Technical Aspects of Tabu Search

Annals of Operations Research 41(1993)31-46 31

Dynamic tabu list management using the
reverse elimination method

Frank Dammeyer and Stefan Vo8

Technische Hochschule Darmstadt, FB1/FG Operations Research, Hochschulstrasse 1,
D-6100 Darmstadt, Germany

Abstract

Tabu search is a metastrategy for gniding known heuristics to overcome local optimality.
Successful applications of this kind of metaheuristic to a great variety of problems have
been reported in the literature. However, up to now mainly static tabu list management
ideas have been applied. In this paper we describe a dynamic strategy, the reverse elimination
method, and give directions on improving its computational effort. The impact of the
method will be shown with respect to a multiconstraint version of the zero—one knapsack
problem. Numerical results are presented comparing it with a simulated annealing approach.

1. Introduction

Due to the complexity of a great variety of combinatorial optimization problems,
heuristic algorithms are especially relevant for dealing with large scale problems.
The main drawback of algorithms such as deterministic exchange procedures is
their inability to continue the search upon becoming trapped in a local optimum.
This invites consideration of recent techniques for guiding known heuristics to
overcome local optimality. Following this theme, we investigate the application of
the tabu search metastrategy for solving a multiconstraint version of the zero—one
knapsack problem.

Many solution approaches are characterized by identifying a neighbourhood
of a given solution which contains other (transformed) solutions that can be reached
in a single iteration. In the following a transition from a feasible solution to a
transformed feasible solution will be referred to as a move, which may be described
by a set of one or more attributes. For example, in a zero—one integer programming
context these attributes may be the set of all possible value assignments (or changes
in such assignments) for the binary variables. Then two attributes e and €, which
denote that a certain binary variable is set to 1 or 0, may be called complementary
to each other. Following a steepest ascent/mildest descent approach, a move may
either result in a best possible improvement or a least deterioration of the objective
function value. Without additional control, however, such a process can cause a
locally optimal solution to be re-visited immediately after moving to a neighbour.

J.C. Baltzer AG, Science Publishers

32 F. Dammeyer, S. Vof3, Dynamic tabu list management

To prevent the search from endlessly cycling between the same solutions, we
consider a version of tabu search that may be described as follows. We may imagine
the attributes of all moves are first stored in a running list, i.e. a list representing
the trajectory of solutions encountered. Then a list derived as a sublist of the
running list may be defined. Based on certain restrictions, this so-called tabu list
keeps some moves, consisting of attributes complementary to those of the running
list, which will be forbidden in at least one subsequent iteration because they might
lead back to a previously visited solution. Thus, the tabu list restricts the search to
a subset of admissible moves (consisting of admissible attributes or combinations
of attributes). This hopefully leads to "good" moves at each iteration without re-
visiting solutions already encountered. A general outline of a tabu search procedure
(for solving a maximization problem) may be described as follows:

TABU SEARCH

Given: A feasible solution x* with objective function value z*.
Start: Let x :=x* with z(x) = z*.

Iteration:

while stopping criterion is not fulfilled do begin

(1) select best admissible move that transforms x into x” with objective
function value z(x") and add it to the running list;

(2) perform tabu list management: compute moves to be set tabu, i.e. update
the tabu list;

(3) perform exchanges: x:=x, z(x) = z(x")
if z(x) > z* then z* := z(x), x* := x endif
endwhile

Result: x*isthe bestof all determined solutions with objective function value z*.

For a background on tabu search and a number of references on successful
applications of this metaheuristic see Glover [9, 10] and Hertz and de Werra [12, 13].
Further applications can be found, for instance, in [2,3,14,15].

In the next section we shall describe a specific dynamic method for step (2)
and give some comments on and corrections to related implementational issues
presented in the literature. In section 3 we present the application of our
procedure to the multiconstraint zero—one knapsack problem. Finally we draw
some conclusions.

2. The reverse elimination method

Tabu list management means the update of the tabu list, i.e. deciding on how
many and which moves have to be set tabu within any iteration of the search. Up
to now most implementations of tabu search use static tabu list management. In

F. Dammeyer, S. Vofi, Dynamic tabu list management 33

such a method, moves are set tabu as soon as their complements have been selected.
These moves stay tabu for a given number of iterations. More precisely, selected
move attributes are assigned a tabu status which in tum determines whether moves
containing these attributes are tabu. The efficiency of the algorithm depends on the
choice of the tabu status duration or, equivalently, on the length of the tabu list.
In the literature, often a "magic” tabu list length of 7 is proposed. Though successful
in some applications, this seems to be a rather limited approach. More recently,
dynamic tabu list management which assigns a status duration that varies according
to the attributes considered, has found increasing favor (see e.g. [3,11]). Some of
these methods determine a tabu status based on sequential relationships between the
selected moves, in a manner that rigorously excludes certain types of cycling behaviour.
Examples in this respect are the cancellation sequence method (cf. [10] and [1]) and
the reverse elimination method (REM) proposed by Glover [10].

The remainder of this paper will deal with the latter method. For ease of
description we assume that a move consists of exactly one attribute (i.e. we consider
so-called single-attribute moves instead of multi-attribute moves).

2.1. OVERVIEW OF REM

REM follows the idea that any solution can only be re-visited in the next
iteration if it is a neighbour of the current solution. Therefore, in each iteration the
running list will be traced back to determine all moves which have to be set tabu,
since they would lead to an already explored solution. For this purpose a residual
cancellation sequence (RCS) is built up stepwise by a trace. (Tracing back the
running list will be called a trace.) In each step of a trace, i.e. in each so-called
tracing step, exactly one attribute is processed, starting with the last (most recent)
back to the first (earliest). Beginning with an empty RCS, only those attributes are
added whose complements are not in the sequence. Otherwise their complements
in the RCS are eliminated (i.e. cancelled). Then at each tracing step it is known
which attributes have to be reversed in order to turn the current solution back into
one examined at an earlier iteration of the search.

If the remaining attributes in the RCS can be reversed by exactly one move
then this move is tabu in the next iteration. Otherwise this move will reproduce an
earlier solution. Let a position denote an attribute’s location in the running list. In
general, if a move consists of more than one attribute, the position of an attribute
and the iteration number of the corresponding performed move differ from each
other. Figure 1 gives an example for building residual cancellation sequences. As
every move consists of exactly one attribute the length of an RCS has to become
equal to one to enforce a tabu move,

The tabu status assigned by REM represents a necessary and sufficient criterion
to prevent re-visiting known solutions. The effort required by REM clearly grows
as the number of iterations increases, and thus ideas for reducing the number of
computations must be developed.

34 F. Dammeyer, S. Vof3, Dynamic tabu list management

Running list: 1673 156465 (latest move: 5) iteration: k = 10
position tracing step residual cancellation sequence length tabu move
10 1 5 1 5

N
SN o

P R - I S LY, TV R ¥}
Y

1
31
731
6731

673

N WA L NN 0 O
OV 00 <1 O v A W oN

St

o

AU b WD e N W N
'

Fig. 1. Example for RCS-development.

22. REDUCING THE NUMBER OF TRACING STEPS

Assume that in any iteration k of the search procedure the tth tracing step
leads to an RCS of length r. Then in iteration k + 1 the length of the RCS in tracing
step t+ 1 is not smaller than r — 1. More specifically, it is equal to either r— 1 or
r + 1. Therefore, following [10], a vector Least may be defined as follows.

Least(i) is the smallest position pos_n such that backtracing up to pos_n leads
to an RCS of length r<i+ 1.

If Least(1), . . . , Least(p) have been determined in iteration k (with p k), in
iteration k + j (j < p) backtracing is necessary up to the position number stored in
Least(j) only. Any additional step cannot lead to an RCS of length 1 and therefore
to a move that has to be set tabu. In iteration k£ + p + 1 the vector Least no longer
provides usable information. Therefore, Least must be updated not later than in
iteration k£ + p + 1. Nevertheless, an update of Least may be performed whenever
Least(j) =1 in any iteration k + j. This procedure can easily be generalized for the
case of multi-attribute moves.

Consider the example given in fig. 1. For p =3 we calculate

Least(1)=5, Least(2)=4, Least(3)=1.

Figures 2 and 3 show the tracing steps necessary in iterations k+ 1 and k+ 2.
Figure 3 also shows a worst-case example for the calculation of Least, i.e. an update
of Least ip iteration 12 would lead to Least(1) = 1.

As the number of stored attributes increases it may become too burdensome
for large iteration numbers to trace back the entire running list (even when using
Least since this vector has to be updated). Therefore, a parameter at_n (attribute
number) is introduced to limit the number of tracing steps per iteration although

F. Dammeyer, S. Vof3, Dynamic tabu list management

Running list: 16731564653 (atest move: 3) iteration: k+1 = 11

position tracing step residual cancellation sequence length tabu move comment

11 1

10 2
9 3
8 4
7 5
6 6
5 7

PN
4 h Lth Lh W
Wi Wl W W W W W

1

4

W Y W A W

3

Fig. 2. Example for the use of Least(1) =5 (7 necessary tracing steps).

Running list: 167315646534 (latest move: 4) iteration: k+2 = 12

position tracing step
12 1

Ho O 3 00 WO
AV T - RN N © TR T T - N VA S]

W
—
- O

1 12

residual cancellation sequence

(=]
[S IR
“ o W W W)

- W] W WA W D B])

[Y IES IS |

length tabu move comment

R e N WY D W N e

w N

2

4

35
termination
termination
in case of updating Least

Fig. 3. Example of the use of Least(2) =4 (9 necessary tracing steps).

accuracy may suffer: the complement of an attribute that is no longer traced might

be part of a move leading back to a previously explored solution.

23. TERMINATION OF THE BACKTRACING

Obviously it is not necessary to trace back the running list if an attribute of
a current move does not find its complement in the running list. To demonstrate this
we add element 2 as next move in the example given in fig. 1. Then the length of
every RCS is increased by 1 with respect to the previous iteration. Only the complement

of the current move has to become tabu.

36 F. Dammeyer, S. Vof3, Dynamic tabu list management

More generally, Glover [10] remarks that a trace need not be continued after
adding an auribute within a specific tracing step that does not have its complement
among earlier entries of the running list. With respect to necessity and sufficiency
this is not correct: Assume that, due to the chosen definition of at_n or Least, the
running list has to be traced back p steps. Then a direct analogue to Glover’s
condition to terminate the backtracing would be that an attribute e to be added to
the current RCS at step i does not find its complement € on the running list within
backtracing steps i,...,p. (In the case of single-attribute moves ¢ has not been
added to the running list during iterations k- p+1,...,i—-1). We call such an
attribute a solo attribute. For i > 1 this condition need not give a suitable termination
criterion as can be seen in the example given in fig. 1. In the third tracing step the
attribute e = 4 is added without having its complement among all earlier entries of
the running list. Therefore, the trace will not be continued. Figure 4 shows the same
example with a duplicated solution after adding move 4. This should have been a
tabu move according to the fifth tracing step of fig. 1.

Running list: ... 1564654 (latest move: 4)

position tracing step residual cancellation sequence length tabu move comment

1t 1 4 1 4
10 2 54 2 -
9 3 65 4 3 -
8 4 65 2 -
7 5 5 1 5
6 6 0 - duplicated solution

Fig. 4. Example for termination of the backtracing and choosing move 4.

In the following we discuss how and when the condition has to be modified
to give a correct termination criterion.

A modification that leads to a suitable criterion is to terminate the procedure
if, in additionto a solo attribute e, a second solo attribute e’ # ¢ is found. Figure 5
gives an example of the improved termination criterion. With two solo attributes e
and e’ identified as described above every additional tracing step will lead to
an RCS-length of at least 2. Therefore, this modified criterion is correct since any
RCS-length will be reduced by at most 1 in the next iteration. When multi-attribute
moves are considered the number of solo attributes found must be increased
appropriately to terminate a trace.

The latter criterion can be extended as follows. The trace is continued after
detection of the first solo attribute. Whenever the complementary move to this solo
attribute becomes tabu within a subsequent tracing step the backtracing may be terminated.

F. Dammeyer, S. Vofi, Dynamic tabu list management 37

a) iteration k with move 5
Running list: 1671536465 (atest move: 5)
position tracing step residual cancellation sequence length tabu move comment
10 1 5

H
[FERE R O N NE- Y
N Y RV I VAV

- e=4

- e' =3, termination

S v N\ 00 WO
-~ O b W
w
W N W N W N
t

ot

b iteration k+1
Running list: 16715364654 (latest move: 4)
position tracing step residual cancellation sequence length tabu move

11 1 4 1 4
10 2 54 2 .
9 3 654 3 .
8 4 65 2 .
7 5 5 1 5
6 6 35 2 -
5 7 3 1 3
4 8 13 2 -

Fig. 5. Example for termination of the backtracing.

Although there are two suitable termination criteria, another computationally
more attractive modification is to retain the termination approach of Glover [10].
However, the move consisting of the attribute whose complement is the first found
solo attribute is set tabu and the trace is terminated. An example may again be
drawn from fig.1, where the backtracing is terminated after three steps with the tabu
list consisting of the moves 5 and 4. This is a sufficient but not a necessary criterion,
as the last entry of the tabu list might not lead to an already visited solution (cf.
fig. 2 where 4 would be set tabu after step 4, although this is not necessary).
Additional related strategic considerations are sketched by Glover [10].

24. SEARCH INTENSIFICATION

A general idea for reducing the computational effort in a tabu search algorithm
is that of search intensification using a so-called short term memory (STM, compare
the expression intermediate term memory in [9]). The basic idea is to observe the

38 F. Dammeyer, S. Vof3, Dynamic tabu list management

attributes of all performed moves and to eliminate those from further consideration
that have not been part of any solution generated during a given number of iterations.
This results in an obvious concentration of the search. The number of neighbourhood
solutions in each iteration, and consequently the computational effort, decreases.
Obviously the cost of this reduction may be a loss of accuracy.

Correspondingly, a search diversification may be defined as a long term
memory (however, resulting in an increased computation time). Here we choose a
combined version (L + STM) as follows. Whenever a certain number of iterations
has been performed (including at least one application of STM) a new feasible
solution consisting of attributes that have been eliminated through STM is generated
and used as a new starting solution.

25. MULTI-ATTRIBUTE MOVES

In the preceding subsections we explained REM for single-attribute moves.
The generalization to multi-attribute moves is straightforward. Still, a different
definition of neighbourhood search is necessary. We distinguish two kinds of multi-
attribute moves: general and successive multi-attribute moves. In the first case a
move may consist of more than one attribute and a trace will be performed whenever
a move is realized, i.e. the number of traces is equal to the number of iterations.
This kind of move seems to be necessary if a mathematical formulation of a problem
may be given incorporating very restrictive equality constraints (e.g. the traveling
salesman problem or the quadratic semi-assignment problem).

If a multi-attribute move may be completely decomposed into single-attribute
moves, where feasibility of a solution is maintained after performing each part of
the move, we use the notation of a successive multi-attribute move. This kind of
move may be useful if an underlying mathematical formulation of a problem consists
of inequality constraints (compare section 3). In the case of successive multi-
attribute moves REM may be applied regarding every move as a number of separate
single-attribute moves. In that case in any iteration the number of traces to be
performed is equal to the number of attributes of the corresponding move.

Another classification of multi-attribute moves distinguishes static and dynamic
moves depending on whether the number of attributes in a move is constant for all
iterations or not. For static moves a straightforward generalization of REM that may
reduce the computational effort is the processing of all attributes of a complete
move within a single step of the trace.

3. An application

We consider the multiconstraint zero—one knapsack problem (MCKP):

n
Maximize Z(x) = Y c;x;)
j=1

F. Dammeyer, S. Vof, Dynamic tabu list management 39

n

subject to Y, a;x; Sb i=1...,m,)
j=1

%; € (0,1) j=l....n 3)

Without loss of generality all a;; are assumed to be nonnegative and all ¢; and
b; are assumed to be positive. MCKP is a special case of general zero—one programming
with a great variety of applications in the areas of, e.g. resource allocation and
capital budgeting. Various algorithms for solving this NP-hard problem have been
proposed in the literature (see, e.g. [4,5,7,8,16—18]). Here we refer to Drexl [4],
who developed an efficient simulated annealing algorithm which may be used as
a benchmark for an implementation of REM with respect to MCKP.

A trivial feasible solution for MCKP with an objective function value of
Z(x) = 0 consists of x;=0 for all j=1, ..., n. Any other feasible solution may be
obtained by adding or including appropriate elements into this solution as long as
no constraint of (2) is violated. In a similar fashion every infeasible combination
of binary variables may become feasible by dropping or excluding appropriate
elements. Given a feasible solution x = (x4, ..., x,), Drexl [4] applies a random
neighbourhood search in his simulated annealing approach by repetitively adding
and/or dropping randomly chosen elements. Feasibility is maintained in all intermediate
steps of the algorithm.

For the purpose of finding a neighbourhood solution within tabu search we
define the following transformation:

DROP/ADD MOVE
Given: A feasible solution x = (xy, ..., x,).
Choose j*=argmax {a;+/c;|x;=1, j=1,..., n} with i"being a bottleneck

resource with

n
i = argmax{ da-xlbli=1,... ,m},
j=1

th :=0
Feasible := true
while Feasible
choose &* = arg max {c;|x;= 0} with

n
a‘ko.*.za‘.j.xlsb‘ Vi=l,---,m
it

if k* exists then x;» := 1 else Feasible := false endif
endwhile

40 F. Dammeyer, S. Vof3, Dynamic tabu list management

The DROP/ADD move as described above may be considered as a multi-
attribute move with variable length depending on a specific instance of MCKP. Any
such move consists of exactly one DROP-attribute j* and a variable number of
ADD-attributes according to the choice of elements k* given in the while-loop*. We
will now use an implementation of REM considering these moves as successive
multi-attribute moves. Therefore, the tabu list management is the same as described
in section 2.

Remark

In most cases we will have j* # k" due to the different selection criteria,
Furthermore, j* leads to an RCS of length 1 before choosing the first ADD-attribute.
Due to the notion of successive multi-attribute moves a trace is performed before
entering the while-loop of the DROP/ADD move.

Both approaches, simulated annealing as described in Drexl [4] and tabu
search using REM, have been applied to MCKP. To have a comparative study, 57
test problems with known optimal solutions from the literature were solved with
both algorithms. The data are, among others, from [17] and [18] and are fully
reproduced in [5] and [6]. In the first three columns of table 2 the problem data are
identified by their authors’ names, the number of variables s, and the number of
constraints m. All programs are implemented in PASCAL and were run on an IBM
PS2/70, 386 personal computer. (Our re-implementation of the simulated annealing
algorithm turned out to be at least as good as the original implementation of [4]).

To thoroughly study each test problem, 20 initial feasible solutions have been
generated. Starting with x=(0,...,0) for the first feasible solution we added
elements according to the ADD-criterion given in the description of the DROP/ADD
move as long as possible. Nine further solutions have been gained fromx=(0,...,0)
by adding randomly chosen elements as long as possible. In the same way we
proceeded with an initialization of x = (1, . . ., 1). Nine solutions have been gained
by randomly dropping elements until feasibility is achieved, and the tenth solution
was obtained by applying a DROP-criterion inverse to the ADD-criterion mentioned
above.

In the sequel numerical results are presented in order to compare simulated
annealing to tabu search with the basic version of REM as described in section 2
and with the STM- and the L+STM-version, respectively.

The basic parameter setting of both simulated annealing and tabu search may
be found in table 1. Considering the framework of tabu search given in section 1,
we need to describe a termination criterion. We refer to a stride as a certain number

*In some pathological cases (e.g. when dropping any element from a given solution is tabu) we allow

for a durmmy attribute (not to be added to the running list) to preserve the structure of the DROP/ADD
move,

F. Dammeyer, §. Vof3, Dynamic tabu list management 41

of iterations. Given one of the 20 initial feasible solutions, the algorithms (simulated
annealing or tabu search) will terminate whenever there is no improvement of the
best feasible solution within all iterations of a stride. The length of a stride starting
from an initialization is increased over time by an increase factor as given in table 1.
Additionally, an overall termination criterion may be applied. In our case we choose
a stopping criterion of at most 500 n iterations for simulated annealing and of at

Table 1

Parameters of the algorithms.

Simulated annealing (cf. [4]) Tabu search

Temperature reduction factor: 0.6 Maximum length of Least: 2

Initial temperature: 0.5 (max{¢;} — min{c;}) Attribute number: at_n=4n

Initial number of iterations (stride): n Initial number of iterations (stride): n
Increase factor (number of iterations): 1.3 Increase factor (number of iterations): 1.1

most 10 n iterations for the tabu search strategies. The overall stopping criterion is
checked after each stride. For our examples, this criterion did not affect the termination
of tabu search.

In our STM strategy, an element is eliminated from further consideration at
the end of a stride if it has not been included in any solution examined during the
stride. For L+STM we have implemented the following modification. Whenever
REM with STM is stopped a new starting solution is obtained by choosing from
those elements that have previously been eliminated according to STM, and REM
with STM is restarted. This procedure is repeated no more than ten times as long
as a new starting solution can be found.

Table 2 gives a detailed description of our numerical results. For each
combination of problem instance and algorithm, opt gives the number of optimal
solutions found. The value dev gives the relative deviation from optimality of the
objective function value of the best found feasible solution (both values gained
from the sample of 20 instances). In addition, columns iter (rounded to integer
values) and CPU give the average number of iterations, i.e. the number of performed
neighbourhood exchanges, and the CPU-time in seconds averaged over all 20 instances,
respectively. The value it* shows the least number of iterations needed to calculate
the best found feasible solution in any of the 20 instances.

Analyzing the results shows advantages of tabu search over simulated annealing.
All tabu search implementations find a larger number of optimal solutions than
simulated annealing, indicating a higher flexibility of tabu search. Computation
times seem to be comparable for all methods except REM with L+STM. This
method needs more time due to the restarts with new starting solutions. It should
be noted that whenever it* = 0, at least one initial feasible solution corresponds to
the best found solution using the improvement procedure at hand, i.e. either no
improvement was possible (dev = 0) or none was found.

F. Dammeyer, §. Vof, Dynamic tabu list management

42

< 6L'18 90tl 110 O S 9991 W TIE0 O < €le 09 [0 0 £10€ 9991 80921 1It¥0 O z sort 8 mmrefuom
61 S9PI 10L 9000 O 61 S9¢ 18T 9000 O 6l §69 6Z€ 9000 O €IT9 L8VE ESL8T 090 O T sor L pumimom
vl oFPr TS o 1 0 90 T9 66T0 O 0 €30 8% 6620 O 0 L0S €Iy 66Z0 O T ® 9 nuniuom
T 19°¢ LSS o0 9 (4 €50 8¢ 0 (4 960 6L 0 ¢ 0 P8S 9966 o0E 0 [14 s nmmuom
Z 61 002 [A (4 6£0 09 0z [A 80 9 0 2 655 60€ 65T o € T & ¥ pumduom
0 0SE 0SE (VI 46 0 850 t9 o 1 0 S%0 (L9 0o 1 0 BLS 8E8S 0 € [4 € nurdmom
0 L9€ LSy 0 S 0 6v0 9 0 C 0 S50 ¥ 0o z 0 €05 b8y 0o 1 [(4 T mmriuom
1 6E€ 9Sv 0 6l I oo 0z I 50 oL 0 2 TOT LTY PO6E L9S0 O T ®w 1 puusiueom
91E ISLy €991 0 2 L STY 091 626 O 891 098 W 0 v LZIE SE611 066L 0o 1 0 09 T epohop/mfusg
86T 1865 991 0o v o€ 95°S 95T TWI0 0 0E €9%I ¥9T Trl'0 0 EIIE 698 TS6S 0 ¢ 0 09 1 wpokormiueg
vy LE9 TS 0 O vb SET IZI e O vr 85T IEL LbvO O LE9L LETI L9801 €390 O s oS L uosming
8 187 €82 o 1 8 L0 06 0 1 8 9L0 06 0ot §9T 58 TIWL OT O § 6 9 USsINa
0f LIT 6T 1910 O 8§ 950 0L UWZO O 8 BLO 16 IO O 6 SSY 009y LT O o1 82 § uasrnag
1 €60 9€1 0 ol I o ¢ ¢ 1 I LEC S 0o 1 L 65T sl [ZE0 O o1 0z ¥ wosmg
€ o 9y o u € 610 6t o u € 120 ¢p 0 ot ST T80 US [4 o1 st € uasInag
1 Lro ov 0 sl I 00 oz 0 ¥ I 800 12 VI 8 SE1 60T 0 2 o1 o1 T vasmg
0 600 T 0 oz 0 w00 I 0 0z 0 €00 II 0 0 0 £T0 62 0 81 o1 9 1 UasERg
89 8961 6901 o 8 89 LLT 66 0 ¢ 65 I§T 601 0 s 06€ SLT €201 €610 © 08 L L meImidAIAaL]
ol L¥El TIS 0o Ll ol §LT 601 0o 9 ol sy LIL 0o L 988 TIT 81Tl 0 0¢ Ov 9 nesrEJ/MIAAL
14 §§T 9Z€ S6L0 O ¥ SE0 8Y S6LO O v I¥F0 05 S6L0 O el ISTT TSI 01 01 0z & meamw|d/oMaa]
t SOT OEl £HL0 O T wo 99 €0 0 I 890 €8 €vL0 O £1€ 00T 0SSl 0 € T 6T v neamEgenaan
0 980 zEl 0 0z 0 STO ¢€v 0 0 I€0 ¢¥ 0o 0 06€ SI6E 0o 1 T 61 £ memEldRA
¥ €T 12 850 0O v 890 98 ¥ES0 O ¥ EL0 98 #50 O 8ZLY LOE €19 9650 O ¥ e T nedmidennaL]
9 LET L0T 0o s 9 wo 0oL 01 9 €50 6L 0ot 09z 631 LZST €SST 0 v LT 1 neamgfoiavg
8 el 651 e6l'T 0 8 (90 18 €611 © g TLo 18 €6l o ¥89 LSV 160V LSTT O ¥ §¢ T nexugfussuey
L TET 881 L6¥O O L 50 S8 L6¥0 O L 950 §8 L6v0 O 0 8T TSI TL 0 v 8T 1 neae|d/uosuer]
4 68C S9€ S6L0 O ¥ SE0 Ly S6L0 0 ¥ OF0 6y S6L0 O €T 0S'1 9661 0 1 01 0T Lysig
g ndd 4 asp ydo J1 ndo 4en asp ydo JUondd 4epn asp 3do o 0D d4an Aap ido w ou
ALSH] Yia WHYASIESs ngey, LS Yua WENAOIESS NQEL Y J1seq/yaress ngel, Buirauue porenuls
"SI (eI IUMN
(AL CLAR

43

F. Dammeyer, S. Vo, Dynamic tabu list management

48

o1
161
o1
18

8L1

01

L - -4

o
-

ot et et et W ON WY e v I = WY O D

$<6T
13943

91’16
[4R:14
or'ee
[A%44
£9'91
isot
9Tl
6'91
wel
EL8T
w's
98yl
et
8511
w9
789
979
9t'6
1(A4
0T'9
61'6
68°T1
95’1
eVl
w9
069
8v'6

878
e
122]
S881
09¢
6€6
3444
6LE
€L
124
859
6v¢
Srot
€0t
vLS
86v
Iy
:3:74
(44>
w0e
(YA4
1294
(424
609
616
9tl
[¥A¢
9£9
989
w8

oo o O o

0£0°0
6900
0

OO0 o0 0O 00 OO 00 0 O o oo

2

o O O o o O

(4!
81
61

TRT2R]KRKR

0z

0T

0T
174

81
st

4

o1
18
o1
I8

=3
—

— et e s = W CR WY e e I e WY DD

£V
$6'6
196
15°6
896
1239
L
81'L
189
8Ty
sy
1 YAY
ovy
[¥44
e
$94
ov'e
[ANA
0T
we
[AX4
[
80'1
o'l
SE'l
690
690
80
o
80

[4¢4
<6l
g6l
10T
102
6LL
€L
651
651
14}
691
(A%
/A
el
54
681
rAl
601
601
Otl
811
€8

£8

001

2338

89

o0 o

[3X)]
0£0'0
6100

655°0

- OO0 0O 0 OO0 O 0 o O

&

oo O o o o 0

- D MmO O o N M T

W en W ™ O O
— O - —t

oz
i

=]
—

vt e e e W ON W) e e T o W WO \D

on
i
1791
6181
w691
676
(A
wua
1e'01
909
099
£0'8
55
e
SEv
689
so's
¥AY
24
wy
8v'e
16'1
£r'l
12
06'1
06'0
160
ort
SLo
@&

81z
(At

P61

631
£
14
YLl
(A%
691
(¥4
u
8Ll
1€l
T
1981
0tl

8883

1t

g 3

89

L2~]

¥EE'0
0800
690°0

6650

[~ - A~ — 2 - - I — I — B~ - R - A = I - 4

&

[=~ I~ - P - A -

Lo — T . c B - N — B — o B 2 T
~—

wwmﬁgmc\o
- - —

ot
0T
u

W8T £0'8
clel 968
0L81 9L'L
61T 8L
WYLy S1'8
¥o61 Z0°L
0EET 799
LT 8L9
T Ly9
8901 66'L
oIyl SLY
STIL 166
Lt 61§

678

ey

L99T 80'S
TTEL 9TE
8011 00V

6
99
£L9
9¢L
£y
98
£
19:14
(4!
(44
£0¢
117
e

87
ELT
Lee
STE
0T
197
8¢C
09T
£6'0
60
w61
9l
(YA

ysLS
8519
16v¢
s
LLLS
T6eS

66LY
199%
oTvL
9€9¢
9t0y
L86€
(3734
876€
1912
868T
950T
8961
0691
80tT
¥ELL
s
£061
2602
ElL

9L

6551
€86

80v1

8970
8160
LI60
866'0
£Vs0
1220
Ls1ro
98070
Lo
0EY'0
S60°0

L~

R A O I — - TR -- - T N — T~ Y N~ =

LWV NN 0N O Y o 00 DD O 0000 QO

ViV W ! W 1l N n N i R i N n v 0 v N 0

RS9I IRRARRBSTSIZIRRRERIIBIIARKRR

SRERV

0€ 9IS BM
62 WIS A
87 S P
LTTUS P
97 S PM
ST UGS oM
T WS P
ECQUS P
TS PM
12 YUS P
07 9uS P
61 7S oM
81 QS A
LTS B
91 qI4S oM
$199S B
v1 QS P
£170YS 1o
(AL YT
11 714S A
01 W4S B
64MS P
8 9IS 1M
L UTS oM
9 S PA
S S A
IS BM
£ UNS PA\
TUNS PA
19N4S PA

44 F. Dammeyer, S. Vofi, Dynamic tabu list management

Table 3 gives a summary of our results. Considering the number of problems
solved to optimality, all tabu search strategies clearly outperform simulated annealing.
Referring to the best found solution, the average deviation from the optimal objective
function value shows differences worth noting. Calculating the average deviation
over all problems and all 20 initial solutions (for each problem), tabu search with
REM and STM performs less effectively than the other two tabu search procedures,
and behaves similarly to simulated annealing as far as average deviations are concerned
(in contrast to best deviations). REM with L+STM gives improved solutions with
higher CPU-times. The most astonishing entries in table 3 are the average number
of moves needed to find the best solution, again referring to the most successful
out of the sample of 20 trials.

Table 3

Summarized numerical results.

Simulated Tabu search Tabu search Tabu search
annealing basic REM REM/STM REM/L+STM

Number of optimal solutions found

with respect to all 57 test problems 31 40 39 44
referring to all instances
(i.e. from 2057 =1140) 148 283 268 591

Average deviation from optimality of

best solutions found
with respect to all 57 test problems 0.328 0.126 0.130 0.101
referring to all 1140 instances 4.043 3483 4.207 0.558

Average number of neighbourhood

exchanges needed
with respect to the best found solution 1077 11 9 28
over all 57 test problems

Average CPU-time
referring to all 1140 instances 5.12 4385 2.99 14.59

Both tabu search methods, REM in its basic form as well as incorporating
STM, behave in nearly the same way. Concerning solution quality, the inclusion of
STM into REM gives only slightly worse results but with a remarkable decrease in
computation times. REM with L+STM leads to improved results, but it needs at
least twice as much CPU-time as REM with STM. If REM is applied with long term
memory only instead of L+STM the solution quality is slightly affected in some test
problems with mostly increased CPU-times.

To conclude our numerical investigation some results will be reported that
cannot be drawn from tables 1-3. The difference in CPU-times when using Least
as described above (with maximum length of 2) or omitting that vector is less than

F. Dammeyer, S. Vof3, Dynamic tabu list management 45

or equal to 5%. Other values for the maximum length of Least did not yield a further
reduction in CPU-times. The size of at_n should not be chosen too small. Therefore,
it should depend on the length of the data of the underlying problem instance.
Usually values of at_n larger than 4n did not give considerable changes of the
results while increasing the computation time. Some reasonable exceptions are
summarized in table 4 (each time over a sample of 4 instances) where REM is
applied with no restriction on at_n. For ease of implementation our results were
obtained by setting the complement of a solo attribute tabu only if it is included
in the current move. This is reasonable since our proposals for a corrected version
for terminating the backtracing did not give improvements in running times.

Table 4

Numerical results for tabu search with basic REM,

opt dev iter CPU it

Fleisher 4 0 4001 568.9 232
Freville/Plateau 5 4 0 4001 568.7 425
Petersen § 4 0 5601 869.5 172
4 0
4 0

Wei Shih 8 8001 1296.6 761
Wei Shih 25 16001 2942.7 265

4, Conclusions

In this paper we have studied implementations of tabu search with a specific
dynamic tabu list management, and have disclosed its superiority to an implementation
of simulated annealing, designed to perform effectively on the multiconstraint knapsack
problem. Our work is based on a limited number of neighbourhood search strategies
as well as starting solutions. Considering our outcomes in conjunction with those
of additional studies using alternative strategies (see e.g. Domschke et al. [3] for
a quadratic optimization problem as well as Dammeyer and Vo8 [2] for MCKP) the
following conclusions may be drawn.

Tabu search using REM seems to be more robust with respect to varying
starting solutions than simulated annealing. While using simulated annealing, a
"good" choice of the control parameters (temperature, annealing schedule, etc.)
greatly influences the solution quality. By contrast, REM in its basic version does
not require such sensitive parameters. Even the refinements of REM given in this
paper may only influence its computation time. However, the average solution
quality remains about the same for all approaches of section 2 provided the number
of attributes in the running list is not chosen too small.

Theoretically, one drawback of tabu search is that we may get stuck in a
feasible solution. If REM applies a tabu status that forbids all immediately accessible
moves, i.¢. the residual cancellation sequences may prohibit all possible neighbourhood

46 F. Dammeyer, S. Vof3, Dynamic tabu list management

solutions, although some regions of the solution space might not yet have been
investigated, additional criteria have to be invoked. With respect to the problem
dealt with in this paper, however, this was not necessary.

Additional versions of tabu search for MCKP still have to be investigated (cf.
[2]). That may also include the idea of what we call tabu tunneling, i.e. a method
that allows for infeasibilities throughout the neighbourhood search, as in tabu search
strategies described in [2] as well as in {11, 14, 15].

References

[1] F. Dammeyer, P. Forst and S. Vo8, On the cancellation sequence method of tabu search, ORSA 1.
Comput. 3(1991)262-265.

[2] F. Dammeyer and S. Vo8, Application of tabu search strategies for solving multiconstraint zero—
one knapsack problems, Working Paper, TH Darmstadt (1991).

[3] W. Domschke, P. Forst and S. Vo8, Tabu search techniques for the quadratic semi-assignment
problem, in: New Directions for Operations Research in Manufacturing, ed. G. Fandel, T. Gulledge
and A. Jones (Springer, Berlin, 1992) pp. 389--405.

[4] A.Drexl, A simulated anmealing approach to the multiconstraint zero—one knapsack problem, Computing
40(1988)1-8.

[5] A.Freville and G. Plateau, Méthodes heuristiques performantes pour les problémes en variables
0-1 a plusieurs constraintes en inégalité, Publication ANO-91, Université des Sciences et Techniques
de Lille (1982).

[6] A. Freville and G. Plateau, Hard 0-1 multiknapsack test problems for size reduction methods,
Investigacion Operativa 1(1990)251-270.

[71 A. Freville and G. Platean, An efficient preprocessing procedure for the multidimensional 0-1
knapsack problem, Conf. on Viewpoints on Optimization, Grimentz (1990).

[8] B.Gavish and H. Pirkul, Efficient algorithms for solving multiconstraint zero—one knapsack problems
to optimality, Math. Progr. 31(1985)78-105.

[9] F. Glover, Tabu search. Part I, ORSA J. Comput. 1(1989)190-206.

{10] F. Glover, Tabu search. Part IT, ORSA J. Comput. 2(1990)4-32.

(11] F. Glover, E. Taillard and D. de Werra, A user’s guide to tabu search, Working Paper, University
of Colorado and EPFL Lausanne (1991), to appear.

{12] A. Hertz and D. de Werra, The tabu search metaheuristic: how we used it, Ann. Math. Ar. Int.
1(1990)111~121.

{13] A. Hertz and D. de Werra, Tabu search techniques: a ttorial and an application to neural networks,
OR Spektrum 11(1989)131-141.

[14] J.P. Kelly, B.L. Golden and A. Assad, Large-scale controlled rounding using tabu search with
strategic oscillation, Working Paper, University of Colorado and University of Maryland (1992), to
appear,

[15] M. Laguna, J.P. Kelly, J.L. Gonzalez-Velarde and F. Glover, Tabu search for the multilevel generalized
assignment problem, Working Paper, University of Colorado (1991).

[16] R. Loulou and E. Michaelides, New greedy-like heuristics for the multidimensional 0—1 knapsack
problem, Oper. Res. 27(1979)1101-1114,

[17] S. Senju and Y. Toyoda, An approach to linear programming with 0-1 variables, Manag. Sci.
15(1968) B196-B207.

[18] H.M. Weingartner and D.N., Ness, Methods for the solution of the multi-dimensional 071 knapsack
problem, Oper. Res. 15(1967)83-103.

