
Annals of Operations Research 41(1993)327-341 327

Massively parallel tabu search for the
quadratic assignment problem

Jaishankar Chakrapani

Department of Applied Mathematics and Statistics, State University of New York
at Stony Brook, Stony Brook, NY 11794, USA

Jadranka Skorin-Kapov

Harriman School for Management and Policy, State University of New York
at Stony Brook, Stony Brook, NY 11794, USA

Abstract

A new heuristic algorithm to perform tabu search on the Quadratic Assignment Problem
(QAP) is developed. A massively parallel implementation of the algorithm on the Connection
Machine CM-2 is provided. The implementation uses n 2 processors, where n is the size
of the problem. The dements of the algorithm, called Par_tabu, include dynamically
changing tabu list sizes, aspiration criterion and long term memory. A new intensification
strategy based on intermediate term memory is proposed and shown to be promising
especially while solving large QAPs. The combination of all these elements gives a very
efficient heuristic for the QAP: the best known or improved solutions are obtained in a
significantly smaller number of iterations than in other comparative studies. Combined
with the implementation on CM-2, this approach provides suboptimal solutions to QAPs
of bigger dimensions in reasonable time.

1. Introduction

The Quadratic Assignment Problem (QAP) is a combinatorial optimization
problem with applications to facility location [11], backboard wiring [15], scheduling
[3], etc.

A QAP of size n is characterized by two n x n matrices D = {dij} and F = { fro}.
Denoting by N the set { 1,2 n} and YI the set of all permutations of N, the
problem can be defined as follows.

n n

min~ (zO = ~ ~ dijf~(i)lt(j).
~¢1"I iffil j=l

The sequel assumes that both matrices D and F are symmetric with zeroes as main
diagonal elements. The QAP is known to be NP-hard [12]. The problem can also
be posed as a 0 - 1 optimization problem as follows.

J.C. Baltzer AG, Science Publishers

328 J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem

minimize
n n n / I

E a f x xjt
i=1 k=l j = l l= l

n

subject to ~x /k = 1 Vi,
k = l

?1

~x/k = 1 Vk,
i=1

x/k = O, 1 Vi Vk.

Obviously, the feasible set is the set of n x n permutation matrices X = {xik},
where xu, equals one if ~ i) = k, and zero otherwise. Let the "pairwise exchange"
neighborhood of a given permutation n: refer to the set of permutations that can be
obtained by performing a pairwise exchange on n:.

Local improvement heuristics proceed by examining some neighborhood of
the current solution. Tabu search is a meta strategy superimposed on local improvement
heuristics to cope with local optimality entrapment in solution processes. For a
comprehensive description of tabu search the reader is referred to a two part paper
by Glover [5, 6]. Tabu search based algorithms have already been applied to the
QAP [14,13,1,16]. The objectives of this paper are (1) to develop a new, efficient
tabu search strategy for the QAP with special emphasis on applicability to larger
problem sizes and (2) to provide a massively parallel implementation of this strategy.

With respect to the first objective an algorithm called Par_tabu is developed.
Par_tabu makes use of various, well established as promising, elements of tabu
search including aspiration, long term memory and varying tabu list sizes. Specific
attention is given to intensive search in the proximity of "good" solutions. When
dealing with large problems searching the whole neighborhood at every iteration
could become computationally too demanding. A new intensification strategy, which
searches in a neighborhood restricted using intermediate term memory, is proposed.
This is then superimposed on Par_tabu resulting in a very effective strategy.

When a whole neighborhood is examined, a single iteration of tabu search
involves evaluation of O(n 2) pairwise exchanges and finding the best subject to
tabu restrictions. The best pairwise exchange is then performed. A pairwise
exchange is evaluated based on the change in the objective function value it effects
if performed. Except for the first iteration each pairwise exchange, independent of
the others, can be evaluated in constant time (see, e.g. [1]). Thus, with O(n 2)
processors a parallel algorithm can evaluate the whole neighborhood in constant
time. The best pairwise exchange (subject to tabu restrictions) can be determined
in O(log n) time (see, e.g. [10]). Based on the above the tabu search strategy
developed in this paper is implemented on the Connection Machine CM-2 - a
massively parallel SIMD machine. Due to the architecture of the machine, an efficient

J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 329

implementation required a fine grain decomposition of the problem into small
identical subproblems suitable for data-level parallel computing.

Previous work on some of the elements of tabu searching include the following.
Skorin-Kapov [13] used restricted neighborhoods to speed up the computations
while solving large QAPs. In her work, a neighborhood was restricted by fixing
some entries in a permutation, i.e. forbidding some pairwise exchanges. This was
done using the knowledge about good permutations encountered during the search
process. In a broader context, approaches to intelligently restricting the search to
good solution space areas via candidate lists were proposed by Glover [4]. With
respect to varying tabu list sizes, Glover and HUbscher [7] have proposed a different
strategy of dynamically varying tabu list sizes by introducing "moving gaps" in the
tabu list. Skorin-Kapov [13] uses a similar strategy in her paper. In his work on
QAPs, Taillard [16] varies the tabu list size randomly in an interval. He also
develops a parallel implementation of his algorithm on a ring of 10 transputers.

The rest of the paper is organized as follows. Section 2 describes elements
of Par_tabu. It also provides a formal description of the algorithm and a detailed
discussion on the new intensification strategy proposed. In section 3, an overview
of the connection machine is provided along with some implementation details. In
section 4, the results of computations over a set of QAPs are presented. Conclusions
are drawn in section 5.

. P a r t a b u - a p a r a l l e l t a b u s e a r c h a l g o r i t h m

Par_tabu was designed to perform effectively while keeping the number of
iterations relatively small. It usus a preliminary phase which terminates quickly
identifying the best solution found. An intensification phase then focuses the search
around the current best solution found until no improvement is obtained for a fixed
number of iterations. Long term memory is then invoked to diversify the search to
unexplored regions. In section 2.1, a detailed explanation of these elements of
Par_tabu is provided along with a formal description of the algorithm. Section 2.2
describes the new intensification strategy proposed on intermediate term memory.

2.1. ELEMENTS OF PAR TABU

2.1.1. Basic strategy

Par tabu is divided into four phases viz., initialization phase, preliminary
search phase, intensification phase and diversification phase. The phases use various
parameter settings which govern tabu list management, transition between phases
and long and intermediate term memories. All the parameters were set empirically
after testing various values on problems of sizes between 42 and 64.

The initialization phase consists of generating a random solution, and starting
the preliminary search phase. Alternately, a construction algorithm could be used

330 J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem

to provide a starting solution. A random start was used to study the effectiveness
of the algorithm independent of any construction algorithm.

Each iteration of the preliminary search phase evaluates all possible moves
and determines the best valued move which either is non tabu or satisfies an
aspiration criterion. Aspiration is satisfied if a move that is tabu results in a better
solution than the best found so far. If no better solution is found in 25n iterations,
the intensification phase is started.

The intensification phase starts, with an empty tabu list, from the best solution
found in the current region. The algorithm proceeds as in the preliminary search
phase. If a better solution is found, the intensification phase is restarted after 50n
iterations are performed without any improvement. If however, the current intensification
phase does not find a better solution, the diversification phase is initialized after
50n iterations. The intensification phase provides a simple way to focus the search
around the current best solution.

Diversification is the only phase performed for a fixed, 10n, number of
iterations. It employs a frequency based long term memory with a threshold of 5%
as explained in the following. Let longmemik store the sum of the values of the 0 -
1 variable xi~, in all the iterations performed so far. Thus the n x n array longmem
stores the number of times each entry of a permutation took a value 1 in all the
solutions examined by the search. If the most frequently used entries, based on a
threshold, are kept tabu for a sufficient number of iterations, the search will be
forced to explore new regions. The number of iterations with this additional tabu
restriction should be large enough to drive the search out of the current region.
After the specified number of iterations are performed, the tabu status based on
frequency measure could be dropped. Alternatively, a new starting solution could
be constructed based on the matrix longmem. The method described above allows
the search process to select the new region to explore. After I0n iterations, the
algorithm loops back to the preliminary search phase. The algorithm terminates
after the search has been diversified to the required number of regions.

2.1.2. Tabu list management

Let in the current solution xlk = xjt = 1. A pairwise exchange between i and
j would result in a solution where xik = xjt = 0 and xlt = Xjk = 1. In general, in every
pairwise exchange there are exactly two variables that change their values from
1 to 0 and two variables from 0 to 1. Par tabu determines the tabu status of a
pairwise exchange only based on the two variables that would change their values
to 1. Let t_iterpq be the last iteration when Xeq changed its value from 1 to 0. If the
difference between the current iteration and any of the (two) t_iter values of the
relevant variables is less than the tabu size, then the pairwise exchange is classified
as tabu.

The tabu list size is varied dynamically evolving through different configurations.
It cycles through eight configurations passing from one to the other if no improvement

J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 331

Configurat ion Nex t Conf igurat ion Passing Criteria

'VWWW/~ no improvement in 5n i terations

no improvement in 4n i terations

~t i I~WA no Improvement in 3n i terations

" i J I no improvement in 2n i terations

5 1 1 1 1 1 no improvement in n i terat ions

6 1 1 I ~//~ 7 no improvement in 2n i terations

"i i V/X/A no improvement in 3n i terations

"I , ,VW/~/~ no improvement in 4n i terations

Fig. 1. Tabu list configurations.

is encountered in a fixed number of iterations. Figure 1 illustrates the
configurations, with the shaded area indicating the active region of the tabu list in
each configuration.

This set of tabu list configurations allows more detailed examination of the
feasible region by systematically decreasing the number of actual tabu moves via
configurations 2, 3, 4, and 5. It then breaks possible cycles and diversifies the
search by systematically increasing the number of tabu moves in the remaining
configurations. In order to provide an additional security against possible cycling
a random component is introduced in the tabu list. Every time the tabu list starts
at configuration 1, a new tabu size is selected as a multiple of 4 in the interval
[base_tabu_size, base_tabu_size+ 12]. The base_tabu_size together with the
required number of diversifications to be performed are given as inputs to the
algorithm.

332 J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem

2.1.3. The complete algorithm

ALGORITHM Par tabu

Inputs : D, F, base_tabu_size, no of_restarts

s t e p 0 Initialization: Generate starting solution, clear tabu list, and go to step 1.

s t e p 1 Preliminary search:

• Evaluate all moves and determine the best subject to tabu restrictions.

• Perform best move.

• Update tabu list.

° - If no improvement in 25n iterations go to step 2.

- Else go to step 1.

s t e p 2 Intensification:

(a) Go to the best solution found so far and clear the tabu list.

(b) • Evaluate all moves and determine the best subject to tabu restrictions.

• Perform the best move.

• Update tabu list.

• - I f no improvement in 50n iterations:

- I f current step 2 has found a better solution, go to step 2a.

- Else:

- I f required number of restarts have been performed, stop.

- E l s e , go to step 3.

- E l s e , go to step 2b.

s t e p 3 Diversification:

(a) Determine additional tabu restrictions from long term memory (elaborated
in section 3.2).

(b) • Evaluate all moves and determine the best subject to tabu restrictions.

• Perform the best move.

• Update tabu list.

• - I f I0n iterations performed:

- I n i t i a l i z e best solution to the current solution.

- Remove additional tabu restrictions due to long term memory, update
number of restarts and go to step 1.

- E l s e , go to step 3b.

J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 333

2.2. INTENSIFICATION BASED ON INTERMEDIATE TERM MEMORY

In a general context Glover [5, 6] proposes the use of intermediate term
memory in a way complementary to long term memory. A straightforward adaptation
of the idea was tried initially. The entries whose frequencies fell below a threshold
were held permanently tabu for a fixed number of iterations. Let such variables be
denoted as "blocked variables" since they are blocked from assuming the value 1.
Various threshold values and tabu list sizes were tried. However, the results were
not very encouraging, Somehow, the search seemed to be too restrictive. A possible
reason for the performance of this straightforward intensification is suggested in the
following.

Let intmem be the n x n matrix such that intmemeq is the sum of the values
of the 0 - 1 variable Xpq in all the iterations so far in the current region of search.
Note that longmem is a cumulative sum over all the different regions explored while
intmem is a frequency measure pertaining to the current region of search only.
Suppose that a large number of solutions explored in the current region have lr(p) = q.
This would result in a high value of intmemeq and xpq would be a blocked variable.
The objective of intensification is to search more elaborately the search space
defined by variables that are not blocked. Suppose that xik, Xil and xjt are not blocked
variables and that xjk is a blocked variable. It is possible that at the current iteration
xik and xjt have value 1. However, xjk is blocked indirectly causing Xil tO be blocked.
This seems to defeat the purpose of intensification.

The solution space searched during intensification was enlarged in order to
avoid implicit blockings such as explained above. The results of applying a threshold
to the intmem matrix is an n x n matrix of zeroes and ones. An entry is zero if it
falls below the threshold and one otherwise. This matrix could also be thought of
as an adjacency matrix of a directed graph G. Let G ' = (U ' , E ') be a directed graph
where U' = {il,i2, j l , j2} is the set of vertices and E ' = {(il, j l) , (i l , j2)}, (i2 , j2)}
is the set of edges. Enlarging the solution space as described in the previous paragraph
is equivalent to identifying directed subgraphs isomorphic to G" on the original
graph G, and adding an edge corresponding to (i2, j l) . A naive algorithm which
checks all possible combinations was used. The algorithm takes O(n 3) time and with
n 2 processors parallelizes easily to an O(n) algorithm.

A threshold of 5% was set after preliminary experimentation with various
values. This intensification phase was superimposed on the intensification phase
of Par tabu. First, the simple intensification of Par_tabu is performed until the
"no improvement criterion" is satisfied. Then, instead of diversifying, the search
space is reduced as explained above and the new intensification is performed.
The algorithm for this new intensification phase is identical to the original one
except that it operates on a reduced search space and that the base tabu size is
reduced in proportion to the reduction in search space. In the sequel, Par_tabu
combined with the intermediate term memory based intensification phase is referred
to as Augmented Par_tabu.

334 J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem

3. Parallel implementation

The Partabu algorithm in the previous section requires a massively parallel
machine. In section 3.1 one such system (the Connection Machine system CM-2)
is described. Section 3.2 provides the implementation details of Partabu on a
CM-2 system.

3.1. THE CONNECTION MACHINE MODEL CM-2

The Connection Machine system [8] is a dynamically reconfigurable, fine
grain SIMD, computing system. A CM-2 model may contain I6K, 32K, or 64K
processors [17]. Each processor has, associated with it, its own memory which
could either be 8K or 32K bytes. The hardware is comprised of chips interconnected
in a hypercube configuration. Each chip contains 16 processor/memory units and
a router to handle communication.

The hardware unit is controlled by a front computer (VAX or Sun). The user
does all the coding on the front end which also executes the sequential parts of the
code. The parallel instructions are broadcast to the CM-2 hardware with the help
of a microcontroller. Parallel code can be executed (simultaneously) on a preselected
set of processors. The programming languages currently supported are CM-FORTRAN,
C* and "lisp. Program variables are either sequential or parallel. Sequential variables
reside in the front end's memory and can be broadcast to all processors of the
Connection Machine if necessary. Parallel variable reside in the local memory of
the CM-2 processors and can be accessed freely by the front end. For e.g. each
element of a 16K array can be stored (as a parallel variable) in a separate processor
of a 16K machine. When executing a parallel instruction, each processor acts on
its own copy of the parallel variables involved. Furthermore, the CM-2 system
supports virtual processing. Each processor/memory unit can be sliced into many
units providing the user, virtually, with more than the physical number of processors.
For e.g. slicing each processor/memory unit into two provides, virtually, double the
number of physical processors. Though in the above example, a single processor
would sequentially execute code on each half of the memory, programming can be
done at a higher level of abstraction assuming the availability of twice the actual
number of processors. The number of virtual processors available is limited only
by the memory requirements specific to the problem. The ratio of the number of
virtual processors to the number of physical processors is called VP ratio.

In addition to computation, the CM-2 system can perform interprocessor
communication in parallel. Communication operations can be classified either as
send or get operations. If a "sending processor" knows the address of the receiving
processor the send operation can be used. The "receiving processor" need not know
where the data comes from. The converse is true for the get operation. The most
general purpose communication, where any processor can communicate with any
other, is supported by a high speed router. The CM-2 system also supports a faster
communication mechanism called NEWS grid. NEWS grid communication is a

J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 335

structured form of communication which requires the processors to be organized as
a multi (up to 31) dimensional grid. NEWS grid effects communication between
neighboring processors relative to the specified grid. NEWS grid also supports
functions like scan, spread, etc. which combine communication with computation.
For example, the spread function can compute based on the data from all processors
along a particular dimension of the grid and communicate the results to the same.

3.2. IMPLEMENTATION OF PAR TABU ON CM-2

At each iteration, a move from the current permutation to one of its neighbors
is made by performing the best pairwise exchange subject to tabu restrictions. Through
a series of such moves the search can reach any arbitrary permutation. Therefore, a
straightforward implementation associating one processor with a pairwise exchange
would require at least one of the matrices D or F to be stored in all the processors. This
is a severe limitation for large n necessitating a decomposition of the storage. Further,
it is clear that the computations would involve indexing a parallel array with parallel
variables. This operation, called parallel right indexing, is highly inefficient [18].

Recall that xpq, p,q = 1,2 , n are the 0 - 1 variables in the 0 - 1 formulation
of a QAP. Consider the following configuration of the CM-2. The processors are
organized as a two-dimensional n x n grid. All processors in row p store a parallel
array corresponding to row p of the matrix D. Similarly, all processors in column
q store the corresponding column q of the matrix F. Further, each processor Ueq
stores the value of its corresponding 0-1 variable xeq. Let S = {urn IP,q = 1,2, n}
be the set of processors and let S~ = {upqlxpq = 1 }. Let ~be a permutation such that
n:(i) = k and n:(j) = I. This implies that xu, = xjt = 1 and xit = xjt, = 0. A change in the
values of xik, xjt, xu and xjk corresponds to a pairwise exchange of ~r(i) and ~(j) .
Define A%ik by the following.

A%il, = ~%~(1 - 2xiD,

where S~/k = ~u,,,~ s~2dlp f~ . Note that the local memory of ua contains all the data
needed for this computation and the storage requirement is only O(n). The effect
due to a pairwise exchange between ~r(i) and l r (j) is given by

ACg aj, = - ~.~ 2dipf~ - ~., 2dj , flq - 2dijfkt
up~ ~ sl - { u jl } u ~ ~ Sl - { u~ }

+ ~ 2dipft q + ~.~ 2djpf~ + 2dijf~
u~ esl up~ esl

= A~ik + ACgjt + 2dijfJa

+ ACgit + A ~ j k + 2dijfkt

= ACgik + A~j l + A'qg~, + A'C~j/c, (1)

336 J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem

where, Vup~(q) ~ S - S1, A'~p~(q) = A~pn(q) + 2dpq f~t(p)~t(q). The required information
to evaluate a pairwise exchange is computed in parts by four different processors,
two of which are in Sl and the other two are in S - Sl. These computations can be
done in constant time, except for the first iteration, by storing of the Aq~s from the
previous iteration [1, 16]. Now, the results have to be communicated to the processor
which is to evaluate the pairwise exchange.

Communication is done in three steps. Processors along the diagonal do not
take part in communication. In the first step, all processors in S - $I communicate
the sum of their A'% to a designated processor in their row. This is achieved by
a send operation. Each processor upT:(q) sends its A'~p~(q) to processor up q. In the
second step, all processors in $1 communicate their A~ values to all the processors
in their row. This is done with the help of the communication function spread. As
a result of these two steps processor uij would have received A~ik and A'~ii and
processor uji would have received A%jl and A'~jk. Processors ulj and uji between
themselves have all the information needed to compute A~ikjt. In general, processors
ueq and uqp have the information needed to compute the effect of a pairwise exchange
of n:(p) and lr(q). In the third step, all the information required to evaluate a
pairwise exchange is communicated to a single processor. Each processor u~,q
communicates with the processor Uqp. This involves, again, a send operation.

Tabu status is stored in each processor as the last iteration t_iter in which
the value of the corresponding variable xeq changed to 0. If the difference between
the current iteration and t_iter is less than the tabu size, then the corresponding
processor has a tabu status of 1. Thus, evaluating tabu status of a pairwise exchange
requires information regarding the tabu status of the processors involved. If the data
involved is integral this does not require extra communication steps. Observing that
the information communicated by the processors in the above communication steps
is a product of 2, the tabu status (which is either 0 or 1) can be simply added and
decoded correspondingly at the receiving end.

4. Computational results

The computations were performed on CM-2s located at NPAC Syracuse,
Sandia National Laboratories, UMIACS College Park and Thinking Machines
Corporation. The front end was a Sun. Coding was done in C*, The CM-2 at Sandia
National Laboratories has 64 bit floating point accelerators and all the timings
reported were achieved on this machine.

Since the benefits of a massively parallel implementation increase with the
dimension of the problem, only larger QAP problems of size between 42 and 100
were tested. The problems are available in literature [14, 13] and could also be
obtained, by request, from the authors.

Two base tabu sizes, both multiples of four, were tried for all the problems.
The first base tabu size was chosen to be the nearest multiple of 4 less than 2n/3.

J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 337

Such a tabu size was chosen after preliminary experimentation on tabu sizes in the
interval [~,,,] - the same as the one tried in a previous study by the authors [1] using
the same tabu conditions. A multiple of 4 was chosen since the tabu list was divided
into four parts to be employed in different configurations. The second base tabu size
was obtained by adding 4 (for problems of size 42-90) or 8 (for problems of size
100) to the first base tabu size. For all problems, nine restarts based on long term
memory were performed. In order to provide a fair basis for comparison both
Partabu and Augmented Par_tabu were tested on the same set of parameters. Same
tabu sizes and starting solutions of Partabu were provided to Augmented Partabu.
During the intermediate term memory intensification phase of Augmented Partabu
the base tabu size used was half the original base tabu size. This was in accordance
with the reduction in the search space since, on the average, about half the values
of every entry of a permutation were tabu in this phase.

Figure 2 shows the growth in time/iteration with problem size of Partabu
when the required number of processors are available. When organizing the processors
as a multi dimensional grid, the CM-2 system requires that the number of processors
in each dimension be a power of 2. For problems of size up to 64, 8K processors
suffice. 16K processors are required for problems of size greater than 64 and up to
128. If, however, only 8K processors are available, virtual processing with a VP
ratio of 2 is required and the time taken gets multiplied by a factor of about 1.6.
Par..tabu spends about 55% of its time/iteration in communication.

Even when the whole neighborhood is to be searched there are only
n(n- 1)/2 pairwise exchanges to be evaluated. The implementation developed in

~ e m e / 1 O O O r a t i o n . s ..
c o n ~ s)

6 . 1

6 . 0

6 . 9 .

f . a "

S . 7 ~

6 . 6 "

S . 5 '

5 . 3 '

5 . 0
, 4 0

I I I I I' I
5 O 6 0 7 0 6 0 9 0 1 O 0

P r o b l e m S i z e

Fig. 2. Time versus problem size for Par..tabu.

338 J. Chakrapani, J. Skorin-Kapovo The quadratic assignment problem

this study uses n 2 processors where two processors, in parts, compute the change
in the objective function value due to a single pairwise exchange. Once the
results are communicated, about half the processors are inactive while the best
pairwise exchange is being evaluated and performed. An implementation using
only n(n - 1)/2 processors would increase the size of the problem that can be solved
without virtual processing. Also, during the intermediate term memory intensification
phase of Augmented Par_tabu more than half the processors permanently have a
tabu status of 1. Thus, there are at most n2/8 pairwise exchanges to be evaluated
in this phase. A more careful implementation of Augmented Partabu using only
as many processors as needed could reduce the computational time spent in this
phase by reducing the amount of virtual processing required.

Table 1 compares the average time/iteration of Partabu with three other
tabu search algorithms from literature, applied to the same data set. It should be
noted that although these are different algorithms, in each case an iteration involves
examination of the "pairwise exchange" neighborhood (which is the most expensive
part with respect to time). The purpose of this table is to indicate the difference in
the growth in time/iteration as a function of problem dimension on different computer
architectures. Such a comparison is necessary since, to the knowledge of the authors,
this is the first study on the use of the Connection Machines in this context. Clearly,
the effective use of CM-2 compares favorably thereby supporting its exploration as
a computer medium for combinatorial optimization. The times reported for Par_tabu
are the Connection Machine times which account for more than 90% of the
computational time. There was little difference in the average time/iteration between
Partabu and Augmented Par_tabu. This since the only extra step that Augmented

Table I

Growth of time/iteration with problem size for different algorithms.

Prob. Time for 1000 iterations

size Partabu TAI" SKO b SEQ c

42 5.62 10.94 19.00 57.80

49 5.71 14.89 23.00 189.00
56 5.77 19.44 30.00 244.00

64 5.80 25.40 40.00 321.00

72 5.83 32.14 60.00 400.00
81 5.85 40.68 80.00 529.00
90 5.86 50.22 110.00 662.00

100 5.87 - - -

'TAI : TaiUard's [16] parallel algorithm implemented on a ring of
10 transputers.

bSKO : Skorin-Kapov's [13] vectorized algorithm on IBM 3090.
CSEQ : A sequential algorithm by the authors [1] on SUN SPARC

station 1.

J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 339

Par_tabu performed, evaluating the restricted neighborhood, takes time negligible
compared to the time taken by the rest of the strategy.

Table 2 gives the results achieved by Partabu and Augmented Par_tabu.
The best known objective function value is taken from (a) [13, 16], (b) [13], (c) [9]
and (d) [2]. The best known or improved results obtained in this study are shown
in boldface. Partabu matches the best known results for problems of size up to
64 and produces results better than those given in (a), (b), (c) and (d) for all the
100 size problems. It also achieves very good results for problems of size 72, 81
and 90. Augmented Par_tabu for all the problems provides results as good as or
better than Partabu. It obtains the best known results for 72 and 81 size problems.

Table 2

Results for QAP.

Base Par tabu
Prob. tabu Best known Best solution Total no. of
size size solution achieved iterations

Aug Par_tabu
Best solution Total no. of

achieved iterations

42 24 14.812" 15~12
28 15,812

49 28 23.386" 23,386
32 23,386

56 36 34,458" 34:58
40 34.476

64 40 48,498 a 48,502
44 48,498

72 48 66.256 a 66.260
52 66530

81 52 91,008 b 91,010
56 91,116

90 60 115,534 115,692
64 115,594

lOOa 64 152.096 ¢ 152,014
72 152.112

100b 64 154,102 a 153~10
72 153,912

100c 64 147,894 c 147,888
72 147,878

1004 64 149,886 c 149,894
72 149,682

100e 64 149fl72 ¢ 149,160
72 149,164

100f 64 149,176 ¢ 149,206
72 149,048

57.691
61.318
71.801
81.191
105345
106269
116878
121 489
150 188
112220
189 O97
142 618
142O95
230449
224 296
246320
182675
176 145
165384
242397
233 370
187 520
209 ~92
245.138
189.839
192.176

15,812 91.136
15,812 89,432
23,386 112.810
23,386 131.187
34462 136.901
34,458 175.898
48,498 145.056
48.502 214.262
66,256 198.129
66.302 174.093
91,008 191,571
91.028 246,182

115.586 268.416
115.608 259.372
152.076 330.702
152,014 199.882
153,900 274,480
153.908 303.303
147.878 290.104
147,868 306.954
149,596 257.855
149.698 304.012
149.164 270.573
149,156 311,458
149.348 224'461
149,036 308.587

340 J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem

Also, it improves the best known results found by Partabu for five of the six 100
size problems. The best results reported by Skorin-Kapov [13] were achieved performing
an extensive search over a large number (over 1 million) of iterations. Kelly et al.
[9] also perform over 1 million iterations to achieve their results. Taillard, in a
private communication, reports the best iteration for the size 90 problem to be
between 1.5 million and 2 million iterations. Comparatively, the maximum number
of iterations per base tabu size performed by Partabu and Augmented Par_tabu
for any problem are less than 250,000 and 350,000 respectively. Also, the algorithms
require no extra guidance from the user with the only inputs being the base_tabu-
size and the number of restarts to be performed. Augmented Partabu performs
more iterations than Partabu. However, it also achieves better results demonstrating
the effectiveness of reduced neighborhood search. Finally, although both base tabu
sizes obtain good results, it is not possible to determine which one is better. However,
the total number of iterations is still relatively small even when both base tabu sizes
are taken into account.

5. Conclusions

A massively parallel tabu search based heuristic has been developed for the
Quadratic Assignment Problem. The tabu search strategy proved to be very efficient
in terms of solution quality. It obtained best known or close to best known solutions
for problems of size up to 90, and improved upon known solutions for problems
of size 100. A new intensification strategy based on the intermediate term memory
is proposed. The addition of this intensification feature of the tabu strategy resulted
in further improved solutions to larger problems, with the price of an increase in
the total number of iterations performed. Since the intensification is based on
restricting neighborhoods, a single iteration involves less effort than an iteration
examining the whole neighborhood. This leads to possibilities of efficiently attacking
even larger sized QAPs.

A careful implementation on the Connection Machine, a massively parallel
system, proved to be extremely suitable. The increase in time per iteration is apparently
a logarithmic function of the size of the problem. Possible directions are provided
towards alternate implementations that could be more efficient when solving very
large sized QAPs.

Acknowledgements

This research was partially supported by NSF grant DDM-8909206. This
work was conducted using the computing resources of the North-East Parallel
Architectures Center (NPAC) at Syracuse University, Syracuse, NY; Sandia National
Laboratories, Alberquerqe, NM; UMIACS College Park, MD; and Thinking Machines
Corporation, Cambridge, MA.

J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 341

References

[1] J. Chakrapani and J. Skorin-Kapov, A connectionist approach to the quadratic assignment problem,
J. Comp. Oper. Res. 19(1992)287-295.

[2] B. Gavish, Manifold search techniques applied to the quadratic assignment problem, Technical
report, Owen Graduate School of Management, Vanderbilt University (1991).

[3] A. Geoffrion and G. Graves, Scheduling parallel production lines with changeover costs: Practical
applications of a quadratic assignment/linear programming approach, Oper. Res. 24(1976)595-610.

[4] F. Glover, Candidate llst strategies and tabu search, Technical report, Center for Applied Artificial
Intelligence, University of Colorado, Boulder (1989).

[5] F. Glover, Tabu search. Part I, ORSA J. Comput. 1(1989)190-206.
[6] F. Glover, Tabu search. Part 1I, ORSA J. Comput. 2(1990)4-32.
[7] F. Glover and R. Htlbscher, Bin packing with tabu search, Technical report, Center for Applied

Artificial Intelligence, University of Colorado, Boulder (1991).
[8] W.D. Hillis, The Connection Machine CI'he M1T Press, 1985).
[9] J. Kelly, M. Laguna and F. Glover, A study of diversification strategies for the quadratic assignment

problem, Technical report, Graduate School of Business and Administration, University of Colorado,
Boulder (1991).

[10] U. Manber, Introduction to Algorithms (Addison-Wesley, 1989).
[11] C. Nugent, T. Volmann and J. Ruml, An experimental comparison of techniques for the assignment

of facilities to locations, Oper. Res. 16(1968)150-173.
[12] S. Sahni and T. Gonzalez, P-complete approximation problems, J. ACM 23(1976)555-565.
[13] J. Skorin-Kapov, Extensions of a tabu search adaptation to the quadratic assignment problem,

J. Comp. Oper. Res., to appear.
[14] J. Skorin-Kapov, Tabu search applied to the quadratic assignment problem, ORSA J. Comput.

2(1990)33-45.
[15] L. Steinberg, The backboard wiring problem: A placement algorithm, SIAM Rev. 3(1961)37-50.
[16] E. Taillard, Robust tabu search for the quadratic assignment problem, Parallel Comput.

17(1991)443-455.
[17] Thinking Machines Corporation, Cambridge, MA, Connection Machine Model CM-2, Technical

Summary Version 5.1. (May 1989).
[18] Thinking Machines Corporation, Cambridge, MA, C* Programming Guide, Version 6.0. (November

1990).

