machine is randomly selected and the complete set of 
job exchanges on that machine is considered. 

(4) In neighborhood A~4 operations on the critical path are considered for the 
exchange. 

The second and the third structure are based on a sort of focusing strategy 
in order to restrict the search. The first neighborhood structure tries to limit the 
neighborhood size while keeping a sufficient degree of exploration capability by 
randomization. 
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A very nice feature of the first three neighborhoods is that, at least in principle, 
they work for every objective function, whereas the fourth one is makespan oriented; 
on the other hand they require, for each move, a feasibility check: however, if  each 
move is evaluated by exactly computing the resulting makespan, this check is 
performed concurrently with the makespan evaluation. 

Given these neighborhood structures, it is natural to choose as tabu attributes 
of  a move the pair of  jobs and the machine on which they are swapped: when a 
move is applied a tabu record with this information is added to the list of  taboos. 
The tabu status of  a move can be overridden if some aspiration criteria are satisfied. 
A simple choice is that the tabu status of a move is overridden if it yields an 
improvement over the current optimum. 

A pseudocode of  the resulting tabu navigation algorithm is given in fig. 5. 

job() { /* solution of job shop subproblem */ 

init~ob(); 
/* find an initial solution with a dispatching rule */ 

steps = O; 
/* number of steps */ 
lastimpr = O; 
/* number of steps since last improvement of the optimal solution */ 

stop = FALSE; 
while (stop == FALSE){ 

makelistO; 
/* make candidate list according to the current 

neighborhood structure */ 
select(); /* select best non tabu move */ 

steps++; 
lastimpr++; 
if (valcur< valopt){ 

store(); /* if new optimal solution store it */ 

lastimpr = O; } 
if (steps > MAXSTEPS) 

stop = TRUE; 
if (lastimpr > MAXSTAZ) 

switch-n(); 
/* if too many steps without 

improvement, change neighborhood structure */ 

Fig. 5. Pseudocode sketch of the tabu navigation algorithm 
for the job shop subproblem (short term level). 

The pseudocode shown is nothing more than a simple tabu navigation scheme. Only 
one comment is in order: when too many steps elapse without improving the current 
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optimum, the neighborhood structure is changed. After some computational experiments 
with the makespan problem, this strategy has been found rather ineffective 
(neighborhood ,N'4 is clearly the best one for the makespan case, so switching to the 
other ones usually does not give good results); in the present prototype, when no 
improvement is obtained, the solution of the JS subproblem is simply stopped and 
the routing is changed. However, in other cases switching the neighborhood structure 
could be useful. 

3.2. SOLVING THE ROUTING SUBPROBLEM 

In a hierarchical framework a routing is chosen and the resulting JS problem 
is solved. Since the solution of the JS problem requires a certain amount of computation, 
it is advisable to limit routing decisions to the "reasonable" ones. To this aim some 
knowledge is required, and a degree of dependence on the objective function is 
introduced. 

This is in accordance with the principle of increasing-precision/decreasing- 
intelligence [36], which states that at the lower hierarchical levels of an intelligent 
system computationally intensive activities are performed, requiting limited knowledge, 
whereas at the higher levels more judgement is needed. 

As noted in section 1.1, two basic types of hierarchical architecture can be 
devised: 

• a one-way architecture; 

• a two-way architecture. 

3.2.1. A one-way scheduler 

The cheapest way to solve the routing subproblem, concurrently with the 
scheduling subproblem, is by using dispatching rules. The schedule obtained can then 
be refined by a tabu search solution of the JS problem obtained by fixing the initial 
routing. Different rules can be used, depending on the objective function considered, 
or parametrized rules with different parameters setting (see subsection 2.1). 

The resulting architecture is shown in fig. 6. 
This scheduler is actually nothing more than a multiple start tabu search 

approach: it has been considered on one hand for comparison purposes (in section 4), 
and on the other one because it can be used both for minimizing the makespan and 
the total tardiness. 

A better approach to choose a routing, for the makespan case, would be using 
a balancing procedure like the one proposed (among others) in [20, 37]: the operations 
are assigned to the machine in order to evenly distribute the load, i.e. the maximum 
sum of the processing times of the operations assigned to each machine is minimized. 
The rationale behind load balancing is that it should avoid the creation of bottleneck 
machines, which would lower the utilization of other machines, with a corresponding 
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Select new rule 

Roufng and 
initial schedule 

===================================== ::::::::::::::::::::::::::::::::::::: 

Progress info 

Neighborhood and tabu 
parameters 

?:N, ~: 

Fig. 6. Overall architecture of the one-way hierarchical tabu search algorithm. 

increase in the makespan. However, balancing the machine loads allows to avoid 
static bottlenecks, whereas bottlenecks are dynamic. Furthermore, this improvement 
would again result in a one-way hierarchy. In order to cope with dynamic bottlenecks 
a two-way scheme must be devised. 

3.2.2. A two-way scheduler 

A two-way scheme for the makespan problem, able to identify and cope with 
dynamic bottlenecks, can be built by using again the critical path concept. Looking 
at the precedence graph of the solution of the JS problem, one can try to improve 
the machine assignment by reallocating operations on the critical path when alternative 
machines can be used. 

Using the same information exploited during the solution of the JS problem 
minimizes the programming effort. We just add a tabu navigation procedure for the 
long term level, where the taboos are simply a forbidden operation-machine pair. 
A pseudocode sketch of the resulting algorithm is given in fig. 7. To find an initial 
solution, a dispatching rule can be used. 
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fjs(){ /* solution of the flexible job shop problem */ 
steps = O; 
stop = FALSE; 
first = TRUE; 
while (stop == FALSE){ 
/* long term loop */ 

steps++; 
if (first == TRUE){ 

first = FALSE; 
route-prio () ; } 
/* dispatching rules are used for initialization */ 

else{ 
make_list(); 
/* make candidate list using informations 

about critical operations of the last 
optimal job shop solution */ 

select() ; } 
/* select best non tabu reallocation */ 

j o b ( )  ; 
if (valour < valopt) 

store(); 
if (steps > MAXSTEPS) 

stop = TRUE; 

Fig. 7. Pseudocode sketch of the tabu navigation algorithm for the routing subproblem (long term level). 

The reaUocation procedure adopted is rather simple. The optimal solution of  
the last JS subproblem is considered and its critical path is computed. For each 
operation on this critical path, the effect of  assigning it to one of  the alternative 
machines (if  any) is considered. For each alternative machine the best possible 
insertion point is chosen, i.e. the sequence of the new machine is shifted, the 
operation is inserted in every possible position (among those which do not result 
in a cyclical precedence graph) and the position yielding the lowest makespan is 
chosen for each operation-machine pair. 

Then the best non tabu operation-machine pair is chosen. When a machine 
is chosen a new long term memory tabu is added, forbidding the assignment o f  the 
reallocated operation to the old machine. As in the JS case the tabu status of  a move 
is overridden if  a new optimal solution results. 

The overall architecture is shown in fig. 8: the only difference between the 
architectures of  fig. 6 and fig. 8 is in the upward information flow between the JS 
and the routing subproblems. 
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data structures. The significance of this flexibility should not be underestimated: the 
foundation of the object oriented programming paradigm is that the data structures, 
and not the algorithms themselves are the key factors in software development and 
reusability [27]. Quite different schedulers can be built resting on the same basic 
data structures [7]. 

4. Computational results 

In order to evaluate the performance of the proposed architecture and to gain 
some insight into how it could be improved, a relatively restricted number of 
problem instances have been solved. 

Dispatching rules have been used both in order to find initial solutions and 
to compare the tabu based scheduler with another heuristic strategy. When experimenting 
with the dispatching rules, a difficulty has been found, which is usually overlooked 
in the literature: what should be done when two (or more) jobs have the same 
priority? A natural answer is to choose randomly. The computational experiments 
have shown that the effect of this random behaviour can be dramatic (the makespan 
can be almost doubled): this is probably due to the fact that each random choice 
influences not only the next scheduling but also the next routing decisions. In the 
following the best result found has been reported for each rule. 

4.1. RESULTS FOR THE MINIMUM MAKESPAN CASE 

The data were randomly generated using a uniform distribution between 
given limits; the limits of each example are shown in table 1. The results obtained 
with the tabu search schedulers, the one-way and the two-way ones, are compared 
with those obtained by dispatching rules. Only results obtained by applying neighborhood 
N4 are reported. The best results obtained by each method are shown in table 2: due 
to the random outcome of the dispatching rules, the best makespan is reported. 

The SPT and MWKR rules have been used to provide the tabu search based 
schedulers with initial solutions: in table 3 some information is shown about different 
initial and final solutions obtained by the two-way scheduler. Exact CPU times have 
not been reported, since the program has been implemented in order to be as 
interactive as possible (with graphical outputs and asynchronous interrupts from the 
user to change some parameters on line), with a corresponding increase in computational 
effort. In any case the elapsed times (on a 386-based PC) were limited, ranging from 
a few seconds to 12 minutes for the largest problem instances. The only exception 
has been the case mk l4 ,  which, when initialized with the SPT rule, required about 
25 minutes to reach a solution comparable to that obtained in a few seconds by 
initializing with the MWKR rule. 

In almost all cases the advantage of the proposed architecture is evident (in 
particular in cases ink10, ink13, ink15, which were the most difficult), but, obviously, 
a comparison with dispatching rules is not very conclusive. 
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Table 1 

Problem instances for the minimum mak~pan problem. 

njob nmac nop meq proc 

mkl |0  6 5 - 7  3 1 - 7  

ink2 10 6 5 - 7  6 1 - 7  

mk3 15 8 I 0 -  10 5 1 - 2 0  

ink4 15 8 3 - 10 3 1 - 10 
mk5 15 4 5 - I0 2 5 - I0 

ink6 10 15 15 - 15 5 1 - 10 

ink7 20 5 5 - 5  5 1 - 2 0  

ink8 20 10 1 0 - 5  2 5 - 2 0  

mk9 20 10 10-  15 5 5 - 2 0  

mklO 20 t5 10-  15 5 5 - 2 0  
mkl l  30 5 5 -  8 2 10-30  

mk 12 30 10 5 - 10 2 10-  30 

mkl3 30 10 5 - 1 0  5 10-30  
mkl4 30 15 8 - 1 2  2 10-30  

mkl5 30 15 8 - 1 2  5 10-30  

n j ob : number of jobs; 
nmac : number of machines; 
nop : miniraum and maxiraura number of operations per job; 
meq : maximum number of equivalent machines per operation; 
p r o c  : minimum and maximum processing time per operation. 

Table 2 

Best results for the minimum makespan problem. 

spt lwkr mwkr tabl tab2 

mk 1 65 76 54 49 42 
mk2 44 48 41 41 32 

mk 3 397 506 296 263 211 

ink4 109 121 89 89 81 

mk5 231 291 188 188 186 

rak6 128 143 139 128 86 

ink7 188 238 262 188 157 

rak8 670 1042 558 523 523 

mk 9 573 723 536 444 369 

mk I 0 536 627 524 363 296 

mkl l  760 957 716 716 649 

mk 12 698 899 640 565 518 

mkl3 821 887 542 542 478 
mk 14 1296 2046 715 694 694 

mk 15 974 985 477 448 383 

s p t  : shortest processing Lime rule; 
mwkr : most work remaining rule; 
lwkr  : least work remaining rule; 
t a b l  : one-way tabu search; 
t a b 2  : two-way tabu search. 
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Table 3 

Results of the two-way scheduler for the minimum makespan problem 
(mean values have been rounded to the nearest integer). 

Initialized by SPT Initialized by MWKR 

# Lb iw  5.m rb ~ rm # i b  iw 5.m rb ~ ,  x-m 

mkl 3 65 91 80 46 51 48 3 54 70 61 42 44 43 
mk2 4 49 61 54 32 36 33 4 41 48 44 36 40 38 
mk3 5 445 609 511 211 232 224 5 306 391 348 220 225 221 

ink4 5 115 157 142 81 102 90 2 100 104 102 97 104 100 

rak5 5 258 282 268 187 196 190 5 189 204 194 186 189 188 
mk6 5 141 174 152 86 96 91 6 151 191 168 103 120 111 

ink7 5 188 280 220 157 179 168 5 271 303 285 229 236 232 

rak8 3 713 894 831 523 538 528 3 558 632 595 523 523 523 

rak9 5 678 804 724 398 439 417 5 536 602 562 369 392 379 
mkl0 4 575 709 623 301 348 325 6 527 658 573 296 312 301 

rakl l  7 760 1104 873 649 692 668 3 716 736 725 597 712 707 
rakl2 8 729 1090 866 518 579 536 2 640 650 645 534 541 537 

raklS 5 1098 1349 1209 502 656 545 5 546 595 570 478 490 485 
mk14 3 1620 1743 1699 694 754 726 3 715 778 740 694 694 694 
mk15 3 1011 1337 1211 422 446 431 3 477 595 537 383 399 392 

# : number of  trials; 
5.b : best initial value; 
5.w : worst initial value; 
±m : mean initial value; 
rb  : best result; 
rw : worst result; 
rm : mean result. 

Although limited, the computational tests performed have been sufficient to 
draw some conclusions about the behaviour of the tabu search schedulers: such 
conclusions will act as guidelines for the implementation of a more refined tabu 
search scheduler to be compared with other heuristics proposed in the literature. 

The higher the flexibility (i.e. the number of equivalent machines per operation), 
the more the increase in complexity required by the two-way architecture is 
justified. 

The performance of neighborhoods ~z  and Ars for the makespan problem has 
been very poor. They are not good at improving a given solution (they do 
not exploit it well, unlike a clever neighborhood structure based on the 
critical path of the precedence graph), nor are they able to escape from a local 
minimum (they do not explore well, unlike a random sampling). Neighborhoods 
d¢ 2 and Ars seem "badly" focused. 
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• When the CPU time must be limited, a good initial solution, or at least not 
too bad a one, is helpful. However, only in a few cases the best solution has 
been obtained from the best initial schedule. Sometimes the SPT based schedules 
were consistently worse than those obtained by the MWKR rule, but the final 
solutions were systematically better: in such case a very quick and large 
improvement of the makespan was observed during the solution of  the first 
JS subproblem, and then the rerouting procedure achieved better improvements 
than in the MWKR case. This suggests the opportunity of  finding a good 
initial routing, rather than a good initial schedule: it is easier to improve the 
schedule than the routing. Therefore, it seems appropriate, for the makespan 
problem, finding an initial routing with a load balancing procedure, and then 
initializing the schedule. Further research will establish whether these conjectures 
are well founded. 

• Sometimes, the rerouting procedure resulted in an increase in the makespan, 
which led, after a few steps, to an improvement over the current optimum. 
This shows that often the value of  the objective function is not the only 
criterion to evaluate a move (see [25]). Furthermore, in a non-hierarchical 
approach, rerouting moves (which are moreover computationally expensive 
to evaluate) would be seldom selected with respect to rescheduling moves: 
this shows the need for a hierarchical scheme and a proper interlevel coordination 
approach. 

4.2. INTERLEVEL COORDINATION ISSUES 

The coordination of the hierarchical levels is clearly a fundamental issue in 
a two-way hierarchical architecture. 

In particular, a key question is how much time is worth spending in the 
solution of  the JS subproblem, once a routing has been selected: in other words, the 
JS scheduling problem must be solved to near-optimality (with a corresponding 
high computational effort) or a few iterations are enough? 

The problem can be somewhat clarified by drawing a similarity with 
unconstrained optimization of  a continuous function, i.e. 

minf(x) .  
X 

In this case, at each iteration a current point x ~, the solution can be improved by 
selecting a search direction s k and by minimizing the function along this direction: 

x k+l = a rgminf (x  k + cr.sk). 

In the steepest descent strategy, the search direction is parallel to the gradient of  
the function at the current solution (s t̀  = -  V f(xk)); the slow convergence, due to 
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a zigzagging behaviour of the steepest descent method is well known. To avoid 
zigzagging, a possible strategy is to restrict the step taken along the search direction 
(trust region methods, see e.g. [14]). 

In our case the role of the search direction is played by routing and the step 
selection corresponds to JS scheduling. 

In order to understand whether a sort of restricted step strategy could be 
useful in the FJS case, another computational test has been performed. The most 
difficult cases (i.e. ink10, rakl 3, mk]. 5) have been solved using the two-way architecture, 
changing the strategy employed for the JS subproblem solution. 

The program has always been stopped after 1000 steps, starting from the 
same initial solution obtained by the MWKR rule. The neighborhood 2f4 has been 
used with different parameters, specifying the maximum number of steps for each 
JS subproblem and the maximum number of steps without improving the current 
optimal solution (for the JS subproblem). The neighborhood AFt has also been 
experimented with: the size of the sample set was 40, i.e. 40 admissible moves were 
randomly selected. 

These results are shown in table 4. Although the number of experiments is 
extremely limited, the results are coherent and intuitively justified, leading to the 
conclusion that a restricted step approach performs better. Even a "bad" neighborhood 
like N~ can lead to a better result, in terms of solution quality, than a clever strategy 
spending too much time solving each JS subproblem: this does not imply that 
neighborhood ~4 is a useless subtlety, since, in order to obtain good result, the size 
of the sampled neighborhood must be suitably large, leading to longer CPU times. 

Table 4 

The influence of the effort in the solution of the JS subproblem 
for the minimum makespan case. 

m k l 0  305 319 305 318 314 
mk13 482 487 486 488 486 
mk15 397 406 403 415 407 

Ar~/~ : 25 steps (max 25 without improvement) 
./f~/so : 50 steps (max 50 without improvement) 
df~ IS° : 50 steps (max 25 without improvement) 
dq4 s°/l°° : 100 steps (max 50 without improvement) 
.hr~/zs : 25 steps (max 25 without improvement) 

with neighborhood dq4; 
with neighborhood At4; 
with neighborhood dr4; 
with neighborhood d¢4; 
with neighborhood d¢ 1. 

The results show that the role of solving the JS subproblem is not only to 
improve the current solution, but also to give some information on how to improve 
the routing, by finding good candidate operations for a rerouting. The experiment 
with neighborhood dq~ shows that even a random sampling strategy works well from 



18o P. Brandimarte, Flexible job shop scheduling 

this point of  view. Using a sophisticated heuristic algorithm or even (for small 
problem instances) an exact one would be a useless effort. 

A proper coordination strategy is therefore fundamental, and more refined 
approaches must be devised: the medium term level, which has not been developed 
in the present implementation, will be, therefore, a key topic of  further research. 

4.3. RESULTS FOR THE MINIMUM TOTAL WEIGHTED TARDINESS CASE 

For the weighted tardiness case, only the one-way scheduler has been 
implemented. The JS scheduler is initialized with a SPT schedule and with different 
ATC schedules obtained with different parameters: the best final result, which need 
not correspond to the best initial schedule, is reported. Neighborhood dql has been 
used. 

The tardiness weights were uniformly distributed between 1 and 3. The other 
data limits and the obtained results are shown in tables 5 and 6. Clearly, both the 

Table 5 

Problem instances for minimum total weighted tardiness problem. 

n job mac nop meq proc dd 

wtl I0 5 5 - 5 3 6- I0 20- 80 

wt2 20 5 5 - 5 3 6 - I0 20- 160 

wt3 20 I0 10- 15 3 10 - 30 50- I000 

wt 4 30 I0 I0- 15 3 I0 - 30 50 - 2000 

wt5 30 15 I0- 15 5 I0- 30 50- 1500 

njob : 
nnlac : 

nop : 

meq : 

proc : 

dd : 

number of jobs; 
number of machines; 
minimum and maximum number of operations per job; 
maximum number of equivalent machines per operation; 
minimum and maximum processing time per operation; 
minimum and maximum due date per job. 

Table 6 

Results for the minimum total weighted tardiness problem. 

edd arc tab1 

w t l  246 233 137 
wt2 1106 683 368 
wt3 18924 13990 1666 
wt4 766 616 307 

wt5 5990 2686 1209 

edd  : earliest due date rule; 
a t e  : apparent tardiness rule; 
t a b 1  : one-way tabu search. 
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computational experiments and the implemented scheduler are very limited, but the 
results show that there is a great potential of improvement, with respect to the 
results of priority rules, which can be obtained by a tabu search based scheduler 
developed according to the ideas in subsection 3.3. 

5. Conclusions and directions for further research 

A hierarchical tabu search architecture has been described and evaluated for 
the problem of routing and scheduling in a flexible job shop. 

Tabu search does not yield one algorithm, but a range of possible architectures 
which can exploit other simple or sophisticated heuristic principles (in our case 
dispatching rules and the critical path in the precedence graph), and can be adapted 
to different objective functions. The generality of the tabu search concept and its 
ability to move smoothly on a range of increasingly sophisticated implementations 
make it an interesting tool for real world application, when the Operations Research 
practitioner must deal with managers not willing to commit to very sophisticated 
but rigid algorithms. 

Further research is needed in order to assess the performance of tabu search 
for the FJS problem, since the computational results presented are far from conclusive. 
Some comparison must be made with other schemes, like for example, the beam 
search based one proposed in [10] for the minimum makespan problem. The author 
is not aware of any work concerning minimum total weighted tardiness in a flexible 
job shop. 

Future research will focus on better initialization strategies (e.g. by load 
balancing procedures for the makespan problem) and on the implementation of a 
two-way approach for the weighted tardiness problem. 

Furthermore, in the scheme proposed, only the basics of tabu search have 
been exploited: many directions are open to improve the performance. 

At present the whole set of candidate solutions is formed and then they are 
evaluated. Adaptive sampling strategies could be used by interleaving sampling 
and evaluations, in order to avoid a smaller or larger sample size than necessary. 

The coordination between the muting and scheduling levels should be carefully 
considered. The computational tests performed show that it is useless to 
spend much time optimizing a job shop schedule, and then to change routing: 
the amount of search should be limited in a clever way, as in restricted step 
methods for unconstrained optimization [14]. This calls for increased 
sophistication in the medium term memory level. 

Rerouting one operation considering the best possible insertion at each routing 
step needs to be the better strategy. More operations could be rerouted at 
once and one could avoid committing to what seems the best insertion. A 
possible strategy is to consider a set of possibilities, to allocate to each one 
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a limited amount of search and then to choose the initial solution for the new 
JS subproblem. 

Diversification approaches would be useful to avoid long useless chains of 
moves which sometimes can occur, as reported in [4, 18]. 

A final remark is in order about the flexibility of the proposed approach with 
respect to different objective functions: a research is currently in progress on the 
application of local search to multiobjective problems [8], which has its roots in 
such flexibility. 
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