FIXED POINT THEOREMS OF LOCAL CONTRACTION MAPPINGS ON MENGER SPACES

Fang Jin-xuan (方锦暄)

(Department of Mathematics, Nanjing Normal University, Nanjing)

(Received Jan. 3, 1990; Communicated by Zhang Shi-sheng)

Abstract

In this paper, we introduce the concept of ε -chainable PM-space, and give several fixed point theorems of one-valued and multivalued local contraction mapping on the kind of spaces.

Key words probabilistic metric space, Menger space, ε-chainable, local contraction mapping, fixed point

I. Introduction

In [1], Sehgal and Bharucha-Reid proved a fixed point theorem for one-valued local contraction mapping on (ε, λ) -chainable PM-spaces. Later, an important generalization of the theorem was given by Cain, Jr. and Kasriel^[2]. However, the restrictive conditions of the theorems given in [1] and [2] are too strong for t-norm Δ , where they all require that Δ satisfy the condition $\Delta(t,t) > t$. It is easy to show that there is only one t-norm satisfying the above condition, i.e. $\Delta = \min$. Therefore, the results have bigger limitations. In this paper, we introduce the concept of ε -chainable PM-space, which is a strengthening form of the definition of (ε, λ) -chainable PM-space. We only require that t-norm Δ satisfy $\sup_{0 \le t \le 1} \Delta(t, t) = 1$, Under the condition we give several fixed point theorems for one-valued and multi-valued local contraction mappings on the kind of spaces, which are the generalizations of the fixed point theorems of local contraction mappings on metric spaces given in [3,4].

II. Preliminaries

Throughout this paper, let $R = (-\infty, \infty)$, $R^+ = [0, \infty)$, Z^+ be the set of all positive integers. We denote by \mathscr{D} the set of all (left continuous) distribution functions. For the definitions, symbols and related terminologies on probabilistic metric space (for short PM-space) and Menger probabilistic metric space (for short Menger space) one can see [5] or [6].

Let (X,F,\mathcal{A}) be a Menger space. Schweizer, Sklar and Thorp^[9] pointed that if *t*-norm \mathcal{A} satisfies $\sup_{\substack{0 \leq t \leq 1}} \mathcal{A}(t, t) = 1$, then (X,F,\mathcal{A}) is a Hausdorff topological space and for each $p \in X$

 $\mathcal{U}_{\mathbf{r}} = \{U_{\mathbf{r}}(\mathbf{r}, \lambda) : \mathbf{r} > 0, \lambda \in (0, 1)\}$

is a base of neighborhoods of point p, where

 $U_{q}(e, \lambda) = \{q \in X : F_{q,q}(e) > 1 - \lambda\}$

Fang Jin-xuan

We denote by \mathscr{T} the above topology on X and it is called the (ε, λ) -topology of (X, F, Δ) . Thus we can induce a series of concepts in (X, F, Δ) for the topology \mathscr{T} , such as \mathscr{T} -convergence, \mathscr{T} -Cauchy sequence and \mathscr{T} -complete etc.

In the following, we always assume that *t*-norm Δ satisfies $\sup_{0 \le t \le 1} \Delta(t, t) = 1$, unless otherwise mentioned.

Proposition 1 Let (X, F, Δ) be a Menger space and δ be a given number in (0, 1]. For each $\lambda \in (0, \delta)$, we define a function $d_{\lambda} \colon X \times X \to R^+$ as follows:

$$d_{\lambda}(x, y) = \inf\{t > 0: F_{s,s}(t) > 1 - \lambda\}$$
(2.1)

Then $\{d_{\lambda}: \lambda \in (0, \delta)\}$ have the following properties:

- (1) $d_{\lambda}(x, y) < t$ if and only if $F_{\sigma, y}(t) > 1 \lambda$;
- (2) $d_{\lambda}(x, y) = 0, \forall \lambda \in (0, \delta)$ if and only if x = y;
- (3) $d_{\lambda}(x, y) = d_{\lambda}(y, x)$;
- (4) If λ , $\mu \in (0, \delta)$, $\mu < \lambda$, then $d_{\lambda}(x, y) \leq d_{\mu}(x, y)$, $\forall x, y \in X$;
- (5) For any $\lambda \in (0, \delta)$, there exists $\mu \in (0, \lambda]$, such that

$$d_{\lambda}(x, z) \leq d_{\mu}(x, y) + d_{\mu}(y, z), \qquad \forall x, y, z \in X$$

$$(2.2)$$

 $\{d_{\lambda}: \lambda \in (0, \delta)\}$ defined by (2.1) is called the family of *L*-pseudo metrics on *X* induced by the Menger space (X, F, Δ) .

Remark 1 By (4) and (5), we can extend the generalized triangle inequality, i.e. (2.2) as: (6) For any $n \in Z^+$ and any $\lambda \in (0, \delta)$, there exists $\mu \in (0, \lambda]$ such that

$$d_{\lambda}(x_{1}, x_{n}) \leq \sum_{i=1}^{n-1} d_{\mu}(x_{i}, x_{i+1})$$
 (2.2)'

where $x_1, x_2, ..., x_n$ are arbitrary *n* points in X.

Proposition 2 Let $\{d_{\lambda}: \lambda \in (0, \delta)\}$ be the family of *L*-pseudo metrics induced by Menger space $(X, F, \mathcal{A}), \{x_{n}\} \subset X, x \in X$, Then

(i)
$$x_n \xrightarrow{\mathcal{F}} x \iff F_{x_n, x}(t) \rightarrow 1, \quad \forall t > 0 \iff d_\lambda(x_n, x) \rightarrow 0, \quad \forall \lambda \in (0, \delta);$$

(ii) $\{x_n\}$ is a \mathcal{F} -Cauchy sequence

$$\iff F_{x_n, x_m}(t) \to 1 \quad (n, \ m \to \infty), \ \forall t > 0 \iff d_{\lambda}(x_n, x_m) \to 0 \quad (n, \ m \to \infty), \ \forall \lambda \in (0, \ \delta).$$

Definition 1 Let (X, F, Δ) be a Menger space, $A \subseteq X$ and $x \in X$ The probabilistic distance $F_{x,A}$ between point x and set A is defined as:

$$F_{s,A}(t) = \sup_{y \in A} F_{s,y}(t), \quad \forall t \in \mathbb{R}.$$

We denote by CB(X) the family of nonempty \mathcal{F} -closed probabilistically bounded sets and define a mapping. $\tilde{F}:CB(X)\times CB(X)\to \mathcal{F}$ as follows (we denote $\tilde{F}(A,B)$ by $\tilde{F}_{A,B}$):

$$\widetilde{F}_{A,B}(t) = \sup_{a < i} \Delta(\inf_{a \in A} \sup_{b \in B} F_{a,b}(s), \inf_{b \in B} \sup_{a \in A} F_{a,b}(s))$$
$$\forall A, B \in CB(X), t \in R$$

 \tilde{F}_A , s is called the Menger-Hausdorff metric induced by $F^{[7]}$.

Remark 2 In [7], F_{xA} is the function defeind by

$$F_{s,A}(t) = \sup_{s < t} \sup_{y \in A} F_{s,y}(s), \quad \forall t \ge 0$$

It is not difficult to show that

$$\sup_{\mathbf{y} \in A} \sup_{\mathbf{y} \in A} F_{\mathbf{x},\mathbf{y}}(s) = \sup_{\mathbf{y} \in A} F_{\mathbf{x},\mathbf{y}}(t)$$

So the definition of $F_{x,A}$ in this paper coincides with the definition in [7].

Thus from Proposition 1.3 in [7] we have

Proposition 3 Let (X, F, Δ) be a Menger space, $A \subset X$ and $x, y \in X$. Then

(i) $F_{\star,A}(t)=1, \forall t>0$ if and only if $x\in \overline{A}$

(ii) $F_{s,A}(t_1+t_2) \ge \Delta(F_{s,g}(t_1), F_{g,A}(t_2)), \forall t_1, t_2 > 0;$

(iii) for any A, $B \in CB(X)$ and $x \in A$ we have

$$F_{s,B}(t) \geqslant \widetilde{F}_{A,B}(t), \forall t \ge 0.$$

Proposition 4^[10] Let (X,F,\mathcal{A}) be a Menger space, and A, $B \in CB(X)$. For each $\lambda \in (0, 1)$ we define

$$D_{\lambda}(A, B) = \inf\{t > 0: \tilde{F}_{A,B}(t) > 1 - \lambda\}$$

Then

(i) $D_{\lambda}(A, B) < t$ and only if $\overline{F}_{A,B}(t) > 1-\lambda$;

(ii) for any $\lambda \in (0, 1)$, we have

$$d_{\lambda}(x, B) \leqslant D_{\lambda}(A, B), \qquad \forall x \in A$$

where $d_{\lambda}(x, B) = \inf_{y \in B} d_{\lambda}(x, y)$.

Definition 2 The PM-space (X,F) is said to be e-chainable if for given e > 0 and any $x, y \in X$, there is a finite set of points in $X: x = x_0, x_1, ..., x_n = y$ such that $F_{x_{i-1}, x_i}(e) = 1$ i = 1, 2, ..., n.

Definition 3 The function $\Phi(t): R^+ \to R^+$ is said to satisfy the condition (Φ) , if $\Phi(t)$ is strictly increasing, and the series $\sum_{n=1}^{\infty} \Phi^n(t)$ is convergent for any t > 0, where $\Phi^n(t)$ denotes the *n*-

th iteration of $\Phi(t)$.

Proposition 5 If the function $\Phi(t): R^+ \to R^+$ satisfies the condition (Φ) , then $\Phi(t) < t$, $\forall t > 0$ and $\Phi(0) = 0$.

Proof The conclusion of Proposition 5 follows from Lemma in [11].

III. The Fixed Point Theorems of Multi-Valued Local Contraction Mappings

Theorem 1 Let (X, F, Δ) be an e-chainable (for some e > 0) and \mathcal{F} -complete Menger space. Let $T: X \rightarrow CB(X)$ be a mapping satisfying the following conditions:

(i) For any number $\beta > 1$ and any $x, y \in X, u \in Tx$, there exists $v \in Ty$ such that

$$F_{\mathbf{v},\mathbf{v}}(\beta t) \geqslant \tilde{F}_{\mathbf{T}\mathbf{v},\mathbf{T}\mathbf{v}}(t), \qquad \forall t \in \mathbb{R}^+$$
(3.1)

(ii) There exists a right continuous function $\Phi(t)$ satisfying the condition (Φ) and $a \in (0, 1)$ such that

$$\mathbf{F}_{\mathbf{T},\mathbf{r},\mathbf{T}}(\boldsymbol{\Phi}(t)) \geqslant F_{\mathbf{r},\mathbf{r}}(t) \tag{3.2}$$

whenever $F_{\epsilon,\epsilon}(\epsilon) \neq 0$ and $F_{\epsilon,\epsilon}(t) > 1-\alpha$ Then T has a fixed point, i.e. there exists $x_{*} \in X$ such that $x_{*} \in T x_{*}$

Proof First we prove that (3.1) can be deduced

$$d_{\lambda}(u, v) \leq \beta D_{\lambda}(Tx, Ty), \qquad \forall \lambda \in (0, 1)$$
(3.1)'

and (3.2) can be deduced

$$D_{\lambda}(Tx, Ty) \leq \Phi(d_{\lambda}(x, y)), \qquad \forall \lambda \in (0, a]$$
(3.2)'

whenever $F_{x,y}(\varepsilon) \neq 0$.

Let $D_s(Tx, Ty) = t$. Then for any s > t, by Proposition 4 we have $\overline{F}_{Tx}, T_y(s) > 1 - \lambda$. Hence from (3.1) it follows that $F_{u,v}(\beta s) > 1 - \lambda$. According to Proposition 1 we have $d_{\lambda}(u, v) < \beta s$. By the arbitrariness of s we get (3.1).

Suppose $F_{x,y}(\varepsilon) \neq 0$ and $d_{\lambda}(x,y) = t$, $\lambda \in (0, \alpha]$. By Proposition 1 for any s > t we have $F_{x,y}(s) > 1 - \lambda \ge 1 - \alpha$, and from condition (ii) it follows that $\tilde{F}_{Tx,Ty}(\Phi(s)) > 1 - \lambda$. According to Proposition 4 we have $D_{\lambda}(Tx, Ty) < \Phi(s)$. By the right continuity of $\Phi(t)$ and letting $s \rightarrow t$ it gets (3.2).

Next we arbitrarily take $x_0^{(0)} \in X$ and $x_1^{(0)} \in T x_0^{(0)}$. Since (X, F, \mathcal{I}) is an ε -chainable, there exists a finite set of points in X: $x_0^{(0)}$, $x_0^{(1)}$, \cdots , $x_0^{(n)} = x_1^{(0)}$ such that $F_{x_0^{(i-1)}, x_0^{(i)}}(\varepsilon) = 1$, $i = 1, 2, \dots, n$.

Take $\varepsilon_0 > \varepsilon, \varepsilon_n \in (\varepsilon, \varepsilon_0)$ and $\varepsilon_n \nearrow \varepsilon_0$. Since $F_{x_0^{(0)}, x_0^{(1)}}(\varepsilon) = 1$, we have $d_\lambda(x_0^{(0)}, x_0^{(1)}) < \varepsilon, \forall \lambda \in (0, 1)$.

Putting $d_0(x_0^{(0)}, x_0^{(1)}) = \sup_{\lambda \in (0,1)} d_\lambda(x_0^{(0)}, x_0^{(1)})$, obviously we have $d_0(x_0^{(0)}, x_0^{(1)}) \leq \varepsilon < \varepsilon_1$. Hence $\phi(d_0(x_0^{(0)}, x_0^{(1)})) < \phi(\varepsilon_1)$. Fake $\delta_1 > 0$ such that $\frac{\phi(\varepsilon_1)}{\phi(d_0(x_0^{(0)}, x_0^{(1)})) + \delta_1}$ >1. By condition (i) and (3.1), we know that for $x_1^{(0)} \in Tx_0^{(0)}$ there exists $x_1^{(1)} \in Tx_0^{(1)}$ such that

$$d_{\lambda}(x_{1}^{(0)}, x_{1}^{(1)}) \leqslant \frac{\Phi(\varepsilon_{1})}{\Phi(d_{0}(x_{0}^{(0)}, x_{0}^{(1)})) + \delta_{1}} \cdot D_{\lambda}(Tx_{0}^{(0)}, Tx_{0}^{(1)})$$

From (3.2)' any noting $\Phi(d_{\lambda}(x_{0}^{(0)}, x_{0}^{(1)})) \leq \Phi(d_{0}(x_{0}^{(0)}, x_{0}^{(1)}))$ we get

 $d_{\lambda}(x_{1}^{(0)}, x_{1}^{(1)}) < \Phi(\varepsilon_{1}), \qquad \forall \lambda \in (0, a].$

Similarly, from $F_{x_0^{(1)}, x_0^{(2)}}(\varepsilon) = 1$ and $x_1^{(1)} \in Tx_0^{(1)}$ we know that there exists $x_1^{(2)} \in Tx_0^{(2)}$ such that

$$d_{\lambda}(x_1^{(1)}, x_1^{(2)}) < \Phi(\varepsilon_1), \quad \forall \lambda \in (0, a].$$

Continuing in this way we can obtain a finite set of points: $x_1^{(0)}$, $x_1^{(1)}$, \cdots , $x_1^{(m)} = x_2^{(0)}$ such that $x_1^{(1)} \in T x_0^{(1)}$ and

$$d_{\lambda}(x_{1}^{(i-1)}, x_{1}^{(i)}) < \Phi(e_{1}), \qquad (i=1, 2, ..., n) \quad \forall \lambda \in (0, a].$$

Since $d_{\lambda}(x_{1}^{(i)}, x_{1}^{(i)}) < \Phi(e_{1}), \quad \forall \lambda \in (0, a], \text{ we have}$

$$d_0(x_1^{(0)}, x_1^{(1)}) = \sup_{\lambda \in (0, a)} d_\lambda(x_1^{(0)}, x_1^{(1)}) \leq \Phi(e_1) < \Phi(e_2).$$

Hence $\Phi(d_0(x_1^{(0)}, x_1^{(1)})) < \Phi^2(\varepsilon_2)$. Take $\delta_2 > 0$ such that

$$\frac{\Phi^{2}(e_{2})}{\Phi(d_{0}(x_{1}^{(0)}, x_{1}^{(1)})) + \delta_{2}} > 1.$$

By (3.1) and (3.2), for $x_{1}^{(0)} \in T x_{1}^{(0)}$ there exists $x_{2}^{(1)} \in T x_{1}^{(1)}$ such that

$$d_{\lambda}(x_{2}^{(0)}, x_{2}^{(1)}) \leqslant \frac{\Phi^{2}(\varepsilon_{2})}{\Phi(d_{0}(x_{1}^{(0)}, x_{1}^{(1)})) + \delta_{2}} \cdot D_{\lambda}(Tx_{1}^{(0)}, Tx_{1}^{(1)})$$

$$\leqslant \frac{\Phi^{2}(\varepsilon_{2})}{\Phi(d_{0}(x_{1}^{(0)}, x_{1}^{(1)})) + \delta_{2}} \cdot \Phi(d_{\lambda}(x_{1}^{(0)}, x_{1}^{(1)})) < \Phi^{2}(\varepsilon_{2}) \quad \forall \lambda \in (0, \alpha].$$

Continuing in this way we can get a finite set of points: $x_2^{(0)}$, $x_2^{(1)}$, \cdots , $x_2^{(n)} = x_3^{(0)}$ such that $x_2^{(i)} \in Tx_1^{(i)}$ and

$$d_{\lambda}(x_{2}^{(i-1)}, x_{2}^{(i)}) < \Phi^{2}(\varepsilon_{2})$$
 $(i=1, 2, ..., n) \forall \lambda \in (0, a].$

Using the mathematical induction, it is not difficult to show that for any natural number m, there exists a finite set of points: $x_m^{(0)}$, $x_m^{(1)}$, \cdots , $x_m^{(m)} = x_{m+1}^{(0)}$ such that $x_m^{(i)} \in Tx_{m-1}^{(i)}$ and

$$d_{\lambda}(x_{m}^{(i-1)}, x_{m}^{(i)}) < \Phi^{m}(\varepsilon_{m}) < \Phi^{m}(\varepsilon_{0}) \quad (i=1, 2, ..., n) \quad \forall \lambda \in (0, a].$$

Now we prove that $\{x_m^{(0)}\}_{m=1}^{\infty}$ is a \mathcal{F} -Cauchy sequence of X. For any i, $j \in \mathbb{Z}^+$, i < j and $\lambda \in (0, \alpha]$. By Remark 1, there exists $\mu \in (0, \lambda]$ such that

$$d_{\lambda}(x_{i}^{(0)}, x_{j}^{(0)}) \leqslant \sum_{m=i}^{j-1} d_{\mu}(x_{m}^{(0)}, x_{m+1}^{(0)}).$$

Similarly, for the above μ there exists $\nu \in (0, \mu]$ such that

$$d_{\mu}(x_{m}^{(0)}, x_{m+1}^{(0)}) = d_{\mu}(x_{m}^{(0)}, x_{m}^{(0)})$$
$$\leq \sum_{i=1}^{n} d_{\mu}(x_{m}^{(i-1)}, x_{m}^{(i)}) < n\bar{\Phi}^{m}(\varepsilon_{0}).$$

Thus we have

$$d_{\lambda}(x_{i}^{(0)}, x_{j}^{(0)}) \leqslant n \sum_{m=i}^{j-1} \Phi^{m}(\varepsilon_{0}), \qquad \forall \lambda \in (0, \alpha].$$

Letting $i \to \infty$ and noting that the series $\sum_{m=1}^{\infty} \Phi^m(e_0)$ is convergent, we have $d_{\lambda}(x_i^{(0)}, x_j^{(0)})$

 $\rightarrow 0$, $\forall \lambda \in (0, \alpha]$. Therefore from Proposition 2 we know that $\{x_{\mathfrak{m}}^{(0)}\}_{\mathfrak{m}=1}^{\infty}$ is a \mathscr{F} -Cauchy sequence in X. Since (X, F, \varDelta) is \mathscr{F} -complete, there exists $x_{\mathfrak{m}} \in X$ such that $x_{\mathfrak{m}}^{(0)} \xrightarrow{\mathscr{F}} \rightarrow x_{\mathfrak{m}}$ Lastly, we prove that $x_{\mathfrak{m}}$ is a fixed point of T, i.e. $x_{\mathfrak{m}} \in Tx_{\mathfrak{m}}$.

Since $x_m^{(0)} \xrightarrow{\mathscr{T}} x_{\#}$, we have $F_{x_m^{(0)}}, x_{\#}(t) \rightarrow 1$, $\forall t > 0$. Hence for any t > 0 there exists $N \in \mathbb{Z}^+$ such that $F_{x_m^{(0)}}, x_{\#}(\varepsilon) \neq 0$ and $F_{x_m^{(0)}}, x_{\#}(t) > 1 - \alpha$, whenever m > N. Thus from condition (ii) it follows that

$$\int_{T_{\mathbf{x}_{\mathbf{m}}^{(0)}},T_{\mathbf{x}_{\mathbf{m}}}(\Phi(t)) \geq F_{\mathbf{x}_{\mathbf{m}}^{(0)},\mathbf{x}_{\mathbf{m}}}(t) \rightarrow 1 \quad (m \rightarrow \infty), \ \forall t > 0$$

Noting $\Phi(t) < t$, from the above expression we have

$$\tilde{F}_{Tx_{m}^{(0)},Tx_{\Phi}}(t) \rightarrow 1 \quad (m \rightarrow \infty), \ \forall t > 0$$

Since $x_{m-1}^{(0)} = x_{m-1}^{(m)} \in T x_{m-2}^{(m)} = T x_{m-1}^{(0)}$, by Proposition 3 we get

$$F_{x_{\bullet}, T_{x_{\bullet}}(t) \ge \Delta(F_{x_{\bullet}, x_{\bullet}^{(0)}}(t/2), F_{x_{\bullet}^{(0)}, T_{x_{\bullet}}(t/2))$$
$$\ge \Delta(F_{x_{\bullet}, x_{\bullet}^{(0)}}(t/2), \tilde{F}_{T_{m-1}^{(0)}, T_{x^{\bullet}}}(t/2))$$
(3.3)

Letting $m \to \infty$ on the right of (3.3) and noting that $\Delta(t,t)$ is continuous at t=1, since the *t*-norm Δ satisfies $\sup_{0 \le t \le 1} \Delta(t, t) = 1$, we have $F_{x_*}, T_{x_*}(t) = 1$, $\forall t > 0$, and therefore $x_* \in Tx_*$ by

Proposition 3. This completes the proof.

In Theorem 1 taking $\Phi(t) = kt$, 0 < k < 1, we have the following result.

Corollary 1 Let (X,F, Δ) be an ε -chainable and \mathscr{F} -complete Menger space. Let the mapping $T: X \rightarrow CB(X)$ satisfy condition (i) and the following condition:

(ii) there exists a positive number k < 1 and $a \in (0, 1)$ such that

$$\tilde{F}_{Ts,Ty}(kt) \geqslant F_{s,y}(t) \tag{3.4}$$

whenever $F_{x,y}(\varepsilon) \neq 0$ and $F_{x,y}(t) > 1-\alpha$. Then T has a fixed point.

In the following, we shall use Theorem 1 to prove the fixed point theorem for multi-valued local contraction mapping on metric spaces.

Let ε be a positive number. The metric space (X,d) is said to be ε -chainable if for any two points x and y in X, there exists a finite set of points in X: $x = x_0, x_1, \dots, x_n = y$ such that $d(x_{i-1}, x_i) < \varepsilon$, for $i=1, 2, \dots, n$.

Lemma 1 Let (X,d) be a metric space. We define the mapping $F: X \times X \to \mathcal{D}$ as follows (we denote F(x, y) by $F'_{x,y}$):

$$F_{x,y}(t) = H(t - d(x, y)), \quad \forall x, y \in X$$

$$(3.5)$$

and take $\mathcal{J} = \min$. Then $(X, F, \mathcal{\Delta})$ is a Menger space and the topology \mathcal{T}_d on X induced by d coincides with the (ε, λ) -topology \mathcal{T} of $(X, F, \mathcal{\Delta})$. $(X, F, \mathcal{\Delta})$ will be called the Menger space induced by (X, d).

Proof From Theorem 3 in [1] we know that (X, F, \min) is a Menger space. By (3.5) it is easy to show that for any $\varepsilon > 0$ and any $\lambda \in (0, 1)$

$$d(x, y) < \varepsilon \Leftrightarrow F_{\varepsilon, y}(\varepsilon) = 1 \Leftrightarrow F_{\varepsilon, y}(\varepsilon) > 1 - \lambda$$

Therefore \mathcal{F}_{\bullet} and \mathcal{F} are coincident.

Lemma 2 Let (X,F, Δ) be a Menger space induced by the metric space (X,d). Then

(i) (X,d) is complete if and only if $(X,F,\mathcal{\Delta})$ is \mathcal{F} -complete.

(ii) A is a bounded closed set in (X,d) if and only if A is a probabilistically bounded \mathcal{F} -closed set in (X,F, \mathcal{A}) .

Hence, we may also denote the family of all nonempty bounded closed sets in X by CB(X), Lemma 3 Let (X,F,\mathcal{A}) be a Menger space induced by the metric space (X,d). Then for any A, $B \in CB(X)$,

$$\tilde{F}_{A,B}(t) = H(t - D(A, B))$$
(3.6)

where $D(A, B) = \inf \{r: A \subset S(B, r), \text{ and } B \subset S(A, r)\}$ is a Hausdorff metric between A and B, $S(A, r) = \{x \in X: d(x, A) < r\}$

Proof By (3.5) it is easy to show that

$$A \subset S(B, r) \iff \inf_{x \in A} \sup_{y \notin B} F_{x,y}(r) = 1 \iff \inf_{x \in A} \sup_{y \notin B} F_{x,y}(r) > 0.$$

From the conclusion we can prove that if D(A,B) < t, then

 $\tilde{F}_{A,B}(t) = \sup_{s < t} \min\{ \inf_{\substack{x \in A \ y \in B}} \sup_{y \in B} F_{z,y}(s), \inf_{\substack{x \in B \ y \in A}} \sup_{y \in A} F_{z,y}(s) \} = 1_{j}$

if D(A,B) > t, then $\tilde{F}_{A+B}(t) = 0$. The former is obvious. In order to prove the latter, we suppose $\tilde{F}_{A+B}(t) > 0$, then there exists $r \in (0, t)$ such that

$$\inf_{\substack{s \in A \ v \in B}} \sup_{y \in A} F_{s,y}(r) > 0 \text{ and } \inf_{\substack{s \in B \ y \in A}} \sup_{y \in A} F_{s,y}(r) > 0,$$

so that $D(A, B) \leq r < t$. This is a contradiction. Hence (3.6) is proved.

Theorem 2 Let (X,d) be an *e*-chainable and complete metric space. Let the mapping *T*: $X \rightarrow CB(X)$ satisfy the following condition: there exists a right continuous function $\Phi(t)$ satisfying the condition (Φ) , such that

$$D(Tx, Ty) \leqslant \Phi(d(x, y)), \qquad (3.7)$$

whenever d(x, y) < e. Then T has a fixed point.

Proof Suppose that (X,F,\min) is a Menger space induced by (X,d). Since (X,d) is an ε -chainable and complete metric space, by Lemma 2 and (3.5), it is easy for us know that (X,F,\min) is ε -chainable and \mathcal{F} -complete Menger space.

In the following, we only need to show that T satisfies conditions (i) and (ii) of Theorem 1.

(i) for any $\beta > 1$ and any $x, y \in X$, $u \in Tx$, by Nadler Lemma^[12], there exists $v \in Ty$ such that

$$d(u, v) \leq \beta D(Tx, Ty)$$

From the above expression we can prove that (3.1) is true. In fact, we might as well suppose $\tilde{F}_{Tx}, \tau_{y}(t) > 0$. By (3.6) we have D(Tx, Ty) < t, so that $d(u, v) < \beta t$. It follows from (3.5) that $F_{u,v}(\beta t) = 1$. Hence $F_{u,v}(\beta t) \ge \tilde{F}_{Tx}, \tau_{y}(t)$.

(ii) Suppose $F_{x,y}(\varepsilon) \neq 0$ and $F_{x,y}(t) > 1-a$. Then by (3.5) we have $d(x, y) < \varepsilon$ and d(x, y) < t. Hence

$$D(Tx, Ty) \leq \Phi(d(x, y)) < \Phi(t).$$

It follows from (3.6) that

$$\tilde{F}_{Ts,Ty}(\Phi(t))=1 \geq F_{s,y}(t).$$

All the conditions of Theorem 1 are satisfied, and therefore T has a fixed point.

Remark 3 Theorem 1 in [4] and Theorem 5.4.5 in [8] are all the special cases of Theorem 2.

IV. The Fixed Point Theorems of One-Valued Local Contraction Mappings

Theorem 3 Let (X, F, \mathcal{A}) be an *e*-chainable and \mathcal{F} -complete Menger space. Let the mapping $T: X \to X$ satisfy the following condition: there exists a $\delta \in (0, 1)$, so that for each $a \in (0, \delta)$ there is a function $\Phi_{\bullet}(t)$ satisfying the condition (Φ) such that

$$F_{\mathbf{T}s,\mathbf{T}y}(\Phi_{a}(t)) \geqslant F_{s,y}(t) \tag{4.1}$$

whenever $F_{s,g}(e) \neq 0$ and $F_{x,g}(t) > 1-\alpha$. Then T has a unique fixed point x_* in X and $T^*x_g \xrightarrow{\mathcal{F}} x_*$ for any $x_0 \in X$.

Proof For any $x_0 \in X$, we might as well suppose $T x_0 \neq x_0$. Since (X, F, \varDelta) is *e*-chainable, there exists a finite set of points in $X: x_0, x_1, \dots, x_n = Tx_0$, such that $F_{x_{i-1}, x_i}(e) = 1$, $i = 1, 2, \dots, n$.

Hence by the condition of Theorem 3, we have

$$F_{T_{x_{i-1}}T_{x_i}}(\Phi_o(\varepsilon))=1 \quad (i=1, 2, \dots, n) \quad \forall a \in (0, \delta),$$

Using the mathematical induction, it is easy to prove that for any $m \in Z^+$,

$$F_{T^{\mathbf{m}}_{\mathbf{X}_{i-1}},T^{\mathbf{m}}_{\mathbf{X}_{i}}}(\Phi_{a}^{\mathbf{m}}(t))=1 \quad (i=1, 2, \dots, n), \ \forall a \in (0, \delta).$$

hence it follows from Proposition 1 that

$$d_a(T^{\mathbf{m}}x_{i-1}T^{\mathbf{m}}x_i) < \Phi_a^m(t) \qquad (i=1, 2, \dots, n) \quad \forall a \in (0, \delta).$$

Define $z_m = T^m x_0 (m = 1, 2, \dots)$. For any $i, j \in \mathbb{Z}^+$, i < j and any $a \in (0, \delta)$, by Remark 1, there exists $\lambda \in (0, \alpha]$ such that

$$d_a(z_i, z_j) \leqslant \sum_{m=i}^{j-1} d_\lambda(z_m, z_{m+1})$$

Also, for the given λ there exists $\mu \in (0, \lambda]$ such that

$$d_{\lambda}(z_{m}, z_{m+1}) = d_{\lambda}(T^{m}x_{0}, T^{m}x_{n})$$

$$\leq \sum_{i=1}^{n} d_{\mu}(T^{m}x_{i-1}, T^{m}x_{i}) < n\Phi_{\mu}^{m}(\varepsilon)$$

Thus

$$d_a(z_i, z_j) < n \sum_{m=i}^{j-1} \Phi_{\mu}^m(\varepsilon), \qquad \forall a \in (0, \delta)$$

Note that the series $\sum_{m=1}^{\infty} \Phi_{p}^{m}(\varepsilon)$ is convergent, we have $d_{\alpha}(z_{i}, z_{j}) \rightarrow 0(i \rightarrow \infty)$, $\forall \alpha \in (0, \delta)$. Hence $\{z_{m}\}$ is a \mathcal{F} -Cauchy sequence by Proposition 2. As (X, F, \mathcal{A}) is \mathcal{F} -complete, $z_{m} \xrightarrow{\mathcal{F}} \rightarrow x_{*} \in X$.

Now we prove that x_* is a fixed point of T. Since $z_m \xrightarrow{\mathscr{F}} \to x_*$, for any t>0 and any $\alpha \in (0, \delta)$ we have $F_{z_m, x_*}(\varepsilon) \neq 0$ and $F_{z_m, x_*}(t) > 1-\alpha$, whenever m is big enough. Hence by the condition of the theorem we get

$$F_{Tz_m,Tx_*}(\Phi_o(t)) \geqslant F_{z_m,x_*}(t)$$

Owing to $\Phi_a(t) < t$ and $F_{z_m, x_*}(t) \rightarrow l(m \rightarrow \infty)$, we have

$$F_{T_{2m},T_{x_*}}(t) \rightarrow 1 \quad (m \rightarrow \infty), \qquad \forall t > 0.$$

Note that $\Delta(t,t)$ is continuous at t=1. Therefore

$$F_{x_{*}, T_{x_{*}}}(t) \ge \Delta(F_{x_{*}, z_{m}}(t/2), F_{z_{m}, T_{x_{*}}}(t/2)) \rightarrow 1 .(m \rightarrow \infty).$$

This implies that $Tx_* = x_*$, i.e. x_* is a fixed point of T.

Lastly we prove that x_* is the unique fixed point of T. Suppose $y_* \in X$ is also a fixed point of T, i.e. $Ty_* = y_*$ and $x_* \neq y_*$. Since (X, F, \varDelta) is ε -chainable, there exists a finite set of points in $x_* = y_0$, y_1 , \cdots , $y_* = y_*$, such that $F_{y_{i-1}, y_i}(\varepsilon) = 1$, $i = 1, 2, \cdots, p$. By (4.1), for any $m \in Z^+$ we have

$$F_{T^{m}y_{i-1},T^{m}y_{i}}(\Phi_{a}^{m}(e))=1 \quad (i=1, 2, ..., p) \; \forall a \in (0, \delta)$$

Hence

$$d_{a}(T^{m}y_{i-1}, T^{m}y_{i}) < \Phi_{a}^{m}(\varepsilon) \qquad (i=1, 2, \dots, p) \quad \forall a \in (0, \delta)$$

For any $\alpha \in (0, \delta)$ there exists $\lambda \in (0, \alpha]$ such that

$$d_{a}(x_{*}, y_{*}) = d_{a}(T^{m}x_{*}, T^{m}y_{*})$$

$$\leq \sum_{i=1}^{p} d_{\lambda}(T^{m}y_{i-1}T^{m}y_{i}) < \sum_{i=1}^{p} \Phi_{\lambda}^{m}(e) \rightarrow 0 \quad (m \rightarrow \infty)$$

This implies that $d_a(x_*, y_*)=0$, $\forall a \in (0, \delta)$. Thus $x_*=y_*$, a contradiction. Therefore the fixed point of T is unique.

Corollary 2 Let (X, F, \mathcal{A}) be an ε -chainable and \mathcal{F} -complete Menger space. Let T be a mapping of X onto itself having the property that there exists $\delta \in (0, 1)$, so that for each $\alpha \in (0, \delta)$ there is a corresponding positive number $k_{\alpha} \in (0, 1)$ such that

$$F_{\mathbf{T}_{s},\mathbf{T}_{s}}(k_{o}t) \geq F_{s},_{s}(t) \tag{4.2}$$

whenever $F_{x,y}(\varepsilon) \neq 0$ and $F_{x,y}(t) > 1-a$. Then T has a unique fixed point x_* in X and $T^*x_0 \xrightarrow{\mathcal{F}} \to x_*$ for any $x_0 \in X$.

Theorem 4 Let (X,d) be an ε -chainable and complete metric space. Let T be a mapping of X onto itself. If there exists a function $\Phi(t)$ satisfying the condition (Φ) , such that

$$d(Tx, Ty) \leqslant \Phi(d(x,y)), \qquad (4.3)$$

whenever $d(x, y) < \varepsilon$, then T has a unique fixed point x_* in X and $T^n x_0 \xrightarrow{d} \to x_*$ for any $x_0 \in X$.

Proof Suppose (X,F,\min) is a Menger space reduced by (X,d). Then (X,F,\min) is ε chainable and \mathcal{F} -complete. Arbitrarily take $\delta \in (0, 1)$ and set $\Phi_{\mathfrak{s}}(t) = \Phi(t)$, for any $\alpha \in (0, \delta)$. Suppose $F_{\mathfrak{x},\mathfrak{y}}(\varepsilon) \neq 0$ and $F_{\mathfrak{x},\mathfrak{y}}(t) > 1 - \alpha$, then by (3.5) we have $d(\mathfrak{x}, \mathfrak{y}) < \varepsilon$ and $d(\mathfrak{x}, \mathfrak{y}) < t$. Hence it follows from (4.3) that

$$d(Tx, Ty) \leq \Phi_{a}(d(x, y)) < \Phi_{a}(t)$$

so that F_{II} , $T_{I}(\Phi_o(t))=1 \ge F_{II}$. This implies that all the conditions of Theorem 3 are satisfied. This completes the proof.

Remark 4 The fixed point theorem given in [3] is a special case of Theorem 4.

References

- Sehgal, V.M. and A.T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, *Math. Systems Theory*, 6 (1972), 97-102.
- [2] Cain, G.L., Jr. and R.H. Kasriel, Fixed and periodic points of local contraction mappings on probabilistic metric spaces, ibid., 9 (1975), 289 297.
- [3] Edelstein, M., An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12 (1961), 7-10.
- [4] Kuhfitting, Peter K.F., Fixed points of Locally contractive and nonexpansive set-valued mappings, *Pacific J. Math.*, 65, 2 (1976), 399-403.
- [5] Menger, K., Statistical metrics, Proc. Nat. Acad. Sci. USA., 28 (1942), 535-537.
- [6] Zhang Shi-sheng, Fixed point theorems of mappings on probabilistic metric spaces with applications, *Scientia Sinica* (Series A), 26, 11 (1983), 1144-1155.

_ 372	Fang Jin-xuan
[7]	Zhang Shi-sheng, On the theory of probabilistic metric spaces with applications, Acta Math. Sinica, New Series, 1, 4 (1985), $366 - 377$.
[8]	Zhang Shi-sheng, Fixed Point Theory and Applications, Chongqing Press, Chongqing (1984). (in Chinese)
[9]	Schweizer, B., A. Sklar and E. Thorp, The metrization of statistical metric spaces, <i>Pacific J. Math.</i> , 10 (1960), 673 – 675.
[10]	Fang Jin-xuan, Fixed point theorems for multi-valued mappings on Menger spaces, Journal of Nanjing Normal University (Natural Science Edition), 11, 4 (1988), $1-6$ (in Chinese)
[11]	Fang Jin-xuan, Fixed point theorem of Φ -contraction mapping on probabilistic metric spaces, <i>Journal of Xinjiang University</i> (Natural Science Edition), 5, 3 (1988), 21-28. (in Chinese)
[12]	Nadler, S. B., Multi-valued contraction mapping, Pacific J. Math., 30 (1969), 475-487.