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Abstract 

In this paper, a new controlled search simulated annealing method is developed for 
addressing the single machine weighted tardiness problem. The proposed method is experi- 
mentally shown to solve optimally 99% of fifteen job problems with less than 0.2 CPU 
seconds, and to solve one hundred job problems as accurately as any existing methods, but 
with far less computational effort. This superior performance is achieved by using controlled 
search strategies that employ a good initial solution, a small neighborhood for local search, 
and acceptance probabilities of inferior solutions that are independent of the change in the 
objective function value. 

1. Introduction 

Simulated annealing is a randomized local search method that approximately 
solves optimization problems. Deterministic local search methods iteratively 
replace a seed solution by a superior one that might exist in the prespecified 
neighborhood of the seed solution. Otherwise, it terminates with a local op t imum 
that may be far from a global optimum. Unlike deterministic local search 
methods, simulated annealing can replace a seed solution with an inferior one 
with some positive probability. Therefore, a global op t imum may be attained, 
perhaps after a large number of iterations. 

Simulated annealing was first developed as a simulation model  to describe a 
physical annealing process of condensed matter (see Metropolis et al. [20]). 
Thereafter, it was applied to combinatorial problems, and was experimentally 
shown to provide near optimal solutions for some problem classes (Kirkpatrick et 
al. [16] and Cemy [7]). Many papers have subsequently reported successful 
applications of the technique in the areas of computer aided circuit design, image 
processing, code design and neural network theory. The reader is referred to van 
Laarhoven and Aarts [31] for a comprehensive discussion of the theory of 
simulated annealing, and for applications to a variety of problems. 

The process of simulated annealing requires the specification of an acceptance 
probability. That is, the probability of replacing the seed solution with an inferior 
solution within a prespecified neighborhood. Let i denote the seed solution and j 
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denote some other solution within a prespecified neighborhood. Also, let C i and 
Cj denote the respective objective function values of the solutions. For minimiza- 
tion problems, Metropolis et al. [20] used the acceptance probability 

APii( k ) = min{1, exp( - (C j  - C , ) / f l k ) } ,  

where k is the stage of the search and fll >/32 > --- The stage is a level in which 
the same acceptance probability is used, and flk is a control parameter. Note that 
for a given fl the process of simulated annealing can be described as a Markov 
chain, where under certain conditions there exists a stationary (equilibrium) 
distribution (see van Laarhoven and Aarts [31]). 

An annealing schedule specifies the number of iterations at each stage, the fl 
values to use and the point at which to terminate the search. For the case where 
each stage includes one iteration, Gidas [13] and Hajek [15] derived necessary and 
sufficient conditions for the simulated annealing algorithm to converge with 
probability one to a global optimum. Several sufficient conditions for conver- 
gence also have been derived by Geman and Geman [12], Gelfand and Mitter 
[11], Anily and Federgruen [2,3], and Mitra et al. [21]. Even where convergence to 
an optimum with probability one is guaranteed after an infinite number of 
iterations, experimental results indicate that commonly used annealing schedules 
require a large number iterations to obtain a near optimal solution. 

Considerable research has been directed at methods for accelerating the 
convergence of simulated annealing. In practical situations, it is not possible to 
attain equilibrium due to excess computational effort. Therefore, Aarts and van 
Laarhoven [1] introduce the concept of quasi-equilibrium, and they derive for- 
mula for determining flk'S which linearly reduce a distance between two succes- 
sive stationary distributions. Greene and Supowit [14] show that nearly all moves 
are rejected for small ft. They propose a procedure for avoiding rejections, and 
demonstrate that their procedure reduces computational effort for small ft. 
Bohachevsky et al. [5] use simulated annealing for addressing nonlinear optimiza- 
tion problems. Here, they apply acceptance probabilies that depend on the 
current value of the objective function. 

In this paper, a simulated anne~ ng  method is developed to address the single 
machine weighted tardiness problem. The proposed method, referred to as 
controlled search simulated annealing (CSSA), provides good approximate solu- 
tions with much less computational effort than with any other previously re- 
ported methods. This superior performance is achieved by using new controlled 
search strategies that employ a good initial (seed) solution, a small neighborhood 
for local search, and acceptance probabilities that are independent of the change 
in the objective function value. The approach taken here should be contrasted 
with conventional applications of simulated annealing where an initial solution is 
selected arbitrarily. This paper demonstrates that, if the quality of an initial 
solution is good, then the computation time to attain a near optimal solution is 
reduced considerably. 



H. Matsuo et al. / CSSA 87 

The single machine weighted tardiness problem has a structure much simpler 
than that found in most actual manufacturing environments. Despite its simple 
structure, this problem is unary NP-complete (Lawler [17] and Lenstra et al. [18]). 
Consequently, no computationally practicable exact solution methods have been 
developed, nor have there been any sophisticated heuristic methods that are 
efficient and provide good solutions. Improved methods for solving the single 
machine weighted tardiness problem can provide valuable insights for addressing 
more complex real-world manufacturing problems. 

In this paper, CSSA is applied to the single machine weighted tardiness 
problem, and provides good solutions with practicable computation effort. CSSA 
is experimentally shown to solve optimally 99% of fifteen job problems with less 
than 0.2 seconds of CPU time. For one hundred job problems, it yields solutions 
as accurate as those given by the simulated annealing method of Aarts and van 
Laarhoven [1], but with far less computational effort. The search strategies used 
in CSSA considerably reduce the computational effort required for using simu- 
lated annealing. As a consequence, simulated annealing can use any good 
heuristic solution to the weighted tardiness problem as an initial seed, and 
improve upon it with a small increase in computation effort. 

This paper is organized as follows. Section 2 provides a description of the 
single machine weighted tardiness problem, and reviews the state of the art in 
solution methodologies. In section 3, simulated annealing is described so as to 
provide a foundation for the proposed new search strategies used with CSSA. 
Section 4 explains the significance of the initial (seed) solution, while section 5 
presents the results of comprehensive experiments that compare the quality of 
solutions and computational effort with those of the best methods reported in the 
literature. Section 6 summarizes the results and indicates the potential signifi- 
cance for more complex manufacturing environments. 

2. The single machine weighted tardiness problem 

The single machine weighted tardiness problem is characterized by having n 
jobs available for processing on a single machine, with each job i having an 
associated weight w~ and due date d i, for i = 1, 2 . . . .  , n. The objective is to find 
the nonpreemptive sequence of the n jobs on the single machine that minimizes 
the total weighted tardiness cost; that is the sequence that minimizes 

/1 

E w,{max(0,/i- d,)}, 
i = 1  

where f~ is the scheduled completion time of job i for i = 1, 2 , . . . ,  n. 
To optimally solve the weighted total tardiness problem, branch and bound 

algorithms using dominance relations and lower bounds have been developed by 
Elmaghraby [8], Emmons [9], Shwimer [30], Rinnooy Kan et al. [27], Fisher [10I, 



88 H. Matsuo et al. / CSSA 

Picard and Queyranne [24] and Potts and Van Wassenhove [25,26]. Among these, 
Potts and Van Wassenhove's [26] algorithm is fastest. However, it sometimes fails 
to solve problems involving 30 jobs within 60 CPU seconds. Schrage and Baker 
[29] developed a dynamic programming algorithm that incorporates an efficient 
labeling scheme. This algorithm has a prohibitively large computer storage 
requirement for problems involving more than 20 jobs. 

To avoid excessive computation time and storage requirements, heuristic 
dispatching rules have been extensively studied. However, there is no one best 
heuristic method for all problem environments. For example, it is well-known 
that if there is no more than one tardy job, then the earhest due data (EDD) 
sequence is optimal. Generally, EDD works well for a lightly loaded machine 
(Schild and Fredman [28]). But when all jobs are necessarily tardy, then the 
shortest weighted processing time (SWPT) sequence minimizes the weighted 
tardiness (see Baker and Martin [4]). Therefore, SWPT generally performs well in 
a heavily loaded shop. More sophisticated dispatching rules also have been 
developed by Carroll [6], Montagne [22] and Morton et al. [23]. Several of the 
best of these dispatching rules will be described in section 5, and will be used to 
develop initial seed solutions for simulated annealing. In addition, more complex 
deterministic local search heuristics have been studied by Wilkerson and Irwin 
[32] and Matsuo and Tang [19]. 

3. Simulated annealing and iterative improvements 

In this section, we describe the proposed CSSA approach for using simulated 
annealing to address the single machine weighted tardiness problem. The follow- 
ing notation shall be used: 

NOTATION 

j = 

N = 
/v, -- 

c ,  = 
a q j  = 

k = 

M = 

a sequence of jobs, which is a permutation of { 1, 2 , . . . ,  n } 
a sequence of jobs, which is a permutation of { 1, 2, . . . ,  n } 
set of permutations {1, 2, . . . ,  n ) 
neighborhood of sequence i 
total weighted tardiness of sequence i, 
c j -  c , ,  

stage in simulated annealing that uses the same functional form of 
acceptance probability for k = 1, 2 . . . .  , K. 
number of iterations at each stage 

Ap~j(k)= acceptance probability of new sequence j from sequence i at stage k. 
Using the above notation, we can describe the simulated annealing process by 

Pidgin Algol: 
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THE SIMULATED ANNEALING PROCESS 

begin 
i "= an initial starting sequence generated by a heuristic 
for k =  1, 2, . . . ,  K do 

for m = 1, 2, . . . ,  M do 
begin 

j .'= a sequence selected from N~ (selection methods are discussed later); 
if ACij ~< 0 then 

begin 
set i "=j; 
if C, is less than the current minimum total weighted tardiness then 
find a local optimum by a deterministic search from i and keep the 
best solution so far; 

end 
else 

begin 
a := a random number generated from the uniform distribution 
between 0 and 1; 
if a <~ AP~j(k) then i "=j 

end 
end 

end 

In section 5, we shall discuss sex;eral heuristic rules to be used for deriving an 
initial seed solution used in the simulated annealing algorithm. Note that the 
algorithm checks for a local optimum whenever Ci becomes less than the current 
minimum weighted total tardiness, and that it always keeps the best solution 
found thus far. The purpose of this procedure is to attain a near optimal solution 
as rapidly as possible, as opposed to ensuring convergence to an optimal solution. 

The following new features have been introduced into CSSA for addressing the 
single machine weighted tardiness problem. 

Adjacent pairwise interchange 
The neighborhood, N~, is composed of the set of permutations of (1, 2 , . . . ,  n } 

that can be obtained by interchanging a pair of adjacent jobs. The cardinality of 
N,. is n -  1. The worst case and empirical performance of deterministic local 
search methods using several other neighborhoods with O(N 2) elements is 
discussed in Matsuo and Tang [19]. The choice of the smaller neighborhood is 
related to the acceptance probability function applied. 

Acceptance probability 
We use an acceptance probability that does not depend on the change, AC~j; 

that is, AP~j(k) =AP(k )  for any i and j with AC~j> 0. The benefit of using an 
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acceptance probability that does depend on AC~j by contrast with the approach 
taken here is that it avoids a large change in solution structure in the latter stages 
of the simulated annealing process. Note that the exponential form does depend 
on AC~i. Since we use a relatively small neighborhood and a good initial solution, 
a constant acceptance probability for each stage is expected to perform as well as 
the exponential form. The benefit of using constant acceptance probabilities is 
that it facilitates designing experiments to empirically identify the best annealing 
schedule. Here, each stage is explicitly characterized by the probability of 
accepting an inferior solution. The range and the form of reducing acceptance 
probabilities shall be discussed in section 5. 

Neighborhood search 
In most published research on simulated annealing, a solution is randomly 

selected from the neighborhood of a seed solution. In this paper, we search a 
neighborhood sequentially. For example, assume that (1, 2, 3, 4, 5) is a seed 
solution and that (2, 1, 3, 4, 5) and (1, 3, 2, 4, 5) are rejected at an iteration. Also, 
assume that (1, 2, 4, 3, 5) is the first solution found with a smaller objective 
function value. Then, (1, 2, 4, 3, 5) becomes the new seed with neighborhood 
consisting of (2, 1, 4, 3, 5), (1, 4, 2, 3, 5), (1, 2, 3, 4, 5) and (1, 2, 4, 5, 3). Here, 
note that the tardiness value associated with (1, 2, 3, 4, 5) is less than or equal to 
that of (2, 1, 3, 4, 5). This implies that the tardiness of (1, 2, 4, 3, 5) is less than or 
equal to that of (2, 1, 4, 3, 5). Consequently, we search the neighborhood of 
(1, 2, 4, 3, 5) in the order of (1, 4, 2, 3,5), (1, 2, 3, 4,5), (1, 2, 4, 5, 3) and 
(2, 1, 4, 3, 5) so as to increase the chance of improvement. 

4. Initial acceptance probability 

Simulated annealing tends to yield a near optimal solution independent of the 
initial seed solution. Initially, simulated annealing accepts inferior solutions with 
high acceptance probabilitieg, and thereafter the acceptance probability of infe- 
rior solutions is gradually reduced until it becomes zero. For example, consider 
using the Metropolis acceptance probability function. Then, the acceptance 
probability AP~j is close to I for any i and j when fl is large, and it is close to 0 
when fl is small. Therefore, the method generally takes extensive computational 
effort when the initial/3 value is set high. 

Assume that [ N~ [ is a constant G for any solution i and that it is possible to 
reach any solution from any other solution in some finite number of steps. Then, 
if we use the Metropolis acceptance probability function with a given /3, a 
Markov process results with transition probabilities: 

/ G-1 max{0, exp(--ACij/fl)) for j ~ iV/ 

P i j ( f l ) = ( 1 -  Y'~ G -1 max(O, exp(-AC~Jfl ) )  f o r j = i  
k~N, 

0 otherwise 
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Let ~ri(fl ) denote the stationary probability of being in solution i in the Markov 
process defined by ft. Then, ~ri(fl) can be expressed as follows: 

~ri(fl) = e x p ( - ( C ( i ) -  C( i , ) ) / f l ) /  E exp( - (C( i )  - C(i , )) / f l ) ,  
i ~ N  

where C(i,) is the global optimal value, and N denotes the set of all feasible 
solutions. 

When the system reaches equilibrium state perhaps after many iterations, then 
for a given fl the expected value of the objective function is defined as 

E[C~] = E ~ ( B ) c ( i ) .  
i ~ N  

This E[Ca] can be approximated by 

where Mp denotes the number of iterations at stage fl and Yk is the solution of 
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Fig. 1. Normalized average value of the objective function as a function of control parameter ~ for 

an example 15-job total weighted tardiness problem with r = 0.6 and R ffi 0.4. 
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the k th iteration at stage ft. Consider the normalized average value of the 
objective function (NAV(t3)) given by 

NAV(/3) = (C(/3) - (:?opt)/(C~ - Copt), 
m 

where Cop t denotes a global optimal value of the objective function, and Coo 
denotes the average value of the objective function for/3 = oo. Figure I shows the 
NAV(/3) associated with various values of 13 for an example 15-job total weighted 
tardiness problem when an annealing schedule is apphed. The curve describes a 
typical transition of the average objective function values in response to the 
decrease in/3, and shows that simulated annealing yields a near optimal solution 
for this particular problem. 

In the scheduling literature, several simple heuristic procedures have been 
developed for addressing the total weighted tardiness problem. Assume that a 
heuristic procedure almost always provides a solution satisfying ( v ( j ) -  
Copt)/(Coo- Copt)~< v, where v ( j )  is the objective function value of heuristic 
solution. Let /31 denote the control parameter corresponding to v in fig. 1. If 
simulated annealing is initiated with the heuristic seed solution and the control 
parameter t30, then a near optimal solution likely will be obtained by following 
the entire path depicted in fig. 1. However, we expect that there exists an initial 
control parameter t3 between /31 and /30 for which simulated annealing will be 
able to find a near optimal solution from the initial heuristic solution. If this fl 
value is very small as compared with /30, then using a heuristic solution as an 
initial point along with the small t3 value significantly reduces the computational 
time. In the next section, we shall empirically derive the appropriate initial 
parameter setting for each of several heuristic seed solutions, and show that the 
proposed approach leads to fast convergence of CSSA to a near optimal solution. 

5. Computational results 

5.1. EXPERIMENTAL DESIGN 

CSSA was applied to test problems involving 15, 50 and 100 jobs, respectively. 
An experiment was designed to help determine the appropriate parameter set- 
tings, and to determine the performance of the method as compared with other 
simulated anr~ealing methods reported in the literature. The test problems were 
generated as follows: 
(i) Processing times: The processing time pj for job j is generated from the 
normal distribution such that pj - N(100, 25). This confirms to the experimental 
study in Baker and Martin [4]. 
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(ii) Due dates: The generation of due dates is controlled by the due date range, 
R, and the tardiness factor, r. The due date dj for job j is drawn from a uniform 
distribution on 

pj 1 - - r - - ~ -  , & 1- - r+-~-  . 

Note that its range is 

and the mean is 

In this experiment, we set R equal to 0.4 and 0.8, and r equal to 0.2, 0.4, 0.6 and 
0.8. 
(iii) Tardiness weights: Tardiness weight wj for job j is generated from the 
discrete uniform distribution on [1,10]. 

For each combination of parameters, twenty problems are randomly generated, 
and four measures of performance are used. These are: 
(i) Average Relative Error (ARE): This is the average deviation of the heuristic 
value from the optimal value divided by the optimal value. That is, for the twenty 
test problems 

ARE= average of (T(SA) - T(OPT))/T(OPT), 

where T(SA) and T(OPT) denote the total weighted tardiness of simulated 
annealing and the optimal total weighted tardiness, respectively. 
(ii) PSO: This is the percentage of problems solved optimally from the 20 
problems. 
(iii) Average Relative Improvement (AM): For problems with 50 jobs and 100 
jobs, no computationally practical algorithms have been developed for determin- 
ing optimal solutions. Furthermore, a lower bound developed by Potts and Van 
Wassenhove [26] is not good enough to replace the T(OPT) value in ARE. 
Therefore, the relative improvement over the AU heuristic, which shall be 
introduced in section 5.2, is measured. That is, 

ARI = average of T(SA)/T(AU), 

where T(AU) is the total weighted tardiness of the AU heuristic. 
(iv) Normalized Absolute Improvement (NA1): This is used to guage the perf, or- 
mance of 50 and 100 job problems. The normalized weighted tardiness was used 
in Morton et al. [23] and Ow (1984) to compare results with different parameter 
values. For the conventional tardiness problem, NAI is obtained by dividing the 
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improvement of the absolute tardiness by the number of jobs, the mean processing 
time and the mean weight. NAI is defined as follows: 

NAI = average of (T(heu) - T(SA)) /  n p i n  w J n  , 

where T(heu) is the objective value of an initial seed solution. 
Altogether, twenty four combinations of parameter settings are used (i.e. 

2(R) X 4 ( r ) ×  3 (n )=24  classes). For each combination twenty problems are 
randomly generated and solved, and the averages of the performance measures 
are calculated. Computation time is measured by the average CPU seconds. The 
algorithms are coded in FORTRAN, compiled using the MNF compiler, and run 
on the CDC Dual Cyber 170/750. 

5.2. INITIAL SEQUENCE 

In section 4, we conjectured that CSSA, using a good initial seed solution, can 
start with a low initial acceptance probability, thereby reducing computation 
effort. To generate different initial seed solutions, we use four dispatching rules. 
These are: 
(a) SWPT (Shortest Weighted Processing Time): sequence the jobs in decreasing 
order of WJpg. 
(b) EDD (Earliest Due Date): sequence the jobs in increasing order of dj. 
(c) COVERT (Cost Over Time): the COVERT rule (Carroll 1965) adapted from 
Fisher [10] determines a priority index for each unscheduled job as follows: 

( w ~/p~ for d~ ~ Pi + t 

% = 1 0  i ( T - d i ) / ( p i ( T - t - p i ) )  for for t+pi<di<TT~di, 

where 
n 

T= ~-,Pi. 
i=1 

The COVERT rule schedules the next job with the largest priority index among 
the unscheduled jobs. 
(d) AU (Apparent Urgency Rule): the AU heuristic (Morton et al. [23]) assigns 
the next job with the highest apparent urgency priority. This priority is de- 
termined by 

%= (wi/pi)  exp[-- (d  i - t -  Pi) + /k~] ,  
where ~r~ denotes the priority index for job i, t the start time for job i, k a 
look-ahead parameter, fi the average processing time which is equal to 

n 

E p,l", 
i=1  
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Table 1 
Results of initial heuristic solutions 

95 

w R r ARE NAI ARE NAI 

SWPT CSSA SWPT AU CSSA AU 

1-10 0.4 0.2 22.2562 (0) 0.0574 (18) 0.1415 0.6139 (12) 0.0018 (19) 0.0071 
0.4 1.0955 (0) 0.0196 (13) 0.3141 0.1456 (6) 0.0079 (17) 0.0511 
0.6 0.4244 (0) 0.0027 (18) 0.4557 0.0469 (3) 0.0007 (17) 0.0501 
0.8 0.1160 (0) 0.0000 (20) 0,3251 0.0139 (4) 0.0000 (20) 0.0397 

0.8 0.2 2535.0839 (0) 0.0000 (20) 0.3239 0.0000 (20) 0.0000 (20) 0.0000 
0.4 25.6462(0) 0.0393 (18) 0.8010 0.7190 (4) 0.0336 (18) 0.0330 
0.6 0.9995 (0) 0.0012 (14) 0.9617 0.0945 (1) 0.0005 (18) 0.0806 
0.8 0.1889 (0) 0.0000 (19) 0.5653 0.0206 (5) 0.0000 (20) 0.0581 

PSO (%) 0.00 87.50 34.38 93.13 
Time (sec.) 0.001 0.092 0.003 0.081 

( ): the number of problems solved optimally. 

and (x) + =  max(0, x). Our preliminary investigations show that, for 15 job 
problems, k = 0.5, 0.9, 2.0 and 2.0 provide good performance for r--- 0.2, 0.4, 0.6 
and 0.8, respectively, and that, for 50 and 100 job problems, k = 0.5, 1.8, 4.0 and 
2.0 provide better performance for r = 0.2, 0.4, 0.6 and 0.8, respectively. 

The initial acceptance probability is set at 0.5, and is decreased linearly and 
discretely at the rate 0.02. The number of the searches at each stage is set to 120. 
Table 1 presents the results of controlled search simulated annealing when the 
initial seed sequence was developed using the two heuristic methods,  SWPT and 
AU. The performance of both EDD and COVERT is superior to SWPT and 
inferior to AU. Therefore, their results are not shown in table 1. As seen in table 
1, CSSA significantly improves each heuristic seed solution. The AU heuristic 
appears to provide the better seed sequence, and the ARE after using CSSA is 
less than 1% for nearly every combination of parameters. The only exception is an 
ARE of 3.36% for r = 0.4 and R = 0.8. Note  that the ARE for solutions derived 
using the AU method alone average 20.68%. When using the AU solutions as the 
initial seed solutions for CSSA, the average ARE is reduced to 0.56%, or to less 
than 3% of the original average ARE given by the AU method.  This dramatic 
improvement in accuracy is achieved with an average of 0.081 CPU seconds. This 
is an increase in computat ion time of approximately 0.078 CPU seconds over 
using the AU method alone. Therefore, we conclude that CSSA yields sequences 
very close to the optimal with only a modest  increase in computat ion effort. This 
conclusion is also supported by the fact that 87.5%, 92.5%, 90.6%, and 93.1% of 
160 15-job problems are solved optimally when CSSA uses SWPT, EDD, 
COVERT, and AU rule as a seed sequence, respectively. 

Figure 2 shows the accuracy associated with various initial acceptance prob- 
abilities when the results obtained by the AU rule are used as the initial solution. 
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Fig. 2. The performance of CSSA associated with various range of initial acceptance probabilities. 

The accuracy of the final solutions are of the same magnitude for any initial 
acceptance probabilities greater than or equal to 0.5. However, when the initial 
acceptance probability is lowered below 0.5, the accuracy deteriorates signifi- 

Table 2 
CSSA using SWPT solution as an initial seed 
ARE, PSO(%) and computational time 

w R r A P ( k )  

0.6-0.0 * 0.5-0.0 

1-10 0.4 

PSO (~) 
TIME (see.) 

0.8 

0.2 0.0000 (20) 0.0574 (18) 
0.4 0.0056 (15) 0.0196 (13) 
0.6 0.0022 (19) 0.0027 (18) 
0.8 0.0007 (18) 0.0000 (20) 
0.2 0.0000 (20) 0.0000 (20) 
0.4 0.0005 (19) 0.0393 (18) 
0.6 0.0004 (18) 0.0012 (14) 
0.8 0.0000 (20) 0.0000 (19) 

93.13 87.50 
0.111 0.092 

*: range of acceptance probabilities 
( ): the number of problems solved optimally 
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Table 3 
Performance of CSSA 

Range of AP(k) 0.9-0.0 0.5-0.0 

Initial seed ARB AU AU 

No. of stages 120 240 120 120 
PSO (%) 90.00 95.00 93.13 93.13 
Time (see.) 0.147 0.296 0.142 0.081 

ARB: an arbitrary initial seed solution. 

cantly. This supports the contention that if a good initial seed is given, CSSA can 
start with low initial acceptance probabilities. As shown in table 1, SWPT yields 
an initial solution inferior to the other methods, and consequently the final 
solution obtained by CSSA using SWPT also is inferior. Table 2 shows that an 
increase in the initial acceptance probability from 0.5 to 0.6 improves the final 
solution using SWPT. In this case, its accuracy improves up to that obtained by 
CSSA using the AU rule with the initial acceptance probability equal to 0.5. 
Clearly, a better initial solution requires a lower initial acceptance probability, 
and consequently less computat ion time is required for convergence to a good 
solution. Note  that, although the AU solution is reasonably good, it sometimes 
requires rather extensive change to attain an optimum. This is realized by 
maintaining relatively high acceptance probabilities. 

0.~ 

0.4 

0.3 

0.2 

0.1 

4 8 12 16 2O 

stQg, (K) 
Fig. 3. Functional fomls of a~eptance probability. 

e ! 

24 
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Table 3 displays the saving in computat ion effort when a good initial solution 
is used with CSSA. By using the AU rule to drive an initial seed solution, the 
computat ion time is decreased to approximately one-fourth of that required when 
using a random initial seed solution. Note  that when an arbitrary initial seed 
solution (ARB) is used, then the number  of searches at each stage is doubled in 
order to obtain the same accuracy as that using the AU seed solution. Conse- 
quently, it takes longer to reach equilibrium at each stage. 

5.3. FUNCTIONAL FORM OF ACCEPTANCE PROBABILITY (APij(k)) 

The success of simulated annealing largely depends on the functional  form of 
the acceptance probability, AP~j. To analyze this dependency,  we lower AP u 
discretely and linearly, and use several other different forms of acceptance 
probability. Figure 3 shows the various forms of APu(k ) used. These are: 

(i) Logarithmic Concave 

APi.i(k ) = 0.6034 + 0.1491 In c(k), 

where c (k )  = 0.5 - 0.02 x k for k = 0, 1 , . . . ,  24. 

(ii) Piecewise Concave 

I' 0.50 - (0.01 x k )  

Ae, j (k)  =  0.59 (0.02 x k) 
0.97 - (0.04 x k)  

for k = 0, 1 . . . .  ,9 

for k =  10, 11 . . . .  ,19 

for k = 2 0 ,  21 . . . . .  24 

Ae, j (k)  
( 0.50 - (0.04 x k)  

= ~ 0.40 - (0.02 X k )  

0.25 - (O.Ol x k)  

for k = 0 ,  1 , . . . , 5  

for k = 6, 7 . . . . .  15 

for k =  16, 17 . . . . .  24 

(v) Exponential Convex 

Ae, i(k) = e x p ( c ( k ) ) ,  

where c(k) = -0 .6931 - (0.1341 x k )  for k =  0, 1 , . . . , 24 .  

When APij(k ) is concave, then it decreases slowly at the early stages, and 
thereafter it decreases rapidly. The initial acceptance probabili ty is set at 0.5, and 
is decreased in 25 discrete stages. At each stage, 120 searches are made. 

Table 4 gives the ARE, PSO(%) and computat ional  time for various patterns in 
decreasing APu(k ). The results indicate that linear and piecewise forms yield 
greater improvement in the initial solutions than do the logarithmic concave and 
the exponential convex forms. In terms of the number  of the problems optimally 
solved, the exponential convex form of APu(k) yields significantly poorer  results. 

(iii) Linear: APo(k ) = 0.5 - (0.02 × k)  for k = 0 . . . . .  24. 
(iv) Piecewise Convex 



H. Matsuo et al. / CSSA 

Table 4 
The performance of the forms of AP(k) 
ARE, PSO(%) and computational time 

99 

w R r AU CONVEX LINEAR CONCAVE 

EXP PIE LIN PIE LOG 

1-10 0.4 0.2 0.6139(12) 0.2761(14) 0.0273(19) 0.0018(19) 0.0024(19) 0.0000(20) 
0.4 0.1456 (6) 0.1452 (6) 0.0278(16) 0.0079(17) 0.0187(17) 0.0088(17) 
0.6 0.0469 (3) 0.0460 (3) 0.0029(17) 0.0007(17) 0.0007(18) 0.0047(15) 
0.8 0.0139 (4) 0.0070 (9) 0.0000 (19) 0.0000 (20) 0.0006 (18) 0.0007 (17) 

0.8 0,2 0.0000 (20) 0.0000 (20) 0,0000 (20) 0.0000 (20) 0.0000 (20) 0.0000 (20) 
0.4 0.7190 (4) 0.2467 (6) 0.0106 (17) 0.0336 (18) 0.0000(20) 0.0369 (18) 
0.6 0.0945 (1) 0.0945 (1) 0.0002 (18) 0.0005 (18) 0.0007 (16) 0.0017 (17) 
0.8 0.0206 (5) 0.0178 (6) 0.0000(20) 0.0000(20) 0.0000 (20) 0.0001 (17) 

PSO (%) 34.38 40.63 91.25 93.13 92.50 88.13 
Time (see.) 0.003 0.098 0.080 0.081 0.082 0.097 

( ): the number of problems solved optimally. 

However ,  the pe r fo rmance  of  the l inear and  piecewise forms is approx ima te ly  the 
same. Table  4 also shows tha t  l inear and  piecewise fo rms  are sl ightly more  
efficient t h a n  the exponent ia l  and  the logar i thmic  in terms of  c o m p u t a t i o n  time. 
F r o m  among  the forms tested, the l inear discrete fo rm of  APiy(k) per forms  best.  

5.4. THE NUMBER OF SEARCHES AT EACH STAGE 

At  each stage, s imulated anneal ing  theoret ical ly cont inues  to search unt i l  the 
sys tem reaches an  equi l ibr ium state. To  test the effect  on  pe r fo rmance  of  the 
n u m b e r  of  searches at  each stage, we use a cons tan t  n u m b e r  of  searches at  all 

Table 5 
The number of searches at each stage 
ARE, PSO(%) and computational time 

w R r AU CSSA 

15 30 60 120 240 

1-10 0.4 0.2 0.6139 (12) 0.0696 (17) 0.0302 (18) 0.0273(19) 0.0018 (19) 0.0000 (20) 
0.4 0.1456 (6) 0.1060 (8) 0.0622 (13) 0.0167 (12) 0.0079 (17) 0.0100 (17) 
0.6 0.0469 (3) 0.0049 (16) 0.0039 (15) 0.0064 (16) 0.0007 (17) 0.0018 (18) 
0.8 0.0139 (4) 0.0025 (13) 0.0012 (15) 0.0006 (18) 0.0000 (20) 0.0002 (19) 

0.8 0.2 0.0000 (20) 0.0000 (20) 0.0000 (20) 0.0000 (20) 0.0000 (20) 0.0000 (20) 
0.4 0.7190 (4) 0.0792(14) 0.0626(14) 0.0520(15) 0.0336(18) 0.0000(20) 
0.6 0.0945 (1) 0.0202 (12) 0.0012 (16) 0.0097 (15) 0.0005 (18) 0.0007 (18) 
0.8 0.0206 (5) 0.0004(14) 0.0011(14) 0.0003(16) 0.0000(20) 0.0000(20) 

PSO (%) 34.38 71.25 78.13 81.88 93.13 95.00 
Time (see.) 0.003 0.012 0.023 0.042 0.081 0.172 

( ): the number of problems solved optimally. 
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stages. This number  is labeled M. The initial acceptance probabili ty is set at 0.5, 
and is decreased linearly and discretely by 0.02 until it reaches 0.02. Experiments  
are conducted for M = 15, 30, 60, 120 and 240. Here, 15 searches at each stage 
are necessary to cover the entire neighborhood of a seed sequence at least once. 

Table 5 displays the results using the various values of M. As expected, there is 
a significant improvement  in accuracy as the number  of searches increases. 
However, for M >1 120 further improvement  is minimal except for r = 0.4 and 
R = 0.8. Consequently, the system approaches the equilibrium state within 120 
searches at each level. As can be seen in table 5, the number  of problems solved 
optimally also increases as the number  of the searches increases. In particular, 
significant improvement  is realized as the number  of searches increases from 60 
to 120. However, there is no significant improvement  for M >1 120. These results 
clearly indicate that the system reaches an equilibrium state for M ~< 120. With all 
these experiments, the computat ion time increases almost linearly with the 
number  of searches. 

5.5. SEARCH METHOD 

Two methods for searching the neighborhood of a seed sequence are examined. 
The first is a random search method that randomly draws a sequence f rom the 
neighborhood of a seed sequence. The solution value associated with the sequence 
is then compared with that of the seed. With this search method,  an equal 
selection probability is assigned to each of the neighborhood solutions; that is, 
each solution in the neighborhood of a seed is chosen with probabili ty 1 / ( n  - 1) 
for an n-job problem. The second search method examined is the sequential 
search method previously described in section 2. Note  that in this case, each 

Table 6 
Search methods 
ARE, PSO (%) and computational time 

w R r AU CSSA 

RANDOM SEQUENCE 

1-10 0.4 

PSO (%) 
Time (see.) 

0.8 

0.2 0.6139 (12) 0.0406 (18) 0.0018 (19) 
0.4 0.1456 (6) 0.0200 (14) 0.0079 (17) 
0.6 0.0469 (3) 0.0031 (16) 0.0007 (17) 
0.8 0.0139 (4) 0.0003 (18) 0.0000 (20) 
0.2 0.0000 (20) 0.0000 (20) 0.0000 (20) 
0.4 0.7190 (4) 0.0343 (17) 0.0336 (18) 
0.6 0.0945 (I) 0.0014 (15) 0.0005 (18) 
0.8 0.0206 (5) 0.0004 (17) 0.0000 (20) 

34.38 84.38 93.13 
0.003 0.090 0.081 

( ): the number of problems solved optimally. 
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neighborhood solution has a different probability of selection. As before, the 
initial value of APij is set to 0.5, and it is linearly decreased to 0.02 at the rate 
0.02. The number of searches at each stage is set to 120. 

Table 6 shows that the sequential search is superior to the random search in 
terms of both accuracy and number of problems solved optimally. The random 
search requires more computational time to select the next move than does 
sequential search. 

5.6. DEPENDENCE ON ACij 

Most applications of simulated annealing relate APii(k ) to the change in the 
objective function value, ACij. Here, we investigate the benefit of this approach. 
We use the acceptance probability APij(k ) = min(exp(--ACij/flk), 1}, and de- 
termine flk SO that the proportion of accepted moves at stage k is approximately 
equal to A P ( k ) = 0 . 5 -  0 . 0 2 ( k - 1 )  for k =  1, 2, . . . ,25. Let AC(k) denote the 
average of the positive changes AC~j at stage k. We estimate AC(k) using 
exponential smoothing with smoothing constant equal to 0.2. That is, 

ACre = 0.8ACre_ 1 + 0.2ACij 
for the mth positive change in the objective function. The initial average value 
AC-(0) is computed as the average of the positive changes when simulated 
annealing with AP~j(k) = 0.5 is iterated 120 times. In order for solution j with 
the average amount of positive change to be accepted with probability APij(k), 
we set 

exp(-AC'(k  - 1)/flk) = AP(k  ). 
This implies 

ilk = -AC(  k - 1)/ln( AP( k )). 

Table 7 
Acceptance probability dependent on the change of the objective function value 
ARE, PSO (%) and computational time 

w R r LINEAR EXPON 

1-10 0.4 0.2 0.0018 (19) 0.0024 (19) 
0.4 0.0079 (17) 0.0028 (18) 
0.6 0.0007 (17) 0.0002 (19) 
0.8 0.0000 (20) 0.0000 (20) 

0.8 0.2 0.0000 (20) 0.0000 (20) 
0.4 0.0336 (18) 0.0084 (18) 
0.6 0.0005 (18) 0.0000 (20) 
0.8 0.0000 (20) 0.0000 (20) 

PSO (%) 93.13 96.25 
TIME (sec.,)/~ 0.081 0.127 

EXPON: exponential form of acceptance probability dependent on ACij 
( ): the number of problems solved optimally. 
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Table 7 shows that the performance using acceptance probabilities indepen- 
dent of ACij is nearly as good as that obtained using acceptance probabilities 
dependent on ACo.. In this study, we use AP~ i that are independent of AC~j. This 
facilitates designing experiments to empirically determine the best annealing 
schedule. 

5.7. COMBINED APPROACH USING TWO HEURISTIC SEED SOLUTIONS 

Controlled search simulated annealing is so computationally efficient that it 
might be practical to apply it twice using different initial seed solutions. In this 
case, the best final solution would be the one selected. To test this combined 
approach, COVERT and AU rules are used to generate initial seed sequences. 
The initial value of APii is set equal to 0.5, and is decreased linearly and 
discretely at the rate 0.02. The number of searches at each stage equal to 120. As 
shown in table 8, the combined method yields improved accuracy, but with twice 
the computational effort. It is of interest to compare these results with those 
obtained by CSSA in which only the AU rule is used to develop an initial seed, 
and 240 searches at each stage are made. Although computation time is almost 
same, the combined method outperforms single simulated annealing in terms of 
accuracy. The combined method solves optimally nearly 99% of al 15-job test 
problems. We of course expect this result since the solution approximately 
approaches steady state within 120 searches. 

5.8. PERFORMANCE OF CSSA FOR LARGE SIZE PROBLEMS 

We have empirically shown that CSSA improves accuracy when solving 15-job 
problems, and does so in approximately 0.1-cpu seconds. We now examine its 

Table 8 
Combined approach using two heuristic seed solutions 
ARE, PSO (%) and computational time 

w R r CSSA(CAR + AU) CSSA(240) 

1-10 0.4 0.2 0.0000 (20) 0.0000 (20) 
0.4 0.0000 (20) 0.0100 (17) 
0.6 0.0002 (19) 0.0018 (18) 
0.8 0.0000 (20) 0.0002 (19) 

0.8 0.2 0.0000 (20) 0.0000 (20) 
0.4 0.0027 (19) 0.0000 (20) 
0.6 0.0000 (20) 0.0007 (18) 
0.8 0.0000 (20) 0.0000 (20) 

PSO (%) 98.75 95.00 
TIME (sec.) 0.170 0.173 

(240): 240 searches at each stage 
( ): the number of problems solved optimally. 
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performance for problems involving 50 jobs and 100 jobs. The initial value of 
AP~j is set at 0.5, and is decreased linearly and discretely at the rate 0.02. There 
are 25 stages, and the number of searches at each stage is 800 for 50-job problems 
and 1600 for 100-job problems. The performance of CSSA is compared with 
simulated annealing method developed by Aarts and Laarhoven [1]. Aarts and 
Laarhoven use the following set of formulas to determine an annealing schedule: 

(i) The control parameter flk at stage k is determined by 

--1 
flk = i lk-l(  1 + ln(1 + 8)f lk_i /30(f lk_l)  ) , 

where 8 is a control constant nd o2(flk_O denotes the variance of the objective 
function values at stage k -  1. 

(ii) The termination criterion is given by 

flk dC~(flk) 
Z = - -  < c ,  

 (Bo) dBk 
where Cs(flk ) denotes the average value of the objective function at stage k and 
C(flo) denotes the average value of the objective function at the initial stage. 

Based on preliminary tests, 8 is set equal to 0.5, the number of searches at each 
stage equal to 1600, and the termination criterion ~ equal to 0.01. Because the 
algorithm sometimes did not terminate within a reasonable time, another 
termination criterion is added that limits the number of stages to 300. 

Table 9 and Table 10 show that CSSA method using only 25 stages performs 
well for 50-job and 100-job problems in terms of accuracy and computation time. 
The exception is for problems involving the combination of parameters: (r  = 0.4 
and R = 0.4), (0.6 and 0.4), and (0.6 and 0.8). The inferior performance of the 
algorithm in these three cases is attributed to the inferior results of the AU rule 
used to develop the initial seed solution. For 100-job problems, the AU rule 
provides initial seed solutions that have relative errors in excess of 36%, 8%, and 

Table 9 
ARI for 50-job problems 

w R r AARTS CSSA 

ARI TIME ARI TIME 

1-10 0.4 

0.8 

0.2 0.9473 8.28 0.9473 0.631 
0.4 0.8206 8.70 0.9443 (0.8132) 0.649 (5.78) 
0.6 0.9777 9.21 0.9749 0.639 
0.8 0.9967 9.84 0.9963 0.627 
0.2 1.0000 7.86 1.0000 0.027 
0.4 0.8054 8.66 0.7790 0.628 
0.6 0.9286 9.62 0.9588 (0.9355) 0.627 (5.73) 
0.8 0.9952 9.85 0.9955 0.627 

TIME: CPU seconds 
( ): results obtained by using the adjusted annealing schedule. 
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Table 10 
ARI for 100-job problems 

1-1. Matsuo et al. / CSSA 

w R r AARTS CSSA 

ARI TIME ARI  TIME 

1-10 0.4 

0.8 

0.2 0.8705 15.82 0.8587 1.35 
0.4 0.7673 17.41 0.9496 (0.7602) 1.34 (11.64) 
0.6 0.9263 17.50 0.9871 (0.9288) 1.31 (11.59) 
0.8 0.9976 12.40 0.9977 1.28 
0.2 1.0000 10.70 1.0000 0.10 
0.4 1.1106 17.13 0.9307 1.33 
0.6 0.9403 19.13 0.9711 (0.9436) 1.29 (11.70) 
0.8 0.9980 13.99 0.9973 1.28 

TIME: CPU seconds 
( ): results obtained by using the adjusted annealing schedule. 

8% for (r = 0.4 and R = 0.4), (0.6 and 0.4), and (0.6 and 0.8), respectively. The 
values in parentheses in tables 9 and 10 are the ARI obtained from using an 
adjusted parameter set for the annealing schedule. Here, the initial value of AP~j 
is set to 0.95, and is decreased linearly and discretely at the rate 0.0035 until 
reaching 0.15. This gives 229 stages, with 800 searches for 50-job problems and 
1600 searches for 100-job problems at each stage. This adjusted annealing 
schedule requires the same computational effort as that developed by Aarts and 
Van Laarhoven [1]. This implies that if we have a fast algorithm that provides a 
good heuristic seed solution, then we can significantly speed up convergence of 
simulated annealing by applying a smaller initial acceptance probability. Since 
the ALl rule does not provide a good seed solution for the three cases identified 
above, then a full implementation of simulated annealing is necessary. 

Comparing tables 1, 9 and 10, the computation time required for CSSA is 
observed to be approximately proportional to KM. 

Table 11 shows the normalized average improvement (NAI) starting from AU 
solutions based on problem size. For these test problems, CSSA improves AU 

Table 11 
NAI  associated with problem sizes 

w R r 15-JOB 50-JOB 100-JOB 

1-10 0.4 0.2 0.0071 0.0002 0.0007 
0.4 0.0511 0.1634 0.3888 
0.6 0.0501 0.0589 0.4258 
0.8 0.0397 0.0284 0.0350 

0.8 0.2 0.0000 0.0000 0.0000 
0.4 0.0330 0.0076 0.0062 
0.6 0.0806 0.1171 0.1646 
0.8 0.0581 0.0375 0.0435 
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solutions for 50-job and 100-job problems at least as much as for 15-job problems 
with respect to the decrease of tardiness per job. Here, the annealing schedule for 
15-job problems is that used to derive table 1, and those for 50-job and 100-job 
problems are the adjusted annealing schedules used to derive tables 9 and 10, 
respectively. 

6. Conclusions and further research 

This paper presented an efficient new approach for the application of simu- 
lated annealing to the single machine total weighted tardiness problem. Con- 
trolled search simulated annealing uses a good heuristic solution as an initial seed 
along with a low initial acceptance probability. This approach on the surface may 
appear to be conflicting with a basic tenet of simulated annealing. Convergence 
theorems developed in the context of simulated annealing suggest that the choice 
of an initial solution does not affect the probability of attaining a global optimal 
solution after an infinite number of iterations. Therefore, conventional applica- 
tions of simulated annealing use an arbitrary initial solution along with a high 
acceptance probability. This approach often requires a large amount of computer 
time to eliminate the effect of the initial solution. That is, the conventional 
approach can be computationally impractical for realtime implementation- In this 
paper, we show that exploiting a good initial solution accelerates the process of 
attaining a near optimal solution, and attains much more rapidly a near optimal 
solution. Extensive computational experiments indicate that CSSA obtains opti- 
mal solutions for 99% of all 15-job problems tested. The experiments also indicate 
that a good seed solution obtained by a fast heuristic method can be used to 
significantly reduce the computation time without reducing accuracy. However, 
many simple heuristic dispatching rules do not provide good solutions for 
particular problem structures. For these cases, a full implementation of simulated 
annealing is necessary to obtain a near optimal solution. 

An alternative not considered in depth in this research is the use of multiple 
initial solutions with simulated annealing. Such an approach may in fact speed up 
identification of a near optimal solution. As table 8 indicates, two good solutions 
that are derived from different heuristic rules serve as complementary starting 
points. Here, generating such a set of initial solutions is key for success. Also, 
heuristics for improving the set of initial solutions need to be identified so that a 
near optimal solution can be obtained. At this point, it is speculative whether or 
not such multiple starting points used in conjunction with heuristic methods of 
improvement will work efficiently. 

In this study, we use acceptance probabilities that are independent of the 
change in the objective function value. This was done without deteriorating the 
performance of CSSA by restricting the search to a small neighborhood. The 
constant acceptance probability at each stage facilitates investigating the effect of 
annealing schedules on performance. Consequently, it wa~ possible to show that 
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annealing schedules with a linear functional form outperforms the rest, and that 
using constant acceptance probabilities at each stage yields results nearly as good 
as using the Metropolis acceptance probability. 

We have also developed a generic framework for designing simulated annealing 
algorithms, and have applied it to the single machine weighted tardiness problem. 
As demonstrated, CSSA works very well for this NP-complete problem. We 
expect that the superior performance of CSSA can be extended to nearly all 
single machine sequencing problems studied in the literature. This expectation is 
based on the following observations: 

(1) The CSSA algorithm is not affected by the functional form of the objective 
function. That is, several scheduling criteria that are important in practice, but 
that are computationaUy intractable, can be used without significant alternation 
from the approach proposed in this paper. These criteria include quadratic 
penalty costs, combined earliness and tardiness costs, and other combinations of 
multiple criteria. 

(2) Inclusion of release time and deadline constraints into single machine 
scheduling problems may require further study of the composition of the neigh- 
borhood. Other than the definition of neighborhood, CSSA should work well. 

(3) Restricting our attention to permutation schedules for flowshops, then 
again CSSA can be applied almost without alternation. Here, the permutation 
schedule means that only a loading sequence of jobs is determined, and that the 
same sequence is applied to all machines in the flowshop. Therefore, a feasible 
solution is chosen from permutations of { 1, 2 . . . .  , n } as in the single machine 
problem. 

It will be important to verify that CSSA works well for the problems men- 
tioned above. If our speculation proves correct, then we can expect extensive use 
of simulated annealing on shop floors. Also, from an academic perspective, 
solutions derived using CSSA may be used as bench marks for these problems. 
For example, CSSA was used to show that the AU rule does not work well for 
large problems with particular parameter settings. When researchers construct 
efficient heuristics for the various problems, then they should be compared with 
results using CSSA as described in this paper. As a consequence, CSSA may 
accelerate the development of other faster heuristics through serving as a bench 
mark method. It may serve to establish bench mark solutions for large problems. 

CSSA perhaps can be applied to much more complex scheduling problems. 
However, application to such problems may require modifications due to dif- 
ferences in the solution structure. The types of modifications necessary for the 
successful application of CSSA to other scheduling environments warrant further 
investigation. 
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