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1. Imtroduction

Let u and v be non-adjacent points in a connected graph G. A classical
result known to all graph theorists is that called MENGER’s theorem. The point
version of this result says that the maximum number of point-disjoint paths
joining % and v is equal to the minimum number of points whose deletion
destroys all paths joining % and v. The theorem may be proved purely in the
language of graphs (probably the best known proof is indirect, and is due
to Dirac [8] while a more neglected, but direct, proof may be found in OrE [7]).
One may also prove the theorem by appealing to flow theory (e.g. BERGE [1],
p. 167).

In many real-world situations which can be modeled by graphs certain
paths joining two non-adjacent points may well exist, but may prove essentially
nseless because they are too long. Such considerations led the authors to
study the following two parameters. Let n be any positive integer and let
% and » be any two non-adjacent points in a graph G.

Denote by A,(%, v) the maximum number of point-disjoint paths ]ommg
% and v whose length (i.e., number of lines) does not exceed n. Analogously,
let V,.(u, ) be the minimum number of points in G the deletion of which
destroys all paths joining » and » which do not exceed % in length. A special
case would obtain when » = p = |V(G)|, and we have by Menger's theorem,
the equality A%, v) = Va(u, v).

Fig. 1
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In general, however, one does not have equality, but it is trivial that
An(u, v) < Vilu, v) for any positive integer ». On the other hand, the graph
of Fig. 1 has Vy(u, v) = 2, but 4 (u,v) = 1.

V o(u, v)
% A, (u,v)
simply Zi when the points » and v are understood. For any terminology not

We prefer to formulate our work as a study of the ratio

n
defined in this paper, the reader is referred to the book by HArARY [4].

2. Bounds for the ratio

As in the introduction we shall assume throughout this paper that
% and v are non-adjacent points in the same component of a graph G. It is

trivial that 1< ”Eu v; < n— 1. As usual, d(u,v) denotes the distance
u, v

between points « and v. Qur first result involves this distance.
THEOREM 1. For every positive integer n > 2 and for each m =n — dlu,v) >

Vi(u, v)
n('“/: v) <mtl

>0,

The construction in Section 3 shows that this bound is sharp.

Proor. The proof proceeds by induction on m. Hence first let m = 0,
i.e., suppose n = d(u, v) = n,. We orient some of the lines of & according
to the following rule: let 2y be any line. Then if d(x, v) > d{y, v), orient z to y.
Then, clearly, any u-v geodesic (i.e.; a shortest «-v path) yields a dipath from
%.to v. On the other hand, we claim that any w-v dipath must arise from a
geodesic u-v path in G, for just consider our rule of orientation. If (z, y) is a
directed line in our dipath, d(z, v) > d(y, v) and distance decreases by'1l as
we traverse each diline toward v». Hence our dipath cannot have > n lines
and hence must have come from'a %-v geodesic.

Thus in the oriented subgraph of G, the u-v paths are exactly the geodesics,
so by Menger’s theorem, ¥ (s, v) = An(u, ¥) and the case for m = 0 is proved.

Now by mduct}on hypothems, assume that the theorem holds for some
my > 0 and suppose m = n — d(u, v) = mg + 1 (and hence that n > d(u, v)).

Let X be a minimum set of points covering all #-v geodesics. By the
case for m = 0, l

le = Vd(u,v)(u, TJ) = Ad(u,v)(uy v) < Ay (u,v).

Consider the graph G —X.If dg_x(u,v) > n, X has covered all u-v paths
of length <{n and we have, V (u, v) = | X| < An(u, v) < mAn(u v} and we
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are done. So suppose dg_x(u,v) <mn, say dg_x(u,v)=n —1t for some ¢,
0 <t<m. (Note that £ <<m for X destroys all u-v geodesics and thus
t=n — dg_xlu, v) <n — du, v) = m).

So by the induction hypothesis applied to points 4 and » in graph G—X,
we have

Vo, v) < (¢ + 1) 45 (u,v).
But we can then cover all n-paths in G joining % and » with a set ¥ where

1Y) = X] 4+ ¢+ DAT¥(w,0) < [X| + (¢ + 1) Aa(w, v).
So

Vn(u, 0) < IX’ + (¢ .l)An(u: v) < (8 + 2) Aplu, v) < (m + 1)4,(u, v)

and the proof is complete.
The next theorem shows that we can do better as far as a bound depend-
ing solely upon # is concerned.

THEOREM 2. For any graph @, any non-negative integer n, and any two
non-adjacent points u tmd v, Valu, v) <[%]A (@, ).

Proor. If d(u,v) > n/2 + 1, we are done by Theorem 1. So suppose
d(u,v) < (n+ 1)/2. Choose D such: that d(u, v)<Dgn and let P, be a
u-v geodesic in @. Form a new graph G, from @ by removing all mtenor
points of P, Clearly dg,(u, v) > dg(u, v). Now remove ‘any u-v geodesic
in Gy, say Pl, to obtain G,. Contmue in this manner until we obtain a graph
@, containing a u-v geodesw__P, such thdt I(P,;) < D, but the length of any
u-v geodesic in G, ;> D. For convenience let us denote GQ,.; by & and
similarly for parameters of this graph. Thus d&r W9y =d(w,v) > D+ 1.

Since we have removed r disjoint %-» paths from G to get G’, we have

An > An+ 1y 1)

for all discarded paths had length no greater than the length of a u-v geodesic
in G".

Also
Vo< Vo4 r(D—1) (2)
Moreover, if G’-is’ connected, we ha‘;ve by Theorem 1 that
Vel tn—d(uv)+ )4 (0 —D 1+ 1) 4, =(n - D)4, (3)

The combining (2) a.nd (3), we obtain by (1) -
Vo< (0~ D)4+ r(D— 1)< (n— D)(An — 1) + (D — 1)
=(n—D)4,;4 r(2D —n — 1).

Il
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Since r is non-negative, choose D to be the greatest integer so that

n—lgO.HenceDg[n;_ 1 and since D is integral, D :[n—2l— 1].
Hence n—D:n——[n—Z}— 1]:[1;1] and thus Vng[g]zln.

If @’ is not connected between # and », we have A, =V, = 0 and

conclude similarly.

The bound in this theorem is sharp for » = 2, 3 and 5 (for n = 5, see

Fig. 1). It is, however, not sharp for n = 4.

TuroBEM 3. For any graph G with non-adjacent points u and v, V,(u, v) =

= A,(u, v).

ProorF. Partition the points of @ — u — v into disjoint classes (¢, j) as

follows: w € (i, §) iff d(u, w) = i and d(w, v) = j. Clearly we may ignore classes
(1, 1) and all (¢, j) for ¢ + § > 4. So the remaining graph @ has the appearance
of Figure 2.

8
_ (3) (22) (3.1

\/

(,2) VX))

Fig. 2

Now construct a di-graph D as follows. Let V(D)= V(@ and

(2, y) € B(D) iff (1) 2y € B@) and (2) d(u, y) > d(u, 2).

Hence D has the appearance of Figure 3.

)

(1.3) (2.2) (31)

(1.2) 21|

Fig. 8
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Observe that

{a) each dipath in D has length <4 and _
(b) each chordless path of & of length < 4 corresponds to a dipath in D.

Let S be a set of ¥, points in § — w — v whose deletion destroys all
u-v paths of length < 4. But then in D — u — v all dipaths from u to v are also
destroyed, so V,> H(u,v) where H(u,») denotes the minimum number of
points whose deletion separates « and » in D. But by Menger’s theorem applied
to D, H(u, v) (= the maximum number of point-disjoint dipaths from « to v)
< A4,, since each set of point-disjoint dipaths from » to v in D corresponds
to a set of point-disjoint u-v paths in G of the same cardinality.

Thus it will suffice to prove V, < H(u, v). Let L be any set of H(u, v)
points in D — u — v whose removal separates u and ». We now claim L meets
all w-v paths in G of length < 4. If not, there is a path P joining % and » with
length < 4 and (V(P) — u — v) N L = #. We may assume P is chordless. But,
then it translates into a dipath from » to v in D on the same points. L does
not meet this dipath, which is a contradiction.

In the construction of the next section we will have -gﬁz “/%] or
_ n
l;- + 1. It is unknown to us where for a fixed n, the value of sup —& lies

| ,,
o e 3]

3. A Construction

We will construct a graph G(n, ¢) such that given #(>> 0), there is an »
and a graph Q(n,f) which has 2 distinct non-adjacent points % and » such
that 4,(u, v) = 1, but V,{u, v) = ¢ 4 1. Moreover, we will show in addition
that given any integer k(> 1), we can construct a G{(n,t, k), which is k-
connected.

For the moment, suppose ¢ is a given positive integer. Choose any
n >t -+ 1 and fix it. Construct a path L of length s = » — ¢ joining % and .
As is customary, we shall refer to paths having at most their endpoints in
common as openly disjoint. Now for each ¢, 2 <17 <{?¢ - 1, take every pair
of points @, b on L which are at a distance = i on L and attach a path of length
i+ 1 at @ and b which is openly disjoint from L. Such paths we shall call
ears. (See Figure 4).

Now let P be any u-v path of length = s'(<n). P has at least n —1¢
lines since L is a u-v geodesic.

Suppose P uses r ears. Since replacing an ear by the corresponding
segment of L shortens the length by > 1, we have s’ >n —f--r. Hence

92 Periodica Math., 9 (¢)
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t!ooo-/-OV‘“

a b

length(L)=s=n-t
Fig. 4

r < t. Since each ear has < # 4 1 interior points, P has < »(¢ 4 1) points
not on L. So the number of points of P on I is (not including % and v)

> -1 —rt+ 1) >n—t+r—1—rf+1)=
=n—(+1)—1>n—{+1)¢—1.

n—(@¢+Dt—1> é— (the number of inner points of L), then any two such

paths P must have an interior point in common. Note that the number of
inner points of L = n — ¢ — 1. Thus what we need is that n — (¢ -+ 1) — 1>

>—:1z—(n —t—1),ie,n>2+1t+ 2 If n is given, the best ¢ satisfying this

inequality is either H/%] —1or [Vg-] Then with such an n, any two %-v

paths of length <<% must have some inner point of L in common; i.e.,
An{u,v) = 1. ’

We now proceed to show that V,(u, v} > ¢ 4 1. Suppose there is a set
T of ¢ points which cover all u-v paths of length << n. We may assume all
points of T' lie on L, for otherwise move right on the “offending ear” until
L is reached and use the point of L thus encountered in place of the original
T-point. If the ear ends at v take the left-hand end point on L. Note also that
%, v are joined by no one ear by our choice of ».

Let us call the sets of points of 7' which are consecutive on L the blocks
of T'. There are no more than ¢ such blocks. Recall that L containg n — ¢ -+ 1
points where n — ¢+ 1= (n+ 1) — t > 3 and hence n — > 2. Thus we can
form a new u-v path @ by jumping each block of 7' with an ear. This new path
@ then misses 7' and we have added exactly one to the length of L for each
block jumped. It follows that @ haslength <s4-f=mn —¢+ ¢ = n. Hence,
there is a u-v path @ of length << » which misses 7' contradicting the definition
of T. Thus V,{u,v) >t 1.



LOVASZ, NEUMANN-LARA, PLUMMER: PATHS OF BOUNDED LENGTH 275

We know at this point that G(n, t) is at least 2-connected. Let £ be any
integer > 2. We now proceed to modify the graph G{n,t} constructed above
g0 that the resulting graph G(n, t, k) retains the properties that 4,(u, ») = 1,
V,> %4 1 and in addition is k-connected.

The idea is to construct a new graph H, join it to G(n,t) by suitably
chosen lines go that the resulting graph is &-connected, but also so that no new
“‘short” u-v paths are introduced.

Let the points of G(n, t) be w;, . . ., wy. Further, let M = k + n. Form
a path of MN points p;p, . . .pmn and then replace each p; with a clique, Kj,
on k points where each point of K, is joined to each point of K;;™. Now join
w, to exactly one point of each of K3, ..., K% w, to exactly one point of
Ky .,KQ”"; and, in general, w; to exactly one point of K}J"DM L.
v KJOMEE gor j=1,...,N. It is now easily seen that no new path joining
any w; and w; is of length <<n + 1. It is clear that A, =1 and V, =%+ 1in
this new graph for any path of length <x joining % and v must lie entirely
within the original G(n, t) part of this new graph. It is equally clear that the
new graph G(n,t, k) is k-connected.

4. A different type of Mengerian result

In this section we take a different approach. Recall that V,(u,v) > A.(u,v)
and moreover, strict inequality can occur. One’s intuition may indicate that
even in this case, if the subscript on A4, is allowed to increase to some new
value n’ one can always obtain V, < A4,,. The next theorem says that such
a conjecture is not only appealing, but true.

TrroREM 4. Let n and h be positive integers. Then there is a constant
f(n, kY such that if V,(u,v) > h, then Az (u, v) > A.

In the proof we need the following result.

TrEOREM 5 (BOLLOBAS [2], KATONA [6], JARGER—PAYAN [5]). Given any

family of r-sets which needs at least ¢ points to cover, then there exists a subfamily

. r4+t—1
with <

} elements which still needs t points to cover.
r

Remark. It is trivial to see that instead of “r-sets” one can say “‘sets
of size at most 7.

Proor of Theorem 4. Consider sets of interior points of «-v paths of length
< n. By the assumption we need > % points to cover the members of this
family. By the preceding theorem and the remark following it we can select
{n +h—2

m 1 J paths of length < n such that we still need % points to cover these

2*
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paths. So let G, be the union of these paths and apply Menger’s theorem to
G, to see that there are >> h openly disjoint u-v paths. So how long can a
n+h—2

longest path in G} be? We have paths of length < n.

So@, —u —vhas < (n—1) [n +h ; 2) points. Now among all sets of
> h openly disjoint «-v paths in G, tﬁe——longest path one could find would be
of length (n — 1) (n +h ; 2
has b — 1 paths of leng—;h 2 and a single long path of the above length.)

h— 2)
Thus set f(n,h) = (n — 1) [n + J — k- 2and we have Az, n)(u,v) > h

] — (A — 1)+ 1. (This of course happens when one
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