Periodica Mathematica Hungarica Vol. 9 (4), (1978), pp. 269--276

MENGERIAN THEOREMS FOR PATHS OF BOUNDED LENGTH

by

L. LOVÁSZ (Szeged), V. NEUMANN-LARA (México) and M. PLUMMER (Nashville)

Dedicated to the memory of FERNANDO ESCALANTE

1. Introduction

Let u and v be non-adjacent points in a connected graph G . A classical result known to all graph theorists is that called MENGER's theorem. The point version of this result says that the maximum number of point-disjoint paths joining u and v is equal to the minimum number of points whose deletion destroys all paths joining u and v . The theorem may be proved purely in the language of graphs (probably the best known proof is indirect, and is due to DmAc [3] while a more neglected, but direct, proof may be found in ORE [7]). One may also prove the theorem by appealing to flow theory (e.g. BERGE [1], **p. 167).**

In many real-world situations which can be modeled by graphs certain paths joining two non-adjacent points may well exist, but may prove essentially useless because they are too long. Such considerations led the authors to study the following two parameters. Let n be any positive integer and let u and v be any two non-adjacent points in a graph G .

Denote by $A_n(u, v)$ **the maximum number of point-disjoint paths joining** u and v whose length (i.e., number of lines) does not exceed n . Analogously, let $V_n(u, v)$ be the minimum number of points in G the deletion of which destroys all paths joining u and v which do not exceed n in length. A special case would obtain when $n = p = |V(G)|$, and we have by Menger's theorem, the equality $A_n(u, v) = V_n(u, v)$.

Research supported in part by CIMAS (The University of Mexico), IREX and The Hungarian Academy of Sciences.

AMS {MOS) aubject classifications (1970). Primary 05C35.

Key words and phrases. Menger s theorem, disjoint paths, minimum cut-sets.

In general, however, one does not have equality, but it is trivial that $A_n(u, v) \leq V_n(u, v)$ for any positive integer n. On the other hand, the graph of Fig. 1 has $V_5(u, v) = 2$, but $A_5(u, v) = 1$.

We prefer to formulate our work as a study of the ratio $\frac{m(x, y)}{n}$ or V_n *A_n*(*u, v*) simply $\frac{u}{v}$ when the points u and v are understood. For any terminology not defined in this paper, the reader is referred to the book by H_{ABARY} [4].

2. Bounds for the ratio

As :in the introduction we shall assume throughout this paper that u and v are non-adjacent points in the same component of a graph G . It is *trivial* that $1 \leq \frac{V_n(u, v)}{A(u, v)} \leq n-1$. As usual, $d(u, v)$ denotes the distance between points u and v . Our first result involves this distance.

THEOREM 1. For every positive integer $n \geq 2$ and for each $m = n - d(u, v) \geq 0$ $0, \frac{r_n(u,v)}{r} < m+1.$ $A_n(u, v)$ –

The construction in Section 3 shows that this bound is sharp.

PROOF. The proof proceeds by induction on m. Hence first let $m = 0$, i.e., suppose $n = d(u, v) = n_0$. We orient some of the lines of G according to the following rule: let *xy* be any line. Then if $d(x, v) > d(y, v)$, orient x to y. Then, clearly, any u-v geodesic (i.e., a shortest *u-v* path) yields a dipath from u to v. On the other hand, we claim that any *u-v* dipath must arise from a geodesic $u \cdot v$ path in G, for just consider our rule of orientation. If (x, y) is a directed line in our dipath, $d(x, v) > d(y, v)$ and distance decreases by 1 as we traverse each diline toward v. Hence our dipath cannot have $>n$ lines and hence must have come from'a *u-v* geodesic.

Thus in the oriented subgraph of G , the *u-v* paths are exactly the geodesics, so by Menger's theorem, $V_n(u, v) = A_n(u, v)$ and the case for $m = 0$ is proved.

Now by induction hypothesis, assume that the theorem holds for some $m_0 \geq 0$ and suppose $m \geq n-d(u, v)=m_0+1$ (and hence that $n > d(u, v)$).

Let X be a minimum set of points covering all $u \cdot v$ geodesics. By the case for $m = 0$,

$$
|X| = V_{d(u,v)}(u,v) = A_{d(u,v)}(u,v) \leq A_n(u,v).
$$

Consider the graph $G - X$. If $d_{G-X}(u, v) > n$, X has covered all $u \cdot v$ paths of length $\leq n$ and we have, $V_n(u, v) = |X| \leq A_n(u, v) \leq mA_n(u, v)$ and we are done. So suppose $d_{G-X}(u, v) \leq n$, say $d_{G-X}(u, v) = n - t$ for some t, $0 < t < m$. (Note that $t < m$ for X destroys all $u \cdot v$ geodesics and thus $t = n - d_{G-X}(u, v) < n - d(u, v) = m$.

So by the induction hypothesis applied to points u and v in graph $G-X$, we have

$$
V_n^{G-X}(u,v) \le (t+1) A_n^{G-X}(u,v).
$$

But we can then cover all n-paths in G joining u and v with a set Y where

$$
|Y| = |X| + (t+1) A_n^{G-X}(u, v) \leq |X| + (t+1) A_n(u, v).
$$

So

$$
|V_n(u,v)| \leq |X| + (t+1)A_n(u,v) \leq (t+2)A_n(u,v) \leq (m+1)A_n(u,v)
$$

and the proof is complete.

The next theorem shows that we can do better as far as a bound depending solely upon n is concerned.

THEOREM 2. For any graph G, any non-negative integer n, and any two $p_{non-adjacent \ points \ u \ and \ v, \ V_n(u,v) \leq \left\lfloor \frac{n}{2} \right\rfloor A_n(u,v).$

PROOF. If $d(u, v) \ge n/2 + 1$, we are done by Theorem 1. So suppose $d(u, v) \le (n+1)/2$. Choose D such that $d(u, v) \le D \le n$ and let P_0 be a $u-v$ geodesic in G. Form a new graph G_1 from G by removing all interior points of P_0 . Clearly $d_{G_1}(u, v) \geq d_G(u, v)$. Now remove any $u \cdot v$ geodesic in G_1 , say P_1 , to obtain G_2 . Continue in this manner until we obtain a graph G_r containing a *u-v* geodesic P_r such that $l(P_r) \leq D$, but the length of any *u-v* geodesic in $G_{r+1} > D$. For convenience let us denote G_{r+1} by G' and similarly for parameters of this graph. Thus $d_{G_{n-1}}(u, v) = d'(u, v) \ge D + 1$.

Since we have removed r disjoint u -v paths from G to get G' , we have

$$
A_n \geq A'_n + r,\tag{1}
$$

for all discarded paths had length no greater than the length of-a *u-v* geodesic in G'.

Also

$$
V_n \leq V'_n + r(D-1). \tag{2}
$$

Moreover, if G' is connected, we have by Theorem 1 that

$$
V_n \le (n-d'(u,v)+1) A_n \le (n-D-1+1) A_n = (n-D) A_n.
$$
 (3)

The combining (2) and (3) , we obtain by (1)

$$
V_n \le (n - D) A'_n + r(D - 1) \le (n - D) (A_n - r) + r(D - 1) =
$$

= $(n - D) A_n + r(2D - n - 1).$

Since *r* is non-negative, choose *D* to be the greatest integer so that
$$
2D - n - 1 \leq 0
$$
. Hence $D \leq \left[\frac{n+1}{2}\right]$ and since *D* is integral, $D = \left[\frac{n+1}{2}\right]$. Hence $n - D = n - \left[\frac{n+1}{2}\right] = \left[\frac{n}{2}\right]$ and thus $V_n \leq \left[\frac{n}{2}\right]A_n$.

If G' is not connected between u and v, we have $A'_n = V'_n = 0$ and conclude similarly.

The bound in this theorem is sharp for $n = 2$, 3 and 5 (for $n = 5$, see Fig. 1). It is, however, not sharp for $n = 4$.

THEOREM 3. For any graph G with non-adjacent points u and v, $V_4(u, v) =$ $= A_4(u, v).$

PROOF. Partition the points of $G - u - v$ into disjoint classes (i, j) as follows: $w \in (i, j)$ iff $d(u, w) = i$ and $d(w, v) = j$. Clearly we may ignore classes $(1, 1)$ and all (i, j) for $i + j > 4$. So the remaining graph \widehat{G} has the appearance of Figure 2.

Now construct a di-graph \widehat{D} as follows. Let $V(\widehat{D})=V(\widehat{G})$ and $(x, y) \in E(\widehat{D})$ iff (1) $xy \in E(\widehat{G})$ and (2) $d(u, y) > d(u, x)$. Hence \hat{D} has the appearance of Figure 3.

Observe that

(a) each dipath in \hat{D} has length ≤ 4 and

(b) each *chordless* path of \widehat{G} of length ≤ 4 corresponds to a dipath in \widehat{D} .

Let S be a set of V_4 points in $\hat{G} - u - v$ whose deletion destroys all $u \cdot v$ paths of length $\lt 4$. But then in $\hat{D} - u - v$ all dipaths from u to v are also destroyed, so $\bar{V}_4 \geq \bar{H}(u, v)$ where $\vec{H}(u, v)$ denotes the minimum number of points whose deletion separates u and v in \hat{D} . But by Menger's theorem applied to $\hat{D}, \vec{H}(u, v)$ (= the maximum number of point-disjoint dipaths from u to v) $\leq A_4$, since each set of point-disjoint dipaths from u to v in \hat{D} corresponds to a set of point-disjoint $u \cdot v$ paths in \widehat{G} of the same cardinality.

Thus it will suffice to prove $V_4 \leq \vec{H}(u, v)$. Let L be any set of $\vec{H}(u, v)$ points in $\hat{D}-u-v$ whose removal separates u and v. We now claim L meets all *u-v* paths in \widehat{G} of length ≤ 4 . If not, there is a path P joining u and v with length $\lt 4$ and $(V(P) - u - v) \cap L = \emptyset$. We may assume P is chordless. But, then it translates into a dipath from u to v in \hat{D} on the same points. L does not meet this dipath, which is a contradiction.

In the construction of the next section we will have $\frac{V_n}{A_n} = \left[\sqrt{\frac{n}{2}} \right]$ or $\left|\frac{\sqrt{n}}{2}\right|+1$. It is unknown to us where for a fixed n, the value of sup $\frac{V_n}{A_n}$ lies in the interval $\left[\left[\sqrt{\frac{n}{2}}, \left[\frac{n}{2}\right]\right] \right]$.

3. A Construction

We will construct a graph $G(n, t)$ such that given $t(> 0)$, there is an n and a graph $G(n, t)$ which has 2 distinct non-adjacent points u and v such that $A_n(u, v) = 1$, but $V_n(u, v) = t + 1$. Moreover, we will show in addition that given any integer $k(\geq 1)$, we can construct a $G(n, t, k)$, which is kconnected.

For the moment, suppose t is a given positive integer. Choose any $n > t + 1$ and fix it. Construct a path L of length $s = n - t$ joining u and v. As is customary, we shall refer to paths having at most their endpoints in common as *openly disjoint*. Now for each i, $2 < i < t + 1$, take every pair of points a, b on L which are at a distance $=i$ on L and attach a path of length $i + 1$ at a and b which is openly disjoint from L. Such paths we shall call *ears.* (See Figure 4).

Now let P be any *u-v* path of length $s'(\leq n)$. P has at least $n-t$ lines since L is a $u-v$ geodesic.

Suppose P uses r ears. Since replacing an ear by the corresponding segment of L shortens the length by ≥ 1 , we have $s' \geq n-t+r$. Hence

 $length (L) = s = n-t$ $Fig. 4$

 $r \leq t$. Since each ear has $\leq t+1$ interior points, P has $\leq r(t+1)$ points not on L. So the number of points of P on L is (not including u and v)

$$
\geq (s'-1) - r(t+1) \geq n-t+r-1-r(t+1) =
$$

= $n - (r+1)t-1 \geq n - (t+1)t-1.$

If $n-(t+1)t-1 > \frac{1}{2}$ (the number of inner points of L), then any two such paths P must have an interior point in *common.* Note that the number of inner points of $L = n - t - 1$. Thus what we need is that $n - (t + 1)t - 1$ $>\frac{1}{2}$ $(n-t-1)$, i.e., $n \geq 2t^2+t+2$. If n is given, the best t satisfying this inequality is either $\left[\sqrt{\frac{n}{2}}\right]-1$ or $\left[\sqrt{\frac{n}{2}}\right]$. Then with such an n, any two u-v paths of length $\leq n$ must have some inner point of L in common; i.e., $A_n(u, v) = 1.$

We now proceed to show that $V_n(u, v) \geq t + 1$. Suppose there is a set T of t points which cover all $u \cdot v$ paths of length $\leq n$. We may assume all points of T lie on L , for otherwise move right on the "offending ear" until L is reached and use the point of L thus encountered in place of the original T-point. If the ear ends at v take the left-hand end point on L . Note also that u, v are joined by no one ear by our choice of n .

Let us call the sets of points of T which are consecutive on L the *blocks* of T. There are no more than t such blocks. Recall that L contains $n-t+1$ points where $n-t+1 = (n+1)-t > 3$ and hence $n-t \geq 2$. Thus we can form a new *u-v* path Q by jumping each block of T with an ear. This new path Q then misses T and we have added exactly one to the length of L for each block jumped. It follows that Q has length $\leq s + t = n - t + t = n$. Hence, there is a $u \cdot v$ path Q of length $\lt n$ which misses T contradicting the definition of T. Thus $V_n(u, v) \ge t + 1$.

We know at this point that $G(n, t)$ is at least 2-connected. Let k be any integer > 2 . We now proceed to modify the graph $G(n, t)$ constructed above so that the resulting graph $G(n, t, k)$ retains the properties that $A_n(u, v) = 1$, $V_n \geq t+1$ and in addition is k-connected.

The idea is to construct a new graph H , join it to $G(n, t)$ by suitably chosen lines so that the resulting graph is k -connected, but also so that no new "short" *u-v* paths are introduced.

Let the points of $G(n, t)$ be w_1, \ldots, w_N . Further, let $M = k + n$. Form a path of MN points $p_1p_2 \ldots p_{MN}$ and then replace each p_i with a clique, K_k^i , on k points where each point of K_k^i is joined to each point of K_k^{i+1} . Now join w_1 to exactly one point of each of K_k^1, \ldots, K_k^n ; w_2 to exactly one point of $K_k^{m+1},\ldots,K_k^{m+n}$; and, in general, w_j to exactly one point of $K_k^{(j-1)m+1},\ldots$ \ldots , $K_k^{(1)}$ ^{-1, M + k for $j = 1, \ldots, N$. It is now easily seen that no new path joining} any w_i and w_j is of length $\lt n+1$. It is clear that $A_n = 1$ and $V_n = t+1$ in this new graph for any path of length $\leq n$ joining u and v must lie entirely within the original $G(n, t)$ part of this new graph. It is equally clear that the new graph $G(n, t, k)$ is k-connected.

4. A different type of Mengerian result

In this section we take a different approach. Recall that $V_n(u, v) \geq A_n(u, v)$ and moreover, strict inequality can occur. One's intuition may indicate that even in this case, if the subscript on A_n is allowed to increase to some new value *n'* one can always obtain $V_n \leq A_{n'}$. The next theorem says that such a conjecture is not only appealing, but true.

THEOREM 4. Let n and h be positive integers. Then there is a constant $f(n, h)$ such that if $V_n(u, v) \geq h$, then $A_{f(n, h)}(u, v) \geq h$.

In the proof we need the following result.

THEOREM 5 (BOLLOBÁS [2], KATONA [6], JAEGER-PAYAN [5]). *Given any /amily of r-sets which needs at least t points to cover, then there exists a subfamily* $with \leq {r + t - 1 \choose r}$ elements which still needs t points to cover.

REMARK. It is trivial to see that instead of "r-sets" one can say "sets of size at most r ".

PROOF of Theorem 4. Consider sets of interior points of *u-v* paths of length $\leq n$. By the assumption we need $\geq h$ points to cover the members of this family. By the preceding theorem and the remaxk following it we can select $\binom{n+h-2}{n-1}$ paths of length $\leq n$ such that we still need h points to cover these

paths. So let G_1 be the union of these paths and apply Menger's theorem to G_1 to see that there are $\geq h$ openly disjoint *u-v* paths. So how long can a longest path in G_1 be? We have paths of length $\leq n$.

 $\text{So } G_1 - u - v \text{ has } \leq (n-1) \left\lfloor \frac{n}{n-1} \right\rfloor$ points. Now among all sets of $\geq h$ openly disjoint $u \cdot v$ paths in G _i, the longest path one could find would be of length $(n-1)\binom{n+h-2}{n-1} - (h-1)+1$. (This of course happens when one has $h-1$ paths of length 2 and a single long path of the above length.)

Thus set
$$
f(n,h) = (n-1)\binom{n+h-2}{n-1} - h + 2
$$
 and we have $A_{f(n,h)}(u, v) \ge h$.

REFERENCES

- [1] C. BERGE, *Graphs and hypergraphs*, North-Holland, Amsterdam, 1973. *MR* 50 $\#$ 9640
- [2] B. BOLLOBIS, On generalized graphs, *Acta Math. Acad. Sci. Hungar.* 16 (1965), $447 - 452$. MR $32 + 1133$
- [3] G. DIRIC, Short proof of Menger's graph theorem, *Mathematika* 13 (1966), 42--44. MR 33 $#$ 3956
- [4] F. HARARY, *Graph theory*, Addison-Wesley, Reading, 1969. *MR* 41 $\#$ 1566
- [5] F. JAEGER and C. PAYAN, Nombre maximal d'arêtes d'un hypergraphe τ -critique de rang *h*, *C. R. Acad. Sci. Paris. Sér. A* **273** (1971), 221-223. **Zbl 234.** 05119
- [6] G. KATONA, Solution of a problem of A. Ehrenfeucht and J. Mycielski, *J. Combinatorial Theory Ser. A* 17 (1974), 265-266. *MR* 49 $\#$ 8870
- [7] 0. O~E, *Theory of graphs,* Amer. Math. Soe. Colloq. Publ., Providence, 1962. *MR* $27 + 740$

(Received November 18, 1975)

JÓZSEF ATTILA TUDOMÁNYEGYETEM BOLYAI INTÉZET H-6720 SZEGED ARADI VÉRTANŰK TERE 1. HUNGARY INSTITUTO DE MATEMÁTICAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO **VILLA OBREGÓN** CIUDAD UNIVERSITARIA MÉXICO 20. D.F. **MEXICO**

DEPARTMENT OF MATHEMATICS VANDERBILT UNIVERSITY NASHVILLE, TN 37235 U. S,A.