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Abstract 

The inventory routing problem is a distribution problem in which each customer 
maintains a local inventory of a product such as heating oil and consumes a certain 
amount of that product each day. Each day a fleet of trucks is dispatched over a set 
of routes to resupply a subset of the customers. In this paper, we describe and com- 
pare algorithms for this problem defined over a short planning period, e.g. one 
week. These algorithms define the set of customers to be serviced each day and 
produce routes for a fleet of vehicles to service those customers. Two algorithms 
are compared in detail, one which first allocates deliveries to days and then solves 
a vehicle routing problem and a second which treats the multi-day problem as a 
modified vehicle routing problem. The comparison is based on a set of real data 
obtained from a propane distribution firm in Pennsylvania. The solutions obtained 
by both procedures compare quite favorably with those in use by the firm. 
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1. I n t r o d u c t i o n  

In this paper, we define an inventory routing problem (IRP) and present and 
test solution schemes for it. The IRP involves a set of  customers, where each customer 
has a different demand on each day. For example, each customer uses a commodity 
such as heating oil or methane at an estimated consumption rate. Each customer 
possesses a known capacity (for example, the size of  his tank to hold home heating 
oil). The objective is to minimize the annual delivery costs, while attempting to ensure 
that no customer runs out of the commodity at any time. The impetus behind this 
distribution system is the importance of  maintaining a sufficient supply of  inventory 
at a customer's location. The optimization problem which is actually solved, is the 
problem of minimizing a 'cost '  for assigning customers to specific days for servicing, 
plus the delivery cost for a period of, say, a week or two weeks. We refer to the actual 
time period for which the delivery problem is solved as the 'planning period'. The 
problem which we formulate and solve reflects an attempt to minimize the annual 
delivery costs, which may not be the same as minimizing the delivery costs over each 
planning period separately. Throughout the analysis of  this problem, we assume that 
if a customer runs out of  inventory, he is replenished immediately by emergency 
service. In addition, we assume that each customer consumes more than his fixed 
tank capacity can hold during the course of  a year; thus, in order not to run out of  
the commodity, a customer requires a number of replenishments annually. On a given 
day, the customer's demand is defined as the capacity of  the tank minus the stock 
on hand. This implies a replenishment policy under which a customer's tank is always 
filled up when he is serviced. Consequently, if the cutomer's consumption rate is 
known, the amount delivered is determined by the day of  delivery. 

All the customers are served from one central depot at which the vehicles start 
and end all their routes. This central depot serves both as a garage and as a refilling 
facility for the fleet of  vehicles. The staffing of drivers and number and type of vehicles 
to be used on a given day are given parameters in our problem formulation, and their 
cost is considered as constant. We note that while the IRP is an operational problem, 
directly addressing the day-to-day activities, the questions pertaining to staffing and 
composition of the fleet are medium-range tactical decisions. We do not address the 
tactical questions here, but rather the day-to-day operation of an inventory routing 
system. We assume that no delivery time windows are specified; thus, the replenish- 
ment can be performed at any time during the workday. 

There are two major steps in the development of a detailed solution procedure 
for this annual horizon optimization problem: In the first step, we reduce a problem of 
minimizing annual distribution costs to a problem of optimizing over the planning 
period. A procedure is developed to select the customers for the distribution problem 
which is actually solved for each planning period. In the second step, the limited 
time horizon distribution problem is modeled and the algorithmic procedures that 
solve this model are developed. 
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The problem reduction for the IRP (step I) is described in detail in [9]. The 
principal content of  that paper is an analysis leading to a single period problem formu- 
lation and the definition of the data required for the formulation. In this paper, we 
address the issue of solving the model. In particular, we define and compare approxi- 
mate algorithms for this problem. 

In sect. 2 of this paper, we describe the single planning period optimization 
problem. Based on two formulations, we outline two solution strategies. The first 
involves an allocation/routing approach where, in step 1, customers are assigned to 
days and, in step 2, a routing problem is solved for each day. The second strategy 
involves the enhancement of a vehicle routing algorithm to solve the allocation and 
routing problems simultaneously. Sections 3 and 4 describe the two solution schemes 
and present computational results for them. All computational studies make use of 
data derived from a real problem environment. Section 5 examines the sensitivity of 
the approach to parameter changes, and sect. 6 compares these approaches to other 
approaches and to solutions used in a real problem setting. 

2. P r o b l e m  desc r ip t i on  and  a lgor i thmic  app roaches  

The problem we are attacking is a multi-period problem. The objective is to 
minimize the long-term distribution costs. For several reasons, most notably (i) the 
stochastic nature of  the demand data, and (ii) the great size of long-term problems, 
we repeatedly solve a problem over a short planning period, e.g. one week. In another 
paper [9], we address the problem of reducing a long-term problem to the single time 
period. Reference [9] gives a refinement of the model presented in [8]. The values 
used for the computational results presented here are those defined in [8]. In this 
paper, we use certain parameters and conditions defined in [8] and [9]. The para- 
meters and conditions are only briefly discussed here so that we may concentrate 
on solving the problem over the planning period. 

We start with a set of  customers, where each customer has an initial inventory 
level. Two assumptions are that when we visit a customer, we will always fill that 
customer's tank to capacity and we only visit customers once during a planning 
period. We now define: 

M = the customer set, 

ND = the number of  days in a planning period, 

d. k = the demand of customer i on day k. 

The dik's are simply the difference between the customer's tank size and inventory 
level. Thus, they depend on the customer's usage rate, tank size, and initial inventory 
level. 
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In this paper, we treat the dik's as deterministic values. In reality, of  course, 
they are stochastic. If  we do not schedule a customer for delivery on day k and that 
customer stocks out on that day, then a special delivery is made to that customer at 
a very high cost. Thus, the longer we wait to make a delivery, the greater the proba- 
bility of  a stockout and the higher the expected stockout cost. On the other hand, 
the earlier we deliver to a customer, the more often we would deliver to that customer 
over the course of  a year. Thus, the stockout cost increases with k, whereas the 'long- 
term delivery' cost decreases with k. In [9] we give an explicit description of these 
costs, sum them and compute a minimum. We define the customer inventory level 
on the day that achieves this minimum as our 'safety stock'  level, i.e. treating the 
dik's as deterministic, we always deliver to a customer before that customer reaches 
his safety stock level. Thus we define 

d/ = (customer i's tank size) 
- (the safety stock level for customer i). 

= {i" dig ~ di for some k, 1 ~< k ~< ND} 
= the set of  customers we must deliver to during the planning period, 

n i = max{k:dik_  1 < d i } f o r i E M  
= the last day on which we can deliver to a customer in set/14. 

It is entirely possible that we may wish to deliver to customers not in M. For 
example, if customer i ~ 34 was a neighbor of customer j E M and customer i 's  tank 
was 1/4 full, then it would probably make economic sense to deliver to i. For similar 
reasons, it could easily make economic sense to deliver to a customer i E 34 prior to 
the day n i. In [9], to quantify these effects, we associate a cost with each customer's 
ending inventory level. That cost reflects the future costs associated with the in- 
ventory, i.e. if the closing inventory was high, then the future costs would be low 
since we could wait a long time to deliver to that customer, whereas if the closing 
inventory was low, then the future costs would be high. Two parameters were defined: 

cik = (customer i's 
- (customer 
iE37/,  

gik = (customer i's 
- (customer 
i E M - M .  

' future costs' if a delivery is made on day k)  
i's ' future costs' if a delivery is made on day ni)  for 

'future costs' if no delivery is made) 

i's ' future costs' if a delivery is made on day k) for 

It is clear that if gik is very small, then it would never be worthwhile to deliver 
to a customer during the current planning period. In [8]. based on a comparison 
between gik and an estimate of  the minimum marginal delivery cost, we define 

M'  = those customers in M - 3 4  that could possibly be included in a solution. 
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The preceding discussion gives the necessary inputs to a single period problem 
that reflects long-term considerations. We now can define our single period routing 
problem. Let 

aii = the cost of  servicing customer i and then traveling to customer j, 

W = the number of vehicles, 

q = the vehicle capacity, 

z = the depot. 

Before defining the IRP, we define two well-known problems. The traveling salesman 
problem over customer set S C_ M is the problem of finding a least-cost tour through 
all members of S. Its cost function is (see [13] )" 

ISI 

TSP(S) = {mina i , aO ) + ~ aa(j_l)a(j) +aa(lsl) i , ,  
] = 2  

o(j) is an ordering of the members of S}. 

The day k vehicle routing problem over customer set S [7] is 

VRP(S, k) - 
w 

minimize Z TSP(Sw) 
W = 1 

If 

subject to Z Xiw = 1 
W = I 

for i E S, (1) 

Z dikXiw ~ q 
i~S 

for w = 1, 2 , . . .  , W, (2) 

S = { i 'x .  = I} for w = l , 2 , . . . , W ,  (3) 
W l W  

x. E {0, 1} for all i,w. (4) 
I W 

The assignment variable Xiw indicates whether or not customer i is assigned 
to vehicle w. Constraint (1) ensures that each customer is assigned to exactly one 
vehicle, and constraint set (2) ensures that the vehicle capacity q is met. This is essen- 
tially the formulation used by Fisher and Jaikumar [ 12] to motivate their generalized 
assignment heuristic. 
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We now present two formulations of the single period IRP. Each of these 
suggest different algorithmic approaches for which we will present computational 
results. The first we call the vehicle assignment formulation: 

minimize 
ND W 

~ (TSP(Swk)+  Z_cikYiwk-  Z gikYiwk ) 
k = 1 w= 1 i ~ M  i E M '  

subject to 
W n i 

Z Z .  Yiwk = 1 for all i E 3~t, 
w = l  k = l  

(5) 

W ND 

Z Z Yiwk ~ I forall iEM', 
w = l  k = l  

(6) 

Z dikYiw k <~ q for w = 1 , 2 , . . . ,  W, (7) 
iE f f l  U M' 

k = 1 , 2 , . . .  ,ND, 

Swk = l i" Yiwk = 1} for w = 1 , 2 , . . . ,  W, (8) 

k = 1 , 2 , . . .  ,ND, 

Yiwk E {0, t} for all i, w, k. (9) 

In comparing this formulation to the previous one, note that an index k 
corresponding to days has been added. Furthermore, the customer set is divided into 
M and M'. Each customer i E 34 must be served by clay n, and customers inM' need 
not be served at all. The incentive to serve customers in M' is the future savingsgik. 
The Cik'S encourage future savings as well by pushing deliveries for customers in/~t as 
late as possible. 

The natural algorithmic decomposition suggested by this formulation is an 
assignment of  each customer to a vehicle on a particular day, followed by the solution 
of a traveling salesman problem for each vehicle and day. An alternative decomposition 
would be the assignment of customers to days of the week, followed by the solution 
of a single day vehicle routing problem. The corresponding day assignment formu- 
lation is given by: 
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minimize 
ND 

E + E - E g,,z,,,) 
k =  1 i E f f l  i ~ M  ~ 

subject to 
ni 

~. zik = 1 for all i E/~t, 
k = l  

(10) 

ND 

~. zik ~< 1 for all i E M', 
k = l  

(11) 

~. dikzik <<, q* W, for k = 1, 2 , . . . ,  ND, (12) 
i ~ M U M '  

S k ={ i : z ik  = 1} for k = I , 2 , . . . , N D ,  (13) 

zik E {0, 1} for all i, k. (14) 

In this formulation, zig variables assign customers i to days k. Constraint (12) 
is obtained by summing constraint (7) over w. 

As is illustrated in fig. 1, these two formulations suggest two different 'general- 
ized-assignment' approaches [12] to the IRP. One approach initially assigns customers 

Assign customers I [ Assign customers 
to days to days and vehicles 

! 1 
Solve vehicle rout- 
ing problem for 
each day 

Solve traveling sales- 
man problem for 
each day and vehicle 

Fig. 1. Generalized assignment approaches. 

to days of  the week and then solves a VRP for each day; the second initially assigns 
customers to a vehicle on a particular day and then solves a TSP for each vehicle and 
day. The constraint set for the first approach is obtained by dropping constraint (13) 
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from the day assignment formulation. The constraint set for the second approach is 
obtained by dropping constraint (8) from the vehicle assignment formulation. A key 
aspect of the generalized assignment approach is to construct a surrogate objective to 
replace the objective component corresponding to the constraint set dropped, i.e. 
VRP(Sk) or TSP(Swk). The approach used by Fisher and Jaikumar [12] involves the 
definition of seed locations placed in areas where vehicles are likely to travel. The cost 
of assigning a customer to a vehicle would be a function of the distance between the 
customer and the seed. 

We chose to implement a day assignment approach. Two factors led us to this 
decision. First, for the day assignment approach, the generalized assignment problem 
is considerably easier. In particular, our solution approach involved perturbing a 
solution to the linear programming relaxation of the generalized assignment problem. 
It is well known (see Lasdon [15] ) that the maximum number of non-integer values in 
the linear programming solution to the generalized assignment problem is twice the 
number of knapsack-type constraints [constraint set (7) or (12)]. For the day assign- 
ment formulation this is 2 × ND, but for the vehicle assignment formulation it is 
2X NDX W. 

The second factor was that for the vehicle assignment formulation there did 
not appear to be a natural surrogate objective other than using the same set of  seeds 
for each day. Such a surrogate, which effectively treats each day equally, eliminates 
the advantages of the vehicle assignment approach. For the day assignment approach, 
we simply ignored the VRP(S k) cost component. The effect of this was that in the 
assignment phase the solution procedure ignored any spatial considerations. We felt 
this was reasonable since on any given day, the fleet of  vehicles would tend to cover 
a fairly wide geographic area. In addition, we applied an exchange procedure at the 
very end which considered exchanges between days and vehicles. 

We also implemented a second algorithm which was not based on a generalized 
assignment approach. The second procedure viewed the IRP as a modified version of 
the VRP (MVRP). It involved an enhanced version of the Clarke and Wright [6] algo- 
rithm. In avoiding a day-of-the-week decomposition, it was able to consider simultane- 
ously spatial issues, the TSP(Vkw ) cost, and temporal issues, the gik and cik costs, in 
putting together vehicle routes. The disadvantage of such an approach is that it must 
solve a much larger routing problem. Figure 2 illustrates the two competing approaches. 
Note that both are followed by a solution improvement algorithm. 

We should mention that for simplicity of presentation, we left out of the 
preceding model a key problem characteristic. That characteristic is that individual 
vehicles typically handle more than one route per day. The limitation on the number 
of routes handled involves a constraint on the time a vehicle can be out during a day 
and an overtime penalty. In many problem settings, these issues could cause major 
modeling and algorithmic complications. Due to the characteristics of our data, we 
were able to handle them rather simply as follows. In nearly all cases, vehicles handled 
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Clarke and Wright 
based modified 
vehicle routing 

Clarke and Wright ] 
based vehicle rout- 
ing 

--.. .  

L P based generalized 
assignment 

Node exchange solu-] 
tion improvement ] 

Fig. 2. Algorithms implemented. 

two routes per day. Thus, in the vehicle allocation model, the number of routes handled 
can be effectively doubled and in the day allocation model, the capacity of a route can 
be doubled. We describe algorithmic implications in the next section. A second issue 
involves the stochastic nature of  the demand and the resultant possibility of 'route 
failure', i.e. the vehicle runs out of product before delivering to all customers. This 
issue is treated using the capacity adjustment methods described in [17] and [18]. 

We refer the reader to [3,5,11,16] for the definition of other inventory/ 
routing and allocation/routing problems. The problem studied by Bell et al. [3] is the 
closest of the three to ours. There are, however, some fundamental differences between 
the two problems. First, our problem has a major routing component and theirs does 
not. Second, the objective functions are different. Third, the two problems handle 
stochastic demands in dissimilar ways. The problem studied by Federgruen and Zipldn 
[11] is similar to but simpler than the one addresses by Bell et al. 

The problem addressed by Christofides and Beasley [5] is nearly identical to 
the one studied by Russell and Igo [16]. In this assignment/routing problem, demand 
per week is deterministic and known in advance. The objective is to assign days of the 
week to each customer in order to minimize distribution costs over the weekly plan- 
ning period. 

3. S o l u t i o n  a l g o r i t h m s  

As fig. 2 illustrates, two different algorithmic approaches were compared. Note 
that four algorithmic modules are involved. The problems they solve are: 
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I. Generalized assignment, 
II. VRP, 

III. MVRP, 
IV. Improvement o f lRP solution. 

In subsects. 3.1,3.2, 3.3 and 3.4, we describe the algorithm used for problems I, II, III 
and IV. We should note that the MVRP algorithm uses the VRP algorithm as a sub- 
routine. 

3.1. THE GENERALIZED ASSIGNMENT ALGORITHM 

The generalized assignment problem we solved is 

minimize L _  Cig zig ~b - L gig Zig 
i ~ M  i E M  ~ 

subject to (10), (12),(14). 

Note that it is a little more complicated than the simplest version of the generalized 
assignment problem in that the sum in (10) stops at ni; (11) is an inequality constraint 
and the coefficients in (12) depend on k. This last fact implies that the linear program- 
ming relaxation can not be solved as a network flow problem. Instead, simplex-based 
or generalized network codes must be used. 

Our approach to solving this problem was to solve the linear programming 
relaxation and then to apply various rounding techniques. We felt this approach would 
provide good solutions due to the fact that the linear programming relaxation will 
contain a limited number of fractions (see Lasdon [15] page 173). For our problem, 
the number is 2 × ND. In this case, ND is usually small, e.g. 5 or 10, compared to 
1/141 + 1M' L, e.g. 75 to 200. 

The rounding methods were rather complicated, so we do not describe them 
here but rather refer the reader to [8]. We do present, in table 1, some computational 
results indicating the accuracy of the solutions obtained. That is, we present the value 
of both the linear programming relaxation and the feasible solution obtained by round- 
ing. We should note that due to the presence of the cig's and - g i k ' S  in the objective 
function, the value can be either positive or negative. These results indicate that this 
approach is very accurate in all but a small number of cases. In sect. 4, we present 
more details on the data used in this computational experiment. 

3.2. THE VRP ALGORITHM 

The VRP solved is more general than the one explicitly defined in sect. 2. In 
particular, each vehicle handles one or more routes per day. There is an explicit 
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T a b l e  1 

C o m p u t a t i o n a l  r e s u l t s  f o r  t h e  r o u n d i n g  a p p r o a c h  t o  t h e  g e n e r a l i z e d  a s s i g n m e n t  p r o b l e m  

E x p l a n a t i o n :  t h i s  t a b l e  g i v e s  f o u r  s e t s  o f  s e q u e n c e s  o f  t w e l v e  w e e k l y  r u n s ;  t h e s e  w e r e  g e n e r a t e d  i n  

c o n j u n c t i o n  w i t h  t h e  o t h e r  a l g o r i t h m s  s o  t h a t  t h e  s o l u t i o n  f r o m  o n e  w e e k  ge~tcra~.cd th,z ~ r z b t e m  

in  t h e  n e x t .  F o r  t h i s  d a t a ,  N D  = 5 a n d  w = 4 .  

R u n  V a l u e  o f  S o l u t i o n  v a l u e  o f  N o .  o f  c u s t o m e r s  N o .  o f  cus ' , c , r : : e t s  

N o .  L P  o b j e c t i v e  o b j e c t i v e  a v a i l a b l e  in I C P  s e r v e d  in  ~CP 

f o r m u l a t i o n  s o l u t i o ~  

1 - 8 1 . 6  - 8 0 . 9  1 9 0  1~5  

2 - 7 1 . 8  - 7 1 . 0  7 5  !t)  

3 - 2 4 . 6  - 1 9 . 6  1 0 8  l ' ,?;  

4 - 7 3 . 9  - 6 8 . 3  1 0 5  ° +  

5 - 7 2 . 0  - 7 0 . 1  1 0 4  ,?.' 

6 1 8 8 . 2  1 8 9 . 8  9 2  ~ '  

7 - 1 8 . 4  - 1 5 . 1  1 0 6  1/~2 

8 - 4 0 . 4  - 3 5 . 4  1 1 9  , i+ 

9 - 3 4 . 3  - 2 8 . 9  1 0 6  ++ 

1 0  - 8 8 . 5  - 8 2 . 9  1 0 2  " 

11 - 1 4 8 . 7  - 1 4 5 . 7  1 0 9  ' 

12  - 1 0 4 . 0  - 6 3 . 5  9 3  ';+' 

1 - 8 1 . 6  - 8 0 . 9  1 9 0  ' " ~  

2 - 6 7 . 5  - 6 6 . 6  7 4  '+ • 

3 - 15+1 - 9 . 4  1 0 0  +-~+ 

4 - 8 1 . 1  - 7 5 . 5  1 0 9  ~?.2 

5 - 1 5 . 6  - 1 1 . 4  1 0 7  tO a 

6 1 8 6 . 0  2 0 6 . 3  9 7  7 4  

7 - 4 9 . 6  - 4 8 . 2  1 0 3  I 

8 - 1 2 . 2  - 9 . 3  1 2 1  . 5  

9 - 4 7 . 5  - 4 1 . 4  1 1 6  : +'9 

1 0  - 1 2 7 . 7  - 1 2 6 . 2  1 0 3  ~. 

11 - 1 1 5  - 1 1 2 . 4  1 0 6  : '  ~ 

12  - 1 0 4 . 4  - 5 1 . 4  9 5  t 5  

. . . .  . . . z  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 2 9 . 8  3 2 . 9  1 8 8  18~ 

2 - 2 5 . 4  - 2 2 . 9  7 6  6~  

3 3 1 . 8  3 5 . 7  t 0 6  9 9  

4 - 3 9 . 7  - 3 7 . 0  1 1 3  ! 0 8  

5 - 2 6 . 6  - 1 6 . 9  1 1 7  t 0 ~  

6 2 2 7 . 4  2 3 0 . 2  8 4  7 7  

7 6 . 3  1 1 . 0  1 1 4  1C~' 

8 5 1 . 6  5 9 . 5  1 2 8  ~ i :  

9 - 0 . 1 3  4 . 4  1 2 3  1 1 5  

1 0  - 4 1 . 7  - 3 8 . 1  1 1 5  1 0 9  

11 - 9 8 . 5  - 9 4 . 8  1 1 1  1 0 3  

1 2  - 5 3 , 2  - 2 1 . 9  9 3  7 0  
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Table t (continued) 

Run Value of Solution value of No. of customers No. of customers 
No. LP objective objective available in ICP served in ICP 

formulation solution 

1 - 199.1 - 194.7 195 191 
2 - 122.5 ..... 117.6 71 70 
3 - 75.5 - 68.5 103 97 
4 - 101.9 - 96.9 101 98 
5 117.2 - 109.3 101 96 
6 149.8 175.7 85 67 
7 94.6 - 91.2 117 114 
8 - 78.6 - 64.1 119 108 
9 - 102.7 - 97.8 106 104 

I0 - 170.8 168.9 99 94 
11 - 216.3 -~ 210.2 102 100 
12 - 191.9 - I88.1 99 93 

m a x i m u m  time for each vehicle as well as a smaller preferred time b e y o n d  which over- 

time is paid. We solved this p rob lem in two stages. The first stage used a modi f ied  

Clarke and Wright a lgor i thm [6 ,13]  to generate routes and the second stage used a 

variant o f  the first fit decreasing bin packing a lgor i thm to pack routes  in to  vehicles. 

3.3. THE MVRP ALGORITHM 

In contras t  to the hierarchical op t imiza t ion  approach  described earlier, the 

solut ion procedure  for the MVRP a t t empts  to cons t ruc t  a ' g o o d '  solut ion to the 

inventory  rout ing problem ( IRP)  wi thou t  par t i t ioning the problem into separate 

op t imiza t ion  stages. The criteria used t h r o u g h o u t  the search for a solut ion is the 

total  objective funct ion  o f  the single period IRP. Both  the cost  for assigning the 

cus tomer  to a specific day and the cost  for  rout ing are included.  

Before describing the solut ion procedure ,  it is instructive to compare  the VRP  

and MVRP. In particular,  one could view the MVRP as a V R P  with ND × W vehicles. 

Star t ing with this point  o f  view, we point  ou t  three key differences:  

(1) All cus tomers  need no t  be served. 

In the VRP,  "all cus tomers  are included in the equal i ty  const ra in ts  (1), 
whereas in the MVRP some are included in equal i ty  constra ints  (5) and some in in- 

equal i ty  constra ints  (6). 

(2) Cus tomer  demand  varies with 'vehicle ' .  

In the VRP,  the cus tomer  demand  is independen t  o f  the vehicle, whereas 

in the MVRP it depends  on which day the vehicle serves the cus tomer .  
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(3) Costs depend on which vehicle services the customer. 

In the VRP, costs only depend on the sequence of customers on a route, 
whereas in the MVRP the cik and gik terms imply a vehicle/customer cost. 

The solution procedure for the MVRP, which is displayed next, uses as a sub- 
procedure the VRP algorithm described earlier. It initially assigns each customer for 
delivery on every day of the week (step 1). Then it reassigns customers to a single 
delivery day based on the costs from the initial solution (steps 2 and 3). Finally, it 
performs additional reassignments to ensure feasibility with respect to the vehicles 
on hand (step 4). Steps 0 through 3 are self-explanatory. Step 4 involves a rather 
complicated interchange procedure. For details, see [8]. 

M VRP algorithm 

Step 0 

F o r k  = 1 , 2 , . . . , N D ,  s e t S k = F I U M '  - {i: ni < k}. 

Set M* = ~. 

Step 1 

F o r k  = 1 , 2 , . . . , N D ,  

solve VRP(S k, k) using a number of vehicles (W) sufficiently large to 
satisfy all demand. 

(We note that at the end of this step, each customer has been assigned for 
delivery on several days.) 

Step 2 

While M* 4:34 u M', 

F o r i  E 34 U M' - M*, 

compute SAV(i, k) = the decrease in the objective function obtained 
by deleting customer i from the VRP solution for day k ; 

N D  

Find i* E M U M' - M* such that Z SAV(i*,k) /NDismaximum; 
k = l  

Find k* such that SAV(i*, k*) = rain {SAV(i* k)}; 
k = I , . . . , N D  
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Set , ?  --: 5~ - {i*} for  all k 4= k*' ,  adjust  the cost  o f  the cur rent  V R P  

sol:-, V, .-,~ ~,. cc, rd ingly;  

S e t T ~  = M* U {i*}; 

Step 3 

F o r k - :  ' ~ . N D ,  

resci ~,: - , rpp re  k )  using a n u m b e r  o f  vehicles (W) suff icient ly large to 

(We note. ~,at  at the end o f  this step, each cus tomer  has been  assigned for  

delivery 9n exact ly  one day.)  

.I 

< ;  ( . ,  

" ~ .:~f node  in terchanges/ inser t ions /dele t ions ,  adjust  the solut ion ob- 

~ :.: .; to  make it feasible wi th  respect  to  the set o f  vehicles on hand.  

:~. ,-, tess. periodical ly resolve step 3. 

' .  OV} . 'IENT ALGORITHM 

: ?: '" " ?easib'e solut ion to the IRP is obta ined ,  using e i ther  the assignment/  

~ ~  q72 ",r.'h or the MVRP approach ,  we then apply  an i m p r o v e m e n t  algori thm. 

:-,~ -., • ~ kt i,~-,::edure developed is ca tegor ized as a node  in terchange heurist ic  

. . . i lesi~, cd to  examine a given feasible solut ion and to  search for  favor- 

.. ".ade c. "" ..,hen in terchanging cus tomers '  posi t ions on a single route  or  be tween  

' ' " ' , it  a t t empts  to exploi t  the costs  related to  the two characteristics o f  a 

. " . . . .  " .o!utiot,:  

a ,  ..w~poral considera t ions  (i.e. cus tomer ' s  demand  level depends  on wha t  

uled for  replenishment) .  

, ~ . . .  ,tial considerat ions  (i.e. the cus tomer ' s  loca t ion  relative to o the r  

.,: " ,i~c solut ion) .  

. . . . . . .  fo rm one artificial route  tha t  includes all the cus tomers  f rom the sub- . 1  . . . . .  i , '  o L , j  ~ - 

, _. : .  .... ~e; :,.;:'igned for  replenishment  during the p lanning period.  A cus tomer  

:. : :  Jel.o~.i!.~ . t!v" ;:rtificial route  can be inserted in to  any o ther  route ,  bu t  on ly  

.. :_...<c 5 i ;  .;:,-: :v~' :r.n be in te rchanged wi th  a c u s t o m e r  on the artificial route .  

T L c . ,  ~i ,:f dgs third stage is to  reduce  the tota l  dis t r ibut ion cos t  for  the 

.~; :.,:,:5t; ? ~ , o ' i  :,~ ) c i iccted by our  objective func t ion ,  while mainta in ing route  capaci ty  

,;- ~..,:.:a..t~::c ih¢ node  in terchange procedure  used for  this purpose  considered moving  

• cucia.  , :-5 er  : :xcb 'mging the posi t ion  o f  two  cus tomers  e i ther  on  the same 

re:ate or  be-':-, : ) .w,: difr<rent routes.  The  pair  o f  routes  could  be on di f ferent  days.  
Det~!ls can L . . . .  .! i., [r',l a)ld [ 1 0 ] .  
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4. Computational comparison of algorithms 

The test runs were based on twelve successive weekly problems, with the out- 
put of one week serving as the input to the next week. Thus, the only data set which 
is the same for all eight 12-week runs is the first week's data set. The number of days 
in the planning period ND was five. The number of vehicles was two, but since each 
vehicle performed two routes per day, the value of w was set to four. The total customer 
data base contained several thousand entries, but the number delivered to in a week 
was between 75 and 200. Typical routes had between five and twenty customers The 
number of days between deliveries to individual customers varied between 5 and 60. 
There were a few customers who required almost daily deliveries. These were not in  
cluded in the assignment problems, but were manually assigned to particular days. 
The measure used in order to evaluate the efficiency of the distribution solution 
provided for each planning period is expressed in the number of inventory units 
delivered per hour of distribution operation. (This includes the routing times, the un- 
loading times, and the fixed times per delivery.) This measure for the efficiency of 
the distribution operation is widely accepted in the heating oil delivery industry. It 
is considered a more objective measure than a cost-based measure because cost figures 
usually depend on many local and accounting factors. In addition, a solution to the 
IRP is not examined only for a single planning period, but for twelve dependent 
successively-solved weekly problems. Different solutions to this problem start with 
the same initial data input; however, for each period it is most probable that different 
specific inventory problems will be solved. Consequent!y, a direct cost comparison 
would no longer be appropriate. Nonetheless, the results obtained using this measure 
should be viewed with some degree of  caution since it does not express the amount 
(or the cost) of drivers' slack time in the system. In particular, it implicitly assumes 
that if driver time is reduced, then costs can be reduced, either by reducing total 
driver pay hours or by employing drivers in other productive ways. 

Essentially, the cost function that we so elaborately developed serves as a 
surrogate objective for our true measure for the efficiency of distril,t~tion operation 
as expressed in units delivered per hour. 

In table 2, we present the performance of the resulting weekly solutions after 
the first two stages of the three-stage hierarchical approach and the MVRP approach 
before the improvement stage is implemented. 

As table 2 makes clear, when we measure the general quality of the feasible 
solutions obtained by the assignment/routing approach in units per hour, the results 
are superior in quality to the feasible solutions obtained using the MVRP procedure. 

In table 3, we present the improvement (as measured in percentage) and the 
final weekly units per hour which occur when we apply the improvement procedure. 

As we can clearly observe from table 3, the assignment/routing approach out- 
performs the modified vehicle routing approach. The first solution is superior to the 
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Table 2 

Week 
Assignment/routing 

approach-feasible solution 
(units/hour) 

MVRP 
approach-feasible solution 

(units/hour) 

1 4410 3704 
2 5452 4384 
3 4899 3950 
4 4441 3623 
5 5050 4622 
6 5408 4144 
7 5311 4474 
8 5248 3913 
9 4617 4058 

10 4845 4679 
11 4852 4614 
12 4861 4011 

Table 3 

Assignment/routing approach 

Week % improvement units/hour 

MVRP approach 

% improvement units/hour 

1 46.6 6463 21.3 4494 
2 32.3 7215 39.0 6092 
3 35,6 6645 41.3 5689 
4 32,8 5896 33.9 4852 
5 32.4 6687 21.5 5516 
6 29.4 6996 34.8 5588 
7 36.5 7251 12.4 503 I 
8 30,8 6864 44.4 5650 
9 39.3 6432 22.8 4982 

10 25.7 6088 8.1 5058 
11 31.3 6372 17.4 5415 
12 34.0 6512 29.5 5051 

entire period 33.9 6606 26.9 5278 
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second solution by over 25.1%. We should note that the number of replenishments 
performed implementing the first solution is 1104 and in the second solution this 
number is only 1078. As far as the performance of the improvement stage on the two 
different feasible solutions, we note that in seven out of twelve cases greater improve- 
ment is accomplished on the first solution procedure, and in the other five cases it 
is the other way around. 

In developing the different procedures implemented in this paper, we did not 
emphasize their performance with regard to running time. Our main objective has been 
to test concepts without investing heavily in algorithmic efficiency as measured by 
CPU time on a UNIVAC 1100/82. With that in mind, one should view the running 
times for the procedures as a rough upper bound on their time performance. Never- 
theless, in our opinion the running times for the present algorithms are quite good, and 
certainly their cost is affordable by most moderately-sized distribution companies. 
If greater emphasis were placed on coding for fast execution, these times could be cut 
substantially. 

In table 4 we present the CPU times in seconds for two different instances of 
the IRP; the first week, in which we selected 190 customers, and the second week, in 
which we selected 78 customers in total for the sets M and M'. 

Table 4 

Running time in CPU seconds for the different procedures 

Procedure Week 1 Week 2 

Customer selection procedure 19.7 0 

Procedure for obtaining feasible 
solution for the ICP 1.35 

Modified Clarke and Wright procedure 1.32 

Improvement procedure 19.68 

MVRP procedure 21.11 

16.28 

1.23 

0.26 

8.37 

7.24 

5. Sens i t iv i ty  o f  the  c o m p u t a t i o n a l  resul ts  

5.1. ALLOCATION/ROUTING APPROACH - TESTING THE TIME CONSTRAINT 

When designing the solution scheme using the allocation/routing approach, we 
claimed that the time constraint inherent in the feasible length of a driver's workday 
would take care of itself when a solution to the problem was computed. Under that 
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assumF~:ion, we did not test whether the lengths of the routes scheduled for a given 
day could be 'packed' into the drivers' workday. In fact, we were always able to do 
so. All of the solutions obtained were feasible when the daily routes were 'packed' 
into the drivers" workday. In a few cases, some overtime driving was required; in those 
cases, the overtime limit of two hours was never violated. 

5.2. SENSITIVITY OF ALLOCATION/ROUTING APPROACH TO CHANGES IN CAPACITY 

• 'n this section, we present the changes in the results which are obtained when 
",.,;: .:ztrict the vehicle capacity available on each day to 1.5 vehicles or 2.5 vehicles; 
t ' , , . . ~  ~ ..... coi~:r, ar,e these results to the base case of two vehicles. In the allocation/ 
~o~.~Li:~g apprc.ach we restrict the assignment of customers on specific days by imposing 

~,_~m cap,:city constraint in the ICP formulation. In our base case of two vehicles 
av.Aiabie dai'_y, we assume that each of the vehicles will be able to complete at least 
~wo ~-outes daily; consequently, the daily fleet capacity available equals four times 
~h. :: q,~city c f one vehicle. 

~n order to take into account the stochastic nature of the demand, 'artificial' 
capaci~.ies we,:e used. Recall that when the routes are run, only an estimate of the 
customers' demand is known. Thus it is possible that the vehicle would be unable to 
sati~f.¢ 'all demand. We call this situation 'route failure'. To take this possibility into 
accct.~-,'., we limit the daily capacity to 90% of the actual capacity and call it the 
a~"_L7,-i~ capacity'. Thus, in the base case, this artificial capacity equals 79 520 units. 
!:~ 'b 7RP, we use 95% of the vehicle's tank size as its capacity. This artificial capacity 
prc',qdcz a s~:pply buffer which with certain probability guards against route failure. 
For ::~.qre dctails about artificial capacity and its relation to probability of route 
failu:e, see [! 7, t8] .  

When testing the case of 1.5 vehicles available daily, we reduced the artificial 
caT::c).t/ to 59 640 units; in the case of 2.5 vehicles available daily, we increased this 
Ce.F,~C%~ to 99 400 units. We call the run with 59 640 units of daily capacity run (1); 
rur~. (2) is our base case and run (3) is the run with 99 400 units of daily capacity 
• .veS!:,t:.~..,. Rvr: (2) and run (3) provide a solution for the entire twelve weeks. Run (1) 
co:_'i~_ ' r~vt sc'_;ze the IRP for twelve consecutive weeks, but only for five consecutive 
we.~k:, after which it could not solve the problem for week 6. Run (1) could not find 
a feasible ass!gnment for customers selected to be replenished in week 6 because the 
demand of the customers to be replenished on that Monday exceeded the capacity 
of 59 640 uaits. According to our rule, those customers could not be shifted for 
delivery to any day later than Monday. The excess demand on that Monday is 1 510 
units. 

For the five weekly runs generated with run (1), we tested whether the daily 
routes obtained can fit into a work day of 1.5 drivers, where the 0.5 driver available 
can work only four hours a day. The answer is yes; however, the first driver is required 
to work some amount of overtime. 
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In table 5 we present the results of runs (1)-(3) .  
We can not compare the results from run (1) (which only covered five weeks) 

with the results of run (2) and run (3). As for comparing runs (2) and (3), we can see 
that by increasing the available daily capacity by one vehicle route, we improved the 
measure of units per hour from 6 606 to 6 632. 

Table 5 

Run (1) Run (2) Run (3) 
Week (units/hour) (units/hour) (units/hour) 

1 6 221 6 463 5 938 
2 6 972 7 215 7 352 
3 6 450 6 645 7 248 
4 5 733 5 896 5 801 
5 6 368 6 687 6 873 
6 6 996 7 321 
7 7 251 6 826 
8 6 864 6 988 
9 6 432 6 617 

10 6 088 6 008 
11 6 372 6 085 
12 6 512 6 870 

entire period 6 318 6 606 6 632 

6. I n t e r p r e t a t i o n  o f  c o m p u t a t i o n a l  results  

Throughout this paper, we have been concentrating on minimizing the objective 
to the single period IRP. In the previous sections we introduced the concept of units 
per hour to evaluate solutions over a multi-period time horizon. One crucial solution 
parameter that has been ignored is the number of stockouts. We did not treat this 
issue explicitly in this paper, since the characteristics of stockouts were the primary 
input in the definition of  the safety stock levels (see [8] and [9] ). These safety stock 
levels in turn determined the ni's which were a primary input to our model. In order 
to compare our solutions with solutions used in practice and solutions used by other 
methods, we must get an accurate estimate or bound on the number of stockouts. 

In [9], the safety stock levels were derived based on (i) knowledge of the mean 
and variance of each customer's daily consumption, (ii) the assumption that consump- 
tion rate was normally distributed, and (iii) the assumption that consumption rates 
were independent between customers and days. Using these assumptions and estimates 
of the mean and variance based on the problem data, we obtained an upper bound on 



22 M. Dror et al., A computational comparison o f  algorithms 

the expected number of stockouts for the entire twelve week period of 28. One could 
argue that none of these assumptions would be valid in realistic problem environments. 
However, if assumptions (ii) or (iii) were changed, then the analysis could be changed 
in a like manner. That is, if the consumption rate was not normally distributed or the 
rates were not independent, then the analysis could be appropriately adjusted. The real 
key to the results we obtained is explicit knowledge of  the customers consumption 
characteristics. 

As we observe in table 3, the solution scheme which has the best results for the 
twelve weeks of  inventory deliveries is the one based on the allocation routing approach. 
The number of units per hour exceeds 6 600. When we examine the results obtained 
in the studies reported in [1,2,14],  we observe that the quality of our solution far 
surpasses the quality of the solution reported in those studies. 

In order to avoid unfair comparisons, we should point out the differences 
between our approach and the one used for the earlier studies. We observe that the 
earlier solution is based on a simulation approach with an optimization component 
in which the vehicle routes are constructed. The methodology differs considerably 
from the one proposed here. While both studies use the same forecasting procedure 
to estimate the distribution parameters, they differ drastically in the use they make of  
these parameters once they are obtained. In the earlier studies, the standard deviation 
of a customer's demand is used only for simulating the actual demand and for count- 
ing the number of stockouts. That is, the system does not know the form of the 
demand distribution, the mean, or the standard deviation for each customer when it 
constructs routes. In the system described in this paper, however, this detailed informa- 
tion is actually used in generating the daily routes. Thus we believe that the earlier 
results are much more robust in terms of their sensitivity to parameter changes than 
are the results reported here. tn addition, the two studies do not react the same way 
to stockouts and route failures. 

We should also note that while the earlier studies have substantially over- 
lapping data bases, the data bases are not identical. 

For the twelve-week period analyzed in the earlier studies, the solution proposed 
has 5 453 units per hour, with 42 stockouts. These results are compared with the 
simulated performance of the distribution company, which delivers 4 799 units per 
hour, with 97 stockouts. When the same runs were performed using the data base we 
analyzed, the results were somewhat reduced in quality; 4 620 units delivered per 
hour, with 54 stockouts, for the solution proposed, and 4 10i units per hour, with 
60 stockouts, for the simulated performance of the distribution company. 

We believe that this comparison indicates that our approach is quite effective 
and that explicit knowledge of customer consumption characteristics can be extremely 
valuable in structuring algorithmic approaches. 
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