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1. General arithmetical rings. I t  is the purpose of  this paper to characterize 
and examine the structure of  a class of  rings which we according to FucrIS [3] shall 
call arithmetical. By an arithmetical ring is understood a commutative ring R with 
identity for which the ideals form a distributive lattice, i .e .  for which 

( a + b )  n r  : a N b + a N c  for all ideals of  R, 
or, equivalently, 

a + b N c = (a + b) N (a + c) for all ideals of  R. 

In this first section we are making no assumptions about  the zerodivisors in R, 
while we in the second section shall mainly deal with rings without proper  zero- 
divisors, i. e. integral domains. 

We start with the following 

THEOREM 1. Let R be a commutative ring which has an identity element. A neces, 
sary and sufficient condition for  R to be arithmetical is that, for  any maximal ideal m; 
the ideals o f  the local I generalized quotient ring R, ,  shouM be totally ordered by set 
inclusion. 

PROOF. Since an ideal a of  R is uniquely determined by its local components 
aR,, ~ and the formation of sums and intersections of  ideals is preserved by extension s 
of  ideals f rom R to Rm, it suffices to prove that a local ring is arithmetical if  and 
only if its ideals are totally ordered by set inclusion. I f  the latter of  these conditions 
is fulfilled, the sum of two ideals of  R is the set theoretical union; and since the 
lattice of  subsets of  a given set is distributive, the ,,if" part  is evident. 

To prove the "only if" part  it is clearly enough to prove that for two arbitrary 
elements g and b in an arithmetical local ring will either alb or b]a. 

In fact, since the ideals are assumed to form a distributive lattice we have 

(a) = (a) N [(b) + (a - b)] --- (a) n (b) + (a) N (a " b )  

so that a may be written in the form a = t + (a - b)c, where t is an element in (a) N (b) 
and bc is an element of  (a). Now, if c is a unit, b is a multiple of  bc and thus belongs 
to (a). I f  c is not a unit, (1 - c )  must be a unit, since the ring was supposed to be  
local. Therefore a is a multiple of  a ( 1 -  c) = t - b c ,  which is an element of  (b). 
This means that we have either alb or b[a. Q. E. D. 

1 Here and in the following local ring only means that the non-units form an ideal, without 
any assumption about the ascending chain conditions. 

See BOURBAKI [1], p. 112. 
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From the fact just proved that a local ring is arithmetical if and only if its 
ideals are totally ordered we immediately obtain the following 

COROLLARY 1. I f  R is an arithmetical ring, the ideals of  the quotient ring R~ 
are totally ordered for any prime ideal p of  R. 

At this place we shall draw one more conclusion of theorem 1. Since the prime 
ideals of  the generalized quotient ring Rm, m maximal, are in 1 -- 1 correspondence 
with the prime ideals of  R contained in m, the latter ones are totally ordered when R is~ 
arithmetical. Since any two ideals are either comaximal (i. e. their sum is R) or both 
contained in some maximal ideal, we have 

COROLLARY 2. In an arithmetical ring R any two prime ideals Pl and 102 none 
of  which is contained in the other, will be comaximal, i. e. 10~ +t02 = R. 

Before stating the next characterization of arithmetical rings we shall prove 
the quite elementary 

LEMMA. Let S be a multiplicatively closed set, not containing O, of  a commutative 
ring R with identity. I f  b is a finitely generated ideal and a an arbitrary ideal o f  R, 
we have Rs(a:b ) ~ Rsa:Rsb. 

PROOF. Since Rs(a :b). Rsb - Rs((a :b)b) ~ Rsa, the inclusion Rs(a :b) ~ RsQ :Rsb 
is obvious. To prove the converse inclusion Rsa :Rsb c= Rs(a :b) we consider an element 
Ix/s] in the ring R s of formal quotients, belonging to the left side. b is finitely generat- 
ed and therefore of  the form b - ( b x ,  . . . ,  b n ) .  Since Ix/s] is contained in Rsa:Rsb, 
[x/s].[bffl]-[xbffs], for any bi(1 <=i<=n) is an element of  Rs a and thus of  the form 
[xbffs] = [ai/si] for suitable as E a and s~ E S. By the definition of equality in Rs there 
exist elements t~ E S such that tixb~s~ = tials E a. This means that  x(t~ ... t , .  s~ ... s,) 
belongs to (a:b), so that [x/s]=[xtl.. .t , 's~...s,/stl. . . t , 'sl. . .Sn]CRs(Ct:b). Q. E. D. 

We are tlow able to prove 

THEOREM 2. Let R be a commutative ring which has an identity element. A neces- 
sary and suj~cient condition for  R to be arithmetical is that for  any pair o f  ideals 
a and b of  R, such that 

ct C=b, b finitely generated, 

there should exist an ideal c for  which a = b. c. 

PROOF. To prove the necessity let us consider an arbitrary pair of  ideals a, b, a c= b, 
b finitely generated, in an arithmetical ring R. We assert that (a :b) can be used as c. 

In fact, to show that b . ( a : b ) =  a it suffices to show that the local components 
agree. Taking into account that b is finitely generated, the preceding lemma tells 
us that 

(1. 1) R,,(b. (a :b)) = Rmb. Rr,(a :b) = R,~b. (Rma :R,~b). 

Since b is finitely generated and the ideals of  R,, are totally ordered (by theorem 
1), R,,b must be a principal ideal, obviously containing Rma; consequently the right 
side of  (1.1) is equal to R,~a. This proves the necessity. 

To establish the sufficiency we shall prove that the ideals in the local ring 
R,,, for any maximal m, are totally ordered if R satisfies the condition in the theorem. 
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I t  i s  clearly enough to prove that for any two elements [rl/sl], [r2/s2] in R,., 
r l ,  r2, s l ,  s 2 C R, s~, s2 r m, at least one is a multiple of  the other. In R we consider 
the ideals a = (r~) and b = (r~, r2). Since b is a finitely generated ideal containing a, 
the assumption about  R involves the existence of an ideal c such that a = b c. This 
means that there exist elements x and y in R for which 

r l = r l x + r z y  with r2xE(rl) and r2yE(rl). 

This implies for R.,  
(1.2) [r,/1] = [r,/1]. [x/i] + [r2/ll[y/1] 
where 
(1.3) [r2/1]. Ix/l] ~ ([r~/l]). 

I f  [x/ l ]  is a unit in R. ,  we have by (1.3) 

[r l/sl]l[r l/1]l[ru/1]" [x/1] [[rz/1]l[r2/s2]. 

I f  [x/l] is a non-unit, ([1/11- [x/t]) will be a unit in the local ring R,,, and so 
we get by (1.2) 

[r,/1]. ([I/11 - [x/ll) = [rz/1]. [y/l] 
which implies 

[rz/szll[r2/1][[rl/1 ] �9 ([1/1] - [x/1])l[r,/1]l[rl/sl ]. 

Thus at least one of the elements [r~/s~] and [r2/sz] is a multiple of  the other. Q. E. D. 
We shall now give some more characterizations of  arithmetical rings. 

THEOREM 3. For a commutative ring R with identity the following conditions 
are equivalent 

I. R is arithmetical. 

II. ( a + b ) : c  = a: c + b :c for arbitrary ideals a and b, and any finitely generated 
ideal c. 

III .  c :(a f~ b) = c :a + c :b for any finitely generated ideals a and b and arbitrary r 

PROOF. I=~II. Suppose R is arithmetical. To prove the identity in I I  it suffices 
to show that the extensions to R,, agree for any maximal ideal m. By the previous 
lemma and the assumption about c, sums and quotients of  ideals are preserved 
by this extension, so that it will do to show the relation ]I  for the ideals of  R,,. 
But in these rings I I  surely is true, since the set of  ideals is totally ordered. 

I ~ I I I .  Suppose R is arithmetical. Before proving the  identity in I I I  we notice 
that in any ring we have 

c:(a Ab) 2__ c : a +  c:b 

so that we need only prove the converse inclusion, a and b are finitely generated, 
but we do not know if a A b is finitely generated, but anyway the lemma implies 

Rm(r :(a O b)) c= Rm c :Rm( a ["1 b) = Rmc :(R rag ~ Rmb); 

(1.4) Rm(c :a+c :b )  = R,aC:Rma+ Rmc:Rmb = Rmc:(R,,aARn,b), 

the last equality in (1.4) following from the fact that the set of  ideals of  R, ,  is totally 
ordered. By the localization principle the desired inclusion is readily obtained. 
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II ~ I .  Let R be a ring for which II holds. We shall prove that for any two elements 
[ri/sl] and [rz/sz] in R,,, m maximal, at least one is a multiple of  the other. I f  in II 
we choose a =(rx), b =(r2), ,c = ( r  1, r 2 )  , w e  get 

R = (r, : r , )  + (r2 : rO, 

so that there exist elements x and y for which 

1 = x + y ,  rl[r2x, rzlrly. 

At least one of these elements does not belong to m, for instance x ~ m. Then [x/l] 
is a unit in R,,, and consequently 

[ri/s~]l[rt/1]l[r2x/1]J[r2/!]J[r2/sz]. 

III=~I. This may be proved similarly as II=*I. 
As an application of this theorem and corollary 1 we shall prove the following 

THEOREM 4. Let R be an arithmetical ring and K the full  ring o f  quotients o f  
R (i. e. the quotient ring with respect to the set o f  all elements which are not zero 
divisors in R).  Then any ring R*  between R and K is arithmetical, 

PROOF. The formal quotients from Kwill be denoted by a/b, and an element a E R 
will generally be identified with the quotient all so that R may be viewed as a subring 
of K. To prove that any ring R* for which R c= R* ~ K is arithmetical we consider 
the generalized quotient ring R,~, for an arbitrary maximal ideal m* of R*. The 
contraction m* NR of m* to R is a prime ideal p of R. I f  we can show that the homo- 

morphism, defined by [r/s]-~[r/I/s/1], r, SER, s~p,  of  Rp into R** is "onto" ,  
R*~, is the homomorphic image of Rp and its set of ideals thus totally ordered (Cor. 1). 
The proof  will then be complete in view of  theorem 1. 

The above homomorphism is easily seen to map a unit of  Rv on a unit of  R*~, 
and a non-unit of Rp on a non-unit of R*~, (pRp is mapped into m*R~,). To see 
that the homomorphism is surjective, we consider an arbitrary element in Rm** ." 

[rl/sl/r2/s2] (r I , r 2 ER, sl ,  s2 are not zero divisors of R, r2/s 2 ( I r a * ) .  

In  the arithmetical ring R we put a =(r2sl)  and b =(rIs2) , and by applying 
condition II of theorem 3 we get 

(r2s 1 : rasz) + (rls z : 1"281) = R, 

so that there exist elements x and y in R for which 

(1.5) x + y  = 1, xrls2 = r2slu, yr2sl = rls2v, uCR, v~R.  

At least one of the elements x and y does not belong to p =m *  AR;  thus there 
will be two cases to go through. 

I f  xf[p, [u/x] is an element in Rp which is mapped on [u/1/x/1]=[rl/s,/r2/s2]. 

I f  y r p, [v/y] is an element in R whose image [v/1 /1] is a unit in R~**, since 
(1.5) involves 

[v/1/y/1]" [rl/sl/r2/s2] = [vrl/sl/yr2/s2] = [1/1/1/1]. 
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Therefore [v/y] is a unit in Rp too. This means that v r p, so that [y/v] is an element 
1 

of  Rp, which, because of  (1.5) is mapped on [r~/sl/r2/s2]. Thus in either case 

[ra/sa/rz/sz] belongs to the image of the above homomorphism which is consequently 
/ 

a homomorphism onto. Q. E. D. 

In view of  theorem 2 it is easily seen that any Btzout  ring, i. e. a commutative 
ring with identity in which any finitely generated ideal is principal, is arithmetical. 
The converse, of  course, is generally not true. In the next theorem, however, we 
shall show that the converse will hold if some restriction is imposed on the ring. 
In fact, it turns out that in the semiqocal case, i. e. provided the ring has only finitely 
many maximal ideals, we can prove the converse. 

THEOREM 5. A semi-local arithmetical ring is a Bdzout ring. 

PROOF. Let m~, m2, ..., m,  be the finitely many maximal ideals of  the arith- 
metical ring R. We have to show that any finitely generated ideal is principal, but 
it is clearly enough to show that any ideal a = (a, b) generated by two elements of  
R is principal. 

We shall do this by constructing two elements ~ and fl in R such that the local 
components of  the principal ideal (~a § fib) satisfy the conditions 

(1.6) (~a+flb)Rm, ~- aR~,,+bR,., for l<-i<=n; 

because this by the localization principle ensures that (~a+f lb )= (a, b). Since 
the ideals of  R,,, form a totally ordered set, for each mi we have either aRm, c= hR,,, 
or bR,,~c_ aRm,. 

Let us assume that the mi ' s  are numbered such that aR,,,~bR,,~ for 1 <=i<=k 
and bR,,,C=aR,., for k<i<=n. Since a maximal ideal is not contained in any other 
maximal ideal different f rom itself, it follows from NORTHCOTT [8] 1. Prop. 6 that 
there exists for each i an element cs such that c~ ~ ms, but cs ~ mj  for i ~ j .  Set ~ -- ca...c k 
and fl:Ck+~...C,, then acres  for l<=i<=k, but c~(~m s for k<i<=n, and fl~ms for 
k < i <= n, but fl ~ ms for 1 <= i <= k. With this choice of  ~ and fl we have for the principal 
ideal (aa + fib) 

(aa+flb)R,,, = bR,,, for l <=i<=k, 

(ea+flb)R,,  l = aR.,, for k<i<=n. 

Since in the first case aR,.,C=bR,,, and in the second bR, , ,~aR, , , ,  in either case 
we have obtained (1.6). Q. E. D. 

It  is a well-known fact that in a Noetherian ring any irreducible ideal is primary, 
while a primary ideal need not be irreducible. It  might be w o r t h  while noticing 
that for an arithmetical ring the situation is just the opposite. In fact, in a valuation 
ring of rank 2 all ideals are irreducible, since they are totally ordered by set inclusion, 
but not all of  its ideals are primary. That  a primary ideal, however, is irreducible 
is stated in 

THEOREM 6. In an arithmetical ring R any primary ideal is irreducible. 

PROOF. Let q be a primary ideal of  R with the prime ideal p as its radical. Let 
us further assume that q is represented as an intersection q - - a O  b. We have to 
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show that q = a or q = b. By passage to the generalized quotient ring Rv we get 
ctRp---aRp (q bRo. By corollary 1 the set of  ideals of  Ro is totally ordered, so that 
qRp = aRv or qRp =bRp. Suppose qR o = aRp. In that case we shall finish the proof  
by showing that q = a. Since q is p-primary, the contraction of qRv = aRp to R is q. 
The contraction of aRo to R is the S-component as of  a, S denoting the complement 
o fp  in R. Now, clearly a ____ as so that a~ = q implies a c_ q. The converse of  this inclusion 
being obvious, we have a = q .  Q. E. D. 

By the way, if  R is an integral domain whose non-zero prime ideals are all 
of them maximal, theorem 6 may be reversed: 

THEOREM 6'. Let R be an integral domain for which any non-zero prime ideal 
is maximal. Then R is arithmetical i f  and only i f  any primary ideal is irreducible. 

PROOF. The "only if" follows from theorem 6. To obtain the " i f"  part  we have 
to show that the set of  ideals in any Rm, m maximal, is totally ordered by set inclusion. 
Now, mR, ,  is the only non-zero prime ideal of  R,,  and is therefore the radical o f  
any non-zero proper ideal in R,,. All non-zero ideals of  R,,  are mR, ,  primary, and 
consequently in a 1 1 correspondence with the m-primary ideals of  R. The inter- 
section of two m-primary ideals is itself an m-primary ideal, so that the irreducibility 
of the m-primary ideals means that these are totally ordered by set inclusion. Since 
the above 1 - 1 correspondence is order-preserving, the set of  ideals in R, ,  is totally 
ordered. Q. E. D. 

We shall conclude this section by pointing out some examples of  arithmetical 
zings. For  instance, it can be shown that a commutative ring R with identity has 
w. gl. dim. R<= 1 (i. e. Tor2R(A, B ) = 0  for all R-modules A and B) if and only if 
R is an arithmetical ring with no proper nilpotent elemets [7]. Combining this result 
with one of ENDO [2] it follows that R is semi-hereditary (which is a stronger pro- 
perty than w. gl. dim. R-~ 1) if and only if R is an arithmetical ring for which the 
full ring of  quotients is regular (in the sense of  von Neumann,  i. e. axa = a solvable 
in x for all a). 

In this connection it is of  some interest to  examine the structure of  arithmetical 
rings R with Rad R = (0). We shall here only prove the following 

THEOREM 7. A semi-local arithmetical ring R with Rad R---(0) is a direct sum 
of semi-local arithmetical domains. 

PROOF. The radical Rad R = (0) is the intersection of all minimal prime ideals 
of  R. I f  pt and P2 are two different minimal prime ideals, neither of  them can be 
contained in the other. By corollary 2 they are therefore comaximal, i. e. p,  _L P2 = R. 
In particular, this involves that a maximal ideal cannot contain more than one 
minimal prime ideal, so that the number of  minimal prime ideals in R is finite. 
R is thus a ring for which (0) is a finite intersection of pairwise comaximal prime 
ideals. By a well-known argument (ZARISKI--SAMuEL [9], III ,  Theorem 32) this 
implies that R is isomorphic to the direct sum of the corresponding residue class 
rings. These are integral domains which as homomorphic  images of  a semi-local 
arithmetical ring are themselves semi-local and arithmetical. 

REMARK. Since the properties, R semi-hereditary and w. gl. dim. R-<_ 1 are equi- 
valent for integral domains (first proved by HATTORI [5]) theorem 7 shows that 
a semi-local ring R is semi-hereditary if and (trivially) only if w. gl. dim. R <= 1. 
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2. Priifer rings. In  this section we shall restrict ourselves to consider integral 
domains. I f  b is a finitely generated ideal r (0) and a ~ 0 an element of  b, theorem 2 
shows that there exists an ideal c such that ( a ) = b - c ,  provided R is arithmetical. 
This means that any finitely generated ideal ~ (0) is invertible (or equivalently, 
projective if viewed as an R-module). Conversely, if  any finitely generated ideal 

(0) is invertible the condition of theorem 2 is readily seen to be fulfilled so that 
we have the following 

COROLLARY 3. An integral domain is arithmetical if and only if it is a Prfifer ring. 
Consequently for an integral domain R the following properties are identical: 

R is semi-hereditary, w. gl. dim. R <= 1, R is a Prfifer ring, R is arithmetical. 
Since the set of  ideals of  an integral domain is totally ordered if and only if 

it is a valuation ring, corollary 3 combined with theorem 1 yields the well-known 
result that the integral domain R is a Prfifer ring if and only if R,~ is a valuation 
ring for any maximal ideal m. 

Consequently, to any Prfifer ring R there is attached a set of  valuations o f  
the quotient field of  R, whose corresponding valuation rings are the quotient rings 
R, , .  In the following we shall refer to these valuations as associated valuations of  R .  

We shall now consider and characterize those Prfifer rings for which the asso- 
ciated valuations are independent. (For the notion of  independent valuations 
see for instance ZARISKI--SAMUEL [10], VI, w 10.) In our case this means that no 
two of the quotient rings Rm are contained in one and the same non-trivial valuation 
ring. Since it is implicitly contained in the proof  of  theorem 4 that any local ring be- 
tween an arithmetical domain R and its quotient field K is of  the form Rp for a 
suitable prime ideal p,3 the definition of independence of valuations shows that 
the associated valuations of  a Prfifer ring are independent if and only if the inter- 
section of any two different maximal ideals contains no prime ideals apart  f rom (0). 

In the next theorem we shall give another criterion for the independence of 
the associated valuations 

THEOREM 8. A necessary and sufficient condition for the associated valuations 
o f  a Pri~fer ring R to be independent is that any ideal a whose radical is a prime ideal 
should be irreducible. 

PROOF. Suppose first that the associated valuations of  R are independent. Let 
a be an ideal for which Rad a = p, p being a prime ideal of  R. We may assume that 
p ~ (0), since otherwise a would be (0) and thus trivially irreducible. Because of 
the assumption about  the independence of the valuations, p is contained in exactly 
one maximal ideal m*. Since p = Rad a, the same holds true for a. I f  a is represented 
as an intersection a - - b N  c we obtain by passage to the local r ing  Rm*: aRm,= 
= b R , , , N  oR,,,. R, , ,  is a valuation ring, therefore aR,,, must  be equal to one of  
the containing ideals, say aRm,=bR,,,. For  any maximal ideal m ~ m *  we have 
a ~ m ,  so that aRm=R,,  and therefore also bR,,=Rm. This means that a - - b  as 
they have the same local components. 

3 Combining this result with Theorem 2.5 in [4] one sees that an integral domain R is a Prfi- 
fer ring, if and only if any local ring between R and K has the form Rp for a suitable prime ideal 
p i n R .  
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Conversely, let R be a Prfifer ring for which Rad r = p, ~ being a prime ideal, 
implies that r is irreducible. We will assume that there exists a non-zero prime 
ideal ~ contained in two different maximal ideals m I and m2 and derive a contra- 
diction from this. 

We choose elements a and b in R such that aEm~,  a~m2,  bern2,  b ~ m l ,  and 
a non-zero element c C p c= m~ N m 2 . Let S be the complement of  the union of ml  
and m 2 in R. S is multiplicatively closed and the corresponding quotient ring Rs 
is an arithmetical semi-local ring with m~R s and m2R s as its only maximal ideals. 
The radical of  the extension ideal (c)Rs c_ pRs is the intersection of all prime ideals 
in Rs containing (c)Rs. Any such prime ideal is contained in either m~Rs or mERs, 
and consequently cannot be comaximal to P R s C m l R s G m 2 R  s. By corollary 2 
it must  contain or be contained in pRs. I f  it contains pR s it is superfluous by the 
formation of the above intersection and may be omitted. Hence, Rad ((c)Rs) is the 
intersection of  aU prime ideals contained in pR s and containing (c)R s. Again by 
corollary 2 these prime ideals are totally ordered by set inclusion. By a well-known 
argument Rad ((c)Rs) must therefore be a prime ideal. The radical of  the contraction 
of  (c)Rs is the contraction of the radical and thus a prime ideal; in other words, the 
radical of  the S-component (C)s is a prime ideal p'~ in R, where p* ~ ~. Now, the 
radicals of  a -- ((a) + ml  N m2)" (C)s and b = ((b) + m~ N m2)" (C)s are also p*, and 
thereby Rad (a Nb)= tY  ~. By the assumption about the Prfifer ring R, a N b must 
be irreducible, so that a c b or a D b. Suppose, for instance, that a c b. Then aR,, 2 c_ 
~ b R , ,  2. I t  is readily seen that (c)sRm2=(c)Rm ~, ( ( a ) + m l N m 2 ) R , , : = R , ,  2 and 

((b) + ml  N m2)R,,2 = m2Rm:. Consequently, we should have (c)R,,~ = aR,,~ c= bR,,~ = 
----(c)m2R,,~ which is obviously impossible and we have arrived at the desired con- 
tradiction. Q. E. D. 

I f  R is a Prtifer ring and a an arbitrary ideal of  R, the radical of  aR,, in the 
quotient ring R, ,  is a prime ideal, because R,,  is a valuation ring. Hence the radical 
of  the contraction aR,~ N R is also a prime ideal. I f  the associated valuations 
of  R are independent, aR m n R is irreducible. 

I t  is a well-known fact that any ideal in any commutative ring is a finite or infinite 
intersection of irreducible ideals. The above remark allows us to give an explicit 
representation of this kind for Prfifer rings with independent valuations. By the 
localization principle (slightly transformed) we have for any integral domain R 
and any ideal a of  R 

(2. 1) a = n (aRm N R) 
m 

m running through the maximal ideals of  R. 
We ibrmulate this in 

COROLLARY 4. I f  R is a Prfifer ring for which the associated valuations are 
independent, (2. 1) gives a representation of  the arbitrary ideal a as an intersection 
o f  irreducible ideals. 

A more special class of  Prfifer rings R, "R of Dedekind type" has been considered 
by JAFFARD [6] which actually, in the terminology used here, means that R is a Prfifer 
ring with independent valuations for which any infinite intersection of different 
maximal ideals is (0). For  such rings only finitely many ideals of  the intersection 
in (2. 1) are r R. Moreover, if we delete the ideals which are R we get an irredundant 
decomposition of  a into irreducible ideals, provided that a #(0) .  
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Indeed, let us assume that a component aR,,~ N R were superfluous in (2. 1). 
In that case we should have 

(2.2) ag,,lfqR~ n (aRmnR), 
t n~ml  

the intersection of the right side being finite. By a theorem due to FUCHS [3] an 
irreducible ideal of  an arithmetical ring has the characteristic property that if i t  
contains the intersection of two ideals, it must contain at least one of  them. Applying 
this result to the finite intersection in (2, 2), we see that aR,,~ NR~aR,,2NR for 
a suitable m 2 # m  I. Hence aR~2NRC=ml Am2. But the radical of  aR,,~GR is 
a non-zero prime ideal contained in ml Am2, contradicting the independence 
of  the associated valuations of  R. 

Furthermore, any irreducible ideal a # (0) is equal to exactly one o f  its compo- 
nents aR,,NR. This involves that any representation of  an ideal a # ( 0 )  as a finite 
irredundant intersection of irreducible ideals must coincide with the one just con- 
structed. In other words: 

COROLLARY 5. Let R be a Pr~ifer ring for which the associated valuations are 
independent and for which any infinite intersection of different maximal ideals is (0). 
The intersection (2. 1) is a finite irredundant decomposition in irreducible ideals 
o f  the arbitrary ideal a # (0), provided we delete the components equal to R. This 
is the only finite irredundant decomposition of a into irreducible ideals. 
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