
Annals of Operations Research 41(1993)385-403 385 

Solving the maximum clique problem using a 
tabu search approach* 

Michel Gendreau, Patrick Soriano and Louis Salvail 

Centre de Recherche sur les Transports, Universitd de Montrdal, C.P. 6128, 
succursale A, Montrdal, Qudbec, Canada H3C 3J7 

Abstract 

We describe two variants of a tabu search heuristic, a deterministic one and a probabilistic 
one, for the maximum clique problem. This heuristic may be viewed as a natural alternative 
implementation of tabu search for this problem when compared to existing ones. We also 
present a new random graph generator, the/S-generator, which produces graphs with 
larger clique sizes than comparable ones obtained by classical random graph generating 
techniques. Computational results on a large set of test problems randomly generated with 
this new generator are reported and compared with those of other approximate methods. 

Keywords: Maximum clique, tabu search, probabilistic tabu, random graph generator, 
approximate methods. 

1. Introduction 

Given a simple undirected graph G = (V, E),  a complete subgraph is one 
whose vertices are all pairwise adjacent. A clique is a maximal (inclusionwise) 
complete subgraph and a maximum clique is a clique whose cardinality is maximum. 

The problem of finding a maximum clique in G is equivalent to the problem 
of finding a maximum vertex packing (independent or stable set of vertices) or a 
minimum vertex cover (set of vertices covering- meeting - all edges) in the complement 
of G (the graph G = (V,E) where E is the complement relative to Vx  V of E). 

These three problems are important since they occur in a variety of applications: 
information retrieval systems [12], signal transmission analysis [6,43], classification 
theory [ 11 ], sociological structures [28,42], economy [ 1,45], timetabling and many 
others. In timetabling for instance, the size of the maximum clique in the conflict 
graph of a set of activities is a lower bound on the number of periods required to 
schedule these activities, while the size of a maximum vertex packing is an upper 
bound on the number of activities that can be scheduled simultaneously. 

*The authors are grateful to the Quebec Government (Fonds F.C.A.R.) and to the Canadian Natural 
Sciences and Engineering Research Council (grant 0GP0038816) for financial support. 

J.C. Baltzer AG, Science Publishers 



386 M. Gendreau et al., Solving the maximum clique problem 

With regard to computational complexity, the maximum clique problem (MCP) 
and its equivalents have been shown to be NP-hard many years ago (see Garey and 
Johnson [16]). However, there are a number of special classes of graphs for which 
polynomial algorithms exist (see [2,26] for a discussion of those). As for arbitrary 
graphs, a number of non-polynomial algorithms mostly of the branch-and-bound or 
enumerative type, have been proposed [2-5,9,10,13,  18,21,31,33,34,38-41,44], 
as well as a few heuristic or approximate methods [17,30]. 

In the last ten years or so, Glover [22-24] and independently Hansen and 
Jaumard [27] have developed a general metaheuristic for tackling difficult combinatorial 
optimization problems. This method which is known as Tabu Search (TS), or 
Steepest Ascent/Mildest Descent in Hansen and Jaumard's terminology, combines 
a local search procedure with a number of clever anti-cycling rules which prevent 
the search from getting "trapped" in local optima. It has been successfully applied 
to the traveling salesman problem [23], graph coloring [29], neutral networks [46] 
and flow shop sequencing [47] among others. 

Recently, Friden et al. [14,15] have developed a TS heuristic for finding 
stable sets in large graphs (STABULUS) and a TS based exact algorithm for determining 
the maximum independent set in a graph (TABARIS). Both of these methods have 
displayed impressive computational results. 

In this paper, we describe two variants (a deterministic one and a probabilistic 
one) of a TS heuristic for the MPC, which may be viewed as a natural alternate 
implementation of TS for this problem when compared to STABULUS. We also 
present a new random graph, the ~-generator which produces test problems with 
larger clique sizes than comparable problems obtained by classical random graph 
generation techniques. 

The paper is organized as follows. The basic principles of TS are briefly 
recalled in section 2. In section 3, we describe in detail our implementation of 
deterministic TS for the MCP. The probabilistic variant of this algorithm is presented 
in section 4. In section 5, we discuss the main differences between our approach 
and STABULUS and we indicate how we modified STABULUS to transform it into 
a heuristic for maximum cliques. In section 6, computational results on a large set 
of randomly generated test problems are reported and compared with those of other 
approximate methods (simulated annealing-type methods and STABULUS). the 
p-generator is described in that section. Section 7 concludes the paper. 

2. Basic principles of tabu search 

In this section, we only briefly sketch the basic elements of the tabu search 
metaheuristic. A full description of the method can be found in the fundamental 
papers of Glover [22-24] or in the tutorial article by de Werra and Hertz [41]. It 
should be noted that our presentation closely parallels those of Friden et al. in [14] 
and [15] and mostly the same notation is used. 



M. Gendreau et al.o Solving the maximum clique problem 387 

Given a function f to be maximized over some set X (normally finite), TS 
starts from some initial feasible point in X and proceeds iteratively from one point 
in X to another until some termination criterion is met. At that time, one hopes that 
the optimal solution, or at least a very good approximate solution, has been found. 

To each solution s in X, one associates a set of  neighbours N(s) c X which 
can be readily obtained from s. The basic iterative step then consists in randomly 
generating a sample N*(s) of neighbours of  s (note that in many applications, it may 
be legitimate to take N*(s) = N(s)) and then moving to the best solution s* in N*(s) 
(i.e. s* ~ argmax,,E re<,) { f (s ')  }). 

It should be stressed that since there is no guaranteed strict improvement in 
the value of  the objective function from one iteration to the next, such a procedure 
may very well cycle. To prevent this from happening, in TS one or several tabu lists 
are introduced. These lists are used to record historical information on the path in 
X followed by the search procedure during the previous iterations. This information 
is then used to exclude moves which would tend to make the search process go back 
to a previously visited solution. Classical examples of  tabu lists are: a list of the 
k last solutions examined (where k is fixed or variable) or one of the k last modifications 
(changes which occur when we move from a solution s to the next one s*) that were 
made (in this case we forbid the reverse modification from occurring). Such types 
of  lists are usually referred to as the short-term memory of  the search process. It 
is also possible to incorporate in the method other types of lists which record 
information on the intermediate and long-term history of  the search. These lists are 
used respectively to intensify the search in an area of  the solution space or to 
diversify the search to previously unexplored areas (see [22-24] for further details 
on these concepts). 

When one uses a tabu list of  modifications, rather than previous solutions, 
it may occur that some "good" solutions may not be considered at some iteration 
(because the move from the current solution to these is tabu). It may thus be 
desirable in certain conditions to cancel the tabu status of  a move. One way of  
accomplishing this is via an aspiration level mechanism. This concept is extensively 
discussed in de Werra and Hertz [46], but for our purposes an illustrative example 
will suffice. Consider a problem in which the objective function f ( t o  be maximized) 
may only take integer values. To each possible value z of  f ,  we assign at the start 
the aspiration level A(z) = z + 1. In the course of  the search, whenever we consider 
going from a solution s to a solution s' by a tabu move, we cancel the tabu status 
of  the move if  f ( s ' )>  A(f(s)).  The aspiration level o f f ( s )  is updated to take the 
value f (s ')  + 1 after any move from s to s' such that f(s ')  >_. A(f(s)).  It is easily seen 
that even though we allow for the cancellation of  the tabu status of  some moves, 
this will not by itself induce cycling since the move from s to s '  can only be 
executed once under tabu status. 

We mentioned earlier that the search procedure will keep on going until some 
termination criterion is met. In most applications, this criterion is simply that the 
search will stop when a specified number of iterations have been performed without 



388 M. Gendreau et al., Solving the maximum clique problem 

finding a better solution than the best solution currently at hand. When the optimal 
value of the objective function is known beforehand or has been determined during 
the search process (in some cases, this may be accomplished through some bounding 
procedures), the search may obviously be discontinued as soon as a solution with 
that objective value is found. 

3. Deterministic tabu search for the maximum clique selection 

In this section, we present a variant of our TS heuristic for the MCP in which 
no probabilistic elements come into play. In particular, we do not use sampling in 
the neighbourhoods of solution points. 

3.1. BASIC FRAMEWORK 

In many combinatorial optimization problems, the first critical decision which 
must be addressed when applying TS, is the choice of the solution set to be explored 
by the search. In the context of the MCP, one should first notice that exploring the 
set of cliques would be totally impractical, since cliques by themselves are difficult 
to identify. On the other hand, it is easily seen from basic definitions that a maximum 
clique is simply a complete subgraph of maximum cardinality. Furthermore, a 
complete subgraph can be completely described by its vertex-set. If one denotes 
by X the set of vertex-sets of complete subgraphs in G, then finding the maximum 
clique in G amounts to solving the optimization problem maxs~xf(S) = I S I .  

The set X also lends itself to a nice neighbourhood structure. To better 
describe it, we first introduce some necessary notation. For v e V, let B(v) be the 
set of vertices that are adjacent to v in G, i.e. B(v )=  { v ' ~  V l ( v , o ' ) e  E} ,  and 
for S ~ X denote by C(S) the set of vertices that are adjacent to all vertices in S, 
i.e. C(S) = c% e s B(v). For S ~ X, also define N-(S) = {S" ~ X IS" = S \  { v }, v ~ S} 
and N ÷ ( S ) = { S ' ~ X I S ' = S u { u } , u ~  C(S)}. N-(S) is then the set of all 
complete subgraphs which may be obtained from S by deleting a single vertex in 
it, and N÷(S) is the set of complete subgraphs which may be obtained by adding 
to S a single vertex which is adjacent to all elements of S. By setting N(S) = N-(S) 
u N+(S), we thus end up with a consistent neighbourhood structure on X. Also note 
that S" e N-(S) ¢~ S e N+(S'), which implies that this neighbourhood structure is 
symmetric. 

It is interesting to remark that this neighbourhood structure has implicitly 
been exploited by many branch-and-bound algorithms for the MCP (see for instance 
[18,40]). We have also used it successfully in a parallel project [20] dealing with 
the application to the MCP of the simulated annealing method introduced by 
Kirkpatrick, Gelatt and Vecchi [32]. 

Another nice feature of this neighbourhood structure is that, when dealing 
with augmenting moves, i.e. moves from a solution S to a neighbourhood S" in 
N÷(S), the neighbourhood to be considered next is easily determined due to the fact 



M. Gendreau et al., Solving the maximum clique problem 389 

that C(S') = C(S) n B(v'), where {v' } = S'\S. When dealing with decreasing moves, 
i.e. to an S' in N-(S), however, one must recompute C(S') from scratch. 

At this point, we should carefully analyze the basic step in the iterative 
procedure. Given a current solution S, one notices that f(S') = ISI + 1, VS' E N+(S), 
andf(S') = ISI-  1, VS' ~N-(S). Two implications are to be drawn from this: (1) we 
should always move to an S' in N+(S) whenever possible; (2) the objective function 
gives us no information regarding the specific S' in N+(S) (or in N-(S) when no 
move in N+(S) is possible) which should be selected. One could arbitrarily select 
any S', but such an approach cannot be expected to be successful since it amounts 
to letting the search wander somewhat aimlessly. A better way of dealing with this 
problem is to add a secondary criterion to break ties. In our implementation, we 
have used a greedy selection rule: we move to the neighbour for which I C(S')I is 
maximal. Such a move is the one which has the greatest potential for producing a 
large clique, since iS'l+ I C(S') I is an upper bound on the size of any clique containing 
S'. When it is applied to N+(S), this rule is equivalent to the one proposed by 
Johnson [30] in his greedy heuriatic for the MCP, since it amounts to choosing the 
vertex v' of largest degree in the restricted subgraph G(S)= (C(S),E(S)), where 
E(S) = {(t~,w) EEIv EC(S), w EC(S)} (see also [16,17] for further details). 

A direct consequence of this choice of tie-breaking rule is that, since we do 
not use sampling, if we start the search procedure with S = ~ (which we do), it will 
proceed directly to the clique that would be obtained by the application of Johnson's 
[30] greedy heuristic. This will provide us early with a fairly good solution and 
sometimes with an optimal one (see [19,40] for extensive discussions on the quality 
of the solutions produced by this heuristic). 

3.2. TABU LISTS 

In our implementation, we have experimented with two tabu lists. The first 
one/ '1 is simply a list of the last ITII solutions visited, while the second 7"2 is a list 
of the last 17"21 vertices that were deleted. ITfl and IT21 are fixed parameters that 
are specified as inputs to the procedure. 

The list Tl is used at all times (i.e. whether S" is in N+(S) or N-(S)), 
while T2 is used only when making augmenting moves. The reasons for this 
unusual scheme are two-fold: (I) it was possible using clever programming 
tricks to maintain a list of previously visited solutions at reasonable cost; since 
this allowed for interesting experimentation with the procedure, it was judged 
to be a valid addition; (2) the set of complete subgraphs is a fairly constrained 
search space in which the addition of a vertex to the current solution will in many 
cases orient the search in a drastic way; conversely, removal of a vertex will often 
"open up" the search; for these reasons, it was decided not to restrict deletions, but 
only additions. The relative merits of each of these lists will be discussed and 
analyzed in section 6. 



390 M. Gendreau et al., Solving the maximum clique problem 

3.3. ASPIRATION LEVEL MECHANISM 

With regard to our two tabu list scheme, it should first be noted that no 
aspiration level mechanism can (and for that matter should) allow for the cancellation 
of  moves which are tabu in Tl, since it is a list of  previously visited solutions. 

As for moves which are tabu relative to 7"2, we may wish to cancel their tabu 
status using the simple aspiration level function described in the previous section. 
For our specific application, this mechanism can be effectively implemented in an 
implicit form by adding a test which will allow us to move to a solution S' if  
f ( S ' )  > z* where z* is the size of the largest clique found so far. 

To see why this test is the only one required to implement this mechanism, 
consider the following facts: 

• since at the start of  the procedure one has z*= 0, and since the objective 
function at most increases by 1 in any iteration, if the current value of  z* is 
k, this implies that z* must have taken all the integer values in the range [0, k] 
in previous iterations; one must therefore have visited solutions for which an 
improvement was found for every value of  f between 0 and ( k -  1), which 
implies that (A(z) = z + 2, z = O, 1 . . . . .  k -  1; 

• in an augmenting move, one always has f (S ' )  =f(S)  +1, which implies that 
f ( S ' )  < A(f(S)) ,  unless f ( S )  = k = z °, i.e. unless f ( S ' )  > z*. 

3.4. RE-DIRECTING SEARCH 

As stated earlier, given S' in X, IS'I + IC(S')I is an upper bound on the size 
of  a clique containing S'. If during the search process, we end up at a solution S 
such that IS'l+ IC(S')l---z*, V S ' ~  N+(S)\T1, this means that there is no hope of  
finding a better clique through any non-tabu augmenting move; it is therefore 
advantageous to immediately re-direct the search to some other portion of  the 
solution space. If there exist non-tabu solutions in N-(S), we choose the best among 
these according to our tie-breaking rule, otherwise we arbitrarily choose any element 
in N-(S)  to continue the search from. 

3.5. TERMINATION CRITERION 

We terminate the procedure when Maxlter iterations without improvement in 
z* occur. Maxlter  is an input parameter to the procedure. 

4. The probabilistic variant 

We have also experimented with a pmbabilistic variant of  the previous procedure. 
It differs from its deterministic counterpart by the following features: 



M. Gendreau et al., Solving the maximum clique problem 391 

(1) If a current solution S is a local maximum (i.e. if N+(S) = O), the procedure 
randomly removes from S min{k, lSI } vertices where k is an input parameter;, 
the search then proceeds from the new solution thus obtained. 

(2) If N+(S) ;e 0 ,  a random sample N*(S) of size min{L,I N+(S) I }, where L is also 
an input parameter, is generated; if N*(S) contains at least one element S' 
such that moving to S" is non-tabu or S" allows for improvement of z*, the 
search proceeds to the element of N*(S) satisfying these conditions which is 
best according to the tie-breaking rule. Otherwise, a sequence of deleting 
moves is performed as in (1) above. 

The second feature of this variant is simply the introduction of sampling for 
augmenting moves as described in section 2 above. The other feature, which more 
closely resembles a "random shake-up" of the solution than anything else, has been 
motivated by our specific application: as mentioned earlier, computing C(S') after a 
deletion is more expensive since it must be done from scratch; it is therefore advantageous 
to perform multiple deletions at the same time to cut down on these computations. 
We must mention however that preliminary computational results have indicated that 
finding the correct value of L for a given problem size is a tricky affair. 

In our implementation of the probabilistic variant, the search is started from 
a solution provided by the greedy heuristic, instead of starting from an empty set. 
This procedure is equivalent to introducing sampling only after the first local maximum 
has been found. 

5. Transforming STABULUS to find maximum cliques 

As mentioned in the introduction, STABULUS [14] is a TS heuristic for 
finding stable (independent) sets in large graphs. It thus solves a problem which is 
equivalent to that of finding cliques. However, it should be noted right away that, 
contrary to our method, STABULUS is not strictly speaking an optimizing procedure: 
STABULUS will search a graph for a stable set of size k, where k is a specified 
input parameter, instead of trying to determine a maximum independent set. This 
difference in objective has important consequences which we shall now examine. 

Knowing beforehand the cardinality of the stable set being searched for 
suggests the exploration of a different solution space: the set of subsets of k vertices. 
In fact, STABULUS moves from a subset which is "almost" an independent set to 
another, until a stable set (the equivalent of a complete subgraph in clique terminology) 
is found, at which time the procedure can be immediately terminated since the 
desired solution has been found. One may thus interpret STABULUS as a "dual- 
type" procedure, while our heuristics which move in the space of feasible solutions 
(complete subgraphs) correspond to a "primal" approach. 

If one wants to use STABULUS to find a maximum independent set, and 
therefore solve a problem equivalent to the one we are tackling, the size of such 
a set must first be "guessed" correctly. It is well-known that, for certain types of 



392 M. Gendreau et al., Solving the maximum clique problem 

graphs, the cardinality of the maximum independent set can be readily estimated 
from theoretical analysis, but this is obviously not the case for arbitrary graphs, 
which implies that this approach is not viable when dealing with "unknown" graphs. 
To circumvent this difficulty, we have developed an optimizing variant of STABULUS 
which we call "Iterated-Stabulus". This procedure can be summarized as follows. 
The greedy heuristic is first applied,yielding an independent set of size k. As was 
discussed in the previous sections, k will in general be fairly close to the desired 
solution. We then apply STABULUS iteratively with k = k+ 1, k+ 2 . . . . .  The 
procedure terminates when STABULUS fails to find a stable set of a given size k 
within a certain number of iterations or when a CPU time limit on the overall 
procedure is reached. 

As a final remark, it should be repeated that "Iterated-Stabulus" can be used 
to determine the maximum clique of a graph G by simply considering the complement 
graph G of G in the STABULUS steps of the procedure. 

6. Computational results 

To test our procedure and to experiment with various settings for the input 
parameters, we have developed three programs which correspond respectively to the 
deterministic version with a single tabu list 0ist TO, the same with two tabu lists, 
and the probabilistic version. 

To allow for extensive testing of the programs, we decided to use randomly 
generated problems. This has been a widely used practice in the past. In fact, for 
a number of years, most authors have tested their algorithms with problems generated 
by the uniform random graph scheme. This method works with two input parameters: 
a vertex-set size n and a density p. It consists in examining each of the possible 
(~)  edges in the graph in sequence and adding them to the graph with probability 

p. Unfortunately, such graphs have been studied by researchers in random graph 
theory and it is now well-known that they possess very strong properties with regard 
to many attributes, one of them being the size of the maximum clique which most 
often falls in a very narrow range for a given choice of n and p (see [7,8,35-37]  
for detailed results on this subject). To generate a more diverse sample of graphs, 
we thus decided to develop a new random graph generator, the p-generator, which 
works with three rather than two inputs: n, which is the vertex-set size as before, 
and a and b, two real numbers which satisfy 0 < a < b < 1. 

PROCEDURE ~- GENERATOR (n, a, b) 

begin 

for i := 1 to n do ~ [i] := uniform (a,b); 

for i :-- 1 to ( n -  1) do 



M. Gendreau et al., Solving the maximum clique problem 393 

for j := (i + 1) to n do 

generate edge (i, j )  with probability ~[i] + ~[ j ] .  
2 

end. 

Note that when a = b, one has ~ [i] = a for all vertices and the ~-generator is 
then equivalent to the classical uniform random graph generator. The ~-generator 
can thus be seen as a generalization of the uniform generator. 

The following properties apply in general to ~-generated graphs: 

(1) their expected density ff is equal to (a + b)/2; 

(2) for any vertex ui, the conditional expected degree of ui given ~ [i] is 

~[i] , a+b'~  
d(vil~ [i]) = ('-T- "t" " " T - )  (n - 1), 

which means that degree spread will increase rapidly with the difference 
(b - a); 

(3) because of the larger degree spread, one would expect, for any fixed if, the 
size of the maximum clique to increase with the difference ( b - a ) ;  this 
intuitive assertion is confirmed by our empirical results. 

A total of  180 test problems generated with the fi-generator were solved. For 
each of the three problem sizes, n = 100, 300, 500 vertices, 6 series of 10 problems 
corresponding to different settings of the a and b parameters were considered. This 
provided us with 6 families of random graphs: 3 of the classical type (when a = b) 
with expected densities o f p  = 0.25, 0.5, and 0.75, respectively, and 3 others of the 
new type (with a < b) with the same expected densities but presenting significant 
expected vertex degree spreads. 

In preliminary testing of the two tabu methods, we experimented with various 
settings of the input parameters. These ranged for the size of the TI list from 0 to 
150 and for that of T2 from 0 to 40. In the deterministic tabu, setting 17"21 = 0 (i.e. 
single-list tabu with T1 as the tabu list) provided very satisfactory results qualitywise. 
On the other hand, with I Td = 0 (i.e. single-list tabu with Tz) the quality of the 
solutions obtained was clearly inferior to that when 17"11 > 0. These observations also 
hold true for the probabilistie variant. Furthermore, for this second approach several 
ways of determining the values of parameters k and L were tested but no one 
method stood out as being superior. The only guidelines that could be inferred were 
that these parameters should take values big enough so as to promote a "wider" 
exploration of the solution space but not too much, thus preventing unnecessary 
"jumps" of the search process. 

In those experiments with parameter settings for the two tabu methods, we 
found out that the size of  list/'1 must not be too large and that list/ '2 must be fairly 
small (5 elements), otherwise the quality of the solutions starts to decrease. Interestingly 



394 M. Gendreau et al., Solving the maximum clique problem 

Table 1 

Parameter settings. 

Parameter ST DT lr r  

ITll 100 100 150 

IT21 - -  5 5 

Maxlter 250 250 300 

enough, the "ideal" size of the lists seems to be independent of problem size, graph 
density and vertex degree spread. In some cases, it is possible to slightly improve 
the solutions by using a larger value of Maxlter, but the execution times are then 
much higher. It should be noted that since the probabilistic tabu performs sampling, 
it will run much faster on denser graphs ( ~ > 0.5). This makes it possible (and, to 
a certain extent, necessary) to use a larger value of Maxlter than in the deterministic 
variant. 

The "optimal" values for the parameter settings for each of the three methods 
can be found in table 1 under the columns ST Csingle-list tabu"), DT ("double-list 
tabu") and PT Cprobabilistic tabu"). These values of ITd and IT21 are the ones that 
were used in the final computational experiments. 

The same problems were also solved with a simulated annealing type procedure 
based on the "rejectionless method" of Greene and Supowit [25]. This method has 
been specially customized to deal with the MCP. In a parallel project on the application 
of simulated annealing to the MCP it was found to be the best performing of all 
tested methods [20]. 

In order to provide a fair comparison of all methods, the stopping criterion 
used in the final computational tests was changed from Maxlter to TimeLimit (i.e. 
the search is stopped after a fixed amount of CPU time has been expended). The 
values chosen for TimeLimit correspond in general to values of MaxIter in the range 
200 to 400, as determined by the preliminary testing. During the same time span, 
the "rejectionless method" (RM in the tables) will almost complete a cooling schedule 
made up of 29 "temperature" levels; at each level t, the "acceptance probability" is 
P~ = (0.9) t and the level length is It = 200 x (1.05Y -1. A more detailed description 
of this cooling schedule and the RM program can be found in [20]. 

All programs were implemented by the same programmer using the same 
language (PASCAL), compiler (TURBO PASCAL), and basic graph manipulation 
routines. 

The computational results are presented in tables 2 and 3 respectively for 
graphs of the classical type ("uniform graphs") and for the new type with large 
vertex degree spreads ("extreme graphs"). Average solution sizes for each group of 
10 problems obtained after spending a specified amount of CPU time (under column 
"Time") are indicated in the tables for each of the four tested methods. Note that 



M. Gendreau et al., Solving the maximum clique problem 395 

Table 2 

Computational results for uniform random graphs. 

n p Time RM ST DT PT t~ 

0.25 6 5.6 5.6 5.5 5.6 6 
12 5.7 5.7 5.6 5.7 

100 0.50 10 8.8 9.1 9.1 9.0 9 
20 9.2 9.1 9.2 9.1 

0.75 10 15.3 16.6 16.6 16.6 15 
20 16.7 16.6 16.6 16.7 

9 6.3 6.3 6.6 6.2 
0.25 15 6.6 6.6 6.7 6.6 7 

30 6.9 6.6 6.9 6.7 

9 10.0 11.1 11.2 10,9 
300 0.50 15 10.7 11.1 11.2 11.1 12 

30 11.5 11.3 11.2 11.1 

30 19.9 21.4 21.8 21.4 
0.75 50 21.7 21.8 22.1 21.7 22 

100 22.3 21.8 22.3 22.3 

9 6.6 7.1 7.1 6.9 
0.25 15 7.0 7.1 7.1 7.1 8 

30 7.0 7.1 7.2 7.1 

15 11.4 12.3 12.2 12.0 
500 0.50 25 12.1 12.3 12.2 12.2 13 

50 12.2 12.3 12.5 12.7 

30 22.2 24.3 23.9 24.6 
0.75 50 23.3 24.5 24.1 24.9 25 

100 24.3 24.6 24.2 253 

the solution sizes are given not only for the maximum CPU time allotted (TimeLimit), 
but also for intermediate times. This allows us to get a better understanding of the 
aggressiveness of the methods in moving towards the solution. All CPU times are 
in seconds for an IBM PS/2 MODEL 70 with a 20 MHz 80386 CPU running under 
DOS. 

In table 2, the last column (&) indicates the most probable clique size for 
a given pair (n,p). For p = 0.5, the values have been taken directly from the paper 
on STABULUS [14], while for p = 0.25 and 0.75 the values have been determined 
from a result of Matula ( which can be found in [37]). It should be stressed that t~ 
does not necessarily coincide with the average optimal clique size for a specific 
group of  test problems, and that for p = 0.75, & is not as precise an estimator of 
the maximum clique as for sparser graphs. 



396 M. Gendreau et al., Solving the maximum clique problem 

Table 3 

Computational results for extreme random graphs. 

n "ff [a-b] Time RM ST DT PT 

6 6.2 6A 6A 6.3 
0.25 0.0-0.5 12 6.4 6.4 6.4 6.4 

10 15.2 15.7 15.6 15.6 
100 0.50 0.0-1.0 20 15.5 15.7 15.7 15.7 

10 19.8 21.8 21.8 21.8 
0.75 0,5-1.0 

20 21.4 21.8 21.8 21.8 

9 7.8 8.0 8.1 8.1 
0.25 0.0-0.5 15 7.9 8.0 8.2 8.1 

30 8.1 8.0 8.2 8.1 

15 22.8 25.4 25.7 25.3 
300 0.50 0.0-1.0 25 24.4 25.6 25.8 25.6 

50 25.6 25.6 25.9 25.9 

30 34.2 37.6 37.8 37.7 
0.75 0.5-1.0 50 36.2 37.7 37.8 37.9 

100 38.1 37.9 38.0 38.2 

9 8.1 8.9 8.9 8.6 
0.25 0.0-0.5 15 8.5 9.0 9.0 8.8 

30 9.0 9.0 9.0 8.9 

30 30.0 33.8 33.8 33.9 
500 0.50 0.0-1.0 50 32.8 34.0 33.9 34.1 

100 34.0 34.0 33.9 34.2 

60 43.5 47.9 48.2 48.5 
0.75 0.5-1.0 120 47.4 48.3 48.5 49.0 

180 48.9 48.3 48.6 49.1 

We will now briefly comment on the results of  tables 2 and 3. 
First, one can easily see that the average size of  solutions for a fixed density 

is always greater when a < b than when a = b, and that the difference between them 
increases with the spread ( b -  a). This confirms the intuitive assertion we made at 
the beginning of  this section. Hence, the objective that was initially set forward 
when the ~-generator was conceived has effectively been attained. 

The second comment one can make is that the solution times required by the 
extreme graphs are much higher than those for the uniform graphs. This can be 
directly linked to the fact that those graphs display much larger cliques, especially 
for the larger problem sizes. 

If  one compares the results produced by the various methods after the specified 
TimeLimit, it is difficult to determine a clear winner. RM, ST and DT seem to have 



M. Gendreau et al., Solving the maximum clique problem 397 

roughly equal performance, while PT has a slight advantage overall. This advantage 
is more pronounced when one restricts its attention to the larger graphs with high 
densities. In these cases, it seems that the combination of randomness in the search 
induced by the sampling and "random shake-up" features of PT with the purposefulness 
of tabu search yields the best of two worlds. 

If one looks at the speed at which the methods move towards good solutions, 
however, the picture is totally different. The three tabu variants produce large 
cliques very quickly (in relative terms), but RM is outclassed. This is very important 
if one values speed over optimality of the solution. 

To determine the quality of the solutions produced by our heuristic procedures, 
6 of 18 problem series (those for n = 100, ff = 0.25, 0.5 and n = 300, ff = 0.25) 
were solved exactly using the implicit enumeration algorithm of Gendreau et al. 
[18]. 6 other problem series with n = 50 and ff = 0.25, 0.5, 0.75 were also solved 
with this exact method and with PT (the TimeLimit for these runs was set at I0 
seconds). The average size and the number of times that the optimal solution was 
found for each of these series both for PT and for the greedy heuristic are reported 
in table 4. These results clearly show that the solution produced by PT (and, by way 
of consequence, by our tabu search procedures) are optimal for a large proportion 
of these problems, 114 out of 120 instances or 95% of the time, and that when the 
optimal solution is not found, the best clique found by PT is just one vertex smaller 
than the optimum. In comparison, the greedy heuristic finds the optimal solution 
in only 54 problems out of 120, or 45% of the time, and on several occasions the 
solution it finds is off the optimal by two vertices or more (10 times or 8.3%). 

Table 4 

Comparison of solutions produced with the greedy 
heuristic, probabilistic tabu and an exact algorithm. 

Greedy Probabilistic tabu 
n ~ [a,b] Average # Opt Average # Opt Exact & 

50 

I00 

300 

0.25[0.25, 0.25] 4.4 6/10 4.8 I0/I0 4.8 5 
0.25[0,00, 0.50] 4.5 4/10 5.1 10/10 5.1 - 
0.5010.50, 0.50] 7A 6/10 7.8 10/10 7.8 8 
0.50[0.00, 1.00] 9.7 8/10 9.9 10/10 9.9 - 
0.75[0,75, 0.75] 12.4 4/10 13,2 10/10 13.2 12 
0.75[0,50, 1.00] 15.2 8/10 15.4 10/10 15.4 - 

0.25[0,25, 0.25] 5.0 4/10 5.7 10/10 5.7 6 
0.25[0.00, 0.50] 5.6 4/10 6.3 9/10 6.4 - 
0.50[0.50, 0.50] 8.3 4/10 9.1 9/10 9.2 9 
0.50[0.00, 1.00] 14.9 3/10 15.7 10/10 15.7 - 

0.25[0.25, 0.251 5.9 0/10 6.7 7/10 7.0 7 
0.25[0.00, 0.50] 7.3 3/10 8.1 9/10 8.2 - 



398 M. Gendreau et al., Solving the maximum clique problem 

To allow for comparison of our method with STABULUS, we solved the 60 
500-vertex problems (the most significant in our mind) with the Iterated-Stabulus 
procedure described in the previous section, using the same TimeLimit termination 
criterion that had been set for the other heuristics. The length of the tabu lists for 
the STABULUS steps was determined from the formulas in the original STABULUS 
article [14]: IT~l = 27 + t~ (n -  ~)/120, IT21 = IT31 = 2, where ~ is the most probable 
clique size for a uniform graph of a given density. Note that for each density the 
same value of J TlJ was used for both types of graphs, even though the average clique 
size is much larger for extreme graphs (experiments with different values of IT1l 
yielded smaUer average clique sizes for these graphs). 

The computational results obtained with the Iterated-Stabulus procedure and 
with our most efficient heuristic PT are summarized in table 5. In this table, the 

Table 5 

Comparison of probabilistic tabu (FI') and Iterated-Stabulus for 
graphs of 500 vertices. 

Iterated-Stabulus 
"~ [a-b] Time PT Greedy Stabulus 

0.8 6.3 

0.25 [0.25-0.25] 9 6.9 6.6 
15 7.1 6.6 
30 7.1 6.9 

0.50 [0.50-0.50] 

0.75 [0.75-0.75] 

0.25 [0.00-0.50] 

0.50 [o.oo- 1.00] 

0.75 [0.50-1.00] 

1.3 11.3 
15 12.0 11.6 
25 12.2 11.8 
50 12.7 12.0 

2.7 22.5 
30 24.6 22.9 
50 24.9 23.1 
100 25.3 23.7 

0.8 7.9 
9 8.6 8.2 

15 8.8 8.5 
30 8.9 8.7 

3.3 32.6 
30 33.9 33.4 
50 34.1 33.9 
I00 34.2 34.3 

6.5 46.5 
60 48.5 47.7 

120 49.0 48.7 
180 49.1 49.1 



M. Gendreau et al., Solving the maximum clique problem 399 

"greedy" column indicates the average clique sizes found by the greedy heuristic 
before starting the STABULUS steps (the time required by this step can also be 
found under the heading "Time"). 

An illustration of the comparative behaviour of the various methods for the 
500-vertex graphs with [a,b] = [0.75,0.75] (uniform graphs) and [a,b] = [0.5,1.0] 
(extreme graphs) is given respectively in figs. 1 and 2 which depict average solution 
size evolution with respect to elapsed CPU time. 

Clique 
Size 

(1) 

25 

24 

23 

22 

21 

/ 
/ 

f . .= ,ooOO° nooeoooo4 oteoooo°~ o o e e o o e e  e o e e e e o ~  

D e e e e o o e  n ° e ° ° ° ° "  

................................. ~ ~  

/ 

/ 
Probabilistic Tabu 

' tterated-Stabulus 

Double-list Tabu 

• .**,,** Single-list Tabu 

Rejectionless Metho¢~ 

I I t 
0 10 20 30 40 50 60 70 80 90 100 

Time 
(sec.) 

Fig. 1. Average clique size over time for random 
graphs with n= 500 arid ff = 0.75[0.75,0.75]. 

A few comments are now in order. 

With regard to the implementation of Iterated-Stabulus, it must be noted that, 
for all graphs, the greedy heuristic provides very quickly an excellent starting 
point from which to apply the STABULUS steps, which means that only a 
few values of k have to be considered in these steps. It is thus reasonable 



400 M. Gendreau et al., Solving the maximum clique problem 

Clique 
Size 

50. 

48~ 

44, 
/ 

/ 

,.J 
/ 

Probabilistie Tabu 

Iterated-Stabulus 

Double-list Tabu 

• . . . . .  • Single-list Tabu 

Rejectionless Met, 

0 20 40 60 80 100 120 140 160 180 

Fig. 2. Average clique size over time for random 
graphs with n = 500 and ~ = 0.75[0.5,1.0]. 

Time 
sec.) 

to assert that Iterated-Stabulus provides for a fair comparison of the STABULUS 
approach with ours when dealing with arbitrary graphs. 

(2) Given enough CPU time, Iterated-Stabulus and PT both succeed to produce 
large cliques for all types of graphs studied. However, it must be noted that 
PT is a more aggressive method in the sense that it yields results comparable 
to those of Iterated-Stabulus in about half the CPU time. This might become 
critical in situations where the time available is limited, for instance when 
maximum clique problems are solved repeatedly as subproblems of a larger 
problem. 

(3) Before performing the comparison between Iterated-Stabulus and PT, we 
thought that Iterated-Stabulus would perform relatively better on the uniform 
random graphs and PT on the extreme random graphs. Our empirical results 
do not support at all these intuitive beliefs. 



M. Gendreau et al., Solving the maximum clique problem 401 

As a final remark, it should be stressed that with regard to comparisons with 
other methods in the literature, our results were obtained on a micro-computer and 
that our CPU times cannot thus be compared directly with execution times on 
mainframe computers. 

7. Conclusion 

We have presented two variants of a tabu search approach for the maximum 
clique problem. With proper parameter settings, these two variants have been shown 
to be able to produce very good solutions in a reasonable amount of  CPU time on 
a micro-computer. When compared to other approximate methods for MCP, our 
tabu algorithms are competitive with the best of  these. 

We have also proposed and implemented a new random graph generator 
which allows users to produce more varied graphs than classical techniques at just 
a slight increase in complexity and CPU time. This generator can be expected to 
become widely used for testing MCP algorithms in the coming years. 

Acknowledgements 

We thank D. de Werra and A. Hertz for providing us with a copy of STABULUS. 

References 

[1] G. Avondo-Bodeno, Economic Applications of the Theory of Graphs (Gordon and Breach, New 
York, 1962). 

[2] L. Babel, Finding maximum cliques in arbitrary and in special graphs, Report TUM-M9008, 
Mathematisches Institut und Institut fOr Informatik, Technische Universitllt Mflnchen (1990), to 
appear in Computing. 

[3] L. Babel and G. Tinhofer, A branch and bound algorithm for the maximum clique problem, Zeits. 
Oper. Res. 34(1990)207-217. 

[4] E. Balas and L Xue, Minimum weighted coloring of triangulated graphs, with application to maximum 
weight vertex packing and clique finding in arbitrary graphs, SIAM J. Comput. 20(1991)209-221. 

[5] E. Balas and C.S Yu, Finding a maximum clique in an arbitrary graph, SIAM J. Cornput. 
15(1986)1054-1068. 

[6] C. Berge, Th~orie des Graphes e t  s e s  Applications (Dunod, Paris, 1962). 
[7] B. BoUobes, Random Graphs (Academic Press, London, 1985). 
[8] B. Bollobas and P. Erd6s, Cliques in random graphs, Math. Prec. Camb. Phil. Soc. 

80(1976)419-427. 
[9] C. Bron and J. Kerbesch, Finding all cliques of an undirected graph, Comm. ACM 16(1973)575-577. 
[10] R. Carraghan and P.M. Pardalos, An exact algorithm for the maximum clique problem, Oper. Res. 

Lett. 9(1990)375-382. 
[11] V. Degot and J.M. Hualde, De l'utilisation de la notion de clique (sous-graphe complet sym6trique) 

en mati~re de typologie des populations, Revue franfaise d'automatique et recherche op&ationelle: 
Recherche op6rationelle 9(1975)5-18. 

[12] is/. Deo, Graph Theory with Applications to Engineering and Computer Science (Prentlce-HalL 
Englewood Cliffs, 1974). 



402 M. Gendreau et al., Solving the maximum clique problem 

[13] C. Ebenegger, P.L. Hammer and D. de Werra, Pseudo-Boolean functions and stability of graphs, 
Ann. Discr. Math. 19(1984)83-98. 

[14] C. Friderh A Hertz and D. de Werra, Stabulus: a technique for finding stable sets in large graphs 
with tabu search, Computing 42(1989)35-44. 

[15] C. Friden, A Hertz and D. de Werra, Tabaris: An exact algorithm based on tabu search for finding 
a maximum independent set in a graph, Comput. Oper. Res. 17(1990)437-445. 

[ 16] M.R. Garey and D.S. Johnson, Computers and Intractibility: a Guide to the Theory of NP-Completeness 
(Freeman, San Francisco, 1979). 

[17] M. Gendreau, A fast greedy algorithm for the maximum clique problem, paper presented at the 
TIMS/ORSA Meeting, New Orleans (May 1987). 

[18] M. Gendreau, J.-C. Picard and L. Zubieta, An efficient implicit enumeration algorithm for the 
maximum clique problem, in: Advances in Optimization and Control ed. H.A. Eiselt and G. Pederzoli 
(Springer, Berlin, 1988). 

[19] M. Gendreau, L. Salvail and P. Soriano, An appraisal of greedy heuristics for the maximum clique 
problem, Centre de Recherche sur les Transports, Universit~ de Montreal, forthcoming. 

[20] M. Gendreau, P. Soriano and L. Salvail, Simulated annealing and cliques, Centre de Recherche sur 
lea Transports, Universit~ de Montreal, forthcoming; paper presented at the ORSA/TIMS Meeting, 
New York (October 1989). 

[21] L. Gerhards and W. Lindenberg, Clique detection for nondkected graphs: two new algorithms, 
Computing 21 (1979)295-322. 

[22] F. Glover, Future paths for integer programming and links to artificial intelligence, Comput. Oper. 
Res. 13(1986)533-549. 

[23] F. Glover, Tabu search. Part I, ORSA J. Comput. 1(1989)190-206. 
[24] F. Glover, Tabu search. Part II, ORSA J. Comput. 2(1990)4-32. 
[25] J.W. Greene and K.J. Supowit, Simulated annealing without rejected moves, IEEE Trans. Comput. 

Aided Des. CAD-5(1986)221-228. 
[26] M. GrOtschsl, L. Lovasz and A. Schrijver, Geometric Algorithms and Combinatorial Optimization 

(Springer, Berlin, 1988). 
[27] P. Hansen and B. Jaumard, Algorithms for the maximum satisfiability problem, RUTCOR Research 

Report 43-87, Rutgers University (1987). 
[28] F. Harary, Graph theory as a structural model in the social sciences, in: Graph Theory and its 

Applications, ed. B. Harris (Academic Press, New York, 1970). 
[29] A. Hertz and D. de Werra, Using tabu sez.rch techniques for graph coloring, Computing 

29(1987)345-351. 
[30] D.S. Johnson, Approximation algorithms for combinatorial problems, J. Comput. Syst. Sci. 

9(1974)256-278. 
[31] D.S. Johnson, M. Yannakakis and C.H. Papadimitriou, On generating all maximal independent sets, 

Inf. Proc. Lett. 27(1988)119-123. 
[32] S. Kirk'patrick, C.D. Gelatt Jr. and M.P. Vecchi, Optimization by simulated annealing, Science 

220(1983)671-680. 
[33] E. Loukakis, A new backtracking algorithm for generating the family of maximal independent sets 

of a graph, Comput. Math. Appl. 9(1983)583-589. 
[34 E. Loukakis and C. Tsouros, Determining the number of internal stability of a graph, Int. J. Comput. 

Math. 11(1982)207-220. 
[35] D.W. Marala, The employee party problem, Not. A.M.S. 19(1972)A-382. 
[36] D.W. Matola, The largest clique in a random graph, Technical Report CS7608, Southern Methodist 

University (1976). 
[37] D.W. Matula, Expose-and-merge exploration and the chromatic number of a random graph, Combinatorica 

7(1987)275-284. 
[38] P.M. Pardalos and N. Desai, An algorithm for finding a maximum weighted independent set in 

arbitrary graph, Int. J. Comput. Math. 38(1991)163-175. 



M. Gendreau et al., Solving the maximum clique problem 403 

[39] P.M. Pardalos and A. Phillips, A global optimization approach for solving the maximum clique 
problem, Int. J. Comput. Math. 33((1990)209-216. 

[40] P.M. Pardalos and G.P. Rodgers, A branch and bound algorithm for the maximum clique problem, 
Comp. Oper. Res. 19(1992)363-375. 

[41] J.M. Robson, Algorithms for the maximum independent sets, J. Algor. 7(1986)425-440. 
[42] B. Roy, Algdbre Moderne et Th~orie des Graphes, Vol. 1 (Dunod, Paris, 1969). 
[43] C.E. Shannon, The zero-error capacity of a noisy channel, Syrup. on Information Theory, I.R.E. 

Trans. 3(1956). 
[44] R.E. Tarjan and A.E. Trojanowski, Finding a maximum independent set, SIAM J. Comput. 6(1977)537- 

546. 
[45] J. Turner and W.H. Kautz, A survey of progress in graph theory in the Soviet Union, SIAM 

12(1970). 
[46] D. de Werra and A. Hertz, Tabu search techniques: A tutorial and application to neural networks, 

OR Spektnam 11(1989)131-141. 
[47] M. Widmer and A. Hertz, A new heuristic method for solving the flow shop sequencing problem, 

Eur. J. Oper. Res. 41(1989)186-193. 


