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Abstract 

In the last years, decomposition techniques have seen an increasing application 
to the solution of problems from operations research and combinatorial optimi- 
zation, in particular in network theory and graph theory. This paper gives a broad 
treatment of a partictllar aspect of this approach, viz. the design of algorithms to 
compute the decomposition possibilities .for a large class of discrete structures. The 
decomposition considered is the substitution decomposition (also known as modular 
decomposition, disjunct(ve decomposition, X-join or ordinal sum). Under rather 
general assumptions on the type of structure corisidered, these (possibly exponen- 
tially many) decompositio/a possibilities can be appropriately represented in a 
composition tree of polynomial size. The task of determining this tree is shown to 
be polynomially equivalent to the seemingly weaker task of determining the closed 
hull of  a given set w.r.t, a closure operation associated with the substitution decom- 
position. Based on this reduction, we show that for arbitrary relations the com- 
position tree can be constructed in polynomial time. For clutters and monotonic 
Boolean functions, this task of constructing the closed hull is shown to be Turing- 
reducible to the problem of determining the circuits of the independence system 
associated with the clutter or the prime implicants of the Boolean function. This 
leads to polynomial algorithms for special clutters or monotonic Boolean functions. 
However, these results seem not to be extendable to the general case, as we derive 
exponential lower bounds for oracle decomposition algorithms for arbitrary set 
systems and Boolean functions. 
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1. I n t r o d u c t i o n  

This paper deals with the algorithmic complexity of  the substitution decom- 
position. This type of structural decomposition, which occurs in the literature under 
many different names such as modular decomposition, ordinal sum or X-join, has 
many applications in discrete mathematics, operation research and computer science, 
ranging from switching design (disjunctive decomposition of Boolean functions [ 1,14] ) 
via reliability theory (modular decomposition of  coherent systems [2,6]), and game 
theory (decomposition of simple n-person gaines [34,35] ) to combinatorial (optimiza- 
tion) problems over graphs, networks and independence systems or clutters. A list of 
some of the major applications within this last field is given in table 1. tn all these 

Table 1 

Some combinatorial (optimization) problems solvable by substitution decomposition 

1. Undirected graphs : 

maximum weighted clique problem* [ 10], finding a transitive orientation [18], 
constructing perfect graphs [18], constructing the automorphism group [21] 

2. Partial orders: 

minimal covering by chains/antichains [29], determining the dimension [22] 
and the Moebius function [29], counting partial orders [31] 

3. Profect-net~vorks (cf. [291 for an overview): 

shortest overall duration*, time-cost tradeoff*, determining the distribution of 
the shortest overall duration in stochastic networks* 

4. (Acyelic} flow and reliabiliO, networks: 

naaximum/minimum flow* [33,23], reliability of a network [2,38] 

5. Scheduling problems: 

scheduling with series-parallel precedence constraints and/or certain 'compatible' 
objectives [ 25,29,30] 

6. Clutters and independence systems: 

solving general combinatorial optimization problems over clutters or inde- 
pendence systems* [ 5,24,29 ] 

applications, the objective can be obtained in a two-step procedure by exploiting a 
(given) decomposition of the underlying structure in a natural way, cf. [29]. Further- 
more, for the problems marked with an asterisk, it can be shown that the substitution 
decomposition is in fact the only possible two-step decomposition under certain, very 
weak assumptions on the decomposition approach, cf. [29] for more details. 
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This large scope of application naturally makes it important to have efficient 
algorithms for finding all, or at least several, decomposition possibilities for a given 
structure. As yet, fast decomposition algorithms are known only for binary relations 
[7,1 2,19] and matroids [13]. For clutters and Boolean functions, however, the known 
methods involve either the solution of an NP-complete pr,Jblem (as in [4]) or have 
exponential running time [15,16,36,37,40]. 

Given this background, it is the aim of this article to obtain more insight into 
the computational complexity of the substitution decomposition, both on a general 
level fo.r 'abstract' discrete structures and for 'concrete' structures such as relations, 
set systems and Boolean functions. 

The general approach is based on the fact that, in all applications, the decom- 
position possibilities of a structure S on a set A can be equivalently described by 
certain subsets of A. These so-called S-autonomous sets form a set system ~ ( S )  with 
certain set-theoretic properties (cf. sect. 2). 

The properties of ~ ( S )  lead, in sect. 3. to the construction of the so-called 
composition tree ,q~(S) of the structure S. This construction generalizes and unifies 
the tree constructions developed earlier for Boolean functions [14,15], clutters [35], 
graphs [11,19,32] and partial orders [7]. ,.~o(S) contains all the 'essential' informa- 
tion about the (possibly exponentially many) decomposition possibilities of the 
structure S in a polynomial (in [A I) number of nodes, which makes ,9~(S) a suitable 
data structure for handling the decomposition possibilities. 

In sect. 4, we aim at the determination of this composition tree. We show 
that this task is polynomially equivalent to two seemingly weaker tasks, viz. deter- 
mining the smallest S-autonomous set containing a given set B (the S-autonomous 
closure of B), or deciding whether S is decomposable or not, and producing a non- 
trivial S-autonomous set if it is. 

Based on the first polynomial reduction, we show in sect. 5 that the compo- 
sition tree can be constructed in polynomial time for arbitrary k-ary relations. 

For clutters, the determination of the tree is shown in sect. 6 to be Turing- 
reducible to the problem of determining the circuits of the independence system 
associated with the clutter. This leads to polynomial (in IA[) time decomposition 
algorithms for clutters C ,  where I C[ is polynomial in [A I (e.g. bounded clutters) and 
the associated monotonic Boolean functions. The question whether arbitrary clutters 
admit polynomial time decomposition algorithms must, however, be answered nega- 
tively w.r.t, oracle algorithms. Even the apparently simple problem of recognizing de- 
composibility for clutters (and thus also for arbitrary set systems and Boolean func- 
tions) is shown to require an exponential number of steps for rather powerful oracle 
algorithms. This shows that efficient decomposition methods can almost certainly 
only be expected for special classes of set systems or Boolean functions. 
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2. Basic p rope r t i e s  o f  the  s u b s t i t u t i o n  d e c o m p o s i t i o n  

In this section we present the necessary definitions and properties of  the 
substitution decomposition for relations, set systems and Boolean functions. Through- 
out this paper, we will consider only the finite case, i.e. structures with a finite ground 
set. For more information on the substitution decomposition, also in the infinite case, 
we refer to [29]. 

Let 8 be a class of structures (e.g. graphs, clutters, etc.). The substitution de- 
composition for the structures from 8 is the inverse operation of a composition or sub- 
stitution operation which works as follows: Let S' be a structure from 8 on a set A' and 
let, for each /3 E A', S O be a structure from S on a set Af, where the sets Af are non- 
empty and pairwise disjoint. The composition operation assigns to S' and S 0,/3 E A', 
a unique structure S on A := Wf ~ A, Af, which contains the structures S0,/3 E A', as 
substructures (i.e. S 0 equals the restriction SIAl of A to Af),  and in which the re- 
lationship between the different S 0 is defined via S'. This structure S is called the 
composition of the structures S' and S~,/~ E A', and is denoted by S = S' [S 0,/3 E A ' ] .  

For k-ary (k ~ 2) relattons R on A ,  R~ on Aft, 13E A , t h e c o m p o s l t l o n  
R = R '  [Rf, /3E A']  is defined by 

(a, . . . .  , a k ) ~  R ' *=~ [ ( a l , . . . , a  k) E R~ 

( a l , . . . , a k ) E  A~l X . . .  X Aflk 

for some /3E A' or 

for some (/31,... ,/3k) E R' 

with 1{/31,...,/3k}l > 1. 
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G ' :  GI[  Ga, Gb, Gc,G d] 

Fig. 1. A composition of graphs. 
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Special cases of this composition are the X-join for undirected graphs [19], the 
ordinal sum for partial orders [22], and the modular decomposition of networks [2]. 
An example for graphs is given in fig. 1. 

For set sys tems "~' ', on A " ~  on Ate, 15 E A ,  the composition 
q~ = q~' ['l~t3 ,/3 E A' ] is defined by 

T E " ~  "'=:~ 
there exist T' E "G' and T~ E "~t3 for each t5 E T' 

such that T= U T/3. 
GET' 

Special cases here are the composition for clutters (i.e. set systems of pairwise incom- 
parable sets) [4], and the modular decomposition of coherent systems [2,6]. 

For an iltustration, consider the clutters C '  ={{a, b}, I b, c}, {c, d}}, Ca = ttl,2}, 
12,3}}, C b = {/4,5}}, C c = {16}} and C a ={17,8}, 18,9,10}}on the sets la, b , c , d } ,  
{1,2,3}, {4,5}, {6}, 17,8,9,10}, respectively. Then C = C ' [  Ca, Cb, C c, ed ]  
= {{1,2,4,5}, {2,3,4,5 }, {4,5,6}, 16,7,8 }, 16,8,9,10}}. 

For Boolean functions 

F ' ( y l  . . . .  

with disjoint sets of variables 

{x  1 . . . . .  xk l } ,  {xk  1 +i . . . . .  xk 2} . . . . .  I X k m - 1  

the Composition F = F ' [ F  1 . . . . .  Fro] is defined by 

i.e. it 
[1,141 

' Ym) '  Fl  (x  l "  " " 'xgl  ) "  " " ' F  (Xkm -1 + l . . . . .  x n)  

+ 1 ,  • • " , X r l } ,  

F ( x x  . . . . .  Xn) = F ' ( F x  ( x l  . . . . .  xgx) . . . . .  F m ( X k m -  l +1 . . . . .  Xn)),  

corresponds to the notion of disjunctive decomposi t ion  in switching theory 

As an example, let 

F ' ( Y l  . . . . .  Y4 ) = Yl Y2 + Y2 Y3 + Y3 Y4' 

Fl(X1,X2, X3) = x i x  2 + x 2 x  3, 

F 2 ( x 4 , X s  ) = x 4 x s ,  F 3 ( x 6 )  = x 6, and 

F 4 ( x  v . . . . .  X l o )  = x T x  s + X a X 9 X t o .  
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Then F = F '  [F 1 . . . . .  F 4 ] is given as 

F(x I . . . . .  Xlo) 

= ( X I X  2 +X2X3)(X4X 5) + (X4Xs)X 6 +X6(X7X 8 +XsX9XIo) 

= XI X2X4X 5 +X2X3X4X 5 "I'X4X5X 6 "PX6XTX 8 +X6XsX9XIo. 

In all cases, we also say that the composed structure S = S'[S~, fl E A'] is 
obtained by substitution of the elements/3 E A' in S by the structures S#,/3 E A'. 

The partition rr = {A~ Ifl E A'} of A into the ground sets A~ of S~ is called the 
t E t congruence partition of S associated with the composition S = S [St3,/3 A ], and 

the structure S' is called the quotient of S modulo n and is denoted by Sin. Note that 
this definition covers the trivial cases that S/7r is isomorphic to S, i.e. rr = {1 a} l a E A}, 
and IA'I = 1, i.e. n = {A}. These two partitions are called the trivial congruence 
partitions of S. 

The composition is proper if I A'I > 1 and I A~ i > 1 for some 13 E A'. A struc- 
ture S on A is said to be decomposable if it has a representation as a proper compo- 
sition S = S'[S~, fl E A ' ] .  A structure which is not decomposable is called indecom- 
posable or prime. So a structure is decomposable iff it has a non-trivial congruence 
partition, i.e. a congruence partition different from {{a } la E A } and {A }. 

Although the composition operations for the three classes of structures are 
defined in quite different ways, there are some very strong links between them. 

In fact, it was these links that motivated the introduction and investigation 
of general decomposition models. For the substitution decomposition, such a model 
is given in [27,29]. A different model dealing with the so-called split decomposition 
is given in [13]. The split decomposition is closely related to the substitution de- 
composition, but more general. It gives more structural insights (in particular w.r.t. 
the characterization of certain highly decomposable structures in the sense of proposi- 
tion 3.4), but seems to be less applicable to the solution of combinatorial optimization 
problems, cf. [29]. 

To go into more detail, the link between relations and set systems is given by 
graphs and con formal clutters (i.e. clutters of  maximal cliques of a graph), cf. [9,28]. 
If we denote by C (G) the clutter of  maximal cliques of graph G, and by G ( C )  the 
graph defining the conformal clutter C ,  then 

C(G'[G#, f l e A ' ] )  = C(G')  [C(Gt~), f l e A ' ]  and 

fleA']  ) = G(C') f l e A ' ] ,  

i.e. the composition operations are essentially equal. 
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The link between set systems and Boolean functions is given by monotonic 
Boolean functions and the corresponding clutters of their prime implicants, cf. [3,6]. 
If we denote by C ( F )  the clutter of prime implicants o f F ,  and by F (C)  the mono- 
tonic Boolean function whose prime implicants are the sets of C ,  then 

C ( F ' [ F  1 . . . . .  F ] )  = C ( F ' ) [ C ( F  l) . . . . .  C ( F ) ]  and 

F ( C  [C 1 . . . . .  C m] ) = F (C)  [F(C 1) . . . .  , F ( C m ) ] .  

Furthemore, if F = F ' [ F  1 . . . . .  Fro], where F is monotonic but F '  and the F t. need 
not be, then there exist monotonic Boolean functions G', G 1 . . . . .  G m with the same 
variables as F' ,  F 1 . . . . .  Fro, respectively, such that F = G' [ G 1 . . . . .  Gin]. In other 
words, the decomposition possibilities of a monotonic Boolean function are the same 
as those for its clutter of prime implicants. 

These links are also demonstrated by the above examples, where C = C ( G )  and 

F = F(C) .  
In the rest of this section we will characterize the decomposition possibilities 

of a structure S by 'internal' properties of the classes of the corresponding congruence 
partition. Proofs of these results can be found for k-ary relations in [26,29,39], for 
clutters in [6,8,28],  for arbitrary set systems in [29], and for Boolean functions in 

[1,14, t51.  
Let S be a structure on A. A subset B of A is called S-autonomous, if it is a 

class of some congruence partition of S. 

P R O P O S I T I O N  2 . 1  

(a) Let R be a k-ary relation on A. Then B C A is R-autonomous iff in all 
(cq, . . . ,c~k) E R with tc~ 1 , . . .  ,%} n (A \B)  4: O each c~/E B can be replaced by 

any 3 E  B, i.e. (O~l , . • • , 0~ i_  1 '  3 ,  0~/+ 1 . . . . .  0 t k )  E R. 

(b) Le t '~  be a set system on A. Then B C_ A is'~-autonomous iff for all T 1, T 2 E ' ~  
which meet B (i.e. ~ n B :~ O) also the exchange Ex(T l, B, T 2) = (T 1 \B )  U (T 2 n B) 

belongs toq~. 

(c) Let 17 be a Boolean function with variables x 1 . . . . .  x n. A set B c_C_ {x 1 . . . . .  xn} 
is F-autonomous iff it fulfills the Ashenhurst decomposition chart conditions (i.e. is a 

boundset  in the sense of  [1,14] ). 
In all cases, a partition of the base set of the structure S is a congruence 

partition of S iff all its classes are S-autonomous. 

Let ~ ( S )  denote the system of S-autonomous sets. For all structures considered, 
A:(S) has certain common properties. To formulate them let, for a structure S on A 
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and B E o4c(S), SIB denote the substructure of S induced by B, i.e. R I B  = R N B k 

for a k-ary relation, "~ IB = I T N B I T  E "~, T N B 4: OI for set systems, and 
F [B(xB) = F(XB, CA\B), where x B = (x/I j E B) and CA\ B is a suitable choice of  con- 
stants for x i, ] ~ B, cf. [29]. 

Furthermore, for a congruence partition n of S, let r~,~ denote the canonical 
mapping from S onto Sin associated with n, i.e. r/~r(a ) = r/rr(13 ) iff a and 13 are contained 
in the same class of rr. 

PROPOSITION 2.2 

Let S be a relation, set system or Boolean function with ground set A. Then 
~ ( S )  has the following properties: 

(A1) A E ,,4;(S), {a} E die(S) for all a E  A. 

(A2) If B, CEo~(S)overlap,i.e. i fB\C,  BN C a n d C \ B a r e n o n - e m p t y , t h e n B \ C ,  
B C~ C, C\B and B U Call belong t o ~ ( S ) .  

(A3) Let B E ff~:(S) and S IB be the substructure of S induced by B. Then 
o4:(S l B) = {CEJ¢(S) ICC_ B}. 

(A4)  Let 7r be a congruence partition of S and S/n be the corresponding quotient. 
Then 

~n(B) E ~4~(S/n) for all B C ,¢~(S) 

- '  (B')  E ~ ( S )  for all B' E ~(S/n). r/~r 

The sets in (A1) are called the trivial S-autonomous sets. If in (A2) the symmetric 
difference B A C := (B\C) U (C\B) is also S-autonomous, t h e n ~ ( S )  is said to be 
symmetrically closed. This is always the case for set systems and Boolean functions, 
but not, in general, for relation. 

3. T h e  c o m p o s i t i o n  t ree  

In this section we will develop a representation of the system o4:(S) in a tree, 
the so-called composition tree of  S. A broad discussion of the principles leading to 
this tree representation, which is based on very general assumptions and also covers 
the infinite case, is given in the algebraic decomposition model in [27,29]. Since these 
construction principles (in particular theorems 3.5, 3.7 and proposition 3.4) are 
subsequently needed in sects. 4 and 6, we will present a simplified construction here, 
which is based on the properties (A1) - (A4) ofo4:(S ) and the fact that the congruence 
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partitions of S are exactly the partitions of A into S-autonomous sets. In this way, we 
generalize and unify the tree constructions for clutters [4,35] and special relations 
[7,11,19], which make essential use of the underlying structure. A similar, but less 
far-reaching approach is implicitly also contained in [39]. Finally, note that the split 
decomposition leads to a similar (undirected rather than directed) tree which also 
applies for the substitution decomposition of binary relations and set systems [13]. 

The construction of  the tree is based on two mutually exclusive decomposition 
principles, the first of  which is the 'maximal disjoint decomposition': 

Let S be a structure on A. A maximal disjoint decomposition of S is a parti- 
tion u* of A into C-maximal S-autonomous sets B 4: A. 

The following decomposition principle is then obvious. 

PROPOSITION 3.1 

If S admits a maximal disjoint decomposition a*, then each S-autonomous 
set is either equal to A or S t B-autonomous for some B E a*, where S I B denotes the 
substructure of S induced by B. 

Furthermore, o* is the coarsest congruence partition rr of S such that S/lr is 
prime. 

An important role for the existence of a maximal disjoint decomposition is 
played by certain highly decomposable structures: 

A structure S on A is called semi-linear if there is a linear order ~< on A such 
that.¢~(S) containsJl;(~<), i.e. all intervals [o~,ti] = { T E A  I a<. ti~< 3'} of ~<. By I~(S) 
we denote the system of  all congruence partitions 7r of a structure S for which S/rr is 
semi-linear. 

PROPOSITION 3.2 

A structure S on A has a maximal disjoint decomposition iff S has no proper 
semi-linear quotients, i.e. Inl ~< 2 for all ~ E g(S).  

Proof 

Assume that o* exists and that S has a proper semi-linear quotient S/lr with 
base set A' = {til . . . . .  /~r,,} and associated linear order/~1 ~< f12 ~'~ " "" ~ t i m "  Then 

t ! 
B1 = {til . . . . .  t m -  1 } and B 2 = {t32, • • . ,  tim} are S/rr-autonomous and thus because of 
(A4) the re-image sets B i = r/~r 1 (B~) (i = 1,2) are S-autonomous. But then the maximal 
autonomous sets C t. E a* containing B i (i = 1,2) overlap, a contradiction. 

In the converse direction, let o* = {C 1 . . . . .  C k} be the collection of maximal 
S-autonomous sets C/ q: A. If two C/ overlap, say C 1 and C 2, then rr = {Cl\  C2, 
C 1 A C2, C2\C1} is a congruence partition of S because of (A2) and the maximality 
of the C~.. It follows from (A4) that S/zr is semi-linear, a contradiction. [] 
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It turns out  that semi-linear structures can be completely characterized, both 
on the abstract level and for the concrete types of  structures considered. 

Let S be semi-linear with associated linear order ~< on A. If,,4:(S) = ot:(~< ), we 
say that S is linear, ifo~;(S) = 2 A, the power set of  A, we say that S is degenerate. 

PROPOSITION 3.3 

Let S be a semi-linear structure on A with tAt >/ 3. Then S is either linear or 
degenerate. 

Proof 

Let ~< be a linear order on A such that ~ (~<)C_  ~ ( S )  and assume that 
,¢~(<~ ) 4= ,~ (S ) .  We will show that S is degenerate. Because of  ( t 2 ) ,  it obviously suffices 
to show that there is ~1 ~ A such that I o q , ~ l  E o~(S)  for all ~ E A .  This is done as 
follows. 

Since o t ; ( ~  < )  :# o~(S) ,  there exist C O Eo4c(S), 31,3~ E C O and 7 ~  Co such 
that 31 < 7 < 32- Let a 1 and % be the greatest and least elements from C O such that 
a i  < 3' < % .  Then {a t ,%} = [a 1 , % ]  N C O E d~(S) because o f o 4 : ( < )  C o4c(S) and 
(12) .  

We shall show that Ioq ,u } E ~ ( S )  for all ~ ~ A. If, for instance, c~ > % ,  then 
B 1 := {C~l, %} U ] 7 , ~ ]  E ~ ( S )  and B 2 := [3,,c~[Co4:(S). (Observe t h a t ] % . ~ ]  
= [7, a ] \ 1 7 }  and ['),,o~[ = [7, a ] \ l a }  are intervals of  ~<). Hence, also {0~ 1 0/} 
= B I \ B  2 E oat(S). The cases cq < a < 0:2 and a < a 1 follow similarly. [] 

The property that there are only two types of  semi-linear structures also re- 
mains valid for the split decomposit ion,  cf. [13].  For the concrete structures considered 
here, the following characterization of  these two types can be given, cf. [ I 3 ,29 ] .  

PROPOSITION 3.4 

(a) Let R be a k-ary relation on A. R is degenerate iff R is (up to reflexive k-tuples 
(a . . . . .  a)) empty or complete,  i.e. R = (9 or R = Ak. R is linear iff R is (up to 
reflexive pairs (e~,a)) a linear order. 

(b) Let ~ be a set system on A."13 is degenerate i f f ~ =  11~} I c~ ~ A } , ~  = 2 A , or 
' ~  = {B E 2 A IB D B o } for some 13¢  B o C_ A. Since o t : ( '~ )  is symmetrically closed, 
there are no linear set systems. 

(c) Let F be a Boolean function with variables x 1 . . . . .  x n. F is degenerate iff 
f ( x  1 . . . . .  Xn) =Yl ~ ' • • ~rYn, where Yi = xi or Yi = xi  and * denotes Boolean sum (+), 
Boolean product  ( . )  or ring sum addition (*) .  Since ~ ( F )  is symmetrically closed, 
there are no linear Boolean functions. 
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It is easy to see by means of  (A4) that each quotient  of  a linear or degenerate 
structure is again linear or degenerate, respectively. This suggests to represent all 
these quotients by a ' largest ' l inear or degenerate structure S* = Sift*, if such a struc- 
ture exists. The following theorem shows that this is indeed the case. The correspond- 
ing finest partition 7r* E f, (S)  then yields the second decomposition principle. 

To this end ,we  introduce the followingnotation.  Given 7r = {C 1 . . . . .  C m} E g (S), 
we will assume that the quotient Silt has the ground set A' = {/31 . . . . .  /3 m} with 
r/~(c~) = /3 i iff ~ E C i. If S/Tr is linear the associated linear order will w.l.o.g, be 
131 ~< . . . <~ /3 m. This induces the linear order C l ~< . . .  ~< C m on rr. Then we denote 
the system of  all interval unions C i U  C z.+l U . . . O  C/_1 U C / ( l ~ < i < / ~ < m ) o f  
classes of  rr by stlin(rr), and the system of  all unions Cfi u Ci2 U . . .  t9 Cik 
(1 ~< i 1 < i 2 < . . .  < i t ~< m ) b y  stdeg(rr). 

THEOREM 3.5 

Let S be a structure on A. Then ~ ( S )  contains a finest partition rr* 
= / C  l . . . . .  C,,, }, m >~ 1,and there are two cases: 

(a) S/Tr* is linear. Then s t ( S )  decomposes into 

s t ( s )  = s t ( s  I C~) u . . .  u s t (S i  c )  u st~"(~*) 

(b) S/Tr* is degenerate. Then o~(S)  decomposes into 

A ( S )  = S t ( S l C l )  u . . .  u s t ( S i C )  u Ad"g(~r*). 

t~vo: 

We show first that if 7"i"1, 71" 2 E ~ ( S ) ,  then their intersection 7r I A 7r 2 
= /P  ¢~ Q I P E 7rl, Q E rr2, P ¢~ Q 4: O /a l so  belongs to g(S) .  Since f , (S)  is finite, 
this then yields the existence of  rr*. 

Assume first that S/Tr 1 and S/Tr 2 are both linear. Let P1 ~1 P2 <<'1 " • - <~1 Pm 
and Q1 ~<2 Q2 < ~ 2 " "  ~2 Qn be the associatedlinear orders on iq 1 = {P1 . . . . .  In} and 
7r2 = {Q1 . . . . .  Qm}. We may assume that rr I 4: rr 1/x rr 2 4: 7r;. Then there are classes 

Pil (3 Q/1 and Pi2 n Qi2 in 7r I /x rr 2 such that Pil @ Pi2 and Q/1 4: Q/2" Assume 
w.l.o.g, that Pq ~1 Pi2 and Q/1 <<-2 Q/2 (otherwise take the dual of  ~<2 and renumber 
the classes of  ~2 appropriately). This fixation of  "-<2 with respect to ~<1 induces the 
following compatibility between ~<l and "<2: 

(*) 
Let Pi ~ Pi, Qr 4: Qs, and Pi f3 Qr 4: 0 4= P/ N Qs. 

Then Pi <1 P/ iff Qr <2 Qs. 
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The reason for this compatibil i ty is given by the linearity of  S/rr I and S/rr 2 which 
preserves the 'betweenness relation' for classes of  rq and rr 2, respectively. For a de- 
tailed proof  of  this property,  cf. [27] .  

After this fixation of  ~<2 w.r.t. ~<1, we order the classes of  zr 1/x n2 lexicographic- 
ally according to 

p. 0 Q/ ~ p 0 Qs '~:~' P / < 1  tDr or Pi = P and Q~ %2 Qs" 

We shall show that for this linear order ~< on 7r I /x ~r 2 (more exactly: for the corres- 
ponding linear order on the quotient set) ff{;(~) C Jc(S/Tr I A rr2) , which proves that 
rr I /x 7r 2 E [~ (S). But this is because of  (A4), equiv~ent  to showing that ~tin(rrl/x 7r2) 
C_ A ( S ) .  Solet  B '= (Pil n QI1) t j . . .  L.J (elk f') Q/k)E o4clin(rrt A 7r2). It follows from 
the definition of  ~< , the compatibili ty relation (* )  and the linearity of  S/rr x and S/rr 2, 
that B 1 := Pil u . . .  U Pik E o~(S) and B 2 = Qil u . . .  u Qik E ~(S) .  Then 
B = B  1 n B 2 E ~ ( S ) b e c a u s e  of  (A2). 

The cases in which one or both of  S/n 1 , S/rr 2 are degenerate follow analogously. 
To show (a), assume that there exist C E file(S) and L t, L2 E 7r*, with L 1 \ C :~ O, 

L 1 0  C @ 0 and L 2 C3 C 4: O. Let ~< denote the linear order on n* and let w.l.o.g. 
L 1 < L 2. Then 

B:= (CU U L) N ( U L) , L1\B and LI c3 B 
L 1 < L  <~L 2 L 1 ~ L  <~L 2 

are S-autgnomous and o : = (n* \ {L 1 }) U { L l \B, L 1 C3 B } is a congruence partition 
of  S which refines zr*. It can then be verified that o E l~(S) (an associated linear order 

is obtained from K by replacing L 1 by L l \B and L 1 N B with the order 
LI \B  ~ L 1 n B). This contradicts the fact that rr* is the least partition in t~(S). 

(b) follows analogously. [] 

Based on the two composition principles, we can assign the following compo- 
sition tree ff~(S) to a structure S on A. 

(1) The root  of  33(S)  is the set A. Each node o f , ~ ( S )  is an S-autonomous set. 
(2) If the first decomposit ion principle applies to a node B of  J3(S) ,  i.e. i fS  I B has 

a maximal disjoint decomposit ion o*(B) = {B 1 . . . . .  Bin I, then B 1 . . . . .  B m are 
the immediate successors of  B. 

(3) If  the first decomposit ion principle does not apply to a node B of  , ~ ( S ) ,  then 
~ ( S  t B) has a finest partition rr*(B) = {B 1 . . . . .  Bin}, with m t> 3. Then 
B l . . . . .  B m are the immediate successors of  B and B is labeled with D if 
(S 4B)/r:(B)  is degenerate and with L i f ( S  I B)/rd'(B) is linear. 

(4) The leaves o f , ~ , S )  are the singletons {a} E ~ ( S ) .  



As an example, consider the structure S on A = {1 . . . . .  11} in fig. 2. 

A(S): 

1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9 ,  I0, 11 

B (S) : 

I -J ° 12  
2 3 4  

3 4  
1 2 3 4  

1 2 3 4 5 6  

5 6  
7 8  
7 9 1011 

8 9  1011 
7 8 9 1 0 1 1  

9 1011 
9 1 0  

7 8 9 1 0 1 1  
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Fig. 2. A structure S and its composition tree. 

We shall now show that J $ ( S )  is sufficiently small when compared with the 
whole system ,¢~(S) (which may be exponential in IAt), but that ff~(S)nevertheless 
contains all the information on A ( S )  in a very straightforward way. 

THEOREM 3.6 

Let S be a structure on A, and let I,~(S) I denote the number of  nodes of,.q~(S). 
Then 1ff5 (S)I  ~< 2,  tAI - 1. This bound is tight for relations, set systems and Boolean 
functions. 

Proof 

Induction on I ,~ (S) l .  [] 

THEOREM 3.7 

Let S be a structure on A. A subset C of  A is S-autonomous iff  one of  the 
following cases applies: 

(1) C is a node of ,.~(S). 
(2) C is the interval union of  immediate successors of  a node labeled with L 

(i.e. CE .dcrtn(n*(B)) for some node B of  ff~(G) labeled with L) .  
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(3) C is the union of immediate successors of a node labeled with D 
(i.e. CE Adeg(n*(B)) for some node B of ,~(G) labeled with D). 

Proo: 

(A3) and theorems 3.1 and 3.5. [] 

The last two theorems make ,.~ (S) an appropriate data structure for algorithmic ap- 
proaches to the substitution decomposition. 

4. Tasks  p o l y n o m i a l l y  equ iva len t  to t h e  d e t e r m i n a t i o n  o f  ~ ( S  ) 

In order to obtain some insights into algorithms for determining the decom- 
position possibilities of  a structure, we consider the following algorithmic tasks. 

Task 1: Input: 
Output: 

A structure S on A. 
'Prime', if S is prime. 
A non-trivial S-autonomous set, otherwise. 

Task 2: Input: 
Output: 

A structure S on A, a subset B of A. 
The S-autonomous closure B* of B, which is defined as the 
least S-autonomous set containing B (which exists because 
of (A2)). 

Task 3: Input: A structure S on A. 
Output: The composition tree ,.q~(S). 

Apparently, these three tasks are of  increasing ability. In particular, task 1 does what 
one would consider as a minimal requirement in order to carry out a decomposition, 
while task 3 determines all decomposition possibilities of  S in the form of ,~(S) .  It 
is therefore somewhat surprising that all three tasks turn out to be essentially equivalent 
in the sense that (up to certain structural operations) they are Turing reducible [17] 
to one other. To formulate the result, let Pi(n) (i = 1,2, 3) denote the worst-case com- 
plexity of algorithm Pi for task i, when applied to structures on A = {1, . . . ,n}. 
Furthermore, let QI (n) denote the complexity of testing a given set for S-autonomy, 
let Q2(n) denote the complexity of  constructing a substructure S [ B, and let (23(1/) 
denote the complexity of constructing a quotient S/nB, where n B := / B, {a}l a E A \B}. 

THEOREM 4.1 

(a) For each algorithm/'1 there is an algorithm P3 with 

P3(n) = O(n2pl(n) + n2Ql(n) + n2Q2(n) + nQ3(n) + I/4). 
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(b) For each algorithm P2 there is an algorithm/°3 with 

P3(n) = O ( n 3 P 2 ( n ) ) .  

(c) For each algorithm P3 there are algorithms PI and P2 with 

P l ( n )  = O(1)  + P3(n) ,  P2(n )  = O ( n  2) + P3(n). 

The proof  of  this theorem is based on the following two lemmas which follow easily 
from theorem 3.7 (cf. also the example in fig. 2). 

LEMMA 4.2 

Let B be a node of  ,~  (S)  and let C 1 . . . . .  C m be the C_-maximal S-autono- 
mous proper subsets o f  B. 

(a) If C 1 ¢~ C 2 = O, then S I B has the maximal disjoint decomposit ion o * ( B )  

= . . . . .  %} .  

(b) If C 1 ¢q C 2 4= 0 and (C 1 A C2)* = (C: ZX Cz) (i.e. C 1 /X 6.2 E o4c(S)), then B 
is labeled with D. In this case, 7r*(B) = t B \ C  t . . . . .  B \ C m } .  

(c) If C 1 n C 2 4= 0 and (C I ZX C2)* = B (i.e. C 1ZX C 2 ~,¢1;(S)), then B is labeled 
with L. In this case there exists a unique maximal strietly increasing sequence 
D 1 = C : \ C  2 C D 2 C . . . c D e = B of  S-autonomous sets. Then lr*(B) 
= {D1, D 2 \ D 1 , . . . ,  D g \ D  k _ 1} and D 1 ~ D 2 \ D  l < ~ . . .  ~ D k \ D  k_  : is an 
associated linear order on rr* (B). 

LEMMA 4.3 

L e t B  be a node of  ffS(S) and l e t 0 4 = C  1 
creasing sequence of  S-autonomous sets. 

(a)  

(b)  

(c) 

C . . .  c C m = B be a strictly in- 

If C m \ C  m _ 1 q~ ,¢~(S), then S [ B has a maximal disjoint decomposit ion o * ( B )  

and C m _ 1 E o* (B) .  

If C m \ C  m _ 1 E A , ( S )  but C , n \ C  m -2  q~ ,¢[c(S) or I Crn _ 1 I = 1, then S l B has 
the maximal disjoint decomposit ion o* ( B ) = { Crn _ x, B \ Cra _ : }. 

If Cm \ C  m _ 1 E oa¢(S) and Cm \ C  m -2  E • ( S ) ,  then the second decomposi t ion 
principle applies to B. The associated partition rr*(B) = {B 1 . . . . .  B k} is given 
by B i : = C,n _ i+ 1 \ Cm - i, i = 1 . . . . .  k, where k is the first index below m such 
that C m \ C  m - k - 1  q! , ~ ( S ) .  If, in this situation, B l k)Bg is S-autonomous,  

then B is labeled with D. Otherwise, B is labeledwith L and B l ~< B 2 <~ . . .  ~< B k 
is an associated linear order. 
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Proof  o f  theorem 4.1 

(a) Let algorithm P1 for task 1 be given. 

Claim 1: If S is decomposable on A with IAI = n, one can construct an c_-minimal 
non-trivial autonomous set in O(n "P1 (n) + n .  O2(n))  time. 

Since S is decomposable, P1 finds a non-trivial S-autonomous set B 1. Then 
apply Pt to S I B 1 and continue iteratively until P1 arrives at an indecomposable sub- 
structure (S I B e _ 1 )l B e = S I B k . Because of  (A3), B e is a minimal non-trivial S- 
autonomous set. 

Claim2: If S is decomposable on A with IAI = n, one can construct in 
O(n z .P l (n )  + n 2 .Q2(n)  + 17-Q3(n)) time a composition series of  S, i.e. a sequence 
S = S l, S 2 . . . . .  Sm+ 1 of  at most n structures S i o n  A i with the following properties: 

(i) Si+ 1 = Si/n, where n i = {Bi ,{a}  l o r e  Ai\Bi}  and B i is a minimal S-autonomous 
set with I Bil > 1. 

(ii) lain ÷1 I = 1. 

To obtain this sequence, find the set B i of S i by applying claim 1 and construct Si/n i. 
This takes O(n 2 .P l ( n )  + n 2.  Q2(n))  + Q3(n)  time for each i. Since obviously m ~< n, 
claim 2 follows. 

$1 . . . . .  S m .  1 may be regarded as a sequence of successive 'smallest '  decom- 
positions of the initial structure S. In the example of fig. 2, a possible sequence of  sets 
B i w o u l d b e B  l = {3,4} -+ )--4, B 2 = {2, 3-4} -+ 234, B 3 = { 5 , 6 } - +  5-6, B4 ={9,  10} 
-+ 910,  B s = {9-]-0, t l}  -+ 91011, B 6 = {7,8} -+ 7--8, B 7 = {ffg,9t011} -+ 7891011, 
B 9 = {1, 2-~} -+ 1234, Blo = {1234, 56 ,789i011} -+ 1 . . .  11, where we denote the 
element in Ai+ i representing the set B i in S i by a bar. 

Note that to each set B i in this sequence, there corresponds an S-autonomous 
set C i which represents the extent of the decomposition up to i. These C/ are the 
barred expressions C 1 = { 3,4 }, C 2 = { 2, 3 , 4  }, etc. The whole sequence C l . . . . .  C m , 
with C m = A ,  can of  course be constructed simultaneously with the sequence 
B 1 . . . . .  B m . It will be used several times in the proof. 

Now suppose that node B of  , .~(S)  has already been constructed. Then we can 
construct a sequence in the sense of  lemma 4.3 by taking from the above constructed 
sequence C l . . . . .  C m the subsequence Gl . . . . .  Gk with Cii C B and by deleting 
from this subsequence all Ci/ with Ci/_l ~ Cij, j = 2 . . . . .  k. Thistakes O(n z)  time. 

I ! 
To the resulting sequence C l . . . . .  CQ we can apply lemma 4.3 and obtain the 

successors of  B (and also the label and an associated linear order) in the cases (b) and 
(c) of  the lemma in 0072 + n Q1 (n ) ) t ime .  In case (a),we can find the other immediate 

! t 
successors, of, B among, the. sets, C~.; . . . .  C~ by deleting from the inverse sequence 
C~ . . . . .  C t all sets C i with C i C C/ for  some j > / . T h i s  requires at most O(n 3) time. 
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Putting all these steps together, and taking into account that , ~ ( S )  has at most 
n - 1 non-trivial nodes (theorem 3.6), we obtain an algorithm P3 for task 3 with 
P3(n) = O ( n 2 " P l ( n )  + n 2 . Q l ( n ) +  n 2 . Q 2 ( n )  + n . Q 3 ( n ) +  n4). 

(b) Let algorithm P2 for task 2 be given, let S be a structure on A with IAI = n, and 
let B be an already constructed node of  ,~ (S ) .  

Claim 1." One can construct two different C_-maximal S-autonomous sets C 1, C 2 4= B 

in O ( I B l . P 2 ( n ) )  time. 

To obtain C1, construct successively autonomous closures {a~} = D O C D 1 
c . . . C D k = C 1 by putting D i+1 := (Di t°  {3})* for s o m e 3 E  B \ D  i with 
(Di to { 3})* 4= B. If  there exists no such 3, then D i =C 1 . Then take c~2 E B \ C  1 and 
proceed analogously for C 2 . 

Having constructed C 1 and C 2, we can apply lemma 4.2 to determine the type 
of  node B. There are three cases: 

(i) Case (a) of  lemma 4.2 applies. Then C1, C 2 E o * ( B ) a n d  i f B  4: C 1 U C2, 
the other members C 3 . . . .  , C m of o*(B)  are obtained by constructing for 
a E B \ ( C  l u . . . u Ci) the maximal S-autonomous set D C B with a E D according 
to claim 1. Then D = Ci+ 1 " This requires at most O( iBt 2 .P~(n))  time. 

(ii) Case (b) o f l emma4 .2  applies. Then 7r*(B) = { B I . . . . .  B m } can be constructed 
as follows: B 1 := C: \ C  2, B i + : := (B  i to/3/})* \B i  for some 3i E B \ ( B  1 t o . . .  U Bi)  
until B \ (B 1 t o . . .  U B i ) = O. Thus the construction of  rr* (B) requires (31B l+ 1 ) .  P2 (n) 
steps altogether. 

(iii) Case (c) of  lemma 4.3 applies. Then the corresponding unique strictly in- 
creasing sequence D 1 c . . . c D k which determines rr*(B) is obtained as follows: 
D~ := C1\C2,  and D i + ~ is the last non-empty set in the strictly decreasing sequence 

E 1 D E  2 D . . .  defined by 

E 1 "= B 

EJ+I := { (Diul3})*O if there is 3 E E.\D. such that (D i u { 3 })* 4: E. 
1 t 1 

otherwise. 

(Note that the last non-empty set in this sequence is the unique smallest S-autonomous 
set properly containing Di.) Altogether, the construction of  n * ( B )  then requires 
IBI 2 • P2(n) time. 

Putting these steps together we obtain an algorithm /'3 for task 3 with 

P3(n) = O(n 3 . P2 (n)). 



212 R.H.  MOhring, A l g o r i t h m i c  aspects  o f  the  s ubs t i t u t i on  d e c o m p o s i t i o n  

(c) Let algorithm P3 for task 3 be given. Then P3 solves task 1 trivially. To solve 
task 2, find in ffJ(S) the lowest node C containing the given set B as a subset, i.e. 
covering all leaves {a} with a E B. This takes d .  IBI ~< n 2 time, where d is the depth 
of ,~  (S). If C is unlabeled, then C = B*. If C is labeled with D, then B* is the union 
of all immediate successors of C containing some o~ E B. If C is labeled with L, let 
B 1 ~ . . . <, B m be the ordered immediate successor of C and let (w.r.t. that order) 
B i and Bi+ i be the first and last sets containing some a E B. Then B* = B i U Bi+ 1 

u . . .  u B i ,  i .  
Altogether, this requires 0072)  + P3(n) time for the construction of B*. [] 

This shows that for an efficient determination of ,.~ (S), it suffices to find efficient 
methods for constructing the autonomous closure of a given set B. This is actually 
what will be done for relations and clutters in the following sections. 

5. D e c o m p o s i t i o n  o f  re la t ions  

In view of the characterization of  degenerate and linear relations in proposition 
3.4, we introduce in the composition tree of  relations the distinction of label D into 
D O and D 1 , depending on whether the associated quotient structure is (up to reflexive 

~(R) 
Do 

p 

Fig. 3. A relation and its composition tree. 

tuples) empty or complete. Furthermore, nodes with only two successors are also 
labeled by D o, D l , or L if the associated quotient has the corresponding property of 
proposition 3.4. An example is given in fig. 3, where the binary relation R is repre- 
sented by a digraph.Note that for partial orders (where label D l can not occur), labels 
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D O and L correspond to parallel and series composition of  the associated successor 
nodes. The same holds for labels D o and D 1 in undirected graphs (where L can not 
occur). Many known results for series-parallel partial orders and graphs are covered 
here ~ia this connection. For more details on this and on the connection between 
composition trees of partial orders and their comparability graphs, cf. [7,29]. 

There already exist fast decomposition algorithms for binary relations, cf. [19] 
for graphs (O(n 3)), [7] for graphs and partial orders (O(n3)), and [12] for arbitrary 
binary relations (also O(n 3) but with a different composition tree than the one de- 
scribed here). This alternative approach was originally developed for the split decom- 
position, for which this tree can be constructed in O(n 4) time [12]. For still other 
approaches, cf. the summary in [29]. 

There is, however, nothing known for arbitrary k-ary relations. We shall show 
in the following that also in this very general case, the composition tree can still be 
constructed in polynomial time. One of the reasons for this is that, for fixed k, each 
k-ary relation has a representation which is polynomial in IAI, something which is 
no longer true, for example, for set systems (cf. sect. 6). 

T H E O R E M  5 . 1  

Let R be a k-ary relation on A and let B C A. Then B* is obtained as follows: 

(1) Put C := B. 
(2) I f t h e r e a r e c q , . . . , a k E R ,  a iEC,~/q~Cforsomei ,  j E  {1 . . . .  ,k},and 

/3 E C with (al . . . . .  a i -  1 , /3, ~i+ t , • ' - , °tk) ~ R, then replace C by 
C U {cq . . . . .  %} and apply (2) again. 

(13) Otherwise, B* = C. 

Proof 

Let B = C O C C 1 C . . . C C be a sequence of sets constructed in the algorithm. 
Assume that B* 4: C. Since C is obviously R-autonomous, we have B _C B* C C. Let 

be the unique index such that C~ c_ B* C C~ ÷ a, where C~. ~ = C is possible. In 
step (2) the algorithm finds a tuple ( c q , . . .  ,c~k) E R, with a i E C~, a i ~ C~ for some 
i, / E { 1 . . . . .  k }, and an element t3 E C~ such that (al . . . .  , ai- 1 " /3, ai + 1 , ' " ,  Otk) ~ R. 
Thus each set D with C~ C_ D and a i q5 D is not R-autonomous, which yields 
C~U 1~/} C C~* for each j E  {1 . . . . .  k} with ajq~C~. So C~U {al . . . .  ,a k} 
= C~+ 1 C C*. Then C~ C B * C  C~+ 1 implies C~ C B * C  C~+ 1 ,a  contradiction. [] 

Obviously, this algorithm has complexity O(n 2 m 2) <, O(n 2k + 2 ), where n = tA[ 
and m = IR1. This, together with theorem 4.1, shows that the composition tree , ~ ( R )  
of an arbitrary relation R on A can be constructed in O(n s m 2) time. Of course, more 
efficient algorithms may be possible, as in the case for graphs or partial orders, cf. the 
bibliographical notes above. 
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6. Decomposition of set systems 

For set systems, we shall first concentrate on normal clutters (i.e. systems of 
pairwise incomparable sets which cover the ground set), since these play the most 
important role in the applications of  the substitution deoomposition to combinatorial 
optimization, cf. [29]. 

Similarly to relations, we introduce the distinction of  label D into D O and D 1 , de- 
pending on whether the associated quotient structure is of  the form t{a }1 c~ E A } or { A }, 
respectively. (Note that these are the only degenerate normal clutters on A in view of 
proposition 3.4.) Also, nodes with only two successors are labeled in this way. An 
example is given in fig. 4, where the clutter C is represented by its incidence matrix. 

T 1 

T2 
7" 3 
T4 
TS 
7"6 
T7 
T8 

1 2 3 4 5 6 7 8 9  

1 1 0 1 0 0 0 0 0  
0 0 1 1 0 0 0 0 0  
0 0 0 1 1 0 0 0 0  
0 0 0 0 1 1 0 1 1  
0 0 0 0 1 0 1 1 1  
0 0 0 0 1 1 0 1 0  
0 0 0 0 1 0 1 1 0  
0 0 0 0 1 0 0 0 1  

10 

0 
0 Do 
0 
0 

0 D 
I 
1 
1 

Fig. 4. A clutter and its composition tree. 

Note that labels D o and D 1 correspond to the operations 'sum' and 'product '  on the 
associated successor nodes in the sense of  [4] : 

The sum C = C 1 + . . .  + Crn oftheclut ters  (~1 . . . . .  C m  on the(pairwise 
disjoint) sets A 1 . . . . .  A m has the ground set 

m 

A = U A  i 
i = 1  

and contains the sets 

m 

T E U  C i , 
i = 1  
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w h e r e a s  t h e  product C = t~  1 X . . . X ( ~ m  o f  t~  1 . . . . .  (~rn a l s o  h a s  t h e  ground set 

m 

A = U A  i 
i = 1  

but contains all sets of the form T = T 1 U . . .  U T m for each choice of sets iri E (~i, 
i = 1  . . . . .  m. 

These operations are dual to each other under the blocking operation, i.e. 

b [ e l  + . . . + e r a ]  --b[e lx---xb[Cm] 

b [ C  1 x . ,  . x  = b[ l] + . . .  + b [ C m ]  , 

and 

cf. [4]. 
With regard to the computational complexity of decomposing clutters, the 

situation is different from that for relations, since the characterization of autonomy 
in proposition 2.1 does not (as it does for relations) provide evident criteria for how to 
construct the autonomous closure. A further difference is that the representation of a 
clutter (~ on A as a set system may be exponential in tAi, i.e. C may consist of ex- 
ponentially (in IAI) many sets. 

There are of course a few exceptions to which methods developed for relations 
can still be applied. For instance, if (~ is conformal, then,,q~(C )-- ,~ (G(C )) because 
of the links presented in sect. 2. Also the observation d~(C)c_ o{ (G(C) )may  be help- 
ful (e.g. (~ is indecomposable if G ( C )  is), as may the invariance principle between (~ 
and its blocker b [ (~ ], which states that ,.~(C ) = ,~(b [C ] ) .with labels D o and D 1 
interchanged, cf. [4,29] (e.g. if C = b(C(G)) for some graph G). 

For arbitrary clutter, however, different methods must be applied. One such 
method has been developed in [4]. It is based on the construction of the blocker of 
certain subclutters of the given clutter. Thus it is polynomially bounded in IAt iff the 
blocker of  a given clutter C can be constructed in polynomial time. But since finding 
a minimal blocking set is an NP-complete problem even in the case IT[ ~ 2 for all 
T E  C [17], this algorithm will probably be exponential in general. 

In the following we will follow a different approach and show that task 2, i.e. 
finding the C-autonomous closure of a given set, can be essentially reduced to the 
construction of separators (in the matroidal sense) in certain derived clutters. This will 
lead to polynomial decomposition algorithms for certain classes of clutters. 

To this end, observe first that if C is a sum of clutters, the associated finest 
partition rr* of £ ( C )  is just the partition of the graph G ( C )  into its connected com- 
ponents, which can be found in polynomial time by standard graph methods. So we 
will restrict ourselves to non-sum clutters in the following. 
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In accordance with properties of  separators for the system of bases of  a matroid 
[41,42] ,  we define the separator of a clutter (~ on A to be a set B C_ A such that 

Ex(T1,B , T2)'= (TI\B) U (T 2 r~ B) E(~ 

for all T1, T 2 E C .  
There is a strong connection between autonomous sets and separators: 

PROPOSITION 6.1 

Let C be a normal clutter on A. A set B C A is (~ -autonomous iff B is a sepa- 
rator of the normal clutter C(B)  = {TE (~ I T N  B4:  O} with ground set 

I I  
A(B) := (....J T. 

TE ~(B) 

Proof 

Proposition 2.I (b) and the defintion of  a separator. [] 

To exploit this connection, we first note the following properties of  separators 
(cf. [41,42] for separators in matroids): 

PROPOSITION 6.2 

Let (~ be a normal clutter on A. 

(a) 
(b) 

(c) 

(d) 

A and 0 are always separators (the trivial separators) of C .  
B is a separator of  C i f fB  is C-autonomous andeach T E  C meetsboth B and 
A\B. 
(~ has non-trivial separators iff (~ is a product of  clutters. Then the non-trivial 
separators of (~ are exactly the classes of  the finest partition n* E ~ ( C )  in the 
sense of theorem 3.5 and all unions of these classes. 
Union, intersection and complements of separators are again separators. For 
each a E A there exists a minimal a containing separator B(a). Then 
{B(a) Is E AI is the partition n* in (c). 

proof 

(a) is trivial. To show the non-obvious direction in (b), let B be a non-trivial 
separator of  C . B is C-autonomous by proposition 2.1. Furthermore, A \B  is a 
separator of (~ for symmetry reasons. Assume that there is T l E (~ such that w.l.o.g. 
T 1 n B = O. Choose T 2 E(~  with T: n B:~O.  Then T O := Ex(T1, B, T 2 ) E C  and 
T 1 c To, a contradiction. 
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If B is a non-trivial separator of C ,  then C = ( C  tB)X ( C  iA \B)  because of 
(b) and n = {B, A \B} E £ ( C ) .  Let rr* be the finest partition in £ ( C ) .  Since rr* is a 
refinement of  rr, say n = tB 1 . . . . .  B m} with B =B 1 U . . .  U Bk,we obtain from the 
properties of ~ ( C )  that C I B (and similarly C IA \B)  is either the product or the sum 
of (~ I B 1 . . . .  , (~ I B k . But since all unions of classes of n* are C-autonomous, it must 
be the product, because otherwise B i U B j ~ A ( C ) f o r  1~< i~< k < / < ~  m. Thus each 
T E (~ meets all classes B i E n* and rr* is by construction the finest congruence parti- 
tion with this property. This yields (c) and (d). [] 

Let C be a clutter on A. Because of proposition 6.1 (d) there exists for each set 
B C_ A a smallest B containing separator C of C .  This set C is called the separator hull 
of B and is denoted by B ~. 

THEOREM 6.3 

Let (~ be a normal non-sum clutter on A and B C A. Then the (~-autonomous 
closure B* of B is obtained as follows: 

( 1 )  

(2) 

(3) 

Put C =  B. 
Determine the separator hull C ~ of C in C(C) .  If C ~ v s C, replace C b y  C ° and 
apply (2) again. 
If C ~ = C, then B* = C. 

Prool 

Let B = C o C C I C C 2 C . . . C C the sequence of sets constructed by the 
algorithm. Because of proposition 6.1, C is C-autonomousand hence B* C_ C. Assume 
that B* 4= C and let k be the (unique) index such that C k C_ B* C C k + 1 (where 
C k  + 1 _w. C is possible). 

We shall show that B* is a separator of C(Ck).  By construction, 
B* C Ck.  1 C_ A(Ck), the ground set of C(Ck). Let T 1, T 2 E C(Ck). Then 
T i n C k 4:t3 and thus also T i n B* 4: O, i = 1,2. Since B* E o~:(C) and C(Ck) C - C ,  
T O := Ex(T1,B*, T2)E C .  Obviously, T O C3 B* = T  2 N B* D T 2 N Ck4: O. Hence 
T o E (~ (Ck) and so B* is C(Ck)-autonomous. SinceB* 4: A(Ck), it remains to be 
shown, in view of proposition 6.2 (b), that each T E C ( C  k) meets both B* and 
A ( C k ) \ B * .  This is obvious for B* since C k C B*. Now if T C _ B* for some 

X * T E (~ (C k ), then choose T 1 E C (C k) which meets A (Ck) B . By definiti'on of (~ (Ck), 
T l also meets C k C_ B, and thus T o = Ex(T I ,B* ,  T ) E  C(Ck) because of the 
(~ (C k )-autonomy of B*. But then T C To, a contradiction. 

So B* is a separator of C(Ck) with C k C_BC Ck.1 .Thiscontradic tsCk÷ 1 
being the separator hull of C k in C(Ck). [] 
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Since the clutters C(C)can  be simply constructed, the determination of B* is 
reduced to the determination of the separator hull. 

In order to construct separator hulls, we make use of the relationship between 
separators and circuits in matroids, cf. [4t ,42]. 

Let C be a clutter on A and let 3 denote the corresponding independence 
system, i.e. thesystem 3 ={I E 2 ̀ 4 I I C Tforsome T E  C}. Analogously tomatroids, 
we call the sets of 3 the independent sets of (~, the sets in 2 A \ 3  the dependent sets 
of C ,  and the C-minimal dependent sets the circuits of C .  

One then obtains the following generalization of the common matroid proper- 
ties: 

PROPOSITION 6.4 

Let C be a clutter on A. 

(a) 
(b) 

(c) 

B C A is a separator of C iff K C B or K C A \B for each circuit K of C .  
Write a ~ /3 if there is a sequence a = cq . . . . .  a k =/3 such that for each 
i = 1 . . . . .  k -  1, a i and ai+ ~ are contained in a common circuit of C.  Then 
is an equivalence relation on A and the equivalence classes of ~ are the mini- 
real non-empty separators of C .  
For the separator hull B ~ of B, we have B ~ = {aE A I ~  i5 for some/3 E B}. 

Proof 

(a) Let B be a separator of (~ and assume that there exists a circuit K of C such 
that K meets both B and A \B. Then K \ B  and K c~ (A \B) are independent 
and thus contained in two clutter members, say T 1 and T 2. Then also 
T := Ex(T 1, B, T2)E C and K C_ T, a contradiction. 

In the opposite direction,let K C_ B or K C A \ B  for all circuits K of C.  Then 

for any independent sets I1 C_ B and I2 C A \ B ,  I1 U I2 is also inde- 
pendent. Now let Tl, T 2 E C.  Then T o "= Ex(T l, B, T2) is independent be- 
cause T 1 \B = T 1 n (A \B) and T 2 N B are. If T o ~ C, there exists T E  C with 
T O C T. Then T1\B C T \ B  or T 2 rq B C T n  B. In the first case, 
(T \B)  u (T 1 C~ B) is independent and properly contains T 1, in the second 
case, one obtains the same contradiction with (T :-1 B) U (Tz\B) and T 2. 
Therefore, T o E C.  This shows that B is a separator. 
(b) and (c) are immediate consequences of (a). [] 

Note that for matroids, e~ ~ /3 iff {c~,/3} C K for some circuit K of C .  This is 
no longer true for arbitrary clutters C .  

Theorem 6.3 and proposition 6.4 reduce the determination of the autonomous 
closure to the (iterated) determination of  circuits or the corresponding equivalence 
relation ~ .  For arbitrary clutters, this leads to the following complexity result. 



R.H. M6hring, Algorithmic aspects of the substitution decomposition 219 

THEOREM6.5 

Let (~ be a normal clutter on A. Let n := 1Alandm := t C  I. Then the autono- 
mous closure B* of a set B c C - A can be constructed in O(n4m 3) time and O(n.m) 
space. 

proof 

We shall make use of the following characterization of "~, which is obtained 
straightforwardly. 

( ' l k )  Ot 1 " "  ¢2 2 

] 3 T 1, T 2 E ( ~  such tha ta ,  E T I \T2,  a 2 E  T 2 \ T  1 and 

1 (T 1 N /'2) U {al,a2} is independent. 

Now any set B C A can be tested for dependence in O(n.m) time by checking 
whether B c_C - T for some T E  C.  So using (*), the validity of al "" a2 can be tested in 
O(n.m 3) time. Thus the complete equivalence relation ~ can be determined in 
O(n3m 3) time. Since at most n separator closures must be computed, the whole 
procedure requires O(n 4 m 3) time and O(n. m) space. [] 

Of special interest are of course classes of clutters for which the procedure 
described above leads to decomposition algorithms which are polynomial in IAI, This 
is of course the case for clutters with a given polynomial representation of either 
(~ itself (i.e. I C f is polynomial in tAr) or the system ,J~ of all circuits of (~ (i.e. (~ is 
given by ~ and IO~] is polynomial in IA[). 

Special examples for the first case are, for each k E N, the classes of k-bounded 
clutters, i.e. clutters C with [ T I ~< k for all T E C .  They correspond to k-ary relations 
in the sense that for k-ary relations, the size of the tuples (al . . . . .  ak) E R is also 
bounded. 

An example for the second case is given by the class ofconformal clutters be- 
cause of the following characterization. 

THEOREM 6.6 

A normal clutter (~ is conformal iff ]KI = 2 for all circuits K of C.  

In that case, the circuits of (~ are given by the unconnected pairs of vertices in 

the graph G(C) .  

/'roof 

If C is conformal, then the independent sets are exactly the cliques of G(C) .  
Thus, each independent set contains two unconnected vertices. 
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In the opposite direction, let G be the graph with vertex set A in which two 
vertices a, ~ are connected if ta, j3} is not a circuit of  C .  Then the independent sets 
of  C are obviously exactly the cliques of G. Thus, C = C(G) ,  i.e. C is conformal. [] 

In fact, in view of theorem 6.6, the above methods reduce to the algorithm in 
theorem 5.1 applied to the graph G ( C ) .  In this sense, the algorithmic methods de- 
veloped in this section form a 'natural' although not evident generalization of the 
method developed for relations in sect. 5. 

For arbitrary clutters, however, it is very unlikely that a polynomial (in IAI) 
decomposition algorithm exists. A strong argument for this is the following result, 
which shows that even for rather strong orable algorithms in the sense of  [17,20],  the 
decision whether a clutter is decomposable or not requires an exponential number of  
calls on the oracle. 

We will consider the following, very informative oracle for a clutter C on A : 

Input: 

Output: 

A subset B of A. 

< i f B C  T f o r s o m e  T E ( ~  
= i f B E C  
> i f T C B f o r s o m e  T E C  
c i fB  is a,circuit of (~ 
d if B is dependent, but > and c do not apply. 

THEOREM 6.7 

Let P be an oracle algorithm with the above oracle, which decides for arbitrary 
clutters (~ whether C is decomposable or not. Then P requires at least 2 n/2 calls on 
the oracle for clutters C on A with tAt = n. 

proof 

Let n />  8 be a multiple of  4, A be a set of  size n, and A l, A 2 be disjoint sub- 
sets of A of size n/2. Let C1 be the clutter C1 := {T1 t3 T21T i C Ai, ITii = n/4, 
i = 1, 2} on A. Obviously, A 1 and A 2 are the only non-trivial Cl-autonomous sets 
(they are even separators of  C 1). Therefore, C 1 is decomposable. If algorithm P ob- 

= (n/2"~2 2n/2 tains this result with less than m : = 1C 1 I tn/4 J >~ calls on the oracle, then 
there is a set T O E C 1 for which the oracle is not called. 

Then (~2 := CI\{To} is again a normal clutter on A which has the following 
properties: 

(i) 
(ii) 

C2 is indecomposable. 
For each set B C A with B ¢ To, the answers < ,  =, > ,  c, d, of  the oracle are 
the same for C l and C 2 . 
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To see (i), observe that since all T E  (~2 have the same size, all intersections of  
sets T E (~ 2 with a fixed (~ 2 -autonomous set must have the same size. By construction, 
this can only hold for A l and A 2 . But since T o ~ C 2, A l and A 2 are not C2-autono- 
IllOUS. 

To see (ii), observe that the circuits of C 2 are exactly the circuits of  (~1 and 

the set T o . 
As a consequence of  OiL the oracle algorithm P arrives after at most m - 1 

calls on the oracle for C 2 at the same decision as for C l ,  which is in contradiction to 
(i). [ ]  

This argument shows that even a slight change in the structure can turn a de- 
composable into an indecomposable set system artd vice versa. Thus, decomposition 
algorithms must in general exploit the total information on the set system, also if it 
is exponential in IAI, 

It could, of  course, still be the case that a given exponential set system has 
another, polynomial representation which lends itself to faster decomposition methods 
(e.g. conformal clutters and graphs). However, if one does not know whether such a 
representation exists, finding it may again require an exponential effort. For con- 
formal clutters, this is demonstrated by the following theorem. 

THEOREM6.8 

Let P be an oracle algorithm with the above oracle, which decides for arbitrary 
clutters (~ whether C is conformal or not. Then P requires at least n :n/2 calls on the 
oracle for clutters C on A with [AI = n. 

P r o o f  

Let n = k 2, with k ~> 3 ,A  be a set of  size n, and A l  . . . . .  A k  be a partition of  
A in k sets of  size k. Let G be the graph with vertex set A and maximal cliques 
A 1 . . . .  , A  k.  Let C 1 = C ((7), where (~ is the complementary graph of  G. (~1 is con- 
formal and P decides so. If  P obtains this decision with less than m := I C l l  
= k k = n :hI2 calls on the oracle, then there exists a set T O E e l  for which the oracle is 
not called. Then C 2 := C l \ {  T 0} is a (normal) clutter on A with: 

(i) 
(ii) 

C 2 is not conformal. 
For each set B C A with B 4: To, the answers < ,  =, > ,  c, d, of  the oracle are 
the same for Cl-and (2 2. 

This gives a contradiction similar to the proof of  theorem 6.6. [] 

Note that if is known that a clutter C is conformal, then an oracle algorithm 
can obviously construct G ( C )  in n ( n  - 1)/2 calls on the oracle and afterwards apply a 
graph decomposition algorithm. However, to obtain this knowledge, an exponential 
number of  calls on the oracle may be necessary. 
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7. D e c o m p o s i t i o n  o f  B o o l e a n  f u n c t i o n s  

As for relations and clutters, we introduce the distinction of label D into D o, 
D 1 and D2, depending on whether the associated quotient structure is a Boolean sum, 
product, or a ring sum, respectively (cf. proposition 3.4). Also nodes with only two 
successors are labeled accordingly. 

As an example, consider the Boolean function F(x  1 . . . . .  Xn) given by its 
normal disjunctive form: 

F(x~ . . . .  ,X~o) = X I X 2 X 3 X  4 + XIX2X3X4 + X 1 X 2 X 3 X  4 + X I X 2 X 3 X  4 + x  5 

+ X6XTX8X9 + X6X8X9 + XTX8X9 

+ X6XT"XsXIo + ~'6X8Xlo + XTX8Xlo + X9Xlo . 

The composition tree of F is given in fig. 5. Based oi1 this tree, one obtains the follow- 
ing, equivalent representation: 

F(x  1 . . . . .  Xlo) = (X 1 ~ X 2 @ X3)X 4 +X 5 + (X6X 7 ~ X8)(X 9 + X I o ) + X 9 X I o  

(cf. proposition 3.4), where the node B = {6, . . . , 10} corresponds to the prime 
Boolean threshold function G ( y l , y 2 , y 3 )  = Yl Y2 + Yl Y3 + Y2 Y3. 

~(F') 
D o 

D 1 

Fig. 5. The composition tree of the Boolean function F. 
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For  the decomposit ion of  Boolean functions, too,  many algorithms have been 
developed owing to the significance of  decomposition for switching design, cf. for 
instance [15 ,16 ,36 ,37 ,40 ] .  These algorithms are either based on the evaluation o f  
Ashenhurst 's decomposit ion charts or use a differential calculus for determining F- 
autonomous sets. In all cases they have an exponential (in the number  o f  variables) 
worst-case complexi ty ,  although in some cases a good average performance was ob- 
served in empirical studies. 

For monotonic  Boolean functions, the results on clutter decomposit ion in 
sect. 5 can be applied because of  the link between clutters and monotonic  Boolean 
functions described in sect. 2. This leads to more efficient methods than those cited 
above, since the number  m = ICI o f  prime implicants in theorem 6.5 will usually be 
much smaller than the size 2 n of  the complete table of  a Boolean function in n vari- 
ables which, for instance, is used in the evaluation of  the Ashenhurst decomposit ion 

charts in each step [ 1 ] .  
On the other  hand, the negative result on the complexity of  oracle decom- 

position algorithms for clutters carries over to monotonic  Boolean functions, if the 
oracle answers are interpreted accordingly. Since the decomposition possibilities of  
monotonic  Boolean functions within the class of  monotonic Boolean functions are 

the same as within the class of arbitrary Boolean functions (cf. sect. 2), it follows that 
for arbitrary Boolean functions, too,  universally polynomial decomposition algorithms 

do not exist. 

References 

[ 1 ] R.L. Ashenhurst, The decomposition of switching functions, in: Proc. lnt. Symposium on 
the Theory of Switching, Part I (Harvard University Press, Cambridge, 1959). 

[2] R.E. Barlow and F. Proschan, Statistical Theory of Reliability and Life Testing (Holt, 
Rinehart and Winston, New York, 1975). 

[3] L.J. Billera, Clutter decomposition and monotonic Boolean functions, Ann. of the New 
York Academy of Sciences 175(1970)41. 

[4] L.J. Billera, On the composition and decomposition of clutters, J. Comb. Th. B 11(1971) 
234. 

[ 5 ] L.J. Billera and R.E. Bixby, Decomposition theory for a class of combinatorial optimization 
problems, in: Optimization Methods for Resource Allocation, Proc. Nato Conf. Elsinore 
(1971) (English University Press, London, 1974) p. 427. 

[6 ] Z.W. Birnbaum and J.D. Esary, Modules of coherent binary systems, SIAM J. Applied Math. 
13(1965)444. 

[ 7] H. Buer and R.H. M6hring, A fast algorithm for the decomposition of graphs and posets, 
Math. Oper. Res. (1984) 170. 

[8] R.W. Butterworth, A set theoretic treatment of coherent systems, SIAM J. Applied Math. 
22(1972)590. 

[9] M. Chein, M. Habib and M.C. Maurer, Partitive hypergraphs, Discrete Math. 37(1981)35. 
[10] V. Chvatal, On certain polytopes associated with graphs, J. Comb. Th. (B) 18(1975)138. 
[11] D.D. Cowan, L.O. James and R.G. Stanton, Graph decomposition for undirected graphs, 

in: 3rd South-Eastern Conf. Combinatorics, Graph Theory, and Computing, ed. F. Hoffman 
and R.B. Levow (Utilitas Math., Winnipeg, 1972) p. 281. 



224 R.H. MOhring, Algorithmic aspects of  the substitution decomposition 

[12] W.H. Cunningham, Decomposition of directed graphs, SIAM J. Algebraic and Discrete 
Methods 3(1982)214. 

[13] W.H. Cunningham and J. Edmonds, A combinatorial decomposition theory, Can. J. Math. 
32(1980)734. 

[ 141 H.A. Curtis, A New Approach to the Design of Switching Circuits (Van Nostrand, Princeton, 
1962). 

[15] M. Davio, J.P. Deschampsand A. Thayse, Discrete and Switching Functions (McGraw-Hill, 
New York, 1978). 

[16] J.P. Deschamps, Binary simple decomposition of discrete functions, Digital Processes I 
(1975)123. 

[17] M.R. Garey and D.S. Johnson, Computers and lntractability: A Guide to the Theory of NP- 
completeness (Freeman, San Francisco, 1979). 

[ 181 M. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 
1980). 

[19] M. Habib and M.C. Maurer, On the X-join decomposition for undirected graphs, J. Appl. 
Discr. Math. 3(1979)198. 

[20] D. Hausmann and B. Korte, Lower bounds on the worst-case complexity of some oracle 
algorithm s, Discrete Math. 24(1978)261. 

[21] R.L. Hemminger, The group of an X-join of graphs, J. Comb. Th. 5(1968)408. 
[22] T. Hiragushi, On the dimension of partially ordered sets, Sci. Rep., Kanazawa University 

1(1951)77. 
[23] R. Kaerkes and B. Leipholz, Generalized network functions in flow networks, Methods of 

Oper. Res. 27(1977)225. 
[ 24] R. Kaerkes and F.J. Radermacher, Profiles, network functions and factorization, Methods of 

Oper. Res. 27(1977)66. 
[25] E.L. Lawler, Sequencing jobs to minimize total weighted completion time subject to pre- 

cedence constraints, Ann. Discrete Math. 2(t 978)75. 
[26] R.H. M6hring, Untersuchungen zur Homomorphietheorie yon Relationalsystemen, Thesis, 

Tech. Univ. of Aachen (1975). 
[27] R.H. M6hring, Dekomposition diskreter Strukturen mit Anwendungen in der kombin- 

atorischen Optimierung, Schriften zur lnformatik und Angewandten Mathematik No. 95, 
Tech. Univ. of Aachen (1984). 

[ 28] R.H. M6hring and F.J. Radermacher, Profiles and homomorphisms, Methods of Open Res. 
27(1977)88. 

[ 29] R.H. M6hring and F.J. Radermacher, Substitution decomposition of discrete structures and 
connections to combinatorial optimization, Ann. Discrete Math. 19(1984)257. 

[30] C.L. Monma and J.B. Sidney, Sequencing with series-parallel precedence constraints, Math. 
of Oper Res. 4(1979)215. 

[31] J. Neggers, Counting finite posets, Acta Math. Acad. Scient. Hung., Tom. 31(1978)233. 
[32] J.L. Pfaltz, Graph structures, J. ACM 19(1972)411. 
[33] F.J. Radermacher and H,G. Spelde, Reduktion von Flussnetzpl~inen, Proc. in Oper. Res. 3 

(1974)177. 
[34] L.S. Shapley, Solutions of compound simple games, in: Advances in Game Theory, Ann. of 

Math. Study No. 52 (Princeton University Press, Princeton, 1964) p. 267. 
[35] L.S. Shapley, On Committees, in: NewMethods of Thought and Procedure, ed. F. Zwicky 

and A.G. Wilson (Springer-Verlag, Berlin- New York, 196 7) p. 246. 
[36] V.Y. Shen and A.C. McKellar, An algorithm for the disjunctive decomposition of switching 

functions, IEEE Trans. Corn pu ters C -  19(1970)239. 
[37] V.Y. Shen, A.C. McKeUar and P. Weiner, A fast algorithm for the disjunctive decomposition 

of switching functions, IEEE Trans. Computers C -  20(1971)304. 



R.H. MOhring, Algorithmic aspects of the substitution decomposition 225 

[38] A.W. Shogan, Modular decomposition and reliability computation in stochastic transporta- 
tion networks having cutnodes, Networks 12(1982)255. 

[39] K. Strassner, Zur Strukturtheorie endlicher nichtdeterministischer Automaten I. Zum 
Verband der 1-Kongruenzen yon endlichen Relationalsystemen, Elektronische Informations- 
verarbeitung und Kybernetik 17(1981)113. 

[40] A. Thayse, A fast algorithm for the proper decomposition of Boolean functions, Philips 
Res. Rep. 27(1972)140. 

[41] W. Tutte, Lectures on matroids, J. Res. Nat. Bur. Standard 69B(1965)1. 
[42] D.J.A. Welsh,Matroid Theory (Academic Press, London, 1976). 

Note added in proof 

In the meant ime ,  the fastest decomposi t ion algorithms for graphs require only 

O(n 2 ) t ime,  cf. 

[43] J.H. Muller and J. Spinrad, On-line modular decomposition, Tech. Rep. GIT-ICS-84/ll, 
Georgia Institute of Technology (1984). 

[44] J. Spinrad, Two-dimensional partial orders, Thesis, Princeton University (1982). 


