
Technical Aspects of Tabu Search 





Annals of Operations Research 41(1993)31-46 31 

Dynamic tabu list management using the 
reverse elimination method 

F r a n k  D a m m e y e r  and Stefan  Vo13 

Technische Hochschule Darmstadt, FBIlFG Operations Research, Hochschulstrasse 1, 
D-6100 Darmstadt, Germany 

Abstract 

Tabu search is a metaslxategy for guiding known heuristics to overcome local optimality. 
Successful applications of this kind of metaheuristic to a great variety of problems have 
been reported in the literature. However, up to now mainly static tabu list management 
ideas have been applied. In this paper we describe a dynamic strategy, the reverse elimination 
method, and give directions on improving its computational effort. The impact of the 
method will be shown with respect to a multiconsCaint version of the zero-one knapsack 
problem. Numerical results are presented comparing it with a simulated annealing approach. 

1. Introduction 

Due to the complexity of a great variety of combinatorial optimization problems, 
heuristic algorithms are especially relevant for dealing with large scale problems. 
The main drawback of algorithms such as deterministic exchange procedures is 
their inability to continue the search upon becoming trapped in a local optimum. 
This invites consideration of recent techniques for guiding known heuristics to 
overcome local optimality. Following this theme, we investigate the application of 
the tabu search metastrategy for solving a multiconstraint version of the zero-one  
knapsack problem. 

Many solution approaches are characterized by identifying a neighbourhood 
of a given solution which contains other (transformed) solutions that can be reached 
in a single iteration. In the following a transition from a feasible solution to a 
transformed feasible solution will be referred to as a move, which may be described 
by a set of one or more attributes. For example, in a zero-one integer programming 
context these attributes may be the set of all possible value assignments (or changes 
in such assignments) for the binary variables. Then two attributes e and ~', which 
denote that a certain binary variable is set to 1 or 0, may be called complementary 
to each other. Following a steepest ascent/mildest descent approach, a move may 
either result in a best possible improvement or a least deterioration of the objective 
function value. Without additional control, however, such a process can cause a 
locally optimal solution to be re-visited immediately after moving to a neighbour. 

J.C. Baltzer AG, Science Publishers 



32 F. Dammeyer, S. Vofl, Dynamic tabu list management 

To prevent the search from endlessly cycling between the same solutions, we 
consider a version of  tabu search that may be described as follows. We may imagine 
the attributes of  all moves are first stored in a running list, i.e. a list representing 
the trajectory of solutions encountered. Then a list derived as a sublist of  the 
running list may be defined. Based on certain restrictions, this so-called tabu list 
keeps some moves, consisting of attributes complementary to those of  the running 
list, which will be forbidden in at least one subsequent iteration because they might 
lead back to a previously visited solution. Thus, the tabu list restricts the search to 
a subset of  admissible moves (consisting of admissible attributes or combinations 
of  attributes). This hopefully leads to "good" moves at each iteration without re- 
visiting solutions already encountered. A general outline of a tabu search procedure 
(for solving a maximization problem) may be described as follows: 

Given: 
Start: 
Iteration: 

TABU SEARCH 

A feasible solution x" with objective function value z*. 
Let x := x* with z(x) = z*. 

Result: 

while stopping criterion is not fulfilled do begin 
(1) select best admissible move that transforms x into x' with objective 

function value z(x') and add it to the running list; 
(2) perform tabu list management: compute moves to be set tabu, i.e. update 

the tabu list; 
(3) perform exchanges: x := x', z(x) = z(x') 

if  z(x) > z* then z ° := z(x), x* : = x  endif  
endwhile 
x* is the best of  all determined solutions with objective function value z*. 

For a background on tabu search and a number of  references on successful 
applications of  this metaheuristic see Glover [9, 10] and Hertz and de Werra [12, 13]. 
Further applications can be found, for instance, in [2,3, 14,15]. 

In the next section we shall describe a specific dynamic method for step (2) 
and give some comments on and corrections to related implementational issues 
presented in the literature. In section 3 we present the application of  our 
procedure to the multiconstraint ze ro -one  knapsack problem. Finally we draw 
some conclusions. 

2. The reverse elimination method 

Tabu list management means the update of  the tabu list, i.e. deciding on how 
many and which moves have to be set tabu within any iteration of  the search. Up 
to now most implementations of tabu search use static tabu list management. In 



F. Dammeyer, S. Vofl, Dynamic tabu list management 33 

such a method, moves are set tabu as soon as their complements have been selected. 
These moves stay tabu for a given number of  iterations. More precisely, selected 
move attributes are assigned a tabu status which in tum determines whether moves 
containing these attributes are tabu. The efficiency of  the algorithm depends on the 
choice of  the tabu status duration or, equivalently, on the length of the tabu list. 
In the literature, often a "magic" tabu list length of  7 is proposed. Though successful 
in some applications, this seems to be a rather limited approach. More recently, 
dynamic tabu list management which assigns a status duration that varies according 
to the attributes considered, has found increasing favor (see e.g. [3, I 1 ]). Some of  
these methods determine a tabu status based on sequential relationships between the 
selected moves, in a manner that rigorously excludes certain types of cycling behaviour. 
Examples in this respect are the cancellation sequence method (cf. [10] and [1]) and 
the reverse elimination method (REM) proposed by Glover [10]. 

The remainder of this paper will deal with the latter method. For ease of  
description we assume that a move consists of  exactly one attribute (i.e. we consider 
so-called single-attribute moves instead of  multi-attribute moves). 

2.1. OVERVIEW OF REM 

REM follows the idea that any solution can only be re-visited in the next 
iteration if it is a neighbour of the current solution. Therefore, in each iteration the 
running list will be traced back to determine all moves which have to be set tabu, 
since they would lead to an already explored solution. For this purpose a residual 
cancellation sequence (RCS) is built up stepwise by a trace. (Tracing back the 
running list will be called a trace.) In each step of  a trace, i.e. in each so-called 
tracing step, exactly one attribute is processed, starting with the last (most recent) 
back to the first (earliest). Beginning with an empty RCS, only those attributes are 
added whose complements are not in the sequence. Otherwise their complements 
in the RCS are eliminated (i.e. cancelled). Then at each tracing step it is known 
which attributes have to be reversed in order to tum the current solution back into 
one examined at an earlier iteration of  the search. 

If the remaining attributes in the RCS can be reversed by exactly one move 
then this move is tabu in the next iteration. Otherwise this move will reproduce an 
earlier solution. Let a position denote an attribute's location in the running list. In 
general, if  a move consists of  more than one attribute, the position of  an attribute 
and the iteration number of  the corresponding performed move differ from each 
other. Figure 1 gives an example for building residual cancellation sequences. As 
every move consists of  exactly one attribute the length of  an RCS has to become 
equal to one to enforce a tabu move. 

The tabu status assigned by REM represents a necessary and sufficient criterion 
to prevent re-visiting known solutions. The effort required by REM clearly grows 
as the number of  iterations increases, and thus ideas for reducing the number of  
computations must be developed. 



34 F. Dammeyer, S. Vofl, Dynamic tabu list management 

Running list: T 6 7 3 1 5 6 4 6 5  (latest move: 5) iteration: k = 10 

position tracing step residual cancellation sequence length tabu move 

I0 I 5 1 

9 2 65 2 

8 3 4 6 5  3 

7 4 4 5  2 

6 5 4 1 

5 6 1 4  2 

4 7 3 1 4  3 

3 8 7 3 1 4  4 

2 9 6 7 3 1 4  5 

i 10 6 7 3 4  4 

Fig. 1. Example for RCS-development. 

2.2. REDUCING THE NUMBER OF TRACING STEPS 

Assume that in any iteration k of the search procedure the tth tracing step 
leads to an RCS of  length r. Then in iteration k + 1 the length of  the RCS in tracing 
step t + 1 is not smaller than r -  1. More specifically, it is equal to either r -  1 or 
• + 1. Therefore, following [10], a vector Least may be defined as follows. 

Least(i) is the smallest position pos_n such that backtracing up to pos_n leads 
to an RCS of length • _ i + 1. 

If Least(l) . . . . .  Least(p) have been determined in iteration k (with p _< k), in 
iteration k + j ( j  _< p) backtracing is necessary up to the position number stored in 
Least ( j )  only. Any additional step cannot lead to an RCS of length 1 and therefore 
to a move that has to be set tabu. In iteration k + p + 1 the vector Least no longer 
provides usable information. Therefore, Least must be updated not later than in 
iteration k + p + 1. Nevertheless, an update of  Least may be performed whenever 
Least(j) = 1 in any iteration k + j. This procedure can easily be generalized for the 
case of multi-attribute moves. 

Consider the example given in fig. 1. For p = 3 we calculate 

Least(l) = 5, Least(2) = 4, Least(3) = 1. 

Figures 2 and 3 show the tracing steps necessary in iterations k + 1 and k + 2. 
Figure 3 also shows a worst-case example for the calculation of Least, i.e. an update 
of  Least in iteration 12 would lead to Leas t ( l )=  1. 

As the number of stored attributes increases it may become too burdensome 
for large iteration numbers to trace back the entire running list (even when using 
Least since this vector has to be updated). Therefore, a parameter at_n (attribute 
number) is introduced to limit the number of tracing steps per iteration although 



F. Dammeyer, S, Veil, Dynamic tabu list management 35 

Running list: ]" 6 7 3 1 5 6 4 6 5 3  (latest move: : )  iteration: k+l - 11 

position tracing step residual cancellation sequence length tabu move comment 

:: l ~ l 3 
lO 2 5 : 2 

9 3 ~ 5 ~  3 
8 4 4 6 5 3  4 - 

7 5 4 5 5  3 - 

6 6 4 :  2 - 

5 7 1 4 3 3 termination 

Fig. 2. Example for the use of Least(l)= 5 (7 necessary tracing steps). 

Running list: ]" 6 7 3 1 5 6 4 6 5 3 4  (latest move: 4) iteration: k+2 = 12 

position tracing step residual cancellation sequence length tabu move comment 

12 1 4 1 4 

11 2 3 4 2 

10 3 5 3 4  3 

9 4 6 5 : 4  4 

s 5 ~ 5 ~  3 
7 6 5 3  2 

6 7 : ~ 3 

5 8 l ~  2 
4 9 I I ] termination 

3 10 7 1 2 in case of updating l.#.ast 

2 II 6 7  ! 3 

1 12 6 7 2 

Fig. 3. Example of  the use of  Least(2)= 4 (9 necessary tracing steps). 

accuracy may suffer: the complement of  an attribute that is no longer traced might 
be part of  a move leading back to a previously explored solution. 

23. TERMINATION OF THE BACKTRACING 

Obviously it is not necessary to trace back the running list if  an attribute of  
a current move does not find its complement in the running list. To demonstrate this 
we add element 2 as next move in the example given in fig. 1. Then the length of  
every RCS is increased by 1 with respect to the previous iteration. Only the complement 
of  the current move has to become tabu. 



36 F. Dammeyer, S. Vofl, Dynamic tabu list management 

More generally, Glover [10] remarks that a trace need not be continued after 
adding an attribute within a specific tracing step that does not have its complement 
among earlier entries of the running list. With respect to necessity and sufficiency 
this is not correct: Assume that, due to the chosen definition of  at_n or Least, the 
running list has to be traced back p steps. Then a direct analogue to Glover 's 
condition to terminate the backtracing would be that an attribute e to be added to 
the current RCS at step i does not find its complement ~ on the running list within 
backtracing steps i . . . . .  p. (In the case of single-attribute moves ~" has not been 
added to the running list during iterations k - p  + 1 . . . . .  i -  1). We call such an 
attribute a solo attribute. For i > 1 this condition need not give a suitable termination 
criterion as can be seen in the example given in fig. 1. In the third tracing step the 
attribute e = 4 is added without having its complement among all earlier entries of  
the running list. Therefore, the trace will not be continued. Figure 4 shows the same 
example with a duplicated solution after adding move 4.  This should have been a 
tabu move according to the fifth tracing step of fig. 1. 

Running list: ... 1 5 6 4 6 5 4  (latest move: 4) 

position tracing step residual cancellation sequence length tabu move comment 

i i  1 ~ 1 4 

10 2 5 ~ 2 

9 3 6 5  4 3 

8 4 6 5  2 

7 5 5 1 

6 6 0 duplicated solution 

Fig. 4. Example for termination of the backtracing and choosing move ~ .  

In the following we discuss how and when the condition has to be modified 
to give a correct termination criterion. 

A modification that leads to a suitable criterion is to terminate the procedure 
if, in additionto a solo attribute e, a second solo attribute e ' ~  e is found. Figure 5 
gives an example of the improved termination criterion. With two solo attributes e 
and e '  identified as described above every additional tracing step will lead to 
an RCS-length of  at least 2. Therefore, this modified criterion is correct since any 
RCS-length will be reduced by at most 1 in the next iteration. When multi-attribute 
moves are considered the number of  solo attributes found must be increased 
appropriately to terminate a trace. 

The latter criterion can be extended as follows. The trace is continued after 
detection of the first solo attribute. Whenever the complementary move to this solo 
attribute becomes tabu within a subsequent tracing step the backtracing may be terminated. 



F. Dammeyer, S. Vofl, Dynamic tabu list management 37 

a) iteration k with move 5 

Running list: "i" 6 7  I 5 3 6 4 6 5  (latest move: 5) 

position tracing step residual cancellation sequence length tabu move comment 

9 2 6 5  2 - 

8 3 4 6 5  3 - e = 4  

7 4 4 5  2 

6 5 3 4 5  3 

5 6 3 4  2 

4 7 2 3 4  3 

e'  = 3,  termination 

b) iteration k+l 

Running list: T 6 7 1 5 3 6 4 6 5 4  (latest move:4 )  

position tracing step residual cancellation sequence length tabu move 

11 I 4 1 4 

10 2 5 ~ 2 

9 3 g s ~  3 
8 4 ~ 5  2 
7 5 5 I 

6 6 3 5  2 

5 7 3 1 
4 8 1 3 2 

Fig. 5. Example for termination of  the backtracing. 

Although there are two suitable termination criteria, another computationally 
more attractive modification is to retain the termination approach of  Glover [10]. 
However, the move consisting of the attribute whose complement is the first found 
solo attribute is set tabu and the trace is terminated. An example may again be 
drawn from fig.l ,  where the backtracing is terminated after three steps with the tabu 
list consisting of  the moves 5 and 4.  This is a sufficient but not a necessary criterion, 
as the last entry of  the tabu list might not lead to an already visited solution (cf. 
fig. 2 where 4 would be set tabu after step 4, although this is not necessary). 
Additional related strategic considerations are sketched by Glover [10]. 

2.4. SEARCH INTENSIFICATION 

A general idea for reducing the computational effort in a tabu search algorithm 
is that of  search intensification using a so-called short term memory (STM, compare 
the expression intermediate term memory in [9]). The basic idea is to observe the 



38 F. Dammeyer, S. Vofl, Dynamic tabu list management 

attributes of  all performed moves and to eliminate those from further consideration 
that have not been part of  any solution generated during a given number of  iterations. 
This results in an obvious concentration of  the search. The number of neighbourhood 
solutions in each iteration, and consequently the computational effort, decreases. 
Obviously the cost of this reduction may be a loss of accuracy. 

Correspondingly, a search diversification may be defined as a long term 
memory (however, resulting in an increased computation time). Here we choose a 
combined version (L + STM) as follows. Whenever a certain number of  iterations 
has been performed (including at least one application of  STM) a new feasible 
solution consisting of  attributes that have been eliminated through STM is generated 
and used as a new starting solution. 

2.5. MULTI-ATrRIBUTE MOVES 

In the preceding subsections we explained REM for single-attribute moves. 
The generalization to multi-attribute moves is straightforward. Still, a different 
definition of  neighbourhood search is necessary. We distinguish two kinds of  multi- 
attribute moves: general and successive multi-attribute moves. In the first case a 
move may consist of more than one attribute and a trace will be performed whenever 
a move is realized, i.e. the number of traces is equal to the number of iterations. 
This kind of move seems to be necessary if a mathematical formulation of a problem 
may be given incorporating very restrictive equality constraints (e.g. the traveling 
salesman problem or the quadratic semi-assignment problem). 

If a multi-attribute move may be completely decomposed into single-attribute 
moves, where feasibility of  a solution is maintained after performing each part of  
the move, we use the notation of a successive multi-attribute move. This kind of  
move may be useful if an underlying mathematical formulation of  a problem consists 
of  inequality constraints (compare section 3). In the case of  successive multi- 
attribute moves REM may be applied regarding every move as a number of separate 
single-attribute moves. In that case in any iteration the number of  traces to be 
performed is equal to the number of  attributes of the corresponding move. 

Another classification of  multi-attribute moves distinguishes static and dynamic 
moves depending on whether the number of  attributes in a move is constant for all 
iterations or not. For static moves a straightforward generalization of  REM that may 
reduce the computational effort is the processing of  all attributes of  a complete 
move within a single step of the trace. 

. An application 

We consider the multiconstraint zero-one knapsack problem (MCKP): 

n 

Maximize Z(x) = ~ cjxj 
j=l 

(1) 



F. Dammeyer, S. Vofl, Dynamic tabu list management 39 

n 

subject to ~ a(ix j < bi i = 1 . . . . .  m, (2) 
j r !  

xj ~ {0,1} j = 1 . . . . .  n. (3) 

Without loss of  generality all aij are assumed to be nonnegative and all cj and 
bi are assumed to be positive. MCKP is a special case of general zero-one programming 
with a great variety of  applications in the areas of, e.g. resource allocation and 
capital budgeting. Various algorithms for solving this NP-hard problem have been 
proposed in the literature (see, e.g. [4, 5,7, 8, 16-18]).  Here we refer to Drexl [4], 
who developed an efficient simulated annealing algorithm which may be used as 
a benchmark for an implementation of  REM with respect to MCKP. 

A trivial feasible solution for MCKP with an objective function value of  
Z(x) = 0 consists of  xj = 0 for all j = 1 . . . . .  n. Any other feasible solution may be 
obtained by adding or including appropriate elements into this solution as long as 
no constraint of  (2) is violated. In a similar fashion every infeasible combination 
of  binary variables may become feasible by dropping or excluding appropriate 
elements. Given a feasible solution x = (x~ . . . . .  x,3, Drexl [4] applies a random 
neighbourhood search in his simulated annealing approach by repetitively adding 
and/or dropping randomly chosen elements. Feasibility is maintained in all intermediate 
steps of  the algorithm. 

For the purpose of  finding a neighbourhood solution within tabu search we 
define the following transformation: 

DROP/ADD MOVE 

Given: A feasible solution x = (xl . . . . .  xn). 

Choose j*= arg max {ai,7/cjlxj = 1, j = 1 . . . . .  n} with/*being a bottleneck 
resource with 

1 : =  

Xj, : = 0  
Feasible := t rue  
while Feasible 

I n _1 ml argmax ~ a i j  . x j l b i l i  . . . . .  , 

j=l 

choose k* = arg max {cj I xj = 0} with 

aik. + )_~ aij . xj  < b i V i = I  . . . . .  m 
j=l 

if k* exists then xk- := 1 else Feasible := false endi f  
endwhile  



40 F. Dammeyer, S. Vofl, Dynamic tabu list management 

The DROP/ADD move as described above may be considered as a multi- 
attribute move with variable length depending on a specific instance of  MCKP. Any 
such move consists of exactly one DROP-attribute j* and a variable number of  
ADD-attributes according to the choice of  elements k ° given in the while-loop*. We 
will now use an implementation of REM considering these moves as successive 
multi-attribute moves. Therefore, the tabu list management is the same as described 
in section 2. 

Remark 

In most cases we will have j * ~  k* due to the different selection criteria. 
Furthermore, j* leads to an RCS of  length 1 before choosing the first ADD-attribute. 
Due to the notion of  successive multi-attribute moves a trace is performed before 
entering the while-loop of  the DROP/ADD move. 

Both approaches, simulated annealing as described in Drexl [4] and tabu 
search using REM, have been applied to MCKP. To have a comparative study, 57 
test problems with known optimal solutions from the literature were solved with 
both algorithms. The data are, among others, from [17] and [18] and are fully 
reproduced in [5] and [6]. In the first three columns of  table 2 the problem data are 
identified by their authors' names, the number of variables n, and the number of  
constraints m. All programs are implemented in PASCAL and were run on an IBM 
PS2/70, 386 personal computer. (Our re-implementation of the simulated annealing 
algorithm turned out to be at least as good as the original implementation of  [4]). 

To thoroughly study each test problem, 20 initial feasible solutions have been 
generated. Starting with x = (0 . . . . .  0) for the first feasible solution we added 
elements according to the ADD-criterion given in the description of  the DROP/ADD 
move as long as possible. Nine further solutions have been gained from x = (0 . . . . .  0) 
by adding randomly chosen elements as long as possible. In the same way we 
proceeded with an initialization of x = (1 . . . . .  1). Nine solutions have been gained 
by randomly dropping elements until feasibility is achieved, and the tenth solution 
was obtained by applying a DROP-criterion inverse to the ADD-criterion mentioned 
above. 

In the sequel numerical results are presented in order to compare simulated 
annealing to tabu search with the basic version of  REM as described in section 2 
and with the STM- and the L+STM-version, respectively. 

The basic parameter setting of both simulated annealing and tabu search may 
be found in table 1. Considering the framework of tabu search given in section 1, 
we need to describe a termination criterion. We refer to a stride as a certain number 

*In some pathological cases (e.g. when dropping any element from a given solution is tabu) we allow 
for a dummy attribute (not to be added to the running list) to preserve the structure of the DROP/ADD 
m o v e .  



F. Dammeyer, S. Vofl, Dynamic tabu list management 41 

of iterations. Given one of the 20 initial feasible solutions, the algorithms (simulated 
annealing or tabu search) will terminate whenever there is no improvement of the 
best feasible solution within all iterations of a stride. The length of a stride starting 
from an initialization is increased over time by an increase factor as given in table 1. 
Additionally, an overall termination criterion may be applied. In our case we choose 
a stopping criterion of at most 500 n iterations for simulated annealing and of at 

Table 1 

Parameters of the algorithms. 

Simulated annealing (cf. [4]) Tabu search 

Temperature reduction factor: 0.6 
Initial temperature: 0.5 (max {cj} - rain {cj}) 
Initial number of iterations (stride): n 
Increase factor (number of iterations): 1.3 

Maximum length of Least: 2 
Attribute number: at_n = 4n 
Initial number of iterations (stride): n 
Increase factor (number of iterations): 1.1 

most 10 n iterations for the tabu search strategies. The overall stopping criterion is 
checked after each stride. For our examples, this criterion did not affect the termination 
of tabu search. 

In our STM strategy, an element is eliminated from further consideration at 
the end of a stride if it has not been included in any solution examined during the 
stride. For L+STM we have implemented the following modification. Whenever 
REM with STM is stopped a new starting solution is obtained by choosing from 
those elements that have previously been eliminated according to STM, and REM 
with STM is restarted. This procedure is repeated no more than ten times as long 
as a new starting solution can be found. 

Table 2 gives a detailed description of our numerical results. For each 
combination of problem instance and algorithm, opt gives the number of optimal 
solutions found. The value dev gives the relative deviation from optimality of the 
objective function value of the best found feasible solution (both values gained 
from the sample of 20 instances). In addition, columns iter (rounded to integer 
values) and CPU give the average number of iterations, i.e. the number of performed 
neighbourhood exchanges, and the CPU-time in seconds averaged over aLl 20 instances, 
respectively. The value it* shows the least number of iterations needed to calculate 
the best found feasible solution in any of the 20 instances. 

Analyzing the results shows advantages of tabu search over simulated annealing. 
All tabu search implementations find a larger number of optimal solutions than 
simulated annealing, indicating a higher flexibility of tabu search. Computation 
times seem to be comparable for all methods except REM with L+STM. This 
method needs more time due to the restarts with new starting solutions. It should 
be noted that whenever it* = 0, at least one initial feasible solution corresponds to 
the best found solution using the improvement procedure at hand, i.e. either no 
improvement was possible (dev = 0) or none was found. 



T
ab

le
 2

 

N
um

er
ic

al
 r

es
ul

ts
. 

Si
m

ul
at

ed
 a

nn
ea

lin
g 

T
ab

u 
se

ar
ch

/b
as

ic
 R

E
M

 

n 
m

 
op

t 
de

v 
it

er
 

C
PU

 
it"

 
op

t 
de

v 
it

er
 

C
PU

 
it"

 

Ta
bu

 s
ea

rc
h/

RE
M 
wi

th
 S

T
M

 

op
t 

de
v 

it
er

 
C

PU
 

it
" 

T
ab

u 
se

ar
ch

/R
.E

M
 w

it
h 

L
+

ST
M

 

op
t 

de
v 

it
er

 
C

PU
 

it"
 

Fl
ei

sh
er

 
20

 
I0

 
1 

0 
15

56
 

1
.
5
0
 
14

3 
0 

0.
79

5 
49

 
0.

40
 

4 
0 

0.
79

5 
47

 
0.

35
 

4 
0 

0.
79

5 
36

5 
2.

89
 

4 

H
an

se
n/

Pl
at

ea
u 

1 
28

 
4 

H
an

se
n/

Pl
at

ea
u 

2 
35

 
4 

Fm
vi
ll
e/
Pl
at
ea
u 
1 

27
 

4 

Fr
ev
iH
e/
Pl
at
ea
u 
2 

34
 

4 

Fr
ev
il
le
/P
la
te
au
 3
 

19
 

2 

Fm
vi

ll
e/

Pl
am

au
 4
 

29
 

2 

Fr
ev
il
Ie
/P
la
te
au
 5
 

20
 

10
 

Fr
ev
il
le
/P
la
te
au
 6
 

40
 
30

 

Fr
ev
iH
e/
Pl
ae
ea
u 
7 

37
 
30

 

Pe
tm

's
ea

 1
 

6 
10

 

Pe
te

zs
en

 2
 

10
 

10
 

P
et

e~
en

 3
 

15
 

10
 

P
e~

's
en

 4
 

20
 

10
 

Pe
te

zs
en

 5
 

28
 

10
 

Pe
te

,s
en

 
6 

39
 

5 

Pe
te

rs
en

 7
 

50
 

5 

Se
nj

WT
oy

od
a 

1 
60

 
30

 

Se
nj

u/
To

yo
da

 2
 

60
 
30

 

We
in

ga
rm

er
 
1 

28
 

2 

W
e
i
n
g
m
m
e
r
 
2 

28
 

2 

We
in
ga
tt
ae
r 
3 

28
 

2 

We
in

ga
rm

ex
 4

 
28

 
2 

We
in

ga
cm

et
 
5 

28
 

2 

W
ei

ng
ar

tn
er

 6
 

28
 

2 

W
ei

ng
,m

ne
r 

7 
10

5 
2 

W
ei

ng
m

ne
, 

8 
10

5 
2 

0 
1.

2 
1

5
4

2
 

1
.8

4
 

0 

0 
1

.2
8

7
 

40
97

 
4.

57
 

68
4 

0 
1

.5
5

3
 

1
5

2
7

 
1

.8
9

 
26

0 

0 
0.

59
6 

26
13

 
3.

07
 

17
28

 

I 
0 

3
9

1
8

 
3.

90
 

0 

3 
0 

1
5

5
0

 
2.

00
 

31
3 

1 
0 

1
5

6
2

 
1.

51
 

14
3 

2 
0 

12
18

 
2.

12
 

88
6 

0 
0.

19
3 

1
0

2
3

 
1

.7
5

 
39

0 

0 
0

.4
9

7
 

85
 

0.
56

 
7 

0 
1.

19
3 

81
 

0.
72

 
8 

1 
0 

79
 

0.
53

 
6 

0 
0.

53
4 

86
 

0.
73

 
4 

2 
0 

43
 

0.
31

 
0 

0 
0

.7
4

3
 

85
 

0
.6

8
 

1 

0 
0.

79
5 

50
 

0.
41

 
4 

7 
0 

11
7 

4.
45

 
10

 

5 
0 

10
9 

2.
52

 
59

 

18
 

0 
12

9 
0.

23
 

0 
20

 
0 

2 
0 

12
09

 
1

.3
5

 
8 

4 
0 

2 
0 

54
2 

0.
82

 
15

 
16

 
0 

0 
0.

32
7 

1
1

5
9

 
1

.5
9

 
7 

1 
0 

0 
1

.7
7

4
 

46
00

 
4.

55
 

0 

0 
1

.0
9

2
 

74
22

 
8.

54
 

26
5 

0 
0.

68
3 

1
0

8
6

7
 1

2.
37

 1
63

7 

I 
I 

0,
03

 
0 

21
 

0.
08

 
I 

43
 

0.
21

 
3 

54
 

0.
37

 
1 

0 
0.

24
2 

91
 

0
.7

8
 

8 

1 
0 

90
 

0.
76

 
8 

0 
0.

44
7 

13
1 

1.
58

 
44

 

3 
0 

59
52

 
8.

69
 

31
13

 
0 

0.
14

2 
26

4 
14

.6
3 

30
 

1 
0 

79
90

 
11

.9
5 

31
27

 
4 

0 
24

4 
8.

60
 

16
8 

0 
0.

56
7 

39
04

 
4.

27
 

10
72

 

1 
0 

48
74

 
5.

03
 

0 

3 
0 

58
38

 
5.

78
 

0 

3 
0 

27
59

 
3.

09
 

55
9 

0 
3.

04
6 

55
66

 
5.

84
 

0 

0 
0.

29
9 

48
13

 
5.

07
 

0 

0 
0.

26
0 

28
75

3 
34

.8
7 

62
13

 

0 
0

.4
4

1
 

1
2

6
0

8
 1

6.
66

 3
01

3 

2 
0 

74
 

0
.5

7
 

1 

2 
0 

64
 

0
.5

5
 

0 

1 
0 

67
 

0
.8

5
 

0 

2 
0 

64
 

0
.4

8
 

2 

2 
0 

79
 

0
.9

6
 

2 

0 
0

.2
9

9
 

88
 

0
.8

3
 

0 

0 
0.

00
6 

32
9 

6.
95

 
19

 

0 
0

.3
1

1
 

26
0 

32
.2

3 
5 

0 
0.

49
7 

85
 

0.
54

 
7 

0 
1.

19
3 

81
 

0.
67

 
8 

1 
0 

70
 

0.
44

 
6 

0 
0.

53
4 

86
 

0.
68

 
4 

2 
0 

43
 

0.
25

 
0 

0 
0

.7
4

3
 

66
 

0.
47

 
1 

0 
0.

79
5 

48
 

0.
35

 
4 

6 
0 

10
9 

2.
75

 
10

 

3 
0 

99
 

1
.7

7
 

68
 

20
 

0 
I 
I 

0.
04

 
0 

4 
0 

20
 

0.
07

 
1 

12
 

0 
39

 
0.

19
 

3 

1 
0 

43
 

0.
27

 
I 

0 
0,

24
2 

70
 

0.
56

 
8 

1 
0 

90
 

0.
74

 
8 

0 
0.

44
7 

12
1 

1.
35

 
44

 

0 
0.

14
2 

15
6 

5.
56

 
30

 

0 
0.

22
9 

16
0 

4.
25

 
7 

2 
0 

60
 

0.
40

 
1 

2 
0 

65
 

0A
9 

0 

1 
0 

64
 

0.
58

 
0 

2 
0 

60
 

0.
39

 
2 

2 
0 

58
 

0,
53

 
2 

0 
0.

29
9 

62
 

0.
46

 
0 

0 
0.

00
6 

28
1 

5.
65

 
19

 

0 
0

.3
1

1
 

24
1 

16
.6

6 
5 

0 
0.

49
7 

18
8 

1
.3

2
 

0 
1

.1
9

3
 

15
9 

1.
43

 

5 
0 

20
7 

1.
37

 
6 

0 
0.

53
4 

27
1 

2
.3

1
 

4 

20
 

0 
13

2 
0.

86
 

0 

0 
0.

74
3 

13
0 

1.
05

 
1 

o 
0.

79
5 

32
6 

2.
55

 
4 

17
 

0 
51

1 
13

.4
7 

I0
 

8 
0 

10
49

 
19

.6
8 

68
 

20
 

0 
24

 
0.

09
 

0 

19
 

0 
40

 
0.

17
 

1 

12
 

0 
46

 
0.

24
 

3 

10
 

0 
13

6 
0.

93
 

I 

0 
0.

16
1 

24
9 

2.
17

 
30

 

II
 

0 
28

3 
2.

81
 

8 

0 
0.

44
7 

51
2 

6.
37

 
44

 

4 
0 

16
64

 
59

.8
1 

29
8 

2 
0 

16
63

 
47

.5
1 

31
6 

19
 

0 
45

6 
3.

39
 

1 

5 
0 

45
7 

3.
67

 
0 

14
 

0 
35

0 
3.

50
 

0 

7 
0 

20
0 

1.
39

 
2 

6 
0 

55
7 

5.
61

 
2 

1 
o 

54
2 

4
.4

0
 

14
4 

0 
0.

00
6 

70
1 

14
.6

5 
19

 

0 
0.

31
1 

13
06

 
81

.7
9 

5 7 8 
.~

 

o~
 



W
ei

 S
hi

ll 
1 

W
ei

 S
hi

h 
2 

W
ei

 S
hi

ll 
3 

W
ei

 S
hi

h 
4 

W
ei

 S
hi

h 
5 

W
ei

 S
hi

ll 
6 

W
ei

 S
hi

ll 
7 

W
ei

 S
hi

h 
8 

W
ei

 S
hi

ll 
9 

W
ei

 S
hi

h 
10

 

W
ei

 S
hi

h 
11

 

W
ei

 S
h,

'h
 12

 

W
ei

 S
h~

 1
3 

W
ei

 S
hi

h 
14

 

W
ei

 S
hi

h 
15

 

W
ei

 S
hi

h 
16

 

W
ei

 S
hi

h 
17

 

W
ei

 S
hi

h 
18

 

W
ei

 S
hi

h 
19

 

W
ei

 S
hi

h 
20

 

W
ei

 S
hi

h 
21

 

We
i 

Sh
ih

 2
2 

W
ei

 S
hi

h 
23

 

W
ei

 S
hi

h 
24

 

W
ei

 S
hi

h 
25

 

W
ei

 S
hi

h 
26

 

We
i 

Sh
ill

 27
 

W
ei

 S
hf

n 2
8 

W
ei

 8
hi

~ 
29

 

W
ei

 S
h

~
 3

0 

30
 

5 
5 

0 

30
 

5 
5 

0 

30
 

5 
12

 
0 

30
 

5 
13

 
0 

30
 

5 
11

 
0 

40
 

5 
2 

0 

40
 

5 
5 

0 

40
 

5 
1 

0 

40
 

5 
4 

0 

50
 

5 
5 

0 

5O
 

5 
3 

0 

50
 

5 
5 

0 

5O
 

5 
9 

0 

60
 

5 
9 

0 

60
 

5 
6 

0 

14
08

 
13

5 
32

7 

98
3 

1
.2

6
 

41
9 

15
59

 
1

.9
2

 
30

5 

72
6 

0
.9

4
 

14
2 

71
3 

0
.9

3
 

12
4 

20
92

 
2

.6
0

 
48

5 

19
03

 
2

.3
8

 
64

3 

21
15

 
2

.6
1

 
52

6 

17
34

 
2
`
3
0
 
42

3 

23
08

 
3

.1
5

 
75

6 

16
90

 
2

.3
7

 
67

3 

19
68

 
2

.7
3

 
66

2 

2O
56

 
2
`
8
7
 
94

4 

28
98
 

4.
00

 1
10

8 

24
61

 
3

.2
6

 1
32

2 

60
 

5 

60
 

5 

70
 

5 

70
 

5 

70
 

5 

70
 

5 

80
 

5 

80
 

5 

80
 

5 

80
 

5 

90
 

5 

90
 

5 

90
 

5 

90
 

5 

90
 

5 

0 
0

.0
2

7
 

3
9

2
8

 
5

.0
8

 1
66

7 

5 
0 

47
45

 
6

.2
7

 
82

9 

6 
0 

39
87

 
5

.1
9

 1
44

7 

1 
0 

40
36

 
5

.5
1

 1
12

5 

0 
0

.0
9

5
 

3
6

3
6

 
4

.7
6

 1
41

6 

0 
0

.4
3

0
 

74
20

 
7.

99
 

10
68

 

0 
0

.7
2

7
 

4
6

6
1

 
6

.4
7

 2
46

2 

0 
0.

03
6 

47
99

 
6

.7
8

 1
76

4 

0 
0.

I5
7 

5
0

0
7

 
6

.6
2

 2
33

0 

0 
0

.2
2

1
 

5
3

9
2

 
7

.0
2

 1
90

4 

0 
0

.5
4

3
 

5
7

7
7

 
8

.1
5

 4
76

6 

0 
0

.9
9

8
 

5
4

4
1

 
7

.8
7

 2
19

2 

0 
0

.9
1

7
 

5
4

9
1

 
7.

76
 

18
70

 

0 
0

.9
7

8
 

61
58

 
&

56
 1

31
3 

0 
0
.
2
6
8
 
57
54
 

8.
03

 2
80

2 

3 
0 

96
 

1.
27
 

I 

5 
0 

68
 

0,
75

 
1 

12
 

0 
81
 

I.
I0
 

I 

20
 

0 
64

 
0.
91
 

I 

20
 

0 
64

 
0.

90
 

I 

I 
0 

11
1 

1,
90
 

5 

4 
0 

90
 

1.
54
 

9 

0 
0.

19
6 

92
 

1.
43
 

5 

17
 

0 
90

 
1.

91
 

1 

2 
0 

12
4 

3.
48

 
1 

9 
0 

13
0 

4.
32

 
7 

2 
0 

11
5 

3.
23

 
1 

8 
0 

11
2 

3.
23

 
5 

18
 

0 
13

1 
5.

05
 

6 

15
 

0 
17

8 
6.

89
 

6 

1 
0 

12
7 

4.
35

 
10

 

20
 

0 
12

7 
2`

47
 

9 

13
 

0 
16

9 
5.

57
 

6 

9 
0 

15
2 

8.
03

 
6 

10
 

0 
17

4 
6.

62
 

10
 

1 
0 

14
8 

6.
06

 
7 

0 
0.

59
9 

17
4 

10
.3

1 
9 

3 
0 

18
9 

12
.7

1 
8 

0 
0

.0
4

9
 

26
6 

11
.2

0 
92

 

0 
0.

03
0 

19
4 

9.
29

 
10

 

0 
0

.3
3

4
 

22
4 

16
.9

2 
11

 

2 
0 

24
0 

18
.1

9 
I0

 

3 
0 

21
2 

16
.2

1 
4 

4 
0 

21
8 

17
.1

1 
1 

11
 

0 
23

4 
11

30
 

14
 

3 
0 

80
 

0.
84

 
1 

4 
0 

68
 

0.
64

 
1 

I1
 

0 
83

 
0.

84
 

1 

20
 

0 
64

 
0.

69
 

1 

20
 

0 
64

 
0.

69
 

1 

1 
0 

10
2 

1,
35

 
5 

4 
0 

10
0 

1.
40
 

9 

0 
~

19
6 

85
 

1~
8 

5 

15
 

0 
85

 
1.

31
 

1 

2 
0 

11
8 

2,
32

 
1 

9 
0 

13
0 

2,
72

 
7 

2 
0 

10
9 

2,
20

 
1 

8 
0 

10
9 

2.
17

 
5 

18
 

0 
12
7 

3.
40

 
6 

18
 

0 
18
9 

4.
51
 

6 

1 
0 

12
7 

3.
11
 

I0
 

2O
 

0 
12
7 

2.
21

 
9 

14
 

0 
17
4 

4.
40

 
6 

9 
0 

15
2 

5.
23
 

6 

IO
 

0 
16
9 

4.
48

 
10
 

1 
0 

14
8 

4.
28

 
7 

0 
0.

55
9 

16
9 

6.
87

 
9 

3 
0 

16
9 

7.
18

 
8 

0 
0

.0
4

9
 

27
3 

7.
72

 
81

 

0 
0.

03
0 

17
9 

5.
87

 
10

 

0 
0.

33
4 

20
1 

9.
68

 
11

 

2 
0 

20
1 

9.
51

 
10

 

3 
0 

19
5 

9.
67

 
4 

4 
0 

19
5 

9.
95

 
1 

7 
0 

21
2 

7.
43

 
14

 

15
 

0 
84

2 
9.

48
 

1 

18
 

0 
68

6 
6.

90
 

1 

20
 

0 
63

6 
6.

72
 

1 

20
 

0 
12

7 
1.

43
 

1 

20
 

0 
13

6 
1.

56
 

1 

4 
0 

91
9 

12
`8

9 
5 

20
 

0 
60

9 
9.

19
 

9 

0 
0.

19
6 

44
2 

6.
20

 
5 

2O
 

0 
25

7 
4.

24
 

1 

2 
0 

47
5 

9.
36

 
1 

20
 

0 
30

2 
6.

26
 

7 

2 
0 

32
2 

6.
82

 
1 

15
 

0 
28

8 
6.

02
 

5 

20
 

0 
41

1 
11

.5
8 

6 

20
 

0 
49

8 
12

,1
1 

6 

20
 

0 
57

4 
14

.8
6 

10
 

20
 

0 
30

3 
5.

92
 

9 

20
 

0 
10

45
 

28
33

 
6 

19
 

0 
54

9 
19

.4
2 

6 

20
 

0 
65

8 
16

.9
2 

I0
 

1 
0 

47
1 

14
.2

6 
7 

19
 

0 
72

3 
30

.5
1 

17
8 

4 
0 

37
9 

16
.6

3 
8 

0 
0.

04
9 

1
4

1
1

 4
4.

52
 

81
 

0 
0.

03
0 

93
9 

33
.1

0 
I0

 

3 
0 

56
0 

28
.7

2 
19

7 

19
 

0 
18

85
 

91
.1

6 
10

 

18
 

0 
56

4 
28

.6
9 

4 

12
 

0 
61

1 
32

.5
5 

1 

20
 

0 
82

8 
29

.5
4 

14
 

$:
: 



44 F. Dammeyer, S. Vofl, Dynamic tabu list management 

Table 3 gives a summary of our results. Considering the number of problems 
solved to optimality, all tabu search strategies clearly outperform simulated annealing. 
Referring to the best found solution, the average deviation from the optimal objective 
function value shows differences worth noting. Calculating the average deviation 
over all problems and all 20 initial solutions (for each problem), tabu search with 
REM and STM performs less effectively than the other two tabu search procedures, 
and behaves similarly to simulated annealing as far as average deviations are concemed 
(in contrast to best deviations). REM with L+STM gives improved solutions with 
higher CPU-times. The most astonishing entries in table 3 are the average number 
of moves needed to find the best solution, again referring to the most successful 
out of the sample of 20 trials. 

Table 3 

Summarized numerical results. 

Simulated Tabu search Tabu search Tabu search 
annealing basic REM REM/STM REM/L+STM 

Number of optimal solutions found 
with respect to all 57 test problems 31 40 
referring to all instances 
(i.e. from 20 .57  = 1140) 148 283 

Average deviation from optimality of 
best solutions found 

with respect to all 57 test problems 0.328 0.126 
referring to all 1140 instances 4.043 3.483 

Average number of neighbourhood 
exchanges needed 

with respect to the best found solution 1077 11 
over all 57 test problems 

Average CPU-time 
referring to all 1140 instances 5.12 4.85 

39 44 

268 591 

0.130 0.101 
4.207 0.558 

9 28 

2.99 14.59 

Both tabu search methods, REM in its basic form as well as incorporating 
STM, behave in nearly the same way. Concerning solution quality, the inclusion of 
STM into REM gives only slightly worse results but with a remarkable decrease in 
computation times. REM with L+STM leads to improved results, but it needs at 
least twice as much CPU-time as REM with STM. If REM is applied with long term 
memory only instead of L+STM the solution quality is slightly affected in some test 
problems with mostly increased CPU-times. 

To conclude our numerical investigation some results will be reported that 
cannot be drawn from tables 1-3.  The difference in CPU-times when using Least 
as described above (with maximum length of 2) or omitting that vector is less than 



F. Dammeyer, S. Vofl, Dynamic tabu list management 45 

or equal to 5%. Other values for the maximum length of  Least did not yield a further 
reduction in CPU-times. The size of at_n should not be chosen too small. Therefore, 
it should depend on the length of the data of the underlying problem instance. 
Usually values of at_n larger than 4n did not give considerable changes of the 
results while increasing the computation time. Some reasonable exceptions are 
summarized in table 4 (each time over a sample of 4 instances) where REM is 
applied with no restriction on at_n. For ease of implementation our results were 
obtained by setting the complement of a solo attribute tabu only if it is included 
in the current move. This is reasonable since our proposals for a corrected version 
for terminating the backtracing did not give improvements in running times. 

Table 4 

Numerical results for tabu search with basic REM. 

opt dev iter CPU it ° 

Fleisher 4 0 4001 568.9 232 
Freville/Plateau 5 4 0 4001 568.7 425 
Petersen 5 4 0 5601 869.5 172 
Wei Shih 8 4 0 8001 1296.6 761 
Wei Shih 25 4 0 16001 2942.7 265 

4. Conclusions 

In this paper we have studied implementations of tabu search with a specific 
dynamic tabu list management, and have disclosed its superiority to an implementation 
of simulated annealing, designed to perform effectively on the multiconstraint knapsack 
problem. Our work is based on a limited number of neighbourhood search strategies 
as weU as starting solutions. Considering our outcomes in conjunction with those 
of  additional studies using alternative strategies (see e.g. Domschke et al. [3] for 
a quadratic optimization problem as well as Dammeyer and VoB [2] for MCKP) the 
following conclusions may be drawn. 

Tabu search using REM seems to be more robust with respect to varying 
starting solutions than simulated annealing. While using simulated annealing, a 
"good" choice of the control parameters (temperature, annealing schedule, etc.) 
greatly influences the solution quality. By contrast, REM in its basic version does 
not require such sensitive parameters. Even the refinements of REM given in this 
paper may only influence its computation time. However, the average solution 
quality remains about the same for all approaches of section 2 provided the number 
of attributes in the running list is not chosen too small. 

Theoretically, one drawback of tabu search is that we may get stuck in a 
feasible solution. If REM applies a tabu status that forbids all immediately accessible 
moves, i.e. the residual cancellation sequences may prohibit all possible neighbourhood 



46 F. Dammeyer, S. Vet,  Dynamic tabu list management 

solutions, although some regions of  the solution space might not yet have been 
investigated, additional criteria have to be invoked. With respect to the problem 
dealt with in this paper, however, this was not necessary. 

Additional versions of tabu search for MCKP still have to be investigated (cf. 
[2]). That may also include the idea of what we call tabu tunneling, i.e. a method 
that allows for infeasibilities throughout the neighbourhood search, as in tabu search 
strategies described in [2] as well as in [I 1, 14, 15]. 

References 

[1] F. Danuneyer, P. Forst and S. Vog, On the cancellation sequence method of tabu search, ORSA J. 
Comput. 3(1991)262-265. 

[2] F. Dammeyer and S. Vo13, Application of tabu search strategies for solving multiconstraint zero- 
one knapsack problems, Working Paper, TH Darmstadt (1991). 

[3] W. Domschke, P. Forst and S. VoB, Tabu search techniques for the quadratic semi-assignment 
problem, in: New Directions for Operations Research in Manufacturing, ed. G. FandeL T. Gulledge 
and A. Jones (Springer, Berlin, 1992) pp. 389-405. 

[4] A. Drexl, A simulated annealing approach to the multicortstraint zero-one knapsack problem, Computing 
40(1988)1-8. 

[5] A. Freville and G. Plateau, M6thodes heuristiques performantes pour les problh-aes en variables 
O- 1 h plusieurs constraintes en in6galit~, Publication ANO-91, Universit~ des Sciences et Techniques 
de Lille (1982). 

[6] A. Freville and G. Plateau, Hard 0-1 multiknapsack test problems for size reduction methods, 
Investigacion Operativa 1(1990)251-270. 

[7] A. Freville and G. Plateau, An efficient preprocessing procedure for the multidimensional 0-1 
knapsack problem, Conf. on Viewpoints on Optimization, Grimentz (1990). 

[8] B. Garish and H. PirkuL Efficient algorithms for solving multiconstraint zero-one knapsack problems 
to optimality, Math. Progr. 31(1985)78-105. 

[9] F. Glover, Tabu search. Part I, ORSA L Comput. 1(1989)190-206. 
[10] F. Glover, Tabu search, Part II, ORSA J. Comput. 2(1990)4-32. 
[11] F. Glover, E. Taillard and D. de Werra, A user's guide to tabu search, Working Paper, University 

of Colorado and EPFL Lausanne (1991), to appear. 
[12] A. Hertz and D. de Werra, The tabu search metaheuristic: how we used it, Ann. Math. Art. Int. 

1(1990)111-121. 
[13] A. Hertz and D. de Werra, Tabu search techniques: a tutorialand an application to neural networks, 

OR Spektrum 11(1989)131-141. 
[14] J.P. Kelly, B.L. Golden and A. Assad, Large-scale controlled rounding using tabu search with 

strategic oscillation, Working Paper, University of Colorado and University of Maryland (1992), to 
appear. 

[15] M. Lagtma, J.P. Kelly, J.L. Gonzalez-Velarde and F. Glover, Tabu search for the multilevel generalized 
assignment problem, Working Paper, University of Colorado (1991). 

[16] R. Loulou and E. Michaelicles, New greedy-like heuristics for the multidimensional 0-1 knapsack 
problem, Oper. Res. 27(1979)1101-1114. 

[17] S. Senju and Y. Toyoda, An approach to linear programming with 0-1 variables, Manag. Sci. 
15(1968) B196-B207. 

[18] H.M. Weingarmer and D.N. Ness, Methods for the solution of the multi-dimensional 0/1 knapsack 
problem, (3per. Res. 15(1967)83-103. 


