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§ 1. Introduction

As is well known, the endomorphism ring of an abelian group is in
general neither commutative nor without zero divisors. This gives rise to the
problem of describing all abelian groups with commutative endomorphism
ring and those with endomorphism ring containing no zero-divisors. In a
previous paper one of us has considered the latter problem [3]! and has suc-
ceeded in showing that there exists no such group among the mixed groups,
while C(p) and C(p®) are the only torsion groups of this property.? The
present paper is devoted — leaving again the torsion free groups out of con-
sideration — to abelian groups with commutative endomorphism ring. This
problem will be solved completely for torsion groups; viz. we shall prove
that the endomorphism ring of a torsion group is commutative if and only
if the group is isomorphic with a subgroup of the group C of all rotations
of finite order of the circle (Theorem 1). Moreover, we can characterize two
sufficiently large classes of mixed groups with commutative endomorphism
ring (Theorems 2 and 3), but we shall show that these two classes do not
exhaust all mixed groups of this property. In describing the structure of the
groups belonging to one of these classes we shall need a generalization of
the direct sum which has plaid an important role in the theory of rings.

Lemma 1 (§ 3) gives an almost trivial necessary condition for the com~
mutativity of the endomorphism ring of an abelian group. As easily one can
show that this condition is necessary, it seems as difficult to prove in general
that it also suffices. The results below lead us to conjecture that the condi-
tion mentioned above is always sufficient.

1 The numbers in brackets refer to the Bibliography at the end of this paper.
2 For the notations and terminology see § 2



310 T. SZELE AND J. SZENDREI

We shall see that a torsion group with commutative endomorphism
ring is always countable, but there exist mixed as well as torsion free groups
of the power of the continuum with the same property. On the other hand,
certain facts led us to the conjecture that the endomorphism ring of an abe-
lian group of a cardinal number greater than the power of the continuum is
never commutative. If this conjecture will prove to be true, then from the
results of the present paper it is easy to conclude that every abelian group
‘with commutative endomorphism ring is isomorphic with a rotation group of
the circle.

§ 2. Preliminaries

In what follows by a group we shall mean always an additively written
abelian group with more than one element. Groups will be denoted by Latin
capitals and their elements by x,a, b, ..., g; the other small Latin letters are
reserved for rational integers (in particular p, ¢ for prime numbers). We shall
denote the endomorphisms of a group by small Greek letters. A subgroup
generated by certain elements @, b,... of a group is denoted by {a,b,...}.
A group, every element of which is of finite order, is called a forsion group.
In case every non-zero element of the group is of infinite order, the group
is called forsion free. A group which is neither a torsion group nor torsion
free, is said to be a mixed group. All elements of finite order of a mixed
group form a subgroup which we call the forsion subgroup of the group.

Let p be an arbitrary prime number. If the group G contains an ele-
ment of order p, then p is called an actual prime for G. The set of all actual
primes for G will be called the actual prime system of G. If pG =G for a
prime p, then G is called closed for p. (Here pG denotes of course the set
of all elements pg with g €G.) If H is a subgroup of G and is closed for
any actual prime for G, then we say that H is an actually closed subgroup
of G. If a€ G and the equation p“x==a is solvable in G for every natural
number n, then « is said to be an element of infinite height for the prime
p in G. Clearly, any element of order p* is an element of infinite height for
every prime different from p. The element a of G will be said to be of actu-
ally infinite height in G, in case a is of infinite height for each actual prime
p for G. If G contains no element ==0 of actually infinite height, we call G
a group without elements of actually infinite height.

For an endomorphism g-—sg of G we denote by £G the set of all
elements of the form g (g € G) and call it an endomorphic image of G. The
set K of all x¢€ G, for which ex=0, is called as usual the kernel of the
endomorphism e. If H is a subgroup of G and eH& H for every endomor-
phism & of G, then H is a fully invariant subgroup in G.

We denote by R the additive group of all rational numbers, by C(p")
the cyclic group of order p* for an arbitrary natural number &, and by C(p”)
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the additive group of all rational numbers mod 1 whose denominators are
powers of p. The additive group of all rational numbers mod 1 will be deno-
ted by C. It is clear that C is isomorphic with the group of all rotations of
finite order of the circle, and it is the smallest group containing each
C(PY(p=2,3,5,...;k=1,2,...,00) as its subgroup.

In what follows we shall need a generalization of the concept of the
direct sum which coincides with the well-known concept of direct sum in case
of a finite number of direct summands. Some denominations relating to this
concept are taken from one of JacoBsoN’s fundamentally important investi-
gations on ring theory [2}.

We shall say that the group G is a direct sum of its subgroups B; if
the following requirements are fulfilled (where 4 runs over an arbitrary —
finite or infinite — set of indices, ordered or not):

There exist endomorphisms ¢, of G such that

1) £, 0 = By;
Ve if A=y
2) BTN 0 i Ak

3) g€G and &, =0 for every 4 imply g=0.
Among all direct sums of the groups B, there exists a “greatest” one,
G., satisfying the additional requirement:
4) For any choice of a representative system of elements b;¢ B,
there exists an element g of G, such that e,9 = b, holds for
each 4.

Obviously, the group G. having the properties 1)—4) is uniquely deter-
mined (up to an isomorphism) by the groups Bi; we call it the complete
direct sum of the B,’s, in notation:

1) GUZZB;,.

This group may also be described as the set of all possible “vectors”<...,by,...>
which contain a “component” b, from each group B, and which are added
component-wise. It is easy to see that any direct sum of the groups B, is a
subgroup of (1).

On the other hand, among all possible direct sums of the groups B;
there exists always a ‘“smallest” one, denoted by Gs, which is a subgroup
of any direct sum. This may be characterized as the direct sum satisfying

4*) For any element g ¢ G, there are only a finite number of A’s
with e, 0.
This group G,, determined uniquely by the groups B; as the group

satisfying 1), 2), 3), and 4%), is called the discrete direct sum of the B,’s and
will be denoted by

@ Gq :Z* Bz.
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Gq may also be described as the set of all vectors <..., bz,...> having only
a finite number of components different from zero. The concept of direct sum
used so far in the group theory was this discrete direct sum.

In terms of the complete and discrete direct sums the direct sums of
the B,’s may be characterized as the groups G for which G, S G < G,. For
a finite number of groups B, always G,= G. holds, consequently, in .this
case’ there exists only one direct sum. Therefore the concept of the direct
summand in the generalized sense is the same' as that in the old sense: a
certain subgroup H, of the group H is a direct summand of H if there exists
a group H,& H such that H=H,}+ H,.

The definition clearly implies that the complete direct sum of an enu-
merable infinite set of finite or countable groups has always the power of the
continuum.

Let us mention an important example. It is well’ known that a tforsion
group 7 may be represented as the discrete direct sum of its.uniquely deter-
mined primary components 7, where T, is a p-group (i. e. a group contain-
ing only elements of p-power order):

3) T=2"T.
Therefore the complete direct sum
(4) T=2T,

is uniquely determined by 7; it may be called the complefe p-direct sum over
T. In accordance with this, the groups between T and T (T and 7 included),
in other words, the direct sums of the groups 7),, may be called the p-direct
sums over T. It is obvious that, if the actual prime system of 7 contains an
infinity of primes, then all of these, except T, are mixed groups and their torsion
subgroup is just 7.

In case T=C we have obviously

(5) c:PZ*cwm)

where the summation is extended over all distinct prime numbers p. It is not
difficult {o see that the group

(6) C=2 C(p™)

is isomorphic with the additive group of all real numbers mod 1 (i. e. with
the group of all rotations of the circle). In what follows we shall not make
use of this-fact.
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§ 3. Lemmas

We start with some lemmas.

LEMMA 1. If the ring of endomorphisms of a group is commutative, then
every endomorphic image of the group is fully invariant.

Indeed, if /=G is a certain endomorphic image of G and 7 denotes
an arbitrary endomorphism of G, then by ne=en we have nH=17ne0=
—enGEeG=H.

LEMMA 2. [f a group contains an element of order p, then it contains
also a direct summand of the form C(p") where m is a natural number or o<.

For the proof we refer to [4].

LemmA 3. If a forsion free group H is closed for the prime p, then
H~C(p%).

Let a==0 be an element of H. From pH—=H we conclude that there
exist elements a,, a,, ..., q,,... in H such that

pa,=a, pa,=a,, ..., PAya==0,,... .

Therefore H/{a} contains a subgroup C(p%), and since this is a direct

summand of every group, containing it, > we obtain
H~ Hi{a)y= C(p™)+ H" ~ C(p™),
as desired.

LEMMA 4. Let A be the set of all elements of actually infinite height of
the mixed group G. If G contains only a finite number of elements of order
D for any actual prime p, then A is an actually closed subgroup of G.

It is obvious that A is a subgroup. We have to verify that for any
actual prime p,, p,A=A holds, i. e. for an arbitrary a € A among the solu-
tions of the equation p,x=a in G there exist an element x =g of . infinite
height for each actual prime p.

First let p=p, and d,, ..., d. be the set of all elements of order p, in
G. Since a€ A, the equation p,x —=a has necessarily a solution x=x, in G.
Thus all the solutions of this equation are

(7) x0+d07 x0+d1; R x0+d (dO )

Let £ now be an arbitrary natural integer. Since a €A, the equation
pox-—a is also solvable in G and for each solution x we have Phx = poXo»

i e po(po x—x,)=0. Hence any solution of the equation Pix—=a satisties
the equation

® P x=x,+d; (i=0,1,...,1)

for some i. In other words, among the indices 0, 1, ..., r there is an i such
that (8) has a solution for an infinity of &’s. But then the element g = x,+d’

3 See [1], p. 766.
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in (7) is evidently a solution of the equation p,x==0 and is of infinite height
for p,.

Secondly let p be an actual prime for G such that p == p,. We show that
the previous solution x=g of the equation p,x=a is an element of infinite
height for p too. Since a€A, for each natural number n there exists an ele-
ment x,€G such that

©) DX, =0 = Pog.
If u,v are integers with p,u-p"v=1, then by (9) we get
g - (pou +‘p"".)g‘ —— upnxl + ,.png :p'n. (llxl + Ig)

Thus we have shown that g is an element of infinite height for p. This
completes the proof of Lemma 4.

§ 4. Torsion groups

We recall that a group G is called locally cyclic if any two elements of
it are contained in some cyclic subgroup of G.*

The torsion groups with commutative ring of endomorphisms are cha-
racterized in several ways by

THEOREM 1. For a torsion group T the following statements are equi-
valent:

a,) The ring of endomorphisms of T is commutative.

b,) Every endomorphic image of T is fully invariant.

c,) T is the discrete direct sum of groups C(pi*)(my==1,2,...,00)
belonging to different prime numbers py.

d,) T is a subgroup of the group C.

e) T is locally cyclic.

) Any finite subgroup of T is a cyclic group.

g,) For an arbitrary natural number r the equation rx=0 has af
most r solutions x¢T.

h,) Every subgroup of T is fully invariant.

REmMARKS. According to Theorem 1 a torsion group with commutative
endomorphism ring is always countable. Theorem 1 shows in particular that
the necessary condition expressed in Lemma 1 is at the same time sufficient
for torsion groups in order to have commutative endomorphism ring. Certain
statements of Theorem 1 (for example, the equivalence of d;) and e,)) are
well-known facts. However, we preferred to enumerate in the theorem all
these interesting properties of the group C, because so the proof will be very
short.

1+ Obviously this condition is equivalent to the fact that any finite system of elements
of G is contained in.a cyclic subgroup of G.
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PrOOF OF THEOREM 1.

a,) implies b,). See Lemma 1.

b)) implies c;). T is a discrete direct sum of p-groups. If one of these
primary components of 7 were not of type C(p"), then by repeated appli-
cation of Lemma 2 we would conclude that 7" might be represented in the
orm

T=CP")+CEY+T (I=m=o;l=n= o),
But this would imply that 7 has an endomorphism such that one of the
subgroups C(p"), C(p") is mapped onto a subgroup = O of the other. This
would contradict b,), since every direct summand is an endomorphic image.

c,) implies d,). See (5).

d.) implies e,). This is clear if one takes into account the representation
of C as the additive group of all rational numbers mod 1.

e,) implies f,). This is obvious. See*.

f) implies g). If the equation rx=0 had r-+1 solutions in 7, then
these would generate a finite subgroup which is not cyclic.

g1) implies h,). Obviously it is sufficient to show that, if g;) holds for
T, then any cyclic subgroup of 7 is fully invariant. Let a€ 7, and let ¢ be
an arbitrary endomorphism of 7. If the order of a is r, then r.ea=0. On the
other hand, by hypothesis, the solutions of the equation rx=0 are exhaus-
ted by the elements of the cyclic group {a}. Hence =a€{a}.

h,) implies a;). For let a€ 7, {urther & % denote two arbitrary endomor-
phisms of 7. Then by h,) ea =ma, na=na, hence exa=nma=mna=—nea
Therefore en— ne.

§ 5. Mixed groups

LEMMA 5. Let G be a mixed group with the torsion subgroup T. Then
each of the following three statements is a consequence of its predecessor:
a) The ring of endomorphisms of ‘G is commutative.
b) Every endomorphic image of G is fully invariant.
¢) T is a locally cyclic group without subgroups of type C(p™)®
and the factor group G'T is closed for any prime p which is actual for G.
PrOOF. By Lemma 1, a) implies b). Consequently it is sufficient to show
that b) implies c).
First of all we note that by b) there exists no endomorphism & of G
in case G—=D+E, D=0, EZ=0, for which 0==¢ECS D holds.
At first we shall show that if b) holds for G, then T is locally cyclic.
Indeed, if 7" were not locally cyclic, then by Theorem 1 there would exist a
prime number p such that 7 contains more than one subgroup of type C(p).

#This requirement can obviously be expressed also in the following manner: 7 is a
ocally cyclic group without elements of actually infinite height.
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Then, by applying Lemma 2, we get
C=C(+CWP)+G (I=m=~;1=n=),
which is impossible according to our previous remark.

Now we are going to prove that G/T is closed for any actual prime
number p. For let p be an arbitrary actual prime for G. Then, by Lemma 2,

(10) G=C(p")+G, (I=m=o0).
If here pG,= G,, then by C(p")S T we have
G~ G C(p")~G T,

consequently p(G/7T)==G/T. In the contrary case, i. e. if pG,== G, then the
factor group G,'pQ, is an elementary p-group and hence

G,~ Go,pGOZ Z*C(p) ~ C(p)
Therefore G has an endomorphism & such that, in view of (10), 0 == ¢G, S C(p")
holds, in contradiction to b).
Finally we show that the locally cyclic group T contains no subgroup
of type C(p™),* i.e.

(11). T=2"C(p  (1=m<oo;p; & pifori=j).
In fact, assuming C(p*)E&T we get
(12) G=C(p*)+G,

C(p~) being a direct summand of every group containing it.* Then
G,~G/C(p")~G/T.

Further on account of what has been said above we have p(G/T)—G T;
therefore if we apply Lemma 3 to the group H=G/T, we get G/T~C(p~).
Hence

G~ C(p™)
which leads by (12) again to a contradiction.

From Lemma 5 thus having been proved we easily obtain the following
theorems, of which Theorem 2 throws light on all mixed groups with com-
mutative endomorphism ring and without elements. of actually - infinite height,
while Theorem 3 characterizes the mixed groups with commutative endo-
morphism ring in which T is a direct summand.

THEOREM 2. For a mixed group G without elements of actually infinite
height the following statements are equivalent:
a,) The ring of endomorphisms of G is commutative.
b,) Every endomorphic image of G is fully invariant.
¢,) The torsion subgroup T of G is locally cyclic and contains no
subgroup of type C(p%); further G is a p-direct sum over T such that G'T
is closed for each actual prime.
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ReMARK3. First of all we note that there exist in fact groups G descri-
bed in ¢,) of Theorem 2 and we can get an oversight on them. Indeed, the
complete p-direct sum over the group (11), i. e. the group

(13) T=2/C(p) (I=mu<oo;pip;foriz))

has the property that T'T is closed for any prime number p. To prove this
we must show that if the “vector” c=<..., ¢, ...>(c:€ C(pi*)) is an arbit-
rary element of the group (13) and p is an arbitrary prime number, then there

exists an x € T such that c—px¢T. This is obvious, since one may plainly
construct a “vector” x with c—px=0 or c—px€C(p}?), according as
pF+p(k=1,2,3,...) or p=p;. Hence the group (13) corresponding to any
prescribed group (11) has always commutative endomorphism ring, and
according to Theorem 2 all mixed groups of this property without elements
of actually infinite height are exhausted by those groups G for which TcGEST
and p(G/T)=G/T for every k. For a given T the determination of all G’s

of this kind is naturally equivalent to giving all those subgroups of the fac-

torgroup 7T which are closed for every p,. Since the group ﬁTist_orsion
free, this process becomes easier by taking into account that if S is an arbit-

rary subgroup of 7/T and if we adjoin to'S all those elements e of 7/T for
which re€S with some natural number r divisible only by primes in (11),
then we get a subgroup S, of 7/7 such that p,S,=S, for every k.

The results below will show that in a group G characterized by Theo-
rem 2 the.torsion subgroup 7T is never a direct summand.

Theorem 2 implies the existence of mixed groups of the power of the
continuum with commutative ring of endomorphisms. We have to point out
the fact that the necessary condition of Lemma 1 also suffices for mixed
groups without elements of actually infinite height in order to have commu-
tative endomorphism ring.

PROOF OF THEOREM 2.

In view of Lemma 5 it is sufficient to show that, if G is a mixed group
without elements of actually infinite height; then c) of Lemma 5 implies ¢,);
further if G is an arbitrary mixed group, then c,) implies a,) besides the
fact that G is a group without elements of actually ‘infinite height.

Now we consider the first assertion. According to ¢), 7 is a group of
the form (11). First of all we show that in (11) there is an infinity of pri-
mes p;.. In the contrary case, by a repeated application of Lemma 2, we would
have G=T+-U, and here, by c¢) and U= G/T, the torsion free group U
would be an actually closed subgroup of G. This is, however, impossible,
since by hypothesis G contains no element = 0 of actually infinite height.
(In the same way we can prove on basis of Theorem 2 that 7 is never a
direct summand of the groups G described by Theorem 2.)

21 Acta Mathematica
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Now let p,. be an arbitrary actual prime number for G. Then by Lemma 2
(14) G=C(pi'") + Gy (1=m.< o)

where C(pi*) is the same direct summand as that occurring in (11). As a
matter of fact, since the group C(pi*) in (11) includes all those elements of
G whose order is some power of pi, obviously G has no other direct sum-
mand of type C(pr). Thus in the representation (14) of G the direct sum-
mand C(p.*) is uniquely determined. On the other hand we show that also
Gy is uniquely determined as the set of all elements of infinite height for p:.
in G. A part of this assertion, viz. that g€ G and g¢ G, imply that g is not
of infinite height for p., is obvious. Consequently, it is enough to show that
if 24€G;, then the equation p.x=g; has always a solution x¢G,. Since by
¢) G/T is closed for p;, there exists an x €G such that pyx—g,=d¢eT. Let
C(pr*y=={c;} and let the elements x and d be represented in the form accord-
ing to (14)

X==i¢, -+ g, d—jo. + g7 (gi, g € Gy).
Here g, being an element of finite order in G, the order of g is not divi-
sible by pi. Therefore g =p,g” (g € G,). Hence the equation p, x—g, =d
can be written in the form

pz‘-(ick +g/,)—g1‘ :jCk +pkg7:”7

whence we get p (g, —g,")=g, on account of the direct representation in
(14). Consequently the element g,—g,” is, indeed, a solution in G, of the
equation ppx=gy.

By the uniqueness, thus proved, of both terms on the right hand of (14),
we conclude that each element g of G may be written in exactly one way as
the sum of an element &g in C(py+) and of an element in G,. It is clear
that the mapping g— &g is an endomorphism of G. The endomorphisms
thus defined possess obviously the following properties:

1) 5, G=C(py*);
e if i=k;
2) SO0 i ik

3) If g€ G and &g =0 for every k, then g=0.

Indeed, 3) is a consequence of the fact that if &g=0 for every £, then
g€G; for every k, 1. e. gis an element of infinite height for each p, so that,
by hypothesis, g=0. Thus we have shown that G is a p-direct sum over
T in the sense of § 2,

In order to complete the proof of Theorem 2 we have only to show
that if c,) holds for the mixed group G, then G contains no element of actu-
ally infinite height and the endomorphism ring of G is commutative. The pre-
vious part follows from that by (13)

p;": Tnp?_}“zfn cnpE Tﬂ e =0,
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and hence a fortiori for GET
p;”xGﬂ np;f/;(jm... ={).

Now let ¢ and # be any two endomorphisms of G and let us consider the
endomorphism d =s&n—ne. Since any endomorphism of G induces an endo-
morphism in 7 and since, by ¢,) and Theorem 1, the endomorphism ring of
T is commutative, we obtain 6 7= 0. Therefore T is contained in the kernel
K of the endomorphism d. But then, by G'T~G/K=dG and by the fact
that p;;(G/T):G/T'for every k, ¢G is an actually closed subgroup of G.
Hence dG=0. Thus we have shown that d=en—ne=0, and this comple-
tes the proof of Theorem 2.

THEOREM 3. Suppose the mixed group G can be representfed as G = T+ U,
where T is the torsion subgroup of G. Then the endomorphism ring of G is
commutative if and only if T is a locally cyclic group containing no subgroup
of type C(p”) and U is an actually closed subgroup of G with commutative
endomorphism ring.

REMARKs. It is clear that in the groups described by Theorem 3 the
set of all elements of actually infinite height is just the subgroup U. Hence
Theorem 2 and Theorem 3 exhaust two classes of mixed groups which have
no groups in common, since Theorem 2 concerns groups without elements of
actually infinite height.

It is easy to give examples for groups satisfying the conditions of Theo-
rem 2. An instance for a group of this kind is the direct sum of a group 7°
of the form (11) and the group U==R. We shall show in § 6 that also
among the groups described by Theorem 3 exist groups of the power of the
continuum.

We. may expect to obtain further informations of the structure of the
groups given by Theorem 3 only in case one would succeed in getting some
further detfails of the structure of torsion free groups with commutative endo-
morphism ring. Only in this case one can answer the question whether or
not the groups satisfying the conditions of Theorem 3 are all the mixed groups
whose torsion group is a direct summand and - which satisfy the necessary
condition of Lemma 1.

PrOOF OF THEOREM 3.

The necessity of the conditions of Theorem 3 follows obviously from
Lemma 5, as well as from the fact that if G= T+ U, then U~ G/T and the
commutativity of the endomorphism ring of G implies the same for U.

In order to prove the sufficiency of the conditions, let us consider a
group U= T+ U satistying the hypotheses of Theorem 3. It is obvious that
both T and U are fully invariant subgroups of G (the latter being the set of
all elements of actually infinite height of G). Consequently any endomorphism
of ¢ induces an endomorphism both in 7 and U. On the other hand, as the
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endomorphism ring both of T (see Theorem 1) and of U is commutative, T
and U are contained in the kernel of the endomorphism en—mne for any two
endomorphism &, n of G. Then the kernel of en—ne contains also T+ U= G,
i.'e. en—ne=0.

Now the question arises as to whether the groups given by Theorems
2 and 3 exhaust all mixed groups with commutative endomorphism ring. We
have to answer this question in the negative. More exactly:

If the actual prime system of the mixed group G with commutative endo-
morphism ring. contains all the prime numbers, then G is covered by Theo-
rem 2. If the actual prime system of G consists only of a finite number of
primes, then G is covered by Theorem 3. In all other cases — i. e. when the
actual prime system of G contains infinitely many prime numbers, but not all
of them — there is a group G with commutative endomorphism ring which is
not covered neither by Theorem 2, nor by Theorem 3.

In order to prove this, let G be a mixed group with commutative endo-
morphism ring, and first let us consider the case when the actual prime system
of G consists of all primes. Then by Lemmas 5 and 4 all elements of actu-
ally infinite height of G form a torsion free subgroup A closed for every
prime. Therefore, according to a well-known theorem ® A is a direct summand
of G:

(15) G=0G,+A

where G, is already a group without elements of actually infinite height, i. e.
G, is covered by Theorem 2. But by Theorem 2, G, T is a torsion free
group closed for every prime and thus, it is a discrete direct sum of rational
groups R. Hence Gy~ G, T~ R. On the other hand, A4-0 would imply
RS A. Thus, by (15) one might find an endomorphism & of G such that
0==¢(G,)S A contradicting Lemma 1. Therefore only A==0 is possible, com-
pleting the proof that in this case G is covered by Theorem 2.

Let us proceed to the case if the actual prime system of G contains but
a finite number of primes. Then by Lemma 5, T is a finite cyclic group and
a repeated application of Lemma 2 leads to the representation G=T+U
which shows that now G is covered by Theorem 3.

Finally let us consider the case when the actual prime system of G con-
tains an infinity of prime numbers py, ps. .., but not all of them. Let ¢ be
a prime not actual for G and denote by R, the additive group of all ratio-
nal numbers whose denominator is relatively prime to g. Then

(16) G:RQ+ZC(p;.-)

is a mixed group covered neither by Theorem 2, nor by Theorem 3, consi-
dering that the set of elements of actually infinite height of it is R;, further
neither R,=—0 nor G= R, T holds. That the endomorphism ring of the
group. (16) is commutative, we shall show below. (See Theorem 5.)
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It is worth while having a look at the consequences of - our. results in
the most general case. We get a necessary condition as well as a sufficient
one for the endomorphism ring of a mixed group G to be commutative. The
previous condition is contained in Theorem 4 and is an immediate consequence
of Lemmas 4 and 5 as well as of the first part of the proof of Theorem 2.

THEOREM 4. If the endomorphism ring of a mixed group G is commu-
tative, then the torsion subgroup T of G is a group of type (11), G/T is
closed for every actual prime number, the elements of actually infinite height
of G form an actually closed torsion free subgroup A of G and G/A is a
group without elements of actually infinite height with commutative endomor-
phism ring (consequently, it is a group of the type given by Theorem 2).

The following example shows that the conditions of Theorem 4 are not
always sufficient for ensuring the commutativity of the endomorphism ring:

G=R+2C(p)

The complete direct sum on the right side is to be extended over all distinct
prime numbers p. By > C(p)~R, G does not fulfils the requirement of
P

Lemma 1, so that the endomorphism ring of G is not commutative.
A sufficient condition is given by the following

THEOREM 5. If a mixed group G satisfying the conditions of Theorem 4
has the property that there exists.a prime number q such that q(G/A)— G/A
further A contains no element (==0) of infinite height for q,% and the endo-
morphism ring of A is commutative, then the endomorphism ring of G is com-
mutative.

ProOF. Obviously 7 and A are fully invariant subgroups of G. Hence
any endomorphism of G induces an endomorphism both in 7 and in A. But
the endomorphism ring of 7" and that of A are commutative, so that T and A
are both contained in the kernel K of the endomorphism d = ep—rze for any
two endomorphisms & and #. Therefore

an G/IT~G/K>=dG
and
(18) G/A~G/K~dQ@.

Since G/T is closed for every actual prime, (17) means that dG is an actu-
ally closed subgroup of G, i. e. dG < A. On the other hand, from q(G/A) = G/A
and from (18) we may conclude that ¢(0G) =dJG. However, the only sub-
group of A closed for ¢ is 0, hence 0G=0 and d=—ep—re==0.

The group G in (16) satisfies obviously the conditions of Theorem 5,
so that its endomorphism ring is commutative.

¢ Consequently g cannot be an actual prime for G.
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§ 6. Final remarks and some conjectures

In order to construct groups of the power of the continuum with com-
mutative endomorphism ring we need the following

THEOREM 6. If H,, H,, ... are countably many groups such that

(1) The endomorphism ring of H, is commutative (n=1,2,...),
(I) H, is a fully invariant subgroup of the complete direct sum GZZH,I,

(L) The only homomorphic image of >'H,' > H, in G is 0,
then the endomorphism ring of G=— >'H, is commutative.

PRrOOF. Let &, u be arbitrary endomorphisms of G. By (II) and (I), each
H,, and hence also Z*Hn is contained in the kernel of the endomorphism
0 =¢en—na. Therefore

DH, D H, ~0GESG.
By (IlI) we have dG =0, consequently en—mne==0.

Using Theorem 6 one can easily construct a torsion free group of the
power of the continuum with commutative endomorphism ring. In order to
do this, let p,, p,,... be an infinity of distinct prime numbers and denote
again by R, the additive group of all rational numbers whose denominator
is relatively prime to p,. Then the complete direct sum G— > R, is a group
having the required property. (II) is fulfilled, since R,, contains all the elements
of G which are of infinite height for each prime ==p,. (Ill) also holds, for
G/D'R,, isnow a group closed for every prime number p,, while the only
subgroup of G with the same property is obviously O.

If ¢ is a prime number different from each prime number p,, then

Clg)+ Z R,

is obviously a group satisfying the conditions of Theorem 3. Thus we have
shown that among the groups covered by Theorem 3 there exist groups of
the power of the continuum.

In conclusion we formulate some conjectures.

CONJECTURE 1. [f every endomorphic image of a group is fully invari-
ant, then the endomorphism ring of the group is commutative.

CONJECTURE 2. Every group with commutative endomorphism ring is at
most of the power of the continuum.

If Conjecture 2 will prove to be true, then on basis of Lemma 5 it is
easy to show that even the following conjecture will hold:

CoNJECTURE 3. Any group with commutative endomorphism ring is iso-
morphic with a subgroup of the group of all rotations of the circle.

(Received 13 December 1951)
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O TPYINIAX ABEJY, KOJbIO 3HIOMOP®N3MA KOTOPBIX
KOMMYTATUBHO

T. CEJIE (Het6penen) u 1. CEHAPEU (Ceren)

(Pezwmeé)

B macrosieit paboTe aBTOPBI M3y4a0T TAKME TPYIIEl AGens, KOAbLO 2HAOMOP(U3MA
KOTOPBIX KOMMYTATHBHO. [IOKA3BIBAIOT, YTO TOPSUOrPYIINA TOTAA H TONBKO TOTAA 0ONAJAET STHM
CBOICTBOM, €C/M JIOKQILHO LUMKJIWYKE, T.e. U30MOpdHA Kaxoil-HHOYAR NOArpymie rpymmsi,
cocTosiiell M3 BpalleHuil OKPYKHOCTH KOHe4HOU cremeHu. Ilocne 3TOro OHm nepexomsit K
HCC/IENOBAHMIO CMEIIAHHLIX rPynn, OONaAIMX YKA3aHBIM CBOHCTEOM. Cpeam aTux rpymm
yAAETCS OMMCaTh TPYNNBL, KOTOPHIE MOTYT OBbITh NPEACTABICHHB! B BHAE NPSIMOI CyMMb
rpynnel ¢ TOp3ueil u rpynnsl 6e3 TOPsuM M TPYIIBl, HECOAEpRAINEd TAKOro OTAHYHOrO OT
HY/ISi DIEMEHTA, KOTODHIH GECKOHEYHO BBICOK OTHOCHTENbHO MOGOr0 TAKOrO MPOCTOTO 4MCAd,
KOTOPBIR SIBISIETCH MOPSIAKOM Kakoro-iuGo saementa rpymmel. Bo Bropom cnyuae ucnone-
3yI0T HEKOTOPOE OBOOGLUeHHEe INOHATHS NpsMo# cymmbl. M3 pesynstatos ciaepyer, 4TO
CYLIECTBYET CMEWAHHAsl IPyRna, MOLIHOCTh KOTOPOH €CTh MOLIHOCTL KOHTHHYyMa, onana-
10IAsl BLHIEYKABAHHBIM CROMCTBAM.

ABTOpaM ypaércst MOCTPOUTH ¥ IPYIIyY 6€3 TOP3uH, MOMIHOCTH KOTOPOH €CTh MOLIHOCTL
KOHTUHYYMa, OGNAfAIOILYI0 BTUM CBOHCTBOM. B 3akmo4YeHMM OHM BHIJBMFAIOT TULIOTESY,
COrVIACHO KOTOPOH MOIHOCTH IPYNIbI, OGNAfalouiel BLIIIEYKA3aHHbIM CBOIICTBAM, HE MOMKET
SBITH 6071 MOMIHOCTM KOHTMHYyMa. OTa THIIOTE3d MOMEeT OhITh CHOPMYIHMrOBaHHa M TaK:
moGasi Tpynna, O6Jajawiias THM CRBOWCTBAM, M30MOpP(HA KakOW TO MOArpyNHE rPYINBL,
COCTOSIIEN U3 BCEX BPALIEHHH OKPYWHOCTH.



