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Abstract 

A new heuristic algorithm to perform tabu search on the Quadratic Assignment Problem 
(QAP) is developed. A massively parallel implementation of the algorithm on the Connection 
Machine CM-2 is provided. The implementation uses n 2 processors, where n is the size 
of the problem. The dements of the algorithm, called Par_tabu, include dynamically 
changing tabu list sizes, aspiration criterion and long term memory. A new intensification 
strategy based on intermediate term memory is proposed and shown to be promising 
especially while solving large QAPs. The combination of all these elements gives a very 
efficient heuristic for the QAP: the best known or improved solutions are obtained in a 
significantly smaller number of iterations than in other comparative studies. Combined 
with the implementation on CM-2, this approach provides suboptimal solutions to QAPs 
of bigger dimensions in reasonable time. 

1. Introduction 

The Quadratic Assignment Problem (QAP) is a combinatorial optimization 
problem with applications to facility location [11 ], backboard wiring [ 15], scheduling 
[3], etc. 

A QAP of size n is characterized by two n x n matrices D = {dij} and F = { fro}. 
Denoting by N the set { 1,2 . . . . .  n} and YI the set of all permutations of N, the 
problem can be defined as follows. 

n n 

min~ (zO = ~ ~ dijf~(i)lt(j ). 
~¢1"I iffil j=l 

The sequel assumes that both matrices D and F are symmetric with zeroes as main 
diagonal elements. The QAP is known to be NP-hard [12]. The problem can also 
be posed as a 0 - 1  optimization problem as follows. 
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minimize 
n n n / I  

E a f x xjt 
i=1 k=l  j = l  l= l  

n 

subject to ~x /k  = 1 Vi, 
k = l  

?1 

~x/k  = 1 Vk, 
i=1 

x/k = O, 1 Vi Vk. 

Obviously, the feasible set is the set of n x n permutation matrices X = {xik}, 
where xu, equals one if ~ i )  = k, and zero otherwise. Let the "pairwise exchange" 
neighborhood of a given permutation n: refer to the set of permutations that can be 
obtained by performing a pairwise exchange on n:. 

Local improvement heuristics proceed by examining some neighborhood of 
the current solution. Tabu search is a meta strategy superimposed on local improvement 
heuristics to cope with local optimality entrapment in solution processes. For a 
comprehensive description of tabu search the reader is referred to a two  part paper 
by Glover [5, 6]. Tabu search based algorithms have already been applied to the 
QAP [14,13,1,16]. The objectives of this paper are (1) to develop a new, efficient 
tabu search strategy for the QAP with special emphasis on applicability to larger 
problem sizes and (2) to provide a massively parallel implementation of this strategy. 

With respect to the first objective an algorithm called Par_tabu is developed. 
Par_tabu makes use of various, well established as promising, elements of tabu 
search including aspiration, long term memory and varying tabu list sizes. Specific 
attention is given to intensive search in the proximity of "good" solutions. When 
dealing with large problems searching the whole neighborhood at every iteration 
could become computationally too demanding. A new intensification strategy, which 
searches in a neighborhood restricted using intermediate term memory, is proposed. 
This is then superimposed on Par_tabu resulting in a very effective strategy. 

When a whole neighborhood is examined, a single iteration of tabu search 
involves evaluation of O(n 2) pairwise exchanges and finding the best subject to 
tabu restrictions. The best pairwise exchange is then performed. A pairwise 
exchange is evaluated based on the change in the objective function value it effects 
if performed. Except for the first iteration each pairwise exchange, independent of 
the others, can be evaluated in constant time (see, e.g. [1]). Thus, with O(n 2) 
processors a parallel algorithm can evaluate the whole neighborhood in constant 
time. The best pairwise exchange (subject to tabu restrictions) can be determined 
in O(log n) time (see, e.g. [10]). Based on the above the tabu search strategy 
developed in this paper is implemented on the Connection Machine CM-2 - a 
massively parallel SIMD machine. Due to the architecture of the machine, an efficient 
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implementation required a fine grain decomposition of the problem into small 
identical subproblems suitable for data-level parallel computing. 

Previous work on some of the elements of tabu searching include the following. 
Skorin-Kapov [13] used restricted neighborhoods to speed up the computations 
while solving large QAPs. In her work, a neighborhood was restricted by fixing 
some entries in a permutation, i.e. forbidding some pairwise exchanges. This was 
done using the knowledge about good permutations encountered during the search 
process. In a broader context, approaches to intelligently restricting the search to 
good solution space areas via candidate lists were proposed by Glover [4]. With 
respect to varying tabu list sizes, Glover and HUbscher [7] have proposed a different 
strategy of dynamically varying tabu list sizes by introducing "moving gaps" in the 
tabu list. Skorin-Kapov [13] uses a similar strategy in her paper. In his work on 
QAPs, Taillard [16] varies the tabu list size randomly in an interval. He also 
develops a parallel implementation of his algorithm on a ring of 10 transputers. 

The rest of the paper is organized as follows. Section 2 describes elements 
of Par_tabu. It also provides a formal description of the algorithm and a detailed 
discussion on the new intensification strategy proposed. In section 3, an overview 
of the connection machine is provided along with some implementation details. In 
section 4, the results of computations over a set of QAPs are presented. Conclusions 
are drawn in section 5. 

. P a r t a b u  - a p a r a l l e l  t a b u  s e a r c h  a l g o r i t h m  

Par_tabu was designed to perform effectively while keeping the number of 
iterations relatively small. It usus a preliminary phase which terminates quickly 
identifying the best solution found. An intensification phase then focuses the search 
around the current best solution found until no improvement is obtained for a fixed 
number of iterations. Long term memory is then invoked to diversify the search to 
unexplored regions. In section 2.1, a detailed explanation of these elements of 
Par_tabu is provided along with a formal description of the algorithm. Section 2.2 
describes the new intensification strategy proposed on intermediate term memory. 

2.1. ELEMENTS OF PAR TABU 

2.1.1. Basic strategy 

Par tabu is divided into four phases viz., initialization phase, preliminary 
search phase, intensification phase and diversification phase. The phases use various 
parameter settings which govern tabu list management, transition between phases 
and long and intermediate term memories. All the parameters were set empirically 
after testing various values on problems of sizes between 42 and 64. 

The initialization phase consists of generating a random solution, and starting 
the preliminary search phase. Alternately, a construction algorithm could be used 
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to provide a starting solution. A random start was used to study the effectiveness 
of  the algorithm independent of  any construction algorithm. 

Each iteration of  the preliminary search phase evaluates all possible moves 
and determines the best valued move which either is non tabu or satisfies an 
aspiration criterion. Aspiration is satisfied if a move that is tabu results in a better 
solution than the best found so far. If no better solution is found in 25n iterations, 
the intensification phase is started. 

The intensification phase starts, with an empty tabu list, from the best solution 
found in the current region. The algorithm proceeds as in the preliminary search 
phase. If a better solution is found, the intensification phase is restarted after 50n 
iterations are performed without any improvement. If however, the current intensification 
phase does not find a better solution, the diversification phase is initialized after 
50n iterations. The intensification phase provides a simple way to focus the search 
around the current best solution. 

Diversification is the only phase performed for a fixed, 10n, number of  
iterations. It employs a frequency based long term memory with a threshold of  5% 
as explained in the following. Let longmemik store the sum of the values of  the 0 -  
1 variable xi~, in all the iterations performed so far. Thus the n x n array longmem 
stores the number of  times each entry of  a permutation took a value 1 in all the 
solutions examined by the search. If the most frequently used entries, based on a 
threshold, are kept tabu for a sufficient number of  iterations, the search will be 
forced to explore new regions. The number of iterations with this additional tabu 
restriction should be large enough to drive the search out of  the current region. 
After the specified number of iterations are performed, the tabu status based on 
frequency measure could be dropped. Alternatively, a new starting solution could 
be constructed based on the matrix longmem. The method described above allows 
the search process to select the new region to explore. After I0n iterations, the 
algorithm loops back to the preliminary search phase. The algorithm terminates 
after the search has been diversified to the required number of  regions. 

2.1.2. Tabu list management 

Let in the current solution xlk = xjt = 1. A pairwise exchange between i and 
j would result in a solution where xik = xjt = 0 and xlt = Xjk = 1. In general, in every 
pairwise exchange there are exactly two variables that change their values from 
1 to 0 and two variables from 0 to 1. Par tabu determines the tabu status of  a 
pairwise exchange only based on the two variables that would change their values 
to 1. Let t_iterpq be the last iteration when Xeq changed its value from 1 to 0. If  the 
difference between the current iteration and any of  the (two) t_iter values of  the 
relevant variables is less than the tabu size, then the pairwise exchange is classified 
as tabu. 

The tabu list size is varied dynamically evolving through different configurations. 
It cycles through eight configurations passing from one to the other if no improvement 
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Configurat ion Nex t  Conf igurat ion Passing Criteria 

'VWWW/~ no improvement  in 5n i terations 

no improvement  in 4n i terations 

~t i I~WA no Improvement  in 3n i terations 

" i  J I no improvement  in 2n i terations 

5 1 1 1 1 1  no improvement  in n i terat ions 

6 1 1  I ~//~ 7 no improvement  in 2n i terations 

"i i V/X/A no improvement  in 3n i terations 

"I , ,VW/~/~ no improvement  in 4n i terations 

Fig. 1. Tabu list configurations. 

is encountered in a fixed number of iterations. Figure 1 illustrates the 
configurations, with the shaded area indicating the active region of the tabu list in 
each configuration. 

This set of tabu list configurations allows more detailed examination of the 
feasible region by systematically decreasing the number of actual tabu moves via 
configurations 2, 3, 4, and 5. It then breaks possible cycles and diversifies the 
search by systematically increasing the number of tabu moves in the remaining 
configurations. In order to provide an additional security against possible cycling 
a random component is introduced in the tabu list. Every time the tabu list starts 
at configuration 1, a new tabu size is selected as a multiple of 4 in the interval 
[base_tabu_size, base_tabu_size+ 12]. The base_tabu_size together with the 
required number of diversifications to be performed are given as inputs to the 
algorithm. 
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2.1.3. The complete algorithm 

ALGORITHM Par tabu 

Inputs :  D, F, base_tabu_size, no of_restarts 

s t e p  0 Initialization: Generate starting solution, clear tabu list, and go to step 1. 

s t e p  1 Preliminary search: 

• Evaluate all moves and determine the best subject to tabu restrictions. 

• Perform best move. 

• Update tabu list. 

° - If  no improvement in 25n iterations go to step 2. 

- Else go to step 1. 

s t e p  2 Intensification: 

(a) Go to the best solution found so far and clear the tabu list. 

(b) • Evaluate all moves and determine the best subject to tabu restrictions. 

• Perform the best move. 

• Update tabu list. 

• - I f  no improvement in 50n iterations: 

- I f  current step 2 has found a better solution, go to step 2a. 

- Else: 

- I f  required number of  restarts have been performed, stop. 

- E l s e ,  go to step 3. 

- E l s e ,  go to step 2b. 

s t e p  3 Diversification: 

(a) Determine additional tabu restrictions from long term memory  (elaborated 
in section 3.2). 

(b) • Evaluate all moves and determine the best subject to tabu restrictions. 

• Perform the best move. 

• Update tabu list. 

• - I f  I0n iterations performed: 

- I n i t i a l i z e  best solution to the current solution. 

- Remove additional tabu restrictions due to long term memory,  update 
number of  restarts and go to step 1. 

- E l s e ,  go to step 3b. 
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2.2. INTENSIFICATION BASED ON INTERMEDIATE TERM MEMORY 

In a general context Glover [5, 6] proposes the use of  intermediate term 
memory in a way complementary to long term memory. A straightforward adaptation 
of  the idea was tried initially. The entries whose frequencies fell below a threshold 
were held permanently tabu for a fixed number of iterations. Let such variables be 
denoted as "blocked variables" since they are blocked from assuming the value 1. 
Various threshold values and tabu list sizes were tried. However, the results were 
not very encouraging, Somehow, the search seemed to be too restrictive. A possible 
reason for the performance of  this straightforward intensification is suggested in the 
following. 

Let intmem be the n x n matrix such that intmemeq is the sum of the values 
of  the 0 - 1  variable Xpq in all the iterations so far in the current region of  search. 
Note that longmem is a cumulative sum over all the different regions explored while 
intmem is a frequency measure pertaining to the current region of  search only. 
Suppose that a large number of solutions explored in the current region have lr(p) = q. 
This would result in a high value of intmemeq and xpq would be a blocked variable. 
The objective of  intensification is to search more elaborately the search space 
defined by variables that are not blocked. Suppose that xik, Xil and xjt are not blocked 
variables and that xjk is a blocked variable. It is possible that at the current iteration 
xik and xjt have value 1. However, xjk is blocked indirectly causing Xil tO be blocked. 
This seems to defeat the purpose of intensification. 

The solution space searched during intensification was enlarged in order to 
avoid implicit blockings such as explained above. The results of applying a threshold 
to the intmem matrix is an n x n matrix of  zeroes and ones. An entry is zero if it 
falls below the threshold and one otherwise. This matrix could also be thought of  
as an adjacency matrix of a directed graph G. Let G '  = ( U ' , E ' )  be a directed graph 
where U' = {il,i2, j l ,  j2} is the set of vertices and E '  = {(il, j l ) , ( i l ,  j2)}, ( i2 , j2)}  
is the set of  edges. Enlarging the solution space as described in the previous paragraph 
is equivalent to identifying directed subgraphs isomorphic to G" on the original 
graph G, and adding an edge corresponding to (i2, j l ) .  A naive algorithm which 
checks all possible combinations was used. The algorithm takes O(n 3) time and with 
n 2 processors parallelizes easily to an O(n) algorithm. 

A threshold of  5% was set after preliminary experimentation with various 
values. This intensification phase was superimposed on the intensification phase 
of  Par tabu. First, the simple intensification of  Par_tabu is performed until the 
"no improvement criterion" is satisfied. Then, instead of  diversifying, the search 
space is reduced as explained above and the new intensification is performed. 
The algorithm for this new intensification phase is identical to the original one 
except that it operates on a reduced search space and that the base tabu size is 
reduced in proportion to the reduction in search space. In the sequel, Par_tabu 
combined with the intermediate term memory based intensification phase is referred 
to as Augmented Par_tabu. 



334 J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 

3. Parallel implementation 

The Partabu algorithm in the previous section requires a massively parallel 
machine. In section 3.1 one such system (the Connection Machine system CM-2) 
is described. Section 3.2 provides the implementation details of Partabu on a 
CM-2 system. 

3.1. THE CONNECTION MACHINE MODEL CM-2 

The Connection Machine system [8] is a dynamically reconfigurable, fine 
grain SIMD, computing system. A CM-2 model may contain I6K, 32K, or 64K 
processors [17]. Each processor has, associated with it, its own memory which 
could either be 8K or 32K bytes. The hardware is comprised of chips interconnected 
in a hypercube configuration. Each chip contains 16 processor/memory units and 
a router to handle communication. 

The hardware unit is controlled by a front computer (VAX or Sun). The user 
does all the coding on the front end which also executes the sequential parts of the 
code. The parallel instructions are broadcast to the CM-2 hardware with the help 
of a microcontroller. Parallel code can be executed (simultaneously) on a preselected 
set of processors. The programming languages currently supported are CM-FORTRAN, 
C* and "lisp. Program variables are either sequential or parallel. Sequential variables 
reside in the front end's memory and can be broadcast to all processors of the 
Connection Machine if necessary. Parallel variable reside in the local memory of 
the CM-2 processors and can be accessed freely by the front end. For e.g. each 
element of a 16K array can be stored (as a parallel variable) in a separate processor 
of a 16K machine. When executing a parallel instruction, each processor acts on 
its own copy of the parallel variables involved. Furthermore, the CM-2 system 
supports virtual processing. Each processor/memory unit can be sliced into many 
units providing the user, virtually, with more than the physical number of processors. 
For e.g. slicing each processor/memory unit into two provides, virtually, double the 
number of physical processors. Though in the above example, a single processor 
would sequentially execute code on each half of the memory, programming can be 
done at a higher level of abstraction assuming the availability of twice the actual 
number of processors. The number of virtual processors available is limited only 
by the memory requirements specific to the problem. The ratio of the number of 
virtual processors to the number of physical processors is called VP ratio. 

In addition to computation, the CM-2 system can perform interprocessor 
communication in parallel. Communication operations can be classified either as 
send or get operations. If a "sending processor" knows the address of the receiving 
processor the send operation can be used. The "receiving processor" need not know 
where the data comes from. The converse is true for the get operation. The most 
general purpose communication, where any processor can communicate with any 
other, is supported by a high speed router. The CM-2 system also supports a faster 
communication mechanism called NEWS grid. NEWS grid communication is a 
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structured form of communication which requires the processors to be organized as 
a multi (up to 31) dimensional grid. NEWS grid effects communication between 
neighboring processors relative to the specified grid. NEWS grid also supports 
functions like scan, spread, etc. which combine communication with computation. 
For example, the spread function can compute based on the data from all processors 
along a particular dimension of the grid and communicate the results to the same. 

3.2. IMPLEMENTATION OF PAR TABU ON CM-2 

At each iteration, a move from the current permutation to one of its neighbors 
is made by performing the best pairwise exchange subject to tabu restrictions. Through 
a series of such moves the search can reach any arbitrary permutation. Therefore, a 
straightforward implementation associating one processor with a pairwise exchange 
would require at least one of the matrices D or F to be stored in all the processors. This 
is a severe limitation for large n necessitating a decomposition of the storage. Further, 
it is clear that the computations would involve indexing a parallel array with parallel 
variables. This operation, called parallel right indexing, is highly inefficient [18]. 

Recall that xpq, p,q = 1,2 . . . .  , n are the 0 - 1  variables in the 0 - 1  formulation 
of a QAP. Consider the following configuration of the CM-2. The processors are 
organized as a two-dimensional n x n grid. All processors in row p store a parallel 
array corresponding to row p of the matrix D. Similarly, all processors in column 
q store the corresponding column q of the matrix F. Further, each processor Ueq 
stores the value of its corresponding 0-1  variable xeq. Let S = {urn IP,q = 1,2, . . . .  n} 
be the set of processors and let S~ = {upqlxpq = 1 }. Let ~be a permutation such that 
n:(i) = k and n:(j) = I. This implies that xu, = xjt = 1 and xit = xjt, = 0. A change in the 
values of xik, xjt, xu and xjk corresponds to a pairwise exchange of ~r(i) and ~( j ) .  
Define A%ik by the following. 

A%il, = ~%~(1 - 2xiD, 

where S~/k = ~u,,,~ s~2dlp f~ .  Note that the local memory of ua contains all the data 
needed for this computation and the storage requirement is only O(n). The  effect 
due to a pairwise exchange between ~r(i) and l r ( j )  is given by 

ACg aj, = - ~.~ 2dipf~ - ~., 2dj ,  flq - 2dijfkt 
up~ ~ sl - { u jl } u ~ ~ Sl - { u~ } 

+ ~ 2dipft q + ~.~ 2djpf~ + 2dijf~ 
u~ esl up~ esl 

= A~ik  + ACgjt + 2dijfJa 

+ ACgit + A ~ j k  + 2dijfkt 

= ACgik + A~j l  + A'qg~, + A'C~j/c, (1) 
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where, Vup~(q) ~ S -  S1, A'~p~(q) = A~pn(q ) + 2dpq f~t(p)~t(q). The required information 
to evaluate a pairwise exchange is computed in parts by four different processors, 
two of which are in Sl and the other two are in S - Sl. These computations can be 
done in constant time, except for the first iteration, by storing of the Aq~s from the 
previous iteration [1, 16]. Now, the results have to be communicated to the processor 
which is to evaluate the pairwise exchange. 

Communication is done in three steps. Processors along the diagonal do not 
take part in communication. In the first step, all processors in S - $I communicate 
the sum of their A'% to a designated processor in their row. This is achieved by 
a send operation. Each processor upT:(q) sends its A'~p~(q) to processor up q. In the 
second step, all processors in $1 communicate their A~ values to all the processors 
in their row. This is done with the help of the communication function spread. As 
a result of these two steps processor uij would have received A~ik and A'~ii and 
processor uji would have received A%jl and A'~jk. Processors ulj and uji between 
themselves have all the information needed to compute A~ikjt. In general, processors 
ueq and uqp have the information needed to compute the effect of a pairwise exchange 
of n:(p) and lr(q). In the third step, all the information required to evaluate a 
pairwise exchange is communicated to a single processor. Each processor u~,q 
communicates with the processor Uqp. This involves, again, a send operation. 

Tabu status is stored in each processor as the last iteration t_iter in which 
the value of the corresponding variable xeq changed to 0. If the difference between 
the current iteration and t_iter is less than the tabu size, then the corresponding 
processor has a tabu status of 1. Thus, evaluating tabu status of a pairwise exchange 
requires information regarding the tabu status of the processors involved. If the data 
involved is integral this does not require extra communication steps. Observing that 
the information communicated by the processors in the above communication steps 
is a product of 2, the tabu status (which is either 0 or 1) can be simply added and 
decoded correspondingly at the receiving end. 

4. Computational results 

The computations were performed on CM-2s located at NPAC Syracuse, 
Sandia National Laboratories, UMIACS College Park and Thinking Machines 
Corporation. The front end was a Sun. Coding was done in C*, The CM-2 at Sandia 
National Laboratories has 64 bit floating point accelerators and all the timings 
reported were achieved on this machine. 

Since the benefits of a massively parallel implementation increase with the 
dimension of the problem, only larger QAP problems of size between 42 and 100 
were tested. The problems are available in literature [14, 13] and could also be 
obtained, by request, from the authors. 

Two base tabu sizes, both multiples of four, were tried for all the problems. 
The first base tabu size was chosen to be the nearest multiple of 4 less than 2n/3. 
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Such a tabu size was chosen after preliminary experimentation on tabu sizes in the 
interval [~,,,] - the same as the one tried in a previous study by the authors [1] using 
the same tabu conditions. A multiple of 4 was chosen since the tabu list was divided 
into four parts to be employed in different configurations. The second base tabu size 
was obtained by adding 4 (for problems of size 42-90)  or 8 (for problems of  size 
100) to the first base tabu size. For all problems, nine restarts based on long term 
memory were performed. In order to provide a fair basis for comparison both 
Partabu and Augmented Par_tabu were tested on the same set of parameters. Same 
tabu sizes and starting solutions of Partabu were provided to Augmented Partabu. 
During the intermediate term memory intensification phase of Augmented Partabu 
the base tabu size used was half the original base tabu size. This was in accordance 
with the reduction in the search space since, on the average, about half the values 
of every entry of a permutation were tabu in this phase. 

Figure 2 shows the growth in time/iteration with problem size of Partabu 
when the required number of processors are available. When organizing the processors 
as a multi dimensional grid, the CM-2 system requires that the number of processors 
in each dimension be a power of 2. For problems of size up to 64, 8K processors 
suffice. 16K processors are required for problems of size greater than 64 and up to 
128. If, however, only 8K processors are available, virtual processing with a VP 
ratio of 2 is required and the time taken gets multiplied by a factor of about 1.6. 
Par..tabu spends about 55% of its time/iteration in communication. 

Even when the whole neighborhood is to be searched there are only 
n(n-  1)/2 pairwise exchanges to be evaluated. The implementation developed in 

~ e m e  / 1 O O O  r a t i  o n . s  .. 
c o n ~ s )  

6 . 1  

6 . 0  

6 . 9 .  

f . a "  

S . 7 ~  

6 . 6 "  

S . 5 '  

5 . 3 '  

5 . 0  
, 4 0  

I I I I I' I 
5 O  6 0  7 0  6 0  9 0  1 O 0  

P r o b l e m  S i z e  

Fig. 2. Time versus problem size for Par..tabu. 
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this study uses n 2 processors where two processors, in parts, compute the change 
in the objective function value due to a single pairwise exchange. Once the 
results are communicated, about half the processors are inactive while the best 
pairwise exchange is being evaluated and performed. An implementation using 
only n(n - 1)/2 processors would increase the size of the problem that can be solved 
without virtual processing. Also, during the intermediate term memory intensification 
phase of Augmented Par_tabu more than half the processors permanently have a 
tabu status of 1. Thus, there are at most n2/8 pairwise exchanges to be evaluated 
in this phase. A more careful implementation of Augmented Partabu using only 
as many processors as needed could reduce the computational time spent in this 
phase by reducing the amount of virtual processing required. 

Table 1 compares the average time/iteration of Partabu with three other 
tabu search algorithms from literature, applied to the same data set. It should be 
noted that although these are different algorithms, in each case an iteration involves 
examination of the "pairwise exchange" neighborhood (which is the most expensive 
part with respect to time). The purpose of this table is to indicate the difference in 
the growth in time/iteration as a function of problem dimension on different computer 
architectures. Such a comparison is necessary since, to the knowledge of the authors, 
this is the first study on the use of the Connection Machines in this context. Clearly, 
the effective use of CM-2 compares favorably thereby supporting its exploration as 
a computer medium for combinatorial optimization. The times reported for Par_tabu 
are the Connection Machine times which account for more than 90% of the 
computational time. There was little difference in the average time/iteration between 
Partabu and Augmented Par_tabu. This since the only extra step that Augmented 

Table I 

Growth of time/iteration with problem size for different algorithms. 

Prob. Time for 1000 iterations 

size Partabu TAI" SKO b SEQ c 

42 5.62 10.94 19.00 57.80 

49 5.71 14.89 23.00 189.00 
56 5.77 19.44 30.00 244.00 

64 5.80 25.40 40.00 321.00 

72 5.83 32.14 60.00 400.00 
81 5.85 40.68 80.00 529.00 
90 5.86 50.22 110.00 662.00 

100 5.87 - - - 

'TAI : TaiUard's [16] parallel algorithm implemented on a ring of 
10 transputers. 

bSKO : Skorin-Kapov's [13] vectorized algorithm on IBM 3090. 
CSEQ : A sequential algorithm by the authors [1] on SUN SPARC 

station 1. 



J. Chakrapani, J. Skorin-Kapov, The quadratic assignment problem 339 

Par_tabu performed, evaluating the restricted neighborhood, takes time negligible 
compared to the time taken by the rest of  the strategy. 

Table 2 gives the results achieved by Partabu and Augmented Par_tabu. 
The best  known objective function value is taken from (a) [13, 16], (b) [13], (c) [9] 
and (d) [2]. The best known or improved results obtained in this study are shown 
in boldface. Partabu matches the best known results for problems of  size up to 
64 and produces results better than those given in (a), (b), (c) and (d) for all the 
100 size problems. It also achieves very good results for problems of  size 72, 81 
and 90. Augmented Par_tabu for all the problems provides results as good as or  
better than Partabu. It obtains the best known results for 72 and 81 size problems. 

Table 2 

Results for QAP. 

Base Par tabu 
Prob. tabu Best known Best solution Total no. of 
size size solution achieved iterations 

Aug Par_tabu 
Best solution Total no. of 

achieved iterations 

42 24 14.812" 15~12 
28 15,812 

49 28 23.386" 23,386 
32 23,386 

56 36 34,458" 34:58 
40 34.476 

64 40 48,498 a 48,502 
44 48,498 

72 48 66.256 a 66.260 
52 66530 

81 52 91,008 b 91,010 
56 91,116 

90 60 115,534 115,692 
64 115,594 

lOOa 64 152.096 ¢ 152,014 
72 152.112 

100b 64 154,102 a 153~10 
72 153,912 

100c 64 147,894 c 147,888 
72 147,878 

1004 64 149,886 c 149,894 
72 149,682 

100e 64 149fl72 ¢ 149,160 
72 149,164 

100f 64 149,176 ¢ 149,206 
72 149,048 

57.691 
61.318 
71.801 
81.191 
105345 
106269 
116878 
121 489 
150 188 
112220 
189 O97 
142 618 
142O95 
230449 
224 296 
246320 
182675 
176 145 
165384 
242397 
233 370 
187 520 
209 ~92 
245.138 
189.839 
192.176 

15,812 91.136 
15,812 89,432 
23,386 112.810 
23,386 131.187 
34462 136.901 
34,458 175.898 
48,498 145.056 
48.502 214.262 
66,256 198.129 
66.302 174.093 
91,008 191,571 
91.028 246,182 

115.586 268.416 
115.608 259.372 
152.076 330.702 
152,014 199.882 
153,900 274,480 
153.908 303.303 
147.878 290.104 
147,868 306.954 
149,596 257.855 
149.698 304.012 
149.164 270.573 
149,156 311,458 
149.348 224'461 
149,036 308.587 
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Also, it improves the best known results found by Partabu for five of the six 100 
size problems. The best results reported by Skorin-Kapov [13] were achieved performing 
an extensive search over a large number (over 1 million) of iterations. Kelly et al. 
[9] also perform over 1 million iterations to achieve their results. Taillard, in a 
private communication, reports the best iteration for the size 90 problem to be 
between 1.5 million and 2 million iterations. Comparatively, the maximum number 
of iterations per base tabu size performed by Partabu and Augmented Par_tabu 
for any problem are less than 250,000 and 350,000 respectively. Also, the algorithms 
require no extra guidance from the user with the only inputs being the base_tabu- 
size and the number of restarts to be performed. Augmented Partabu performs 
more iterations than Partabu. However, it also achieves better results demonstrating 
the effectiveness of reduced neighborhood search. Finally, although both base tabu 
sizes obtain good results, it is not possible to determine which one is better. However, 
the total number of iterations is still relatively small even when both base tabu sizes 
are taken into account. 

5. Conclusions 

A massively parallel tabu search based heuristic has been developed for the 
Quadratic Assignment Problem. The tabu search strategy proved to be very efficient 
in terms of solution quality. It obtained best known or close to best known solutions 
for problems of size up to 90, and improved upon known solutions for problems 
of size 100. A new intensification strategy based on the intermediate term memory 
is proposed. The addition of this intensification feature of the tabu strategy resulted 
in further improved solutions to larger problems, with the price of an increase in 
the total number of iterations performed. Since the intensification is based on 
restricting neighborhoods, a single iteration involves less effort than an iteration 
examining the whole neighborhood. This leads to possibilities of efficiently attacking 
even larger sized QAPs. 

A careful implementation on the Connection Machine, a massively parallel 
system, proved to be extremely suitable. The increase in time per iteration is apparently 
a logarithmic function of the size of the problem. Possible directions are provided 
towards alternate implementations that could be more efficient when solving very 
large sized QAPs. 
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