
Annals of Operations Research 41(1993)157-183 157

Routing and scheduling in a flexible job shop
by tabu search

Paolo Brandimarte

Dipartimento di Sistemi di Produzione ed Economia delr Azienda, Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

A hierarchical algorithm for the flexible job shop scheduling problem is described,
based on the tabu search metaheuristic. Hierarchical strategies have been proposed in the
literature for complex scheduling problems, and the tabu search metaheuristie, being able
to cope with different memory levels, provides a natural background for the development
of a hierarchical algorithm. For the case considered, a two level approach has been
devised, based on the decomposition in a routing and a job shop scheduling subproblem,
which is obtained by assigning each operation of each job to one among the equivalent
machines. Both problems are tackled by tabu search. Coordination issues between the two
hierarchical levels are considered. Unlike other hierarchical schemes, which are based on
a one-way information flow, the one proposed here is based on a two-way information
flow. This characteristic, together with the flexibility of local search strategies like tabu
search, allows to adapt the same basic algorithm to different objective functions. Preliminary
computational experience is reported.

1. Introduct ion: the flexible j o b shop scheduling problem

In the classical Job Shop (JS) scheduling problem [15] the process plan o f
a part consists o f the sequence of the machines the part must visit: there is an a
priori assignment of operations to machines. In the Flexible Job Shop (FJS) scheduling
problem the assignment of operations to machines is not a priori fixed. For each
job a process plan is given consisting of a sequence of operations. For each operation
a set o f equivalent machines is available with possibly different processing times,
and a joint routing and scheduling problem must be solved.

The problem is characterized by the following data:

• a set of jobs Ji(i = 1 N);

• a set o f machines mi(j = 1 M);

• for each job Ji a sequence ~i o f n i operations is given forming its process
plan; the j th operation (j = 1 ni) of j ob Ji is denoted by oij;

• for each operation oij the set ~gij o f machines able to perform it is given;

J.C. Baltzer AG, Science Publishers

158 P. Brandimarte, Flexible job shop scheduling

• for each machine mt ~ %ij able to execute operation oij, a processing time Pijt
is given (it may be the case that the processing time is the same for every
machine in ~gij or not).

The problem consists of:

• a routing subproblem, that is, assigning each operation oii to a machine

• a scheduling subproblem, that is, sequencing the assigned operations on each
machine in order to obtain a globally feasible schedule minimizing a given
objective function.

A wide class of objective functions can be devised based on the completion
of the jobs. Let Ci be the completion time of Ji; here we will consider the times

following two objective functions:

• minimum makespan, i.e.

min(max Ci);
i = l N

• minimum (total) weighted tardiness, i.e.

N

m i n ~ ofT/,
i=1

where the tardiness Ti = max {0, Ci - dl } is the amount by which the completion
time exceeds the due date d i and the weight vi measures the priority of jobs.

These objective functions have been chosen since they seem to be good
representatives of the different evaluation criteria that could be considered: the first
one deals with machine utilization issues and is of the minmax type, the second
one deals with customer service and is of the minsum type. The focus of the paper
is on the minimum makespan, which is the objective function traditionally considered
in most literature on JS/FJS scheduling, but the possibility of adapting the proposed
method to the minimum weighted tardiness has been a major concern.

1.1. OVERVIEW OF THE LITERATURE

When facing a complex problem, like scheduling a flexible job shop or a
flexible manufacturing system (FMS), two basic approaches are available.

(1) A concurrent approach, which is based on the idea of solving the routing and
scheduling problems together; this approach is followed for example in [22, 28].

(2) A hierarchical approach, the more common one, which is based on the idea
of decomposing the original problem in order to reduce its complexity. This

P. Brandimarte, Flexible job shop scheduling 159

approach is followed, for example, in [2, 5, 11, 38]. The decomposition into
subproblems may be based on hierarchical control ideas [2], on the statement
of a logical sequence of subproblems [11,38] or on the separation of "easy"
and "difficult" constraints [5]. In the FJS case the simplest hierarchical approach
is based on the observation that when a routing is chosen, the flexible job
shop problem turns into the classical job shop problem. Therefore routing and
scheduling can be separated. Hierarchical architectures can be further classified
according to the information flow among the different levels: in a one-way
scheme a higher level problem is first solved, and then a lower level problem
is solved once; alternatively, in a two-way approach, there is an iteration
between the two steps, and from the solution of the lower level problem some
indications are obtained for the solution of the higher level problem. The
architecture described here can be classified as a two-way one; another example
of a two-way hierarchical scheme can be found in [9].

It is worth noting that often a one-way scheme is feasible only if the scheduling
objective is somewhat surrogated by an objective at the higher hierarchical levels:
for example, balancing the workloads and then finding a schedule minimizing the
makespan [38] is a sensible approach, since balancing the workloads means minimizing
the makespan after having relaxed the precedence constraints among the operations
of the process plan of each part. In the context of lot sizing by family aggregation
and disaggregation [40], the aggregated objective function is essentially the same
as the disaggregated one. However, when dealing with due dates, it is not obvious
how to surrogate such an objective at the higher hierarchical level.

Advocates of the different approaches reason in terms of quality of the solution
obtained, computational complexity and so on. However, many important practical
aspects are usually overlooked. In fact, the Operations Research practitioner must
face real-life issues such as the difficulty in collecting the data, the lack of a clear
statement of the problem (i.e. of its constraints and of the objective), the difficulty
of implementing the devised algorithm in software, and the difficulty of gaining the
commitment of some managers.

All the issues lead to the necessity of being able to develop a working
prototype quickly and then to refine it without disrupting its structure. The solution
approach must therefore be:

• easy to implement;

• simple enough to be understood by the management;

• able to allow some form of interaction with the user;

° sufficiently general to allow low-effort adjustments (e.g. if it is realized that
the wrong objectives have been chosen);

• open to future improvements;

• able to yield reasonably good solutions with a reasonable computational effort.

16o P. Brandimarte, Flexible job shop scheduling

Local search algorithms (see section 2), such as simulated annealing [23,41]
and tabu search [16,17], seem very well suited to meet the above requirements.
Indeed, the amount of literature devoted to applications of local search to scheduling
is growing: applications of simulated annealing are described in [6, 32, 42], whereas
tabu search has been adopted in [4, 18,24-26,39,44,45] (this list of references is
far from complete).

The tabu search metaheuristic has been adopted here for many reasons, among
which are the following:

• it enjoys the generality and conceptual simplicity of local search based algorithms;

• it can be used as a hierarchical algorithm due to its ability to deal with
different memory levels (e.g. short, medium and long term memory); according
to the principle of increasing-precision/decreasing-intelligence [36], the
hierarchical structure allows to isolate the more specific knowledge in the
higher levels: these can be modified or improved without affecting the lower
levels;

• it actually encompasses a range of different implementations, which can be
rather naive or quite sophisticated, thus allowing relatively smooth enhancements.

The purpose of this paper is to demonstrate these points.

1.2. OVERVIEW OF THE PAPER

Section 2, which is included for the sake of completeness, reviews some
heuristic principles which can be used for the FJS problem, including dispatching
rules (subsection 2.1) and the disjunctive graph representation (subsection 2.2).

Section 3 is devoted to the description of a hierarchical architecture for the
FJS problem, based on the decomposition into a job shop scheduling subproblem
(subsection 3.1) and a routing subproblem (subsection 3.2); two interaction schemes
between the subproblems are discussed, resulting in a one-way and a two-way
architecture. The emphasis is on the minimum makespan problem, but the adaptability
of the proposed method to the minimum weighted tardiness problem is the subject
of subsection 3.3.

In section 4 limited (although promising) computational results are described;
in particular, issues related to the coordination of the two hierarchical levels are
discussed in subsection 4.2.

Finally some conclusions are drawn in section 5, where directions for further
research are outlined.

2. Heuristic principles for flexible job shop scheduling

The job shop scheduling problem is known as one of the hardest discrete
optimization problems. The FJS scheduling problem is even harder. It is, therefore,

P. Brandimarte, Flexible job shop scheduling 161

natural to look for heuristic algorithms able to provide good solutions for this
problem.

Scheduling problems related to a FJS has been studied (among others) in
[10, 12, 20, 30, 37]. It is not the purpose of this section to review these approaches
in detail: it is rather meant to describe which general heuristic principles can be
used for the solution of the FJS problem.

Usually general heuristic algorithms are classified as follows [35].

• Truncated exponential schemes

They are derived from exact algorithms, when the conditions assuring the
optimality of the solutions are relaxed: an example is a heuristic version of the
branch and bound methods. In an exact branch and bound scheme for a minimization
problem ~ , a subproblem @k of @ can be eliminated from further consideration only
if a lower bound Ls(~D for its optimal value is found which is not less than the
value of a known upper bound Us(~) for the optimal solution of ~ . In a truncated
exponential scheme one relaxes the condition

by requiring only

t-B(k) >-- Ua()

Ls(~D > (1 - e) UB(~),

where 0 < e < 1. Unlike other heuristic strategies, truncated exponential schemes
provide a guarantee on the quality of the solution found: i.e. one is sure to find a
solution within a given e% from the optimal one. However, truncated exponential
schemes require good lower bounding procedures like their exact counterpart, which
is not always possible with reasonable computational efforts and is usually highly
problem dependent. Therefore, they will not be considered here.

• Greedy algorithms

In this class of methods a discrete optimization problem is dealt with as a
sequential decision problem in which the locally optimal decision is taken at each
step, usually at the expense of global optimality. Very similar to greedy algorithms
are the well-known dispatching rules [34], which assign a (possibly time-dependent)
priority to each job waiting on a machine. Actually some dispatching rules are
obtained by applying a priority discipline which is optimal for a single machine.
Some rules are treated in subsection 2.1.

In order to reduce the myopy of the greedy algorithms, one could consider
at each step not only the best decision, but some among the best ones: this is the
idea behind the beam search method [33]. In [10] a beam search strategy is used
to minimize the makespan in a FMS similar to the FJS considered here (there,
transportation times are considered). The algorithm relies on the concept of the
critical path in the graph of operation precedences described in [3] for the job shop

162 P. Brandimarte, Flexible job shop scheduling

problem. This concept is heavily used in the following, and, for those unfamiliar
with it, it is briefly described in subsection 2.2.

• Local search algorithms are based on the idea of exploring the set of feasible
solutions by perturbing a given solution and comparing the new solution with the
old one. The main advantage of this idea is that, at least in principle, it works for
any objective function.

The simplest local search algorithm is local improvement. Given a current
feasible solution whose cost is Cou, a simple perturbation is applied to it, obtaining
a candidate solution slightly different from the old one (a solution in its neighborhood).
Let

AC = C,,w - Cou

be the difference between the cost of the candidate solution and the current one.
When AC < 0, i.e. the candidate solution is the better than the current one, the old
solution is discarded in favour of candidate solution. The new current solution is
perturbed and the cycle repeats until no improving candidate is found and a locally
optimal solution is obtained. To avoid getting stuck in a local minimum, schemes
like simulated annealing [23,41] and tabu search [16, 17] have been proposed.

2.1. DISPATCHING RULES

Dispatching rules are a distributed sequencing strategy, by which a priority
is assigned to each job waiting for service on a machine: when the machine is ready
to process a job, the one with maximum priority is selected.

Some dispatching rules are applications of rules which are optimal for the
single machine case; others are based on heuristic insights into the scheduling
problem.

In the FJS case, dispatching rules can also be used for the routing problem:
when the operation oij of the process plan of Ji is to be executed, Ji is considered
as waiting on each machine mt e ~q. The operation is assigned to the first machine
on which Ji is ranked at top priority and removed from the queues of other machines.

There is a large number of such rules, oriented to different objective functions.
In [34] a survey of dispatching rules can be found; their application in manufacturing
systems enjoying a certain degree of flexibility is described in [21, 29].

Here the following rules will be considered: their purpose will be to find an
initial schedule and to provide a comparison for the proposed scheduler.

• The Shortest Processing Time (SPT) rule, by which the priority of job Ji
waiting on machine mt for the execution of operation oij is

1

P. Brandimarte, Flexible job shop scheduling 163

When a weight is given to a job (as in the weighted tardiness case), the
weighted SPT (WSPT) rule can be used, which assigns a priority

I) i

Pijt "

• The Least Work Remaining (LWKR) rule, which assigns a priority

qe s~ij "Piq

where sdij is the set of operations following oij in the process plan of Ji and

1 ,~ Pigt
P/q = ~utlte~, ~

is the mean processing time* for operation oiq (l~iql denotes the cardinality
of the set %iq).

• The Most Work Remaining (MWKR) rule, which assigns a priority

q e ,~ ij

• The Earliest Due Date (EDD) rule, which assigns a priority

1

• The Apparent Tardiness Cost (ATC) rule, proposed in [43], For the JS case,
the priority of Ji on machine mj at time t is

kp

where X+~=max{O,X}, Plj is (for the JS case) the processing time of Ji on
mj, k is a given parameter, p is the mean processing time of the jobs waiting
on mj at time t, ,~ij is the set of machines on which Ji must be processed

*This rule, like othe~ ones, has been processed for the JS case; to adapt it to the FJS case, a possible choice
is to estimate the processing time of next operations, for which no routing has been taken yet, as the
mean processing time over the alternative machines.

I64 P. Brandimarte, Flexible job shop scheduling

after mj, and piq and Wiq are the processing time and the estimated waiting
time, respectively, on the next machines.

The numerator of the argument of the exponential is an estimation of the
time slack remaining before missing the due date. Note that when the shop
is heavily loaded, and the job is late, the slack is negative and the ATC rule
turns into the WSPT rule.

To estimate the waiting time, the following formula is suggested in [43]:

Wiq= bpiq,

where b is an appropriate parameter.
This rule can be adapted for the FJS problem as follows:

vi
Pijl

exp

where j refers to the operation oij, ~ij is the set of operations following oij,
and ":iq is then the mean processing time for each operation oiq, computed as
in the LWKR and MWKR cases.

Again, the waiting time for operation O~q is estimated as

The last rule, unlike the previous ones, is time dependent. Furthermore it is
an example of a rule depending on some parameters, which should be provided by
the user. Local search algorithms can be used to learn such parameters by repeatedly
simulating the application of the rule, thus yielding a one-way hierarchical scheduler
(although the module setting the weights is run iteratively, we cannot speak of a
two-way architecture unless the scheduling results are effectively used to guide the
learning process). In [13] genetic algorithms (another class of local search algorithms,
see [19]) are proposed for this purpose.

2.2. THE DISJUNCTIVE GRAPH REPRESENTATION FOR THE JOB SHOP PROBLEM

The disjunctive graph representation was introduced as a useful representation
of operations precedence in the context of minimizing the makespan in a job shop
[3].

We will not give a formal definition of the disjunctive graph (it can be found
e.g. in [42]), but a simple example will illustrate its role in the optimal or heuristic
solution of JS problems.

Given a JS problem, we associate to it a disjunctive graph as follows:

P. Brandimarte, Flexible job shop scheduling 165

• for each operation of each job a node is created with a weight equal to its
processing time;

• two d u m m y nodes, corresponding to an "initial" and a "final" operation are
created with null weight;

• an arc is created from the initial node to the nodes corresponding to the first
operation of each job; for each operation of each job an arc is created from
the node corresponding to that operation to the node corresponding to the
next operation (the last operation of each job is l inked to the final node); such
arcs represent technological precedence constraints among operations o f the
same job;

• the nodes corresponding to operations to be executed on the same machine
are l inked to each other (yielding a complete subgraph for each machine) by
"disjunctive" arcs, i.e. arcs whose direction must be chosen in order to represent
precedence constraints induced by sequencing decisions on each machine.

In fig. 1 a disjunctive graph is shown (for simplicity the node weights are omitted).

Fig. 1. A disjunctive graph for a 3-jobs 3-machines job shop problem. Nodes 0 artd 9
correspond to the initial and final dummy operations. There are three jobs J1,-/2, ./3
whose process plan consists of operations (1,2,3), (4, 5) and (6,7, 8), respectively.
Operations {1, 6} must be executed on the same machine; similarly operations {2,5,8} and
{3, 4, 7}. Dotted lines show the disjunctive arcs corresponding to the sequencing decisions
to be taken for each of these operation sets. The processing times are not shown.

When the direction of disjunctive arcs is chosen, a directed graph is obtained:
if the directed graph is acyclical, it represents the operation precedences of a
feasible schedule. The weight of a path connecting the first and the final nodes is
the sum of the weights o f the traversed nodes; the maximum-weigh t path is the
critical path and its weight equals the makespan of the corresponding schedule.

166 P. Brandimarte, Flexible job shop scheduling

One of the possible corresponding precedence graphs obtained for our example
is shown in fig. 2.

)

)
Fig. 2. An operation precedence graph for a job shop problem. The directions of
the disjunctive arcs have been chosen. The resulting precedence graph corresponds
to the following sequences on the machines: (Ji, J3), (J1,J2,J3) and (J1,J2,J3).

Actually, the precedence graph shown in fig. 2 is redundant, since it is
sufficient to consider, among the precedence constraints between operations on the
same machines, only the precedence constraints among adjacent jobs in the sequence;
due to an obvious "triangularity" property, the critical path of this reduced graph
is the same as the previous one. As stated in [1], considering the reduced graph has
a great impact on any algorithm exploiting the disjunctive graph idea. The reduced
precedence graph is shown in fig. 3.

,)

Fig. 3. Reduced operation precedence graph corresponding to the graph shown in fig. 2.

P. Brandimarte, Flexible job shop scheduling 167

The disjunctive graph has been used both for special purpose heuristic algorithms
for the JS problem [1] and for local search based methods [4,39,42]. This is due
to two reasons:

• in order to reduce the makespan, the operations on the critical path of the
precedence graph must be rescheduled;

• reversing an arc on the critical path never results in a cyclical graph (see
subsection 3.1)

The disjunctive graph has also been exploited for the FJS problem: the routing
can be improved by rerouting critical operations (i.e. operations whose corresponding
nodes lie on the critical path) to alternative machines (see subsection 3.2). A beam
search based scheduling approach based on this idea has been proposed in [10].

3. A hierarchical tabu search architecture for the flexible job shop problem

A characteristic of tabu search is its ability to cope with different hierarchical
memory levels, acting on different time scales (e.g. short, medium and long term
memory).

The FJS problem lends itself to a hierarchical scheme since routing and
scheduling subproblems can be separated. Once a routing is chosen, a job shop
problem remains to be solved.

It is therefore natural to think of a two-level tabu search algorithm, with one
level dealing with routing issues and the other one dealing with job shop scheduling.
This decomposition approach is also followed in [11, 12, 20, 37] among others. In
[20] a branch and bound procedure for the optimal solution of the joint routing and
scheduling problem is described, and, by comparing it with the decomposition
approach, it is claimed that the deterioration of the solution obtained with the
second method is limited.

A tabu search based FJS scheduler can be structured on three layers:

• long term memory, which deals with routing selection;

• medium term memory, which could specify the neighborhood structure, set
some parameters of the tabu navigation algorithm and monitor the search
progress; at present, in the prototype scheduler developed, the functionalities
of this level have not been exploited; however, as shown in the following,
both preliminary computational experience with the makespan problem and
the need to extend the algorithm to the weighted tardiness problem call for
a full development of this memory level;

• short term memory, which deals with low level tabu navigation for the job
shop problem given a neighborhood structure.

In order to implement such a scheduler, the following issues must be considered:

168 P. Brandimarte, Flexible job shop scheduling

(1) how to find an initial routing and an initial schedule: to this aim dispatching
rules have been used;

(2) how to solve the JS scheduling subproblem (see subsection 3.1);

(3) how to solve the routing subproblem (see subsection 3.2);

(4) how to coordinate the scheduling and the routing levels (see subsection 4.2).

3.1. SOLVING THE JOB SHOP SCHEDULING SUBPROBLEM

There is a significant amount of literature on solving the JS problem, concerning
both exact and heuristic methods: clearly, any heuristic algorithm, like the shifting
bottleneck procedure [1], could be adopted; for small problem instances one could
even use an exact method. However, a local search approach enjoys the following
advantages:

• it can be adapted to different objective functions more easily;

• as shown in subsection 4.2, it is not necessary to find an extremely good
solution for the JS subproblem, but it must be done quickly; the tabu search
approach, with respect to similar strategies like annealing, is very appropriate
to this aim, since it keeps the search process biased towards good solutions.

These reasons justify the selection of a tabu search approach for the JS subproblem.
Having selected the tabu search metaheuristic, the neighborhood structure

must be chosen. The most natural neighborhood structure is obtained by exchanging
two adjacent jobs in the sequence on a machine. Other types of neighborhood
structures are based on exchanging arbitrary jobs and on shifting and inserting
operations, as suggested in [24] for a single machine and in [31,45] for a permutation
flow shop case.

When choosing a neighborhood structure one has to pay attention to the
following issues.

• The size of the candidate set must be limited. When dealing with a difficult
scheduling problem, considering all the possible operations swaps would
result in a huge neighborhood to explore. Furthermore many moves in this
neighborhood do not affect the objective function: in the JS case, operations
not lying on the critical path do not affect the makespan.

Therefore the neighborhood must be somewhat restricted, without negatively
affecting the performance of the search process. In the JS case, when the
objective function is the makespan, a suitable neighborhood structure is obtained
by considering only the operations lying on the critical path, whose length
is the makespan [4, 39, 42]. Similar issues are considered for a parallel machines
case in [18,26].

• Also the feasibility of the candidate solutions is an issue in complex problems.
In a single machine case with no precedence constraints, any schedule obtained

P. Brandimarte, Flexible job shop scheduling 169

by operations swapping is feasible. However, in the job shop case, arbitrary
perturbations of the sequence on a machine can yield a globally infeasible
schedule, i.e. a schedule whose precedence graph is cyclical, even if the
single machine schedules are feasible (see fig. 4).

Fig. 4. A cyclical precedence graph. Job J1 must visit machines
m 1, m 2 for the execution of operations 1 and 2. Job J2 must visit
machines m, z, m I for the execution of operations 3 and 4. Operations
0 and 5 are dummy. The sequence on machine m 1 is (J2,Jl) . The
sequence on machine n~ z is (J1,J2). A deadlock situation occurs.

It seems reasonable to avoid scrambling the sequences too much, since
many infeasible sequences would result; therefore swapping nonadjacent
operations or shifting/'mserting will not be considered. Even if adjacent operations
swapping is considered, one has to make sure that the resulting precedence
graph is acyclical. In the minimum makespan case, the critical path of the
precedence graph is again helpful: it can be shown that reversing an arc on
the critical path never results in a cyclical graph [42].

The above points suggest the following possible neighborhood structures.

(1) In neighborhood NI a random sampling of the potential exchanges is selected;
this neighborhood structure is characterized by the size of the sample set.

(2) In neighborhood ,/~'2 a job is randomly selected and it is exchanged on each
machine with the adjacent jobs in each machine sequence.

(3) In neighborhood dq3 a machine is randomly selected and the complete set of
job exchanges on that machine is considered.

(4) In neighborhood A~4 operations on the critical path are considered for the
exchange.

The second and the third structure are based on a sort of focusing strategy
in order to restrict the search. The first neighborhood structure tries to limit the
neighborhood size while keeping a sufficient degree of exploration capability by
randomization.

170 P. Brandimarte, Flexible job shop scheduling

A very nice feature of the first three neighborhoods is that, at least in principle,
they work for every objective function, whereas the fourth one is makespan oriented;
on the other hand they require, for each move, a feasibility check: however, if each
move is evaluated by exactly computing the resulting makespan, this check is
performed concurrently with the makespan evaluation.

Given these neighborhood structures, it is natural to choose as tabu attributes
of a move the pair of jobs and the machine on which they are swapped: when a
move is applied a tabu record with this information is added to the list of taboos.
The tabu status of a move can be overridden if some aspiration criteria are satisfied.
A simple choice is that the tabu status of a move is overridden if it yields an
improvement over the current optimum.

A pseudocode of the resulting tabu navigation algorithm is given in fig. 5.

job() { /* solution of job shop subproblem */

init~ob();
/* find an initial solution with a dispatching rule */

steps = O;
/* number of steps */
lastimpr = O;
/* number of steps since last improvement of the optimal solution */

stop = FALSE;
while (stop == FALSE){

makelistO;
/* make candidate list according to the current

neighborhood structure */
select(); /* select best non tabu move */

steps++;
lastimpr++;
if (valcur< valopt){

store(); /* if new optimal solution store it */

lastimpr = O; }
if (steps > MAXSTEPS)

stop = TRUE;
if (lastimpr > MAXSTAZ)

switch-n();
/* if too many steps without

improvement, change neighborhood structure */

Fig. 5. Pseudocode sketch of the tabu navigation algorithm
for the job shop subproblem (short term level).

The pseudocode shown is nothing more than a simple tabu navigation scheme. Only
one comment is in order: when too many steps elapse without improving the current

P. Brandimarte. Flexible job shop scheduling 171

optimum, the neighborhood structure is changed. After some computational experiments
with the makespan problem, this strategy has been found rather ineffective
(neighborhood ,N'4 is clearly the best one for the makespan case, so switching to the
other ones usually does not give good results); in the present prototype, when no
improvement is obtained, the solution of the JS subproblem is simply stopped and
the routing is changed. However, in other cases switching the neighborhood structure
could be useful.

3.2. SOLVING THE ROUTING SUBPROBLEM

In a hierarchical framework a routing is chosen and the resulting JS problem
is solved. Since the solution of the JS problem requires a certain amount of computation,
it is advisable to limit routing decisions to the "reasonable" ones. To this aim some
knowledge is required, and a degree of dependence on the objective function is
introduced.

This is in accordance with the principle of increasing-precision/decreasing-
intelligence [36], which states that at the lower hierarchical levels of an intelligent
system computationally intensive activities are performed, requiting limited knowledge,
whereas at the higher levels more judgement is needed.

As noted in section 1.1, two basic types of hierarchical architecture can be
devised:

• a one-way architecture;

• a two-way architecture.

3.2.1. A one-way scheduler

The cheapest way to solve the routing subproblem, concurrently with the
scheduling subproblem, is by using dispatching rules. The schedule obtained can then
be refined by a tabu search solution of the JS problem obtained by fixing the initial
routing. Different rules can be used, depending on the objective function considered,
or parametrized rules with different parameters setting (see subsection 2.1).

The resulting architecture is shown in fig. 6.
This scheduler is actually nothing more than a multiple start tabu search

approach: it has been considered on one hand for comparison purposes (in section 4),
and on the other one because it can be used both for minimizing the makespan and
the total tardiness.

A better approach to choose a routing, for the makespan case, would be using
a balancing procedure like the one proposed (among others) in [20, 37]: the operations
are assigned to the machine in order to evenly distribute the load, i.e. the maximum
sum of the processing times of the operations assigned to each machine is minimized.
The rationale behind load balancing is that it should avoid the creation of bottleneck
machines, which would lower the utilization of other machines, with a corresponding

172 P. Brandimarte, Flexible job shop scheduling

Select new rule

Roufng and
initial schedule

===================================== :::::::::::::::::::::::::::::::::::::

Progress info

Neighborhood and tabu
parameters

?:N, ~:

Fig. 6. Overall architecture of the one-way hierarchical tabu search algorithm.

increase in the makespan. However, balancing the machine loads allows to avoid
static bottlenecks, whereas bottlenecks are dynamic. Furthermore, this improvement
would again result in a one-way hierarchy. In order to cope with dynamic bottlenecks
a two-way scheme must be devised.

3.2.2. A two-way scheduler

A two-way scheme for the makespan problem, able to identify and cope with
dynamic bottlenecks, can be built by using again the critical path concept. Looking
at the precedence graph of the solution of the JS problem, one can try to improve
the machine assignment by reallocating operations on the critical path when alternative
machines can be used.

Using the same information exploited during the solution of the JS problem
minimizes the programming effort. We just add a tabu navigation procedure for the
long term level, where the taboos are simply a forbidden operation-machine pair.
A pseudocode sketch of the resulting algorithm is given in fig. 7. To find an initial
solution, a dispatching rule can be used.

P. Brandimarteo Flexible job shop scheduling 173

fjs(){ /* solution of the flexible job shop problem */
steps = O;
stop = FALSE;
first = TRUE;
while (stop == FALSE){
/* long term loop */

steps++;
if (first == TRUE){

first = FALSE;
route-prio () ; }
/* dispatching rules are used for initialization */

else{
make_list();
/* make candidate list using informations

about critical operations of the last
optimal job shop solution */

select() ; }
/* select best non tabu reallocation */

j o b () ;
if (valour < valopt)

store();
if (steps > MAXSTEPS)

stop = TRUE;

Fig. 7. Pseudocode sketch of the tabu navigation algorithm for the routing subproblem (long term level).

The reaUocation procedure adopted is rather simple. The optimal solution of
the last JS subproblem is considered and its critical path is computed. For each
operation on this critical path, the effect of assigning it to one of the alternative
machines (if any) is considered. For each alternative machine the best possible
insertion point is chosen, i.e. the sequence of the new machine is shifted, the
operation is inserted in every possible position (among those which do not result
in a cyclical precedence graph) and the position yielding the lowest makespan is
chosen for each operation-machine pair.

Then the best non tabu operation-machine pair is chosen. When a machine
is chosen a new long term memory tabu is added, forbidding the assignment o f the
reallocated operation to the old machine. As in the JS case the tabu status of a move
is overridden if a new optimal solution results.

The overall architecture is shown in fig. 8: the only difference between the
architectures of fig. 6 and fig. 8 is in the upward information flow between the JS
and the routing subproblems.

~LreAOla.~ sl! .zou oamoollqoa~ sl! guildmslp lnoqlI,~ soseo luzzajj!p ol pald~pe oq u~o
otuoqos l~olqoaeao!q £e~-o~l posodozd oql leql luoaeddg st. l! .IOAOA~oq '.UA~.Ip oq treo
UOlSniouoo o^P!uuoP ou ptm 'momdoio^op zopun ,qluozano o.m s~opI asOtLL

• UOlllPUOO qo~o ui pooqzoqqfflOU
ol~.udoadde lsom oql jo ooIoqo oql IOalUOa 01 IOaO[/uomom tmol ran!pore oql jo
~st~l oql oq pInoqs lI "polioIdxo oq pInoo '~(pooqaoqqfftou o~[II qo~ozdd~ ~u!Idums
moptre.z ~ 'os~o ~ qons ui :(pomozo~ .to) poinpoqoso~ oq ol suoile.todo l-eo!l.t.lo uo snooj
o1 ltno~Jlp aq lqfflm lI 'o1~I oz~ sqo[Ltrem ptre 'popeoI ~(I!^eoq s t doqs oql JI

• ~ullnoz ptm ~lulInpoqos .mj qloq posn oq
tmo uo!lgtuzoju! slq£ "sqo.f Lpzel jo UOllezodo ls~I oqz ol uoIlgzodo Ltmunp Ig!l.m! Otll
tuozj qlgd IeOIl.Uo oql zoplsuoo ol poou lsnf o~ :~ullnoa pu~ ffUlInpoqos zoJ qloq 'posn
oq Ul~ffe tmo ldoouoo LIl~d IeOllIZO OLI1 'pollmII s! sqo.f £pz~l jo zoqmnu Otll JI

Loseo
ssoulPael polqBIo,~ IelOl ol poldepe ,~oqotuos oq 1! UeD "ouo £ee,-ouo Otll o)l!lun
'poluo.uo uudso)l~tU s! uo!Dosqns lse[Oql u! poq.uosop zoInpoqos £UA~-OA~I oqi

SSEiN:I(:I~V.I. (]~[33-IDISIA~ qV,LOI ~HI Ol ~IEiq/'I(EiHDS XV3A-OA~I ~HI. DNIJA~ffV .~'£

• tmp!aoSIe qoxeas nq~l leo.rqoxe~a!q/~e~-ot~l alp jo aml:rol.rqo~e IIeaOA O "8 "~!:t

~azaum.md
nq~ pu~ poo~oqq~!oH

o~u ! ssa~o~

:~.:~. ~,~:,:~.~-~ ~.~.~ .~ :~,
suo.mm)do

~opuc)
Sup no~I

~upno~ ~u asoo~.~

8u:lnp~tt~s dotff qof ~lql.z~l:l '~l.~vta:puvJg "d t, Ll

P. Brandimarte, Flexible job shop scheduling 175

data structures. The significance of this flexibility should not be underestimated: the
foundation of the object oriented programming paradigm is that the data structures,
and not the algorithms themselves are the key factors in software development and
reusability [27]. Quite different schedulers can be built resting on the same basic
data structures [7].

4. Computational results

In order to evaluate the performance of the proposed architecture and to gain
some insight into how it could be improved, a relatively restricted number of
problem instances have been solved.

Dispatching rules have been used both in order to find initial solutions and
to compare the tabu based scheduler with another heuristic strategy. When experimenting
with the dispatching rules, a difficulty has been found, which is usually overlooked
in the literature: what should be done when two (or more) jobs have the same
priority? A natural answer is to choose randomly. The computational experiments
have shown that the effect of this random behaviour can be dramatic (the makespan
can be almost doubled): this is probably due to the fact that each random choice
influences not only the next scheduling but also the next routing decisions. In the
following the best result found has been reported for each rule.

4.1. RESULTS FOR THE MINIMUM MAKESPAN CASE

The data were randomly generated using a uniform distribution between
given limits; the limits of each example are shown in table 1. The results obtained
with the tabu search schedulers, the one-way and the two-way ones, are compared
with those obtained by dispatching rules. Only results obtained by applying neighborhood
N4 are reported. The best results obtained by each method are shown in table 2: due
to the random outcome of the dispatching rules, the best makespan is reported.

The SPT and MWKR rules have been used to provide the tabu search based
schedulers with initial solutions: in table 3 some information is shown about different
initial and final solutions obtained by the two-way scheduler. Exact CPU times have
not been reported, since the program has been implemented in order to be as
interactive as possible (with graphical outputs and asynchronous interrupts from the
user to change some parameters on line), with a corresponding increase in computational
effort. In any case the elapsed times (on a 386-based PC) were limited, ranging from
a few seconds to 12 minutes for the largest problem instances. The only exception
has been the case mk l4 , which, when initialized with the SPT rule, required about
25 minutes to reach a solution comparable to that obtained in a few seconds by
initializing with the MWKR rule.

In almost all cases the advantage of the proposed architecture is evident (in
particular in cases ink10, ink13, ink15, which were the most difficult), but, obviously,
a comparison with dispatching rules is not very conclusive.

176 P. Brandimarte, Flexible job shop scheduling

Table 1

Problem instances for the minimum mak~pan problem.

njob nmac nop meq proc

mkl |0 6 5 - 7 3 1 - 7

ink2 10 6 5 - 7 6 1 - 7

mk3 15 8 I 0 - 10 5 1 - 2 0

ink4 15 8 3 - 10 3 1 - 10
mk5 15 4 5 - I0 2 5 - I0

ink6 10 15 15 - 15 5 1 - 10

ink7 20 5 5 - 5 5 1 - 2 0

ink8 20 10 1 0 - 5 2 5 - 2 0

mk9 20 10 10- 15 5 5 - 2 0

mklO 20 t5 10- 15 5 5 - 2 0
mkl l 30 5 5 - 8 2 10-30

mk 12 30 10 5 - 10 2 10- 30

mkl3 30 10 5 - 1 0 5 10-30
mkl4 30 15 8 - 1 2 2 10-30

mkl5 30 15 8 - 1 2 5 10-30

n j ob : number of jobs;
nmac : number of machines;
nop : miniraum and maxiraura number of operations per job;
meq : maximum number of equivalent machines per operation;
p r o c : minimum and maximum processing time per operation.

Table 2

Best results for the minimum makespan problem.

spt lwkr mwkr tabl tab2

mk 1 65 76 54 49 42
mk2 44 48 41 41 32

mk 3 397 506 296 263 211

ink4 109 121 89 89 81

mk5 231 291 188 188 186

rak6 128 143 139 128 86

ink7 188 238 262 188 157

rak8 670 1042 558 523 523

mk 9 573 723 536 444 369

mk I 0 536 627 524 363 296

mkl l 760 957 716 716 649

mk 12 698 899 640 565 518

mkl3 821 887 542 542 478
mk 14 1296 2046 715 694 694

mk 15 974 985 477 448 383

s p t : shortest processing Lime rule;
mwkr : most work remaining rule;
lwkr : least work remaining rule;
t a b l : one-way tabu search;
t a b 2 : two-way tabu search.

P. Brandimarte, Flexible job shop scheduling 177

Table 3

Results of the two-way scheduler for the minimum makespan problem
(mean values have been rounded to the nearest integer).

Initialized by SPT Initialized by MWKR

Lb iw 5.m rb ~ rm # i b iw 5.m rb ~ , x-m

mkl 3 65 91 80 46 51 48 3 54 70 61 42 44 43
mk2 4 49 61 54 32 36 33 4 41 48 44 36 40 38
mk3 5 445 609 511 211 232 224 5 306 391 348 220 225 221

ink4 5 115 157 142 81 102 90 2 100 104 102 97 104 100

rak5 5 258 282 268 187 196 190 5 189 204 194 186 189 188
mk6 5 141 174 152 86 96 91 6 151 191 168 103 120 111

ink7 5 188 280 220 157 179 168 5 271 303 285 229 236 232

rak8 3 713 894 831 523 538 528 3 558 632 595 523 523 523

rak9 5 678 804 724 398 439 417 5 536 602 562 369 392 379
mkl0 4 575 709 623 301 348 325 6 527 658 573 296 312 301

rakl l 7 760 1104 873 649 692 668 3 716 736 725 597 712 707
rakl2 8 729 1090 866 518 579 536 2 640 650 645 534 541 537

raklS 5 1098 1349 1209 502 656 545 5 546 595 570 478 490 485
mk14 3 1620 1743 1699 694 754 726 3 715 778 740 694 694 694
mk15 3 1011 1337 1211 422 446 431 3 477 595 537 383 399 392

: number of trials;
5.b : best initial value;
5.w : worst initial value;
±m : mean initial value;
rb : best result;
rw : worst result;
rm : mean result.

Although limited, the computational tests performed have been sufficient to
draw some conclusions about the behaviour of the tabu search schedulers: such
conclusions will act as guidelines for the implementation of a more refined tabu
search scheduler to be compared with other heuristics proposed in the literature.

The higher the flexibility (i.e. the number of equivalent machines per operation),
the more the increase in complexity required by the two-way architecture is
justified.

The performance of neighborhoods ~z and Ars for the makespan problem has
been very poor. They are not good at improving a given solution (they do
not exploit it well, unlike a clever neighborhood structure based on the
critical path of the precedence graph), nor are they able to escape from a local
minimum (they do not explore well, unlike a random sampling). Neighborhoods
d¢ 2 and Ars seem "badly" focused.

178 P. Brandimarte, Flexible job shop scheduling

• When the CPU time must be limited, a good initial solution, or at least not
too bad a one, is helpful. However, only in a few cases the best solution has
been obtained from the best initial schedule. Sometimes the SPT based schedules
were consistently worse than those obtained by the MWKR rule, but the final
solutions were systematically better: in such case a very quick and large
improvement of the makespan was observed during the solution of the first
JS subproblem, and then the rerouting procedure achieved better improvements
than in the MWKR case. This suggests the opportunity of finding a good
initial routing, rather than a good initial schedule: it is easier to improve the
schedule than the routing. Therefore, it seems appropriate, for the makespan
problem, finding an initial routing with a load balancing procedure, and then
initializing the schedule. Further research will establish whether these conjectures
are well founded.

• Sometimes, the rerouting procedure resulted in an increase in the makespan,
which led, after a few steps, to an improvement over the current optimum.
This shows that often the value of the objective function is not the only
criterion to evaluate a move (see [25]). Furthermore, in a non-hierarchical
approach, rerouting moves (which are moreover computationally expensive
to evaluate) would be seldom selected with respect to rescheduling moves:
this shows the need for a hierarchical scheme and a proper interlevel coordination
approach.

4.2. INTERLEVEL COORDINATION ISSUES

The coordination of the hierarchical levels is clearly a fundamental issue in
a two-way hierarchical architecture.

In particular, a key question is how much time is worth spending in the
solution of the JS subproblem, once a routing has been selected: in other words, the
JS scheduling problem must be solved to near-optimality (with a corresponding
high computational effort) or a few iterations are enough?

The problem can be somewhat clarified by drawing a similarity with
unconstrained optimization of a continuous function, i.e.

minf(x) .
X

In this case, at each iteration a current point x ~, the solution can be improved by
selecting a search direction s k and by minimizing the function along this direction:

x k+l = a rgminf (x k + cr.sk).

In the steepest descent strategy, the search direction is parallel to the gradient of
the function at the current solution (s t̀ = - V f(xk)); the slow convergence, due to

P. Brandimarte, Flexible job shop scheduling 179

a zigzagging behaviour of the steepest descent method is well known. To avoid
zigzagging, a possible strategy is to restrict the step taken along the search direction
(trust region methods, see e.g. [14]).

In our case the role of the search direction is played by routing and the step
selection corresponds to JS scheduling.

In order to understand whether a sort of restricted step strategy could be
useful in the FJS case, another computational test has been performed. The most
difficult cases (i.e. ink10, rakl 3, mk]. 5) have been solved using the two-way architecture,
changing the strategy employed for the JS subproblem solution.

The program has always been stopped after 1000 steps, starting from the
same initial solution obtained by the MWKR rule. The neighborhood 2f4 has been
used with different parameters, specifying the maximum number of steps for each
JS subproblem and the maximum number of steps without improving the current
optimal solution (for the JS subproblem). The neighborhood AFt has also been
experimented with: the size of the sample set was 40, i.e. 40 admissible moves were
randomly selected.

These results are shown in table 4. Although the number of experiments is
extremely limited, the results are coherent and intuitively justified, leading to the
conclusion that a restricted step approach performs better. Even a "bad" neighborhood
like N~ can lead to a better result, in terms of solution quality, than a clever strategy
spending too much time solving each JS subproblem: this does not imply that
neighborhood ~4 is a useless subtlety, since, in order to obtain good result, the size
of the sampled neighborhood must be suitably large, leading to longer CPU times.

Table 4

The influence of the effort in the solution of the JS subproblem
for the minimum makespan case.

m k l 0 305 319 305 318 314
mk13 482 487 486 488 486
mk15 397 406 403 415 407

Ar~/~ : 25 steps (max 25 without improvement)
./f~/so : 50 steps (max 50 without improvement)
df~ IS° : 50 steps (max 25 without improvement)
dq4 s°/l°° : 100 steps (max 50 without improvement)
.hr~/zs : 25 steps (max 25 without improvement)

with neighborhood dq4;
with neighborhood At4;
with neighborhood dr4;
with neighborhood d¢4;
with neighborhood d¢ 1.

The results show that the role of solving the JS subproblem is not only to
improve the current solution, but also to give some information on how to improve
the routing, by finding good candidate operations for a rerouting. The experiment
with neighborhood dq~ shows that even a random sampling strategy works well from

18o P. Brandimarte, Flexible job shop scheduling

this point of view. Using a sophisticated heuristic algorithm or even (for small
problem instances) an exact one would be a useless effort.

A proper coordination strategy is therefore fundamental, and more refined
approaches must be devised: the medium term level, which has not been developed
in the present implementation, will be, therefore, a key topic of further research.

4.3. RESULTS FOR THE MINIMUM TOTAL WEIGHTED TARDINESS CASE

For the weighted tardiness case, only the one-way scheduler has been
implemented. The JS scheduler is initialized with a SPT schedule and with different
ATC schedules obtained with different parameters: the best final result, which need
not correspond to the best initial schedule, is reported. Neighborhood dql has been
used.

The tardiness weights were uniformly distributed between 1 and 3. The other
data limits and the obtained results are shown in tables 5 and 6. Clearly, both the

Table 5

Problem instances for minimum total weighted tardiness problem.

n job mac nop meq proc dd

wtl I0 5 5 - 5 3 6- I0 20- 80

wt2 20 5 5 - 5 3 6 - I0 20- 160

wt3 20 I0 10- 15 3 10 - 30 50- I000

wt 4 30 I0 I0- 15 3 I0 - 30 50 - 2000

wt5 30 15 I0- 15 5 I0- 30 50- 1500

njob :
nnlac :

nop :

meq :

proc :

dd :

number of jobs;
number of machines;
minimum and maximum number of operations per job;
maximum number of equivalent machines per operation;
minimum and maximum processing time per operation;
minimum and maximum due date per job.

Table 6

Results for the minimum total weighted tardiness problem.

edd arc tab1

w t l 246 233 137
wt2 1106 683 368
wt3 18924 13990 1666
wt4 766 616 307

wt5 5990 2686 1209

edd : earliest due date rule;
a t e : apparent tardiness rule;
t a b 1 : one-way tabu search.

P. Brandimarte, Flexible job shop scheduling 181

computational experiments and the implemented scheduler are very limited, but the
results show that there is a great potential of improvement, with respect to the
results of priority rules, which can be obtained by a tabu search based scheduler
developed according to the ideas in subsection 3.3.

5. Conclusions and directions for further research

A hierarchical tabu search architecture has been described and evaluated for
the problem of routing and scheduling in a flexible job shop.

Tabu search does not yield one algorithm, but a range of possible architectures
which can exploit other simple or sophisticated heuristic principles (in our case
dispatching rules and the critical path in the precedence graph), and can be adapted
to different objective functions. The generality of the tabu search concept and its
ability to move smoothly on a range of increasingly sophisticated implementations
make it an interesting tool for real world application, when the Operations Research
practitioner must deal with managers not willing to commit to very sophisticated
but rigid algorithms.

Further research is needed in order to assess the performance of tabu search
for the FJS problem, since the computational results presented are far from conclusive.
Some comparison must be made with other schemes, like for example, the beam
search based one proposed in [10] for the minimum makespan problem. The author
is not aware of any work concerning minimum total weighted tardiness in a flexible
job shop.

Future research will focus on better initialization strategies (e.g. by load
balancing procedures for the makespan problem) and on the implementation of a
two-way approach for the weighted tardiness problem.

Furthermore, in the scheme proposed, only the basics of tabu search have
been exploited: many directions are open to improve the performance.

At present the whole set of candidate solutions is formed and then they are
evaluated. Adaptive sampling strategies could be used by interleaving sampling
and evaluations, in order to avoid a smaller or larger sample size than necessary.

The coordination between the muting and scheduling levels should be carefully
considered. The computational tests performed show that it is useless to
spend much time optimizing a job shop schedule, and then to change routing:
the amount of search should be limited in a clever way, as in restricted step
methods for unconstrained optimization [14]. This calls for increased
sophistication in the medium term memory level.

Rerouting one operation considering the best possible insertion at each routing
step needs to be the better strategy. More operations could be rerouted at
once and one could avoid committing to what seems the best insertion. A
possible strategy is to consider a set of possibilities, to allocate to each one

182 P. Brandimarte, Flexible job shop scheduling

a limited amount of search and then to choose the initial solution for the new
JS subproblem.

Diversification approaches would be useful to avoid long useless chains of
moves which sometimes can occur, as reported in [4, 18].

A final remark is in order about the flexibility of the proposed approach with
respect to different objective functions: a research is currently in progress on the
application of local search to multiobjective problems [8], which has its roots in
such flexibility.

References

[1] J. Adams, E. Balas and D. Zawack, The shifting bottleneck procedure for job shop scheduling,
Manag. Sci. 34(1988)391-401.

[2] R. Akella, Y. Choong and S.B. Gershwin, Performance of a hierarchical production scheduling
policy, IEEE Trans. Components, Hybrids and Manufacturing Technol. CHMT-7(1984)225-248.

[3] E. Balas, Machine sequencing via disjunctive graphs: an implicit enumeration algorithm, Oper. Res.
17(1969)941-957.

[4] J.W. Barnes and J~B. Chambers, Solving the job shop scheduling problem using tabu search, Technical
Report ORP91-06, University of Texas at Austin (1991).

[5] B. Bona, P. Brandimarte, C. Greco and G. Menga, Hybrid hierarchical scheduling and control
systems in manufacturing, IEEE Trans. Robotics and Automation RA-6(1990)673-686.

[6] P. Brandimarte, R. Contemo and P. Laface, FMS production scheduling by simulated annealing,
Prec. 3rd Conf. on Simulation in Manufacturing, Torino (Nov. 1987) pp. 235-245.

[7] P. Brandimarte, Using abstract data types in developing search-based schedulers, Prec. ICARV'90
(Int. Conf. on Automation, Robotics and Computer Vision), Singapore (1990) pp. 6-10.

[8] P. Brandimarte, Bicriteria parallel machine scheduling by local search, in preparation.
[9] P. Brandimarte, W. Ukovieh and A. Villa, Factory level aggregate scheduling: a basis for a hierarchical

approach, Prec. 1992 IEEE Conf. on ClM, RPI, Troy, NY.
[10] Y.-L. Chang, H. Matsuo and R.S. Sullivan, A bottleneck-based beam search for job scheduling in

a flexible manufacturing system, Int. J. Prod. Res. 27(1989)1949-1961.
[11] L.F. Escudero, A mathematical formulation of a hierarchical approach for production planning in

FMS, in: Modern Production Management Systems, ed. A. Kusiak (North-Holland, 1987) pp.
231-245.

[12] L.F. Escudero, An inexact algorithm for part input sequencing and scheduling with side constraints
in FMS, Int. J. Flexible Manufacturing Syst. 1(1989)143-174.

[13] E. Falkenauer and S. Bouffouix, A genetic algorithm for job shop, Prec. 1991 IEEE Conf. on
Robotics and Automation, Sacramento, CA, pp. 824-829.

[14] R. Fletcher, Practical Methods of Optimization, 2nd ed. (Wiley, 1987).
[15] S. French, Sequencing and Scheduling: an Introduction to the Mathematics of Job Shop (Wiley,

1982).
[16] F. Glover, Tabu search, Part I, ORSA J. Comput. 1(1989)190-206.
[17] F. Glover, Tabu search, Part 1I, ORSA J. Comput. 2(1990)4-32.
[18] F. Glover and R. Htibscher, Bin packing with tabu search, preprint (1991).
[19] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Wiley, 1989).
[20] J. Hutehison, K. Leong, D. Snyder and P. Ward, Scheduling approaches for random job shop flexible

manufacturing systems, Int. J. Prod. Res. 29(1991)1053-1067.

P. Brandimarte, Flexible job shop scheduling 183

[21] Y.-D. Kim, A comparison of dispatching rules for job shops with multiple identical jobs and
alternative routings, Int. L Prod. Res. 28(1990)953-962.

[22] EJ. Lee and P. Mirchandani, Concurrent routing, sequencing and setups for a two-machine flexible
manufacturing cell, IEEE J. Robotics and Automation RA-4(1988)256-264.

[23] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing, Science
220(1983)621-680.

[24] M. Laguna, J.W. Barnes and F. Glover, Tabu search methods for a single machine scheduling
problem, J. Int. Manufacturing 2(1991)63-74.

[25] M. Laguna and F. Glover, Integrating target analysis and tabu search for improved scheduling
systems, Expert Syst. Appl., to appear.

[26] M. Laguna and J.L.G. Velarde, A search heuristic for just-in-time scheduling in parallel machines,
I. Int. Manufacturing 2(1991)253-260.

[27] B. Meyer, Object-Oriented Software Construction (prentice-Hall, 1988).
[28] P. Mirchandani, E.J. Lee and A. Vasque, Concurrent scheduling in flexible automation, Technical

Report No. 37-88-149, Department of Decision Sciences and Engineering Systems, Rensselaer
Polytechnic Institute, Troy, NY (1988).

[29] M. Montazeri and L.N. Van Wassenhove, Analysis of scheduling rules for an FMS, Int. J. Prod. Res.
28(1990)785 -802.

[30] N. Nasr and E.A. Elsayed, Job shop scheduling with alternative machines, Int. L Prod. Res. 28(1990)
1595-1609.

[31] F.A. Ogbu and D.K. Smith, The application of the simulated annealing algorithm to the solution of
the n/mlC~ flowshop problem, Comput. Oper.Res. 17(1990)243-253.

[32] I.H. Osman and C.N. Ports, Simulated annealing for permutation flow-shop scheduling, OMEGA Int.
J. Manag. Sci. 17(1989)551-557.

[33] P.S. Ow and T.E. Morton, Filtered beam search in scheduling, Int. L Prod. Res. 26(1988)35-62.
[34] S.S. Panwalkar and W. Iskander, A survey of scheduling rules, Oper. Res. 25(1977)45-61.
[35] R.G. Parker and R.L. Rardin, Discrete Optimization (Wiley, 1988).
[36] G.N. Saridis, Analytical formulation of the principle of increasing precision with decreasing intelligence

for intelligent machines, Automatica 25(1989)461-467.
[37] T. Sawik, Modelling and scheduling of a flexible manufacturing system, Eur. J. Oper. Res. 45(1990)177-

190.
[38] K.E. Stecke, Formulation and solution of nonlinear integer production planning problems for flexible

manufacturing systems, Manag. Sci. 29(1983)273-288.
[39] E. Talllard, Parallel taboo search technique for the job shop scheduling problem, Research Report

ORWP 89/11, Ecole Polytechnique F&t6rale de Lausanne (1989).
[40] E. Tocylowski, K.S. Hindi and M.G. Singh, Multi-level production scheduling for a class of flexible

machine and assembly systems, Ann. Oper. Res. 17(1989)163-180.
[41] PJ.M. van Laarhoven and E.H.L. Aarts, Simulated Annealing: Theory and Applications (Reidel,

1987).
[42] P.J.M. van Laarhoven, E.H.L. Aarts and J.K. Lenstra, Job shop scheduling by simulated annealing,

Report OS-R8809, CWI, Amsterdam(1988).
[43] A.PJ. Vepsalainen and T.E. Morton, Priority rules for job shops with weighted tardiness costs,

Manag. Sci. 33(1987)1035-1047.
[44] M. Widmer, Job shop scheduling with tooling constraints: a tabu search approach, J. Oper. Res. Soc.

42(1991)75-82.
[45] M. Widmer and A. Hertz, A new heuristic method for the flow shop sequencing problem, Eur. J.

Oper. Res. 41(1989)186-193.

