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1. General arithmetical rings. It is the purpose of this paper to characterize
and examine the structure of a class of rings which we according to FucHs [3] shall
call arithmetical. By an arithmetical ring is understood a commutative ring R with
identity for which the ideals form a distributive lattice, i. e. for which

(a+b)Ne¢ =aNb+aNec for all ideals of R,
or, equivalently, )
a+bMNec = (a+b)N(a+¢) forallideals of R.

In this first section we are making no assumptions about the zerodivisors in R,
while we in the second section shall mainly deal with rings without proper zero-
divisors, i. e. integral domains.

We start with the following

THEOREM 1. Let R be a commutative ring which has an identity element. A neces-
sary and sufficient condition for R to be arithmetical is that, for any maximal ideal m,
the ideals of the local* generalized quotient ring R, should be totally ordered by set
inclusion.

PrOOF. Since an ideal a of R is uniquely determined by its local components
aR,? and the formation of sums and intersections of ideals is preserved by extensions
of ideals from R to R,,, it suffices to prove that a local ring is arithmetical if and
only if its ideals are totally ordered by set inclusion. If the latter of these conditions
is fulfilled, the sum of two ideals of R is the set theoretical union,; and since the
lattice of subsets of a given set is distributive, the ,,if”” part is evident.

To prove the “only if” part it is clearly enough to prove that for two arbitrary
elements 2 and b in an arithmetical local ring will either alb or bja.

In fact, since the ideals are assumed to form a distributive lattice we have

(@ =@N[@)+(@—-b)] = @NGB)+@N(a—b)

so that ¢ may be written in the form ¢ = ¢+ (@ — b)c, where ¢ is an element in (a) (1 (d)
and bc is an element of (). Now, if ¢ is a unit, b is a multiple of bc and thus belongs
to (a). If ¢ is not a unit, (1 —c¢) must be a unit, since the ring was supposed to be
local. Therefore a is a multiple of a(l —¢) = t—bc, which is an element of (b).
This means that we have either a|b or bla. Q. E. D.

1 Here and in the following local ring only means that the non-units form an ideal, without
any assumption about the ascending chain conditions.
¢ See BourBaKI [1], p. 112.
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_ From the fact just proved that a local ring is arithmetical if and only if its
ideals are totally ordered we immediately obtain the following

CoroLLARY 1. If R is an arithmetical ring, the ideals of the quotient ring R,
are totally ordered for any prime ideal p of R.

At this place we shall draw one more conclusion of theorem 1. Since the prime
ideals of the generalized quotient ring R,,, m maximal, are in 1-—1 correspondence
with the prime ideals of R contained in m, the latter ones are totally ordered when Ris-
arithmetical. Since any two ideals are either comaximal (i. e. their sum is R) or both
contained in some maximal ideal, we have

COROLLARY 2. In an arithmetical ring R any two prime ideals p, and p, none
of which is contained in the other, will be comaximal, i. e. p; +p, = R.

Before stating the next characterization of arithmetical rings we shall prove
the quite elementary

LemMA. Let S be a multiplicatively closed set, not containing 0, of a commutative
ring R with identity. If b is a finitely generated ideal and o an arbitrary ideal of R,
we have Rg(a:b)= Rga:Rsb.

PrOOF. Since Rg(a:b):Rgb=Rg((a:b)b)& Rsa, the inclusion Rg(a:b) S Rsa:Rsb
is obvious. To prove the converse inclusion Rga:Rsb & Rg(a:b) we consider an element
[x/s]1in the ring Ry of formal quotients, belongmg to the left side. b is ﬁmtely generat-

ed and therefore of the form b=(b,, ..., b,). Since [x/s] is contained in Rgsa:Rsb,

[x/s1-[b;/11=[xb;/s], for any b(1=i=n) is an element of Rga and thus of the form

[xb;/s] = [a;/s;] for suitable a;€a and s;€ S. By the definition of equality in Ry there

exist elements #;€ S such that #,xb;s;="t;a;s € a. This means that x(¢; ... 7,5, ... 5,)

belongs to (a:b), so that [x/s]=[xt;...t,*S;...8,/St;...t,+54...5,] € Rs(a:b). Q. E. D.
We are now able to prove ‘

THEOREM 2. Let R be a commutative ring which has an identity element. A neces-
sary and sufficient condition for R to be arithmetical is that for any pair of ideals
a and b of R, such that

aChb, b finitely generated,

there should exist an ideal ¢ for which a=b-c.

Proor. To prove the necessity let us consider an arbitrary pair of ideals a,b,a &b,
b finitely generated, in an arithmetical ring R. We assert that (a:b) can be used as c.

In fact, to show that b.(a:b)=a it suffices to show that the local components
agree. Taking into account that b is finitely generated, the preceding lemma tells
us that

Q.1 R, (b-(a:b)) =R bR, (a:b)=R,b-(Ra:R D).

Since b is finitely generated and the ideals of R, are totally ordered (by theorem
1), R,.b must be a principal ideal, obviously containing R,,a; consequently the right
side of (1. 1) is equal to R a. This proves the necessity.

To establish the sufficiency we shall prove that the ideals in the local ring
R,,, for any maximal m, are totally ordered if R satisfies the condition in the theorem.

Acta Mathematica Academiae Scientiarum Hungaricae 17, 1966



ARITHMETICAL RINGS 117

It is clearly enough to prove that for any two elements [r,/s,], [r,/s,] in R,
Fi, ¥y, 8,5, €R, 8y, 5, ém, at least one is a multiple of the other. In R we consider
the ideals a =(r,) and b=(r,, r,). Since b is a finitely generated ideal containing a,
the assumption about R involves the existence of an ideal ¢ such that a=b¢. This
means that there exist elements x and y in R for which

re=rx+r,y with ryx€(r;) and r,y€(ry).
This implies for R,

(1.2) Tr/1] = [r/1]- [/ 11+ [r2/111p/1]
where
(1. 3) [r2/1]- [x/11 €([r,/1D).

If [x/1] is a unit in R,, we have by (1. 3)
[r1/s:Ilre/10[r 2/ 10 [x/1]1[r 2/ 101[r 2/ 5]
If [x/1] is a non-unit, ([1/1]—[x/1]) will be a unit in the local ring R, and so
we get by (1.2)
[ry/1]- (/1= [x/1]) = [r2/1]-[¥/1]

[r2/s20lr2/ 11101 /1]- ((L/1] = [/ IDLr /1014 /54].

Thus at least one of the elements [r,/s,] and [r,/s,] is a multiple of the other. Q. E. D.
We shall now give some more characterizations of arithmetical rings..

which implies

THEOREM 3. For a commutative ring R with identity the following conditions
are equivalent

1. R is arithmetical.

I. (a+Db):c = a:c+Db:c for arbitrary ideals a and b, and any finitely generated
ideal c.

IIL. c:(a\b) = c:a+ ¢:b for any finitely generated ideals a and b and arbitrary «¢.

Proor. I=11. Suppose R is arithmetical. To prove the identity in I it suffices
to show that the extensions to R,, agree for any maximal ideal m. By the previous
lemma and the assumption about ¢, sums and quotients of ideals are preserved
by this extension, so that it will do to show the relation II for the ideals of R,,.
But in these rings II surely is true, since the set of ideals is totally ordered.

I=1II. Suppose R is arithmetical. Before proving the identity in III we notice
that in any ring we have

c:(aMb)2cia+c:b

so that we need only prove the converse inclusion. a and b are finitely generated,
but we do not know if aMb is finitely generated, but anyway the lemma implies

R (c:(aNB)E R, c: R (aNb)=R,c:(RaNR,D);
(1. 4) R, (c:a+¢b) = R ¢:R a+ R, ¢:R, D = R, ¢:(R,aNR,D),

the last equality in (1. 4) following from the fact that the set of ideals of R, is totally
ordered. By the localization principle the desired inclusion is readily obtained.
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II=1. Let R be a ring for which IT holds. We shall prove that for any two elements
fry/s,] and [r,/s,) in R,,, m maximal, at least one is a multiple of the other. If in II
we choose a=(ry), b=(r,), c=(ry, r,), we get

R = (riir)+(rairy),
so that there exist elements x and y for which
1 = x4y, rirax, rylryy.
At least one of these elements does not belong to m, for instance x ¢ m. Then [x/1]
is a unit in R,,, and consequently
[r1 /s Hlr U2/ T2/ 1][r2/52]-
IlI=T. This may be proved similarly as II=1.
As an application of this theorem and corollary 1 we shall prove the following

THEOREM 4. Let R be an arithmetical ring and K the full ring of quotients of
R (i. e. the quotient ring with respect to the set of all elements which. are not zero
divisors in R). Then any ring R* between R and K is arithmetical.

ProoF. The formal quotients from K will be denoted by a/b, and an element a€ R
will generally be identified with the quotient a/1 so that R may be viewed as a subring
of K. To prove that any ring R* for which RS R* € K is arithmetical we consider
the generalized quotient ring R« for an arbitrary maximal ideal m* of R*. The
contraction m* ('R of n1* to R is a prime ideal p of R. If we can show that the homo-
morphism, defined by [r/s]—[r/l / s/1], r, S€R, s¢p, of R, into R« is onto”,
R+ is the homomorphic image of R, and its set of ideals thus totally ordered (Cor. 1).
The proof will then be complete in view of theorem 1.

The above homomorphism is easily seen to map a unit of R, on a unit of Ry
and a non-unit of R, on a non-unit of Rk« (PR, is mapped into m*Rys). To see
that the homomorphism is surjective, we consider an arbitrary element in Ris«:

[rl/sl/rz/sz] (ry, 7, €R, 51,5, are not zero divisors of R, r,/s, § m*).

In the arithmetical ring R we put a=(r,s;) and b=(r,s,), and by applying
condition Il of theorem 3 we get

(ra81:r35) +(r152:728) = R,
so that there exist elements x and y in R for which
(1.5) x—Fy =1, Xr.8, = ryst; Yrys; = ri$v, u€R, veER.

At least one of the elements x and y does not belong to p =ut* (1 R; thus there
will be two cases to go through.

If x¢p, [u/x] is an element in R, which is mapped on [u/1 / x/1]=[r(/s, / r2/8,].

If y¢p, [v/y] is an element in R whose image [v/1 / y/1] is a unit in R}, since
(1. 5) involves

[0/1[y/11-rsfsy [rafs) =Tor /s, [yrafs) =171 11,
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Therefore [v/y] is a unit in R, too. This means that v ¢ p, so that [y/v] is an element
of R,, which, because of (1.5) is mapped on [ry/s,[r,/s,]. Thus in either case

[ri/s1 / r,/s,] belongs to the image of the above homomorphism which is consequently
a homomorphism onto. Q. E. D.

In view of theorem 2 it is easily seen that any Bézout ring, i. e. a commutative
ring with identity in which any finitely generated ideal is principal, is arithmetical.
The converse, of course, is generally not true. In the next theorem, however, we
shall show that the converse will hold if some restriction is imposed on the ring.
In fact, it turns out that in the semi-local case, i. e. provided the ring has only finitely
many maximal ideals, we can prove the converse.

THEOREM 5. A semi-local arithmetical ring is a Bézout ring.

ProofF. Let m,, m,, ..., m, be the finitely many maximal ideals of the arith-
metical ring R. We have to show that any finitely generated ideal is principal, but
it i8 clearly enough to show that any ideal a=(a, b) generated by two elements of
R is principal.

We shall do this by constructing two elements o and S in R such that the local
components of the principal ideal (aa+ Bb) satisfy the conditions

(1.6) (@aa+BH)R,,, = aR,,+bR,, for l1=i=n;

because this by the localization principle ensures that (a4 fb) = (a, b). Since
the ideals of R, form a totally ordered set, for each m; we have either aR,,, S bR,
or bR, SaR,,.

Let us assume that the ny;’s are numbered such that aR,,S bR, for 1=i=k
and bR, S aR,, for k<i=n. Since a maximal ideal is not contained in any other
maximal ideal different from itself, it follows from NorrtHCOTT [8] 1. Prop. 6 that
there exists for each i an element ¢; such that ¢;€m;, but ¢;§ m; for i =j. Seta=c;...¢;
and f=c;4q...C,, then a€m; for 1=i=k, but a¢m; for k<i=n, and fem,; for
k <i=n, but ¢ m, for 1 =i=k. With this choice of « and  we have for the principal
ideal (aa + Bb)

(0a+pD)R,, = bR, for 1=i=k,

(Ola-l-ﬂb)Rmi = aR,, for k<i=n.

Since in the first case aR,,, S bR, and in the second bR, EaR,,, in either case
we have obtained (1. 6). Q. E. D.

It is a well-known fact that in a Noetherian ring any irreducible ideal is primary,
while a primary ideal need not be irreducible. It might be worth.while noticing
that for an arithmetical ring the situation is just the opposite. In fact, in a valuation
ring of rank 2 all ideals are irreducible, since they are totally ordered by set inclusion,
but not all of its ideals are primary. That a primary ideal, however, is irreducible
is stated in

THEOREM 6. In an arithmetical ring R any primary ideal is irreducible.

PROOF. Let q be a primary ideal of R with the prime ideal p as its radical. Let
us further assume that q is represented as an intersection q=a(\b. We have to

Acta Mathematica Academiae Scientiarum Hungaricae 17, 1966



120 C. U, JENSEN

show that q=a or q=b. By passage to the generalized quotient ring R, we get
qR,=aR,NbR,. By corollary 1 the set of ideals of R, is totally ordered, so that
qR,=aR, or qR,=bR,. Suppose qR,=aR,. In that case we shall finish the proof
by showing that q =a. Since q is p-primary, the contraction of qR, =aR, to R is q.
The contraction of aR, to R is the S-component a, of a, S denoting the complement
of pin R. Now, clearly a < a, so that a,=q implies a € q. The converse of this inclusion
being obvious, we have a=gq. Q. E.D.

By the way, if R is an integral domain whose non-zero prime ideals are all
of them maximal, theorem 6 may be reversed:

THEOREM 6’. Let R be an integral domain for which any non-zero prime ideal
is maximal. Then R is arithmetical if and only if any primary ideal is irreducible.

PRrROOF. The “only if” follows from theorem 6. To obtain the “if”” part we have
to show that the set of ideals in any R,,, m maximal, is totally ordered by set inclusion.
Now, mR,, is the only non-zero prime ideal of R,, and is therefore the radical of
any non-zero proper ideal in R . All non-zero ideals of R,, are mR,, primary, and
consequently in'a 1 —1 correspondence with the m-primary ideals of R. The inter-
section of two m-primary ideals is itself an m-primary ideal, so that the irreducibility
of the m-primary ideals means that these are totally ordered by set inclusion. Since
the above 1—1 correspondence is order-preserving, the set of ideals in R, is totally
ordered. Q. E. D.

We shall conclude this section by pointing out some examples of arithmetical
rings. For instance, it can be shown that a commutative ring R with identity has
w. gl. dim. R=1 (i.e. Tor¥(4, B)=0 for all R-modules 4 and B) if and only if
R is an arithmetical ring with no proper nilpotent elemets [7]. Combining this result
with one of ENDO [2] it follows that R is semi-hereditary (which is a stronger pro-
perty than w. gl. dim. R=1) if and only if R is an arithmetical ring for which the
full ring of quotients is regular (in the sense of von Neumann, i. e. axa=a solvable
in x for all a).

In this connection it is of some interest to examine the structure of arithmetical
rings R with Rad R=(0). We shall here only prove the following

THEOREM 7. 4 semi-local arithmetical ring R with Rad R=(0) is a direct sum
of semi-local arithmetical domains.

Proor. The radical Rad R =(0) is the intersection of all minimal prime ideals
of R. If p, and p, are two different minimal prime ideals, neither of them can be
contained in the other. By corollary 2 they are therefore comaximal, i. e. p,; +p,=R.
In particular, this involves that a maximal ideal cannot contain more than one
minimal prime ideal, so that the number of minimal prime ideals in R is finite.
R is thus a ring for which (0) is a finite intersection of pairwise comaximal prime
ideals. By a well-known argument (ZARISKI-—SAMUEL [9];, III, Theorem 32) this
implies that R is isomorphic to the direct sum of the corresponding residue class
rings. These are integral domains which as homomorphic images of a semi-local
arithmetical ring are themselves semi-local and arithmetical.

REMARK. Since the properties, R semi-hereditary and w. gl. dim. R=1 are equi-
valent for integral domains (first proved by HATTORI {5]) theorem 7 shows that
a semi-local ring R is semi-hereditary if and (trivially) only if w. gl. dim. R=1.
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2. Priifer rings. In this section we shall restrict ourselves to consider integral
domains. If b is a finitely generated ideal =(0) and a =0 an element of b, theorem 2
shows that there exists an ideal ¢ such that (a)=b-¢, provided R is arithmetical.
This means that any finitely generated ideal =(0) is invertible (or equivalently,
projective if viewed as an R-module). Conversely, if any finitely generated ideal
=(0) is invertible the condition of theorem 2 is readily seen to be fulfilled so that
we have the following

COROLLARY 3. An integral domain is arithmetical if and only if it is a Priifer ring.

Consequently for an integral domain R the following properties are identical:
R is semi-hereditary, w. gl. dim. R=1, R is a Priifer ring, R is arithmetical.

Since the set of ideals of an integral domain is totally ordered if and only if
it is a valuation ring, corollary 3 combined with theorem 1 yields the well-known
result that the integral domain R is a Priifer ring if and only if R, is a valuation
ring for any maximal ideal m.

Consequently, to any Priifer ring R there is attached a set of valuations of
the quotient field of R, whose corresponding valuation rings are the quotient rings
R,,. In the following we shall refer to these valuations as associated valuations of R.

We shall now consider and characterize those Priifer rings for which the asso-
ciated valuations are independent. (For the notion of independent valuations
see for instance ZARISKI—SAMUEL [10], VI, § 10.) In our case this means that no
two of the quotient rings R,, are contained in one and the same non-trivial valuation
ring. Since it is implicitly contained in the proof of theorem 4 that any local ring be-
tween an arithmetical domain R and its quotient field K is of the form R, for a
suitable prime ideal p,®> the definition of independence of valuations shows that
the associated valuations of a Priifer ring are independent if and only if the inter-
section of any two different maximal ideals contains no prime ideals apart from (0).

In the next theorem we shall give another criterion for the independence of
the associated valuations

THEOREM 8. A necessary and sufficient condition for the associated valuations
of a Priifer ring R to be independent is that any ideal a whose radical is a prime ideal
should be irreducible.

Proor. Suppose first that the associated valuations of R are independent. Let
a be an ideal for which Rad a=p, p being a prime ideal of R. We may assume that
p #(0), since otherwise a would be (0) and thus trivially irreducible. Because of
the assumption about the independence of the valuations, p is contained in exactly
one maximal ideal m*. Since p = Rad a, the same holds true for a. If a is represented
as an intersection a=b(1¢ we obtain by passage to the local ring R +: aR =
=bR, N ¢R + R, is a valuation ring, therefore aR, must be equal to one of
the containing ideals, say aR,+=DbR, « For any maximal ideal msm* we have
a&m, so that aR,=R,, and therefore also bR, =R,,. This means that a=b as
they have the same local components.

3 Combining this result with Theorem 2.5 in [4] one sees that an integral domain R is a Prii-
fer ring, if and only if any local ring between R and K has the form R, for a suitable prime ideal
p in R. :
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Conversely, let R be a Priifer ring for which Rad¢=p, p being a prime. ideal,
implies that ¢ is irreducible. We will assume that there exists a non-zero prime
ideal p contained in two different maximal ideals m, and m, and derive a contra-
diction from this.

We choose elements a and b in R such that a€m,,aém,, bém,, b¢m,, and
a non-zero element c€pSm,; MNm,. Let S be the complement of the union of m;
and m, in R. S is multiplicatively closed and the corresponding quotient ring Rg
is an arithmetical semi-local ring with m,Rs and m,Ry as its only maximal ideals.
The radical of the extension ideal (¢)Ry S pRy is the intersection of all prime ideals
in Rg containing (c)Rs. Any such prime ideal is contained in either m, Rg or m,Rg,
and consequently cannot be comaximal to pRgSm, RsMNm,R;. By corollary 2
it must contain or be contained in pRs. If it contains pRg it is superfluous by the
formation of the above intersection and may be omitted. Hence, Rad ((¢)R;) is the
intersection of all prime ideals contained in pRg and containing (¢)Rs. Again by
corollary 2 these prime ideals are totally ordered by set inclusion. By a well-known
argument Rad ((c)Rs) must therefore be a prime ideal. The radical of the contraction
of (¢)Ry is the contraction of the radical and thus a prime ideal; in other words, the
radical of the S-component (¢)g is a prime ideal p* in R, where p*C p. Now, the
radicals of a=((a)+m, Nm,)-(c)s and b=((b)+m, Nm,)-(c)s are also p*, and
thereby Rad (ab)=p*. By the assumption about the Priifer ring R, ab must
be irreducible, so that aEb or a2b. Suppose, for instance, that aSb. Then aR,,, S
SDOR,,,. It is readily seen that (c)sR,,=(c)Ru, ((@+m;Nm,)R,, =R, and
{()+m,; Nm,)R,,, =m,R,,,. Consequently, we should have (¢)R,,,=aR,,,SbR,,, =
=(c)m,R,,, which is obviously impossible and we have arrived at the desired con-
tradiction. Q. E. D.

If R is a Priifer ring and a an arbitrary ideal of R, the radical of aR,, in the
quotient ring R,, is a prime ideal, because R,, is a valuation ring. Hence the radical
of the contraction aR, R is also a prime ideal. If the associated valuations
of R are independent, aR, MR is irreducible.

It is a well-known fact that any ideal in any commutative ring is a finite or infinite
intersection of irreducible ideals. The above remark allows us to give an explicit
representation of this kind for Priifer rings with independent valuations. By the
localization principle (slightly transformed) we have for any integral domain R
and any ideal a of R

@210 a=[(aR,NR)

m running through the maximal ideals of R.
We formulate this in

CoROLLARY 4. If R is a Priifer ring for which the associated valuations are
independent, (2. 1) gives a representation of the arbitrary ideal a as an intersection
of irreducible ideals.

A more special class of Priifer rings R, “R of Dedekind type”” has been considered
by JAFFARD [6] which actually, in the terminology used here, means that R is a Priifer
ring with independent valuations for which any infinite intersection of different
maximal ideals is (0). For such rings only finitely many ideals of the intersection
in (2. 1) are = R. Moreover, if we delete the ideals which are R we get an irredundant
decomposition of a into irreducible ideals, provided that a3 (0).
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Indeed, let us assume that a component aR,, MR were superfluous in (2. 1).
In that case we should have
2.2 aR,,NR2 N (@R,NR),

m#Emy

the intersection of the right side being finite. By a theorem due to Fucss [3] an
irreducible ideal of an arithmetical ring has the characteristic property that if it
contains the intersection of two ideals, it must contain at least one of them. Applying
this result to the finite intersection in (2.2), we see that aR,, NR2aR,,N R for
a suitable m,>m,. Hence aR,,,(VREwm, Nm,. But the radical of aR,,NR is
a non-zero prime ideal contained in m,; Nm,, contradicting the independence
of the associated valuations of R.

Furthermore, any irreducible ideal a > (0) is equal to exactly one of its compo-
nents aR,, M R. This involves that any representation of an ideal a>(0) as a finite
irredundant intersection of irreducible ideals must coincide with the one just con-
structed. In other words:

COROLLARY 5. Let R be a Priifer ring for which the associated valuations are
independent and for which any infinite intersection of different maximal ideals is (0).
The intersection (2. 1) is a finite irredundant decomposition in irreducible ideals
of the arbitrary ideal a = (0), provided we delete the components equal to R. This
is the only finite irredundant decomposition of a into irreducible ideals.

( Received 20 April 1965)
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