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w 1. Introduction 

As is well known, the endomorphism ring of an abelian group is in 
general neither commutative nor without zero divisors. This gives rise to the 
problem of describing all abelian groups with commutative endomorphism 
ring and those with endomorphism ring containing no zero-divisors. In a 
previous paper one of us has considered the latter problem [3] 1 and has suc- 
ceeded in showing that there exists no such group among the mixed groups, 
while C(p)and C(p ~) are the only torsion groups of this property, 2 The 
present paper is devoted - -  leaving again the torsion free groups out of con- 
sideration - -  to abelian groups with commutative endomorphism ring. This 
problem will be solved completely for torsion groups; viz. we shall prove 
that the endomorphism ring of a torsion group is commutative if and only 
if the group is isomorphic with a subgroup of the group C of all rotations 
of finite order of the circle (Theorem 1). Moreover, we can characterize two 
sufficiently large classes of mixed groups with commutative endom0rphism 
ring (Theorems 2 and 3), but we shall show that these two classes do not 
exhaust all mixed groups of this property. In describing the structure of the 
groups belonging to one of these classes we shall need a generalization of 
the direct sum which has plaid an important role in the theory of rings. 

Lemma 1 ({} 3) gives an almost trivial necessary condition for the com- 
mutativity of the endomorphism ring of an abelian group. As easily one can 
show that this condition is necessary, i t  seems as difficult to prove in general 
that it also suffices. The results below lead us to conjecture that the condi- 
tion mentioned above is always sufficient. 

1 The numbers in brackets refer to the Bibliography at the end Of this paper. 
2 For the notations and terminology see w 2 
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We shall see that a torsion group with commutative endomorphism 
ring is always countable, but there exist mixed as well as torsion free groups 
of the power of the continuum with the same property. On the other hand, 
certain facts led us to the conjecture that the endomorphism ring of an abe- 
lian group of a cardinal number greater than the power of the continuum is 
never commutative. If this conjecture will prove to be true, then from the 
results of the present paper it is easy to conclude that every abelian group 
with Commutative endomorphism ring is isomorphic with a rotation group of 
the circle. 

w 2. Preliminaries 

In what follows by a group we shall mean  always an additively written 
abelian group with more than one element. Groups will be denoted by Latin 
capitals and their elements by x, a, b , . . . ,g;  the other small Latin letters are 
reserved for rational integers (in particular p, q for prime numbers). We shall  
denote the endomorphisms of a group by small Greek letters. A subgroup 
generated by certain elements a, b , . . .  of a group is denoted by {a, b , . . .} ,  
A group, every element of which is of finite order, is Called a torsion group. 
In case every non-zero element of the group is of infinite order, the group 
is called torsion free. A group which is neither a torsion group nor torsion 
free, is said to be a mixed group. All elements of finite order of a mixed 
group form a subgroup which we call the torsion subgroup of the group. 

Let p be an arbitrary prime number. If the group G contains an ele- 
ment of order p, then p is called an actual prime for G. The set of all actual 
primes for G will be called the actual prime system of G. If pG---G for a 
prime p, then G is called closed for p. (Here p G denotes of course the set 
of all elements p g  with g CG.) If H is a subgroup of G and is closed for 
any actual prime for G, then we say that H is an actually closed subgroup 
of G. If a r G and the equation p"x - -a  is solvable in G for  every natural 
number n, then a is said to be an element of infinite height for the prime 
p in G. Clearly, any element of order p# is an element of infinite height for 
every prime different from p. The element a of G will be said to be of actu- 
ally infinite height in G, in case a is of infinite height for each actual prime 
p for G. If G contains no element. @ 0  of actually infinite height, we call G 
a group without elements of actually infinite height. 

For an endomorphism g--,eg of G we denote by ~G the set of all 
elements of the form rg  (g r G) and call it an endomorphic image of G. The 
set K of all xr  for which e x : 0 ,  is called as usual the kernel of the 
endomorphism e. If H is a subgroup of G and e H ~ H  for every endomor- 
phism e of G, then H is a fully invariant subgroup in G. 

We denote by /? the additive group of all rational numbers, by C(p 1') 
the cyclic group of order pT,. for an arbitrary natural number k, and by C(p ~) 
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the additive group of all rational numbers mod l whose denominators are 
powers of p. The additive group of all rational numbers rood 1 will be deno- 
{ed by C. It is clear that C is isomorphic with the group of all rotations of 
finite order of the circle, and it is the smallest group containing each 
C(f f ' ) (p=-2 ,  3, 5 , . . . ;  k--- 1, 2 . . . .  , ~ )  as its subgroup. 

In what follows we shall need a generalization of the concept of the 
direct sum which coincides with the well-known concept of direct sum in case 
<~f a finite number of direct summands. Some denominations relating to this 
~zoncept are taken from one of JACO~SON'S fundamentally important investi- 
gations on ring theory [2]. 

We shall say that the group G is a direct sum of its subgroups B;. if 
the following requirements are fulfilled (where ,Z runs over an arbitrary - -  
:finite or infinite - -  set of indices, ordered or not):  

There exist endomorphisms a,;~ of G such that  
1) E,~G = & ;  

3) g E G and ~ g  = 0 for every 2 imply g ~- O. 
Among all direct sums of the groups Bx there exists a "greatest" one, 

~ ,  satisfying the additional requirement: 
4) For any choice of  a representative system of  elements bx E Bx 

there exists an element g of  G~ such that exog ~ bx holds for 
each 2. 

Obviously, the group G~ having the properties 1)--4)  is uniquely deter- 
mined (up to an isomorphism) by the groups B;.; we call it the complete 
direct sum of the B~'s, in notation: 

(1) 
s 

This group may also be described as the set of all possible "vectors"C..,b~,...> 
which contain a "component" b;. from each group B;. and which are added 
component-wise, it is easy to see that any direct sum of the groups B~ is a 
subgroup of (1). 

On the other hand, among all possible direct sums of the groups B;~ 
there exists always a "smallest" one, denoted by Ge, which is a subgroup 
of any direct sum. This may be characterized as the direct sum satisfying 

4*) For any element gE Gj, there are only a finite number of 2's 
with e~g ~ O. 

This group Gj, determined uniq-uely by the groups Bx as the group 
satisfying 1), 2), 3), and 4"), is called the discrete direct sum of the Bx's and 
will be denoted by 

,(2) 
2 
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G~r may also be described as the set of all vectors ( . . . ,  b~, . . . 5  having only 
a finite number of components different from zero. The concept of direct sum 
used so far in the group theory was this discrete direct sum. 

In te rms of the complete and discrete direct sums the direct sums of 
the B;.'s may be characterized as the groups .G for which G~ ~ G ~ G,~. For 
a finite number of groups Bz always G a ~  G~ holds, consequently, in ,thi~ 
case' there exists only one direct sum. Therefore the concept of the direct: 
summand in the generalized sense is the same ' as that in the old sense: a 
certain subgroup H~ of the group H is a direct summand of H if there exists 
a group H o ~ H  such that H ~  H1 + H2. 

The definition clearly implies that the complete direct sum of an enu- 
merable infinite set of finite or countable groups has always the power of the 
continuum. 

Let us mention an important example. It is well  known that a torsion 
group T may be represented as the discrete direct sum of itsuniquely deter- 
mined primary components To, where Tp is a p-group (i. e. a group contain- 
ing only elements of p-power order): 

(3) r = ~.~* T:,,. 

Theretore the complete direct sum 

is uniquely determined by T; it may be called the complete p-direct sum over 

T. In accordance with this, the groups between T and T ( T  and T included), 
in other words, the direct sums of the groups T~, may be called the p-direct 
sums over T. It is obvious that, if the actual prime system of T contains an 
infinity of primes, then all of these, except T, are mixed groups and their torsioa 
subgroup is just T. 

In case T ~  C we have obviously 

(5) C : ~_,* C(P ~) 
P 

where the summation is extended over all distinct prime numbers p. It is no~ 
difficult to see that the group 

(6) C = ~ ,  C(P ~) 

is isomorphic with the additive group of all real numbers rood 1 (i. e. with: 
the group of all rotations of the circle). In what follows we shall not make 
use of this fact. 
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w 3. Lemmas 

We start with some lemmas. 

LEMMA 1. If  the ring of  endomorphisms of a group is commutative, then 
every endomorphic image of  the group is fully invariant. 

Indeed, if H ~ - e G  is a certain endomorphic image of G and ~ denotes 
an arbitrary endomorphism of G, then by r l e ~ e ~  we have ~ H ~ e U =  

LEMMA 2. I f  a group contains an element of order p, then it contains 
also a direct summand of the form C(p')  where m is a natural number or ~ .  

For the proof we refer to [4]. 

LEMMA 3. I f  a torsion .free group H is closed for the prime p, then 
H ~ C(p ~). 

Let a @ 0  be an element of H. From p H = H  we conclude that there 
exist elements a~, a .2 , . . . , a , , , . . ,  in H Such that 

pa~=-a, pa~=a~, . . . ,  p a , + ~ a , , ,  . . . .  

Therefore H/{a} contains a subgroup C(p~), and since this is a direct 
summand of every group, containing it, ~' we obtain 

H ~ H/{a} ~ C(p ~) + H* ~-~ C(p ~), 
as desired. 

LEM~aA 4. Let A be the set of  all elements of actually infinite height of  
Ihe mixed group G. I f  U contains only a finite number of  elements of  order 
p for any actual prime p, then A is an actually closed subgroup of  G. 

It is obvious that A is a subgroup. W e  have to verify that for any 
actual prime P o , p o A = A  holds, i. e. for an arbitrary a EA among the solu- 
tions of the equation P o X ~ a  in G there exist an element x ~ g  of. infinite 
height for each actual prime p. 

First let P ~ P o  and d 1 . . . .  , d,. be the set of all elements of order Po in 
G. Since a~A, the equation pox=-a hasnecessari ly  a solution X=Xo in G. 
Thus all the solutions of this equation are 

(7) xo q-do, Xo q-d,, . . . ,  Xo q-d,. (do=O):  

L e t k  now be an arbitrary natural integer. Since aEA, the equation 
k 

p o x = a  is also solvable in G and for each solution x we have p~x=poXo, 
k 1 " 

i. e. Po(Po x - - xo )~O .  Hence any solution of the equation ~': pox = a satisfies 
the equation 

(8) Po X =  Xo q-d, (i---O, 1 , . . . ,  r) 

for some i. In other wards, am3ng the indices 0, 1 . . . .  , r there is an i such 
that (8) has a solution for an infinity of k's. But then the element g-~--xo+d ~ 

a See [1], p. 766. 
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in (7) is evidently a solution of the equation pox---O and is of infinite height 
for P0. 

Secondly let p be an actual prime for G such that P ~ P o .  We show that 
the previous solution x = g  of the equation p , , x ~ a  is an element of infinite 
height for p too. Since aEA, for each natural number n there exists an ele- 
ment x~E G such that 

(9) p'~ x~ - -  a ~ Pog. 

If u, v are integers with pou-+-p"~:= 1, then by (9) we get 

g = (pou -bp'~c)g = up"x~ + ~p'~g =p~(ux~ + cg). 

Thus we have shown that g is an element of infinite height for p. This 
completes the proof of Lemma 4. 

w 4. Torsion groups 

We recall that a group G is called locally cyclic if any two elements of 
it are contained in some cyclic subgroup of (3. 4 

The torsion groups with commutative ring of endomorphisms are cha- 
racterized in several ways by 

THEOREM 1. For a torsion group T the following statements are equi- 
valent: 

ai) The ring of  endomorphisms of  T is commutative. 
b~) Every endomorphic image of  T is fully invariant. 

c~) T is the discrete direct sum of groups C(p'~i'k)(mt,,=l,2,.. . ,~) 
belonging to different prime numbers pj,,. 

d~) T is a subgroup of the group C. 
el) T is locally cyclic. 
f~) Any finite subgroup of T is a cyclic group. 
g~) For an arbitrary natural number r the equation r x~ -O  has  at 

most r solutions x E T. 
h~) Every subgroup of T is fully invariant. 

REMARKS. According to Theorem 1 a torsion group with commutative 
endomorphism ring is always countable. Theorem 1 shows in particular that 
the necessary condition expressed in Lemma ! is at the same time sufficient 
for torsion groups in order to have commutative endomorphism ring. Certain 
statements of Theorem 1 (for example, the equivalence of dd and e~)) are 
well-known facts. However, we preferred to enumerate in the theorem all 
these interesting properties of the group C, because so the proof will be very 
short. 

4 Obviously this condition is equivalent to the fact that any finite system of elements 
of G is contained in,a cyclic subgroup of G. 
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PROOF OF THEOREM 1. 
a~) implies b~). See Lemma 1. 
bl) implies c 0. T is a discrete direct sum of p-groups. If one of these 

primary components of T were not of type C(p'"), then by repeated appli- 
cation of Lemma 2 we would conclude that T might be represented in the 

o r m  

T z C ( p " ) + C ( p " ) + T '  ( l - -<m_<~;  1 < n < ~ ) .  

But this would imply that T has an endomorphism such that one of the 
subgroups C(f ' ) ,  C(p") is mapped onto a subgroup + 0 of the other. This 
would contradict b~), since every direct summand is an endomorphic image. 

cO implies dl). See (5). 
d,) implies e 0. This is clear if one takes into account the representation 

of C as the additive group of all rational numbers rood 1. 
e~) implies f0. This is obvious. SeeL 
f,) implies g0- If the equation r x = O  had r-I-1 solutions in T, then 

these would generate a finite subgroup which is not cyclic. 
gl) implies h 0. Obviously it is sufficient to show that, if gl) holds for 

7", then any cyclic subgroup of T is fully invariant. Let a~ 7", and let ~ be 
an arbitrary endomorphism of ,T. If the order of a is r, then r . e a z O .  On the 
other hand, by hypothesis, the solutions of the equation r x = O  are exhaus- 
ted by the elements of the cyclic group {a}. Hence ea~{a}. 

h~) implies a 0. For let a~ 7", further ~, ~ denote two arbitrary endomor- 
phisms of T. Then by h~) e a = m a ,  r;a=na, hence e r i a = n m a = m n a ~ e a  
Therefore e~ ~ ~e. 

w 5. Mixed groups 

LEMMA 5. Let G be a mixed group with the torsion subgroup T. Then 
each of the following three statements is a consequence of its predecessor: 

a) The ring of endomorphisms of G is commutative. 
b) Every endomorphic image of G is fully invariant. 
c) T is a locally cyclic group without subgroups of type C(p ~ ~ 

and the factor group G/T is closed for any prime p which is actual for G. 
PROOF. By Lemma 1, a) implies b). Consequently it is sufficient to show 

that b) implies c). 
First of all we note that by b) there exists no endomorphism e of G 

in case G - - D - k E ,  D=~=O,E=~O, for which O@eE~=D holds. 
At first we shall show that if b) hoids for G, then T is locally cyclic. 

Indeed, if T were not locally cyclic~ then by Theorem 1 there would exist a 
prime number  p such that T contains more than one subgroup of type C(p). 

This requirement can obviously be expressed also in the following manner: T is a 
ocally cyclic group without elements of actually infinite height. 
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Then, by applying Lemma 2, we get 

G=C(#")+C(p")+6' 
which is impossible according to our previous remark. 

Now we are going to prove that G/T is closed for any actual prime 
number p. For let p be an arbitrary actual prime for G. Then, by Lemma 2, 

(10) G = C(p"') + Go (1 -< m -< ~)~ 

If here PGo= Go, then by C(p '~') ~ T we have 

G,, ~= G C(#") ~ G T, 

consequently p ( G/T ) =G/T .  In the contrary case, i. e. if PGo4= Go, then the  
factor group Go pGo is an elementary p-group and hence 

Go ,'~ Go.PGo= ~ * C ( p )  ~ C(p). 

Therefore G has an endomorphism ~ such that, in view of (10), 0-~-eGo% C(p') 
holds, in contradiction to b) .  

Finally we show that the locally cyclic group T contains no subgroup 
of type C(p~'), ~ i .e .  

(11). Tz~,*C(p'~i ~) (1 ~m#  < ~ ; p i  @pjforiq=j). 

In fact, assuming C(p ~) S T  we get 

0 2 )  G = C(p ~) + C~, 

C(p ~ being a direct summand of every group containing it.~ Then 

G, ~ G/C(p ~) ~ G/ T. 

Further on account of what has been said above we have p ( G / T ) = G  T; 
therefore if we apply Lemma 3 to the group H = G / T ,  we get G/T,~C(p~ 
Hence 

0! ~,~ C (p ~ 

which leads by (12) again to a contradiction. 

From Lemma 5 thus having been proved we easily obtain the following 
theorems, of which Theorem 2 throws light on all mixed groups with com- 
mutative endomorphism ring and without elements~of~actually infinite height, 
while Theorem 3 characterizes the mixed groups with commutative endo- 
morphism ring in which T is a direct summand. 

THEOREM 2. For a mixed group G w#hout elements of actually infinite 
height the following statements are equivalent: 

a~,) The ring Of endomorphisms of G is commutative. 
b._,) Every endomorphic image of G is fully invariant. 
c2) The torsion subgroup T of G is locally cyclic and contains no 

subgroup of type C(p~); further G is a p-direct sum over T such that G T 
is closed for each actual prime. 
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ReM~iRa~. First of all we note that there exist in fact groups G descri- 
bed in c2) of Theorem 2 and we can get an oversight on them. Indeed, the 
complete p-direct sum over the group ( t l ) ,  i. e. the group 

(13) T-~- ~ C 'w'~' ( I <  ~,~ j =m~.<~;p~@pifori=~=j) 

has the property that T.'T is closed for any prime number p. To prove this 
we must show that if the ,'vector" c=<. . . ,  ct..,... )(c1~E C(p~ )) is an arbit- 
rary element of the group (13) and p is an arbitrary prime number, then there 

exists an x E T such that c--pxE T. This is obvious, since one may plainly 
)Iz7 construct a "vector" x with c--px~-O or c--pxEC(~/ ), according as 

p +p~.(k~ I, 2, 3 , . . . )  or p~py. Hence the. group (13) corresponding to any 
prescribed group  i l l ) h a s  always commutative endomorphism ring, and 
according to Theorem 2 all  mixed groups of this property without elements 
of actually infinite height are exhausted by those groups G for which TcG~7" 
and p~(G/'T)= G/T for every k. For a given T the determination of all G's 
of this kind is naturally equivalent to g iv ing  all those subgroups of the fac- 

torgroup 7~T which are c losedfor  every p~,:. Since the group T~T is torsion 
free, this process becomes easier by taking into account that if S is an arbit- 

rary subgroup of T/T and if we adjoin t o S  all those elements e of ~ /T  for 
which teES with some natural number r divisible only by primes in (11), 
then we get a subgroup So of T/T such that pkSo~So for every k.  

The results below will show that in a group G characterized by Theo- 
rem 2 the.torsion subgroup T is never a direct summand. 

Theorem 2 implies the existence of mixed groups of the power of the 
~:ontinuum with commutative ring of endomorphisms. We have to point out 
the fact that the necessary condition of Lemma 1 also suffices for mixed 
groups without elements of actually infinite height in order to have commu- 
,tative endomorphism ring. 

PROOF OF THEOREM 2. 

In view of Lemma 5 it is sufficient to show that, if G is a mixed group 
without elements of actually infinite height; then c) of Lemma 5 implies c.,); 
further if G is an arbitrary mixed group, then c~) implies a 0 besides the 
fact that G is a group without elements of actually infinite.height. 

Now we consider the first assertionl According to c), T is a group of 
the form (11). First of all we show that in (11) there is an infinity of pri- 
mes p~. In the contrary case, by a repeated application of Lemma 2, we would 
have G ~ T + U ,  and here, by c) and U~G/T ,  the torsion free group U 
would be an actually closed subgroup of G. This is, however, impossible, 
since by hypothesis G contains no element @ 0 o f  actually infinite height. 
(In the same way we can prove on basis of Theorem 2 that 7" is never a 
direct summand of the groups G described by Theorem 2.) 

21 Acta Mathematica 



318 T. SZELE AND J. SZENDRE1 

Now let pC,, be an arbitrary actual prime number for G. Then by Lemma 2 

(14) G = C(p;~ '~) -I- G,: (1 -< m,~< o~) 

where C(p; ~) is the same direct summand as that occurring in (11). As a 
matter of fact, since the group C(p~ ~k) in (11) includes all those elements of 
G whose order is some power of pl:, obviously G has no other direct sum- 
mand of type C(p'~;). Thus in the representation (14) of G the direct sum- 
mand C(p~;~O is uniquely determined. On the other hand we show that also 
G~, is uniquely determined as the set of all elements of infinite height for pj.- 
in G. A part of this assertion, viz. that gr  and gr imply that g is not 
of infinite height for Pa-, is obvious. Consequently, it is enough to show that 
if g~,E(Tk, then the equation Pl,X~g~,: has always a solution xCGT... Since by 
c) O/Ti s  closed for p~., there exists an xr  such that plcx--gT,=dr Let 
Cl,~,~x__ {c~,:} and let the elements x and d be represented in the form accord- tpk ! -  
ing to (14) 

x---- ic,,: + a--jc,  + g;; (g;,, g;' G,.). 
Here gs being an element of finite order in Gjc, the order of g~' is not divi-  
sible byp~. Therefore gs =PT~gs (g~" ~ Q ). Hence the equation pj.x--gj~ ~ d 
can be written in the form 

p, (ic,; @ g,i)--g,, --jc,~ @ p,,gs 

whence we get P~,.(gJi--g~i")~g~,. on account of the direct representation ir~ 
(14). Consequently the element g~'--gs is, indeed, a solution in G~ of the 
equation p ~ x =  g~. 

By the uniqueness, thus proved, of both terms on the right hand of (14), 
we conclude that each element g of G may be written in exactly one way as 
the sum of an element e~g in C(p'Ty~ ) and of an element i n  G~. It is clear 
that the mapping g-+el~g is an endomorphism of U. The endomorphisms 
thus  defined possess obviously the following properties: 

1) ~,.~ = C(p';~); 

2) e~aj= if i @ k ;  

3) If g r  G and e~.g=O for every k, then g~---0. 

Indeed, 3) is a consequence of the fact that if aT~g---0 for every k, theft 
g r  G~ foil every k, i. e. g is an element of infinite height for each p/., so that, 
by hypothesis, g - - 0 .  Thus we have shown that G is a p-direct sum over 
T in the sense of w 2. 

In order to .complete the proof of Theorem 2 we have only to show 
that if c. 0 holds for the mixed group G, then G contains no element of actu- 
ally infinite height and the endomorphism ring o f G  is commutative. The pre- 
vious part follows from that by (13) 

p~,, Tnp:;,o_To... .,nn"k~,,: Tn.. . . . .  O, 
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and hence a fortiori for O ~  

p ~ ' ~  N . . ,  op'll ~ G N . . . .  0. 

Now let e and ~Z be any two endomorphisms of G and let us consider the 
endomorphism d~e~--~e. Since any  endomorphism of O induces an endo- 
morphism in T and since, by c2) and Theorem 1, the endomorphism ring of 
T is commutative, we obtain 6 T =  0. Therefore T is contained in the kernel 
K of the endomorphism d. But then, by G/T,,-, G / K ~ d G  and by the fact 
that ply(G/T)= G / T  for every k, dG is an actually closed subgroup of O. 
Hence d G = 0 .  Thus we have shown that d:e~,--~a--=-O, and this comple- 
tes the proof of Theorem 2. 

TNEO[CEM 3. Suppose the mixed group G can be represented as G = T §  U, 
where T is the torsion subgroup of G. Then the endornorphism ring of G is 
commutative if and only if T is a locally cyclic group containing no subgroup 
of type C(p ~) and U is an actually closed subgroup of G with commutative 
endomorphism ring. 

REMAR~CS. It is clear that in the groups described by Theorem 3 the 
set of all elements of actually infinite height is just the subgroup U. Hence 
Theorem 2 and Theorem 3 exhaust two classes of mixed groups which have 
11o groups in common, since Theorem 2 concerns groups without elements of 
actually infinite height. 

It is easy to give examples for groups satisfying the conditions of Theo- 
rein 2. An instance for a group of this kind is the direct sum of a group T 
of the form (11) and the group U = / ? .  We shall show in w 6 that also 
among the groups described by Theorem 3 exist groups of the power of the 
continuum. 

W e  may expect to obtain further informations of the structure of the 
groups given by Theorem 3 only in case one would succeed in getting some 
further details of the structure of torsion free groups with commutative endo" 
morphism ring. Only in this case one can answer the question Cvhether or 
not the groups satisfying the conditions of Theorem 3 are all the mixed groups 
whose torsion group is a direct summand a n d  which satisfy the necessary 
condition of Lemma 1. 

PROOF OF THEOREN 3. 

The necessity of the conditions of Theorem 3 follows obviously from 
Lemma 5, as well as from the fact that if G = T~- U, then U ~  G/T and the 
commutativity of the endomorphism ring of G implies the same for U. 

In order to prove the sufficiency of the conditions, let us consider a 
group G ~---T-I-U satisfying the hypotheses of Theorem 3. It is obvious that 
both T and U are fully invariant subgroups of G (the latter being the set Of 
all elements of actually infinite height of G). Consequently any endomorphism 
of G induces an endomorphism both in T and U. On the other hand, as the 
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endomorphism ring both of T (see Theorem 1) and of U is commutative, T 
and U are contained in the kernel of the endomorphism a~ r,s for any two 
endomorphism e, r~ of G. Then the kernel of er~--~a contains als0 T-I- U =  G, 
i .e .  e~7-- r~e =- 0. 

Now the question arises as to whether the groups given by Theorems 
2 and 3 exhaust all mixed groups with commutative endomorphism ring. We 
have to answer this question in the negative. More exactly: 

I f  the actual prime system of the mixed group G With commutative endo- 
morphism ring contains all the prime numbers, then G is covered by Theo- 
rem 2. I f  the actual prime system of G consists only of  a finite number of  
primes, then G is covered by Theorem 3. In all other cases - -  i. e. when the 
actual prime system of G contains infinitely many prime numbers, but not all 
o f  them - -  there is a group G with commutative endomorphism ring which is 
not covered neither by Theorem 2, nor by Theorem 3. 

In order to prove this, let G be a mixed group with commutative endo- 
morphism ring, and first let us consider the case when the actual prime system 
of G consists of all primes. Then by Lemmas 5 and 4 all elements of actu- 
ally infinite height of G form a torsion free subgroup A closed for every 
prime. Therefore, according to a well-known theorem ~ A is a direct summand 
of G: 

(15) O = O 0 + A  

where Go is already a group without elements of actually infinite height, i. e. 
Go is covered by Theorem 2. But by Theorem 2, G0. T is a torsion free 
group closed for every prime and thus, it is a discrete direct sum of rational 
groups R. Hence Go~,~ Go"T~-~R. On the other hand, A-~ 0 would imply 
R'GA. Thus, by (15) one might find an endomorphism s of G such that 
0 4= e(G0) ~ A contradicting Lemma 1. Therefore only A = 0 i s  possible, com- 
pleting the proof that in this case G is covered by Theorem 2. 

Let us proceed to the case if the actual prime system of G contains but 
a finite number of primes. Then by Lemma 5, T i s  a finite cyclic grou p and 
a repeated application of Lemma 2 leads to the representation G =  T ~ - U  
which shows that now G is covered by Theorem 3. 

Finally let us consider the case when the actual prime system of G con- 
tains an infinity of prime numbers p~,p~, . . . .  but not all of them. Let q be 
a prime not actual for G and denote by R,~ the additive group of all ratio- 
nal numbers whose denominator is relatively prime to q. Then 

O = ~'~ + ~ C(p,,) (16) 

is a mixed group covered neither by Theorem 2, nor by Theorem 3, consi- 
dering that the set of elements of actually infinite height of it is Rq, further 
neither R,~=0 nor G =  R~-[-T holds. That the endomorphism ring of the 
group (16) is commutative, we shall show below. (See Theorem 5.) 
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It is worth while having a look at the consequences of- our results in 
the most general case. We get a necessary condition as well as a sufficient 
one for the endomorphism ring of a mixed group G to be commutative. The 
previous condition is contained in Theorem 4 and is an immediate consequence 
of Lemmas 4 and 5 as well as of the first part of the proof of Theorem 2. 

THEOREM 4. I f  the endomorphism ring of a mixed group G is commu- 
tative, then the torsion subgroup T of G is a group o f  type (11), G/T is 
closed for every actual prime number, the elements of actually infinite height 
of G form an actually closed torsion free subgroup A of G and G/A is a 
group without elements of actually infinite height with commutative endomor- 
phism ring (consequently, it is a group of the type given by Theorem 2). 

The following example shows that the conditions of Theorem 4 are not 
always sufficient for ensuring the commutativity of the endomorphism ring: 

c = `9 + C(p). 
2) 

The complete direct sum on the right side is to be extended over all distinct 
prime numbers p. By . ~  C(p)~,9 ,  G does not fulfils the requirement of 

~o 

Lemma 1, so that the endomorphism ring of G is not commutative. 
A sufficient condition is given by the following 

THEOREM 5. If  a mixed group G satisfying the conditions of Theorem 4 
has the property that there exists a prime number q such that q(G/A) = G/A, 
further A contains no element (4-O) of infinite height for q, 6 and the endo- 
morphism ring of.A is commutative, then 'the endomorphism ring of G is com- 
mutative. 

PROOF..Obviously T and A are fully invariant subgroups of G. Hence 
any endomorphism of G induces an endomorphism both in T and in A. But 
the endom0rphism ring of T and that of A are commutative, so that T and A 
are both contained in the kernel K of the endomorphism d=ev , - -~ ;e  for any 
two endomorphisms ~ and ~. Therefore 

(17) G/T,-,, G/K~-dG 
and 

(18) G/A ,~ G / K ~ d G .  

Since G/T is closed for every actual prime, (17) means that O'G is an actu- 
ally dosed subgroup of G, i. e. 6 G ~ A .  On the other hand, from q(G/A)= G/A 
and from (18) we may conclude that q ( 6 G ) ~ G .  However, the only sub- 
group of A closed for q is 0, hence d G = O  and d = ~ - - r , ~ - - - 0 .  

The group G in (16) satisfies obviously the conditions of Theorem 5, 
so that its endomorphism ring is commutative. 

Consequently q cannot be an actual prime for G. 
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w 6. Final remarks and some conjectures 

In order to construct groups of the power of the continuum with com- 
mutative endomorphism ring we need the following 

THEOREM 6. I f  H1, H2,. . .  ate countably many groups such that 
(I) The endomorphism ring of  H, is commutative (n = 1, 2 , . . . ) ,  
(II)/-L, is a fully invariant subgroup of the complete direct stlm G = ~_,H,,, 

(Ill) The only homomorphic image of ~H,,:~.~*H,~ in G is O, 
1hen the endomorphism ring of G =~_,H,~ is Commutative. 

PROOF. Let ~, ~ be arbitrary endomorphisms of G. By (II) and (I), each 
H,,, and hence also .a~*H~ is contained in the kernel of the endomorphism 
d = ~r/ r/~. Therefore 

By (III) we have 6G 0, consequently er~--~,e=0.  
Using Theorem 6 one can easily construct a torsion free group of the 

power of the continuum with commutative endomorphism ring. In order to 
do this, let Pl,P,,,. . .  be an infinity of distinct prime numbers and denote 
again by R~,, the additive group of all rational numbers whose denominator 
is relatively prime to p,,. Then the complete direct sum G = ~.~/?~,,, is a group 
having the required property. (II) is fulfilled, since R~,, contains all the elements 
,of G which are of infinite height for each prime @p,,.  (I11) also holds, for 
G/.~*Bp, is now a group closed for every prime number p,, while the only 
subgroup of G with the same property is obviouslY O. 

If q is a prime number different from each prime number p,,, then 

C(q)4-~_~),, 

is obviously a group satisfying the conditions of Theorem 3. Thus we have 
shown that among the groups covered by Theorem 3 there exist groups of 
/he power of the continuum. 

In conclusion we formulate some conjectures. 

CONJECTURE 1. If ever y endomorphic image of a group is fully invari- 
,ant, then the endomorphism ring of the group is commutative. 

CONJECTURE 2. Every group with commutative endomorphism ring is at 
most of the power of the continuum. 

If Conjecture 2 will prove to be true, then on basis of kemma 5 it is 
easy to show that even the following conjecture will hold: 

CONJECTURE 3. Any group with commutative endomorphism ring is iso- 
morphic with a subgroup of the group of all rotations of the circle. 

(Received 13 December 1951) 
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O FPYHHAX ABEJI7I, I(OJlbIiO 3H~OMOPqbH3MA I(OTOPBIX 
KOMMYTATHBHO 

T. CE33E (]le6per~en) ~ 7I. CEH~PEH (Ceres) 

( P e 3 ~ o  Me) 

B HaCTO~e~i pa6oTe aBTOpH nayqaroT TaKue rpynnH A6ea~, ~oabt~o ~n~oMopc~uaMa 
KOTOpBIX KoMMyTaTUBnO. ~oKaabmatOT, qTO Topanorpynna Tor~a n TO21bKO TOF~a o6na~aeT DTHM 
CBOHCTBOM, ecan aoKaabno RnKanq~a, T.e..aoMopqbna KaKo~-nn6yab noarpynne rpynnb~, 
COCTO~IuLei~ Ha npali~ennfi o~py~nOCTn Koneqno~ cTeneHm Hocne ~TOFO OHH nepexo;~nT I~ 
ncc~e;tonanHro cMemaHnblx rpynn, o6naaaromux yKasanb~M CBOi~CTBOM. Cpe~n ~Tr~X rpynri 
yRa~TC~ OnHCaTb rpynnbi, KoTopbIe MOFyT 6BITB npeAcTanJiennb~ B Bn~e np~o~i  cyM~sl 
rpynn~[ c TOp3ue~ n rpylIgbI 6e3 T0p3Hu ~ rpynns~, HecoAep~an~ei~ Ta~0ro 0TJ~nqHOrO 0T 
Hyna oneMenTa, KOTOpbli~ 6ecKoHeqHO BBICOK OTHOCHTe.rIBHO'nm6oro TRKOFO gpOCTOrO qHc.~a~ 
KOTOpbl~i ~BJ~eTC~ nopf[A~OM ~a~oro-nn6o 3neme~Ta rpynnbL Bo ~TOpO~ cnyqae ncnon~- 
3y~oT ne~oTopoe o6o6n~enne nO~Tn~ n p ~ o i i  cypress. Ha peayn~TaTOS caeayex, qTO 
cyLt~eCTByeT c~emannan rpynna, MOU~HOCTb ~OTQpO~ eCTb MOU~HOCTb ~OnTnnyyma, o6na;~a- 
roula~ Bblmeyr~aaa~HblM CBO~iCTBaN. 

ABTopa~ y~a~TC~ n0cTpOnTb n rpynny 6ea TOp3nn, MOIiI, HOCTb ~OTOpO~i eCTb MOIiI, HOCTt~ 
r 06na~amtayro ~THM CBOHCTBOM. B 3a~?ltoqeHnN OHH Bbl]J, BHFalOT rnnoTeay, 
COF.~aCHO l~OTOpO~ MOII~HOCTb rpyrIrIbb o6na~ato~e~i Bb~mey~aaanHb~M CBOHCTBaM, He MO;4~eT 
6blTb 603ee MOIII, HOCT~I ~O~tTnnyy~a. ~Ta rnnoTeaa ~O~eT 6MTB cqbopMy.q~roBanua n Ta~: 
nro6a~ rpynna, o6na~amma~ OTnM CnOiiCT~aM, nao~op~Ha ~a~oii TO no~rpynne rpynnb~, 
COCTO~m;eii n3 scex spamennii o~py~HOCTm 


