
Periodica Mathematica Hungarica Vol. 9 (4), (1978), pp. 269--276 

MENGERIAN THEOREMS FOR PATHS OF 
BOUNDED LENGTH 

by 

L. LOV/[SZ (Szeged), V. NEUMANN-LARA (Mdxico) and ]Yl. PLUMMER (Nashville) 

Dedicated to the memory of FER~CASDO ESC~A~TE 

1. Introduction 

Let u and v be non-a~ljacent points in a connected graph G. A classical 
result known to all graph theorists is that called M~.so~.B's theorem. The point 
version of this result says that the maximum number of point-disjoint paths 
joining u and v is equal to the minimum number of points whose deletion 
destroys all paths joining u and v. The theorem may be proved purely in the 
language of graphs (probably the best known proof is indirect, and is due 
to DmAc [3 ] while a more neglected, but direct, proof may be found in ORE [ 7 ]). 
One may also prove the theorem by appeahng to flow theory (e.g. BERGs [1], 
p. 167). 

In many real-world situations which can be modeled by graphs certain 
paths joining two non-adjacent points may well exist, but may prove essentially 
useless because they are too long. Such considerations led the authors to 
study the following two parameters. Let u be any positive integer and let 
u and v be any two non-adjacent points in a graph G. 

Denote by An(u, v) the maximum number of point,disjoint paths joining 
u and v whose length (i.e., number of lines) does not exceed n. Analogously, 
let V,(u, v) be the minimum number of points in G the deletion of which 
destroys all paths joining u and v which do not exceed u in length. A special 
ease would obtain when ~ = p --IV(G)I, and we have by Menger's theorem, 
the equality An(u, v )=  V,(u, v). 

V 

Fig. 1 

Research supported in part  by CIMAS (The University of Mexico), I R E X  and 
The Hungarian Academy of Sciences. 

AMS {MOS) aubject classifications (1970). Primary 05C35. 
Key words and phrases. Menger s theorem, disjoint paths, minimum cut-sets. 



270 LOV~,SZ, NEUMANN-LAI:~A, PLUMMEP~: PATHS OF'BOUNDED LENGTH 

In general, however, one does not have equality, but  it is trivial that  
An(u, v) ~ V,(u,  v) for any positive integer n .  On the other hand, the graph 
of Fig. 1 has Vs(u, v) ---- 2, but  As(u, v) = 1. 

We prefer to formulate our work as a s tudy of  the ratio V~(u, v) or 
A~(u, v) 1 7  

simply ~ when the points u and v are understood. For any terminology not 

defined in this paper, the reader is rei~rred to the book by  HAR)~RY [4]. 

2. Bounds for the ratio 

As :in the introduction we shall assume throughout  this paper tha t  
u and v are non-aAjaeent points in the same component of a graph G. I t  is 

V.(u, v) 
trivial that  1 ~ An(u ' v) ~ n -  1. As usual, d(u, v) denotes the distance 

between points u and v. Our first result ilivolves this distance. 

THEOlCEM 1. For every positive integer n ~ 2 and/or  each m = n ~ d(u, v) ~ 

o, V (u' v) < m + l. 
An(u, v) - -  

The construction in Section 3 shows t h a t  this bound is sharp. 

PRoo~. The proof proceeds by induction on m. Hence first let m = 0, 
i.e., suppose n = d(u, v) nQ. We orient some of the lines, of  G according 
to the following rule: let xy  be any line. Then if d(x, v) ~ dty ,  v), orient x to y. 
Then, clearly, any u-v geodesic (i.e., a shortest u-v path) yields a dipath from 
u to v. On t h e  other hand, we claim tha t  any u-v dipath must arise f r o m  a 
geodesic u-v path in G, fo r  just  consider our rule of orientation. I f  (x, y) is a 
directed line in our dipath, d(x, v) ~ d(y, v) and distance decreases b y  I 1 as 
we traverse each diline toward v. Hence our dipath cannot have % n lines 
and hence must  have come from'a  u-v geodesic. 

Thus in the oriented subgr~ph of G, the u-v paths are exactly the geodesics, 
so by  Menger's theorem, V~(u, v) = An(u,,V) and the case for m ----- 0 is proved. 

Now by  induc~mn hypothesis, assume that  the theorem holds for some 
m 0 ~ 0 and suppose m --:- n - -  d(u, v ) =  m0 @ 1 (and hence that  n ~ d(u, v)). 

Let  X be a minimum set of  points covering all u-v geodesics. By  the 
case for m = O, 

IX] ---- Va(~,O(u, v) = Ad(u,O(u, v) ~ An(u, v). 

Consider the graph G -  X. I f  d~_x(U, v) ~ n, X has covered all u-v paths 
of length ~ u and we have, V~(u ,  v ) =  t X t  ~ An(u, v ) ~  mA~(u,lv) and we 
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are done. So suppose dQ_x(U, v) ~ n, say d~_x(U, v) = n -- t for some t, 
0 < t <  m. ( N o t e  tha t  t < m for X destroys all u-v geodesics and thus 
t = n - d ~ _ x ( u ,  v) < n - d(u, v) = m). 

So by the  induct ion hypothesis  applied to  points u and v in graph G--X,  
we have 

V~-X(u, v) < (t + 1) A~-X(u, v). 

But  we can then cover all n-paths in G joining u and v with a set Y where 

]YI = I X [  + (t + 1)AanLX(u,v) ~ IX I + (t + 1)A~(u,v). 

So 
Vn(u, V) < I X [ +  :(t + 1)An(u, v) <~ (t + 2)A,(u; v) < (m-~ 1)An(u, v) 

and the proof is  comple t e .  
The next  theorem shows tha t  we can :do better  as far as a bound depend- 

ing solely upon  n i s  concerned. 

TuEORE~t 2. For any graph G, any non-negative integer n, and any two 

rm~-adjacent points u a n d  v,  Vn(u,v) <]~[An(u,:v). 
L - - J  

PRoof. If d(u, v) ~ n/2 + 1, we a~re doric :by Theorem 1. So suppose 
d(u,v) ~ (n+ 1)/2. Choo~e D such~.that d(u,v) <?Di~ n and let P0 be a 
u-v geodesic in G. Form a new graph  G1 from: G by '  removing all interior 
points of Po" Clearly do~(u, v)~_dQ(u, v).=:Now remove ~any u-v geodesic 
in G 1, say P1, to obtain-Gv C~ntinue in this manner  until  we obtain a graph 
G~ containing a u-v geodesic Pr such that/(Pr) _< D, bu t  the length of any 
u-v geodesic in Gr+l > D. For  convenience let us denote G~+I by G' and 
similarly for parameters of this graph. Thus d0,+,(u, v) = d'(u, v) ~ D + 1. 

Since we have removed r disjoint u-v paths from G to get G', we have 

An ~ A~ + r;. (1) 

for all discarded paths  had length no greater than  the length of-a u-v geodesic 
in G'. 

Also 

Vn ~ V'n + r(D -- 1). (2) 

Moreover, if G'.ds: connected, We have by Theordm 1 tha t  

V~ ~ (n --de(u, v) + 1)A~ ~ (n - : D  --  1 + 1) A:n..-- .... (n -- D)An. (3) 

The combining (2) and (18), we  obtain b y  (!) 

Vn < (n -- D)A~ + r(D -- 1) ~ (u,-- D)(An -- r) + r(D -- 1) ----- 

---- (n--  D)An + r(2D-- ~ - -  1). 
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Since r is non-negative, choose D to be the greatest integer so that  

2D--n- - l~O.  HenceD~[-~-~JandsinceDisintegral, D=[-~--~-]. 

Hence n - - D = n - - [ - ~ ] : [ 2  ] and thus Vn~[2]An. 

I f  (7' is not connected between u and v, we have  An = V~ = 0 and 
conclude similarly. 

The bound in this theorem is sharp for ~ = 2, 3 and 5 (for n = 5, see 
Fig. 1). I t  is, however, not  sharp for ~ = 4. 

THEOREM 3. For any graph G with non-adjacent points u and v, Va(u, v) = 
= A4(u, v). 

PROOF. Part i t ion the points of  G -- u -- v into disjoint classes (i, ]) as 
follows: w 6 (i, j) iff d(u, w) = i and d(w, v) = i. Clearly we may ignore classes 
(1, 1) and all (i, ?') for i + ] > 4. So the remaining graph (~ has the appearance 
of  Figure 2. 

~U V 

F~. 2 

Now construct a di-graph D as follows. Let  F(D)----V(O) and 
(x, y) E E(L)) fff (!) xy E E(O) and (2) d(u, y) > d(u, x). 

Hence Z) has the appearance of  Figure 3. 

tt v 

Fig. 3 
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Observe that  

(a) each dipath in I) has length ~ 4 and 
(b) each chordless path of G of length ~ 4 corresponds to a dipath i n / ) .  

Let  S be a set of V 4 points in G -- u -- v whose deletion destroys all 
u-v  paths of length < 4. But  then i n / )  -- u -- v all dipaths from u to v are also 
destroyed, so V 4 ~ H ( u ,  v) where H(u, v) denotes the minimum number of 
points whose deletion separates ~ and v in D. :But by Menger's theorem applied 
to ~) , / t (u ,  v) ( ~  the maximum number of point-disjoint dipaths from u to v) 

Aa, since each set of point-disjointdipaths from u to v in I) corresponds 
to a set of point-disjoint u-v paths in G of the same cardinality. 

Thus it will suffice to prove V4 ~ t / (u ,  v). Let  L be any set of H(u, v) 
points i n / )  -- u -- v whose removal separates u and v. We now claim L meets 
all u-v paths in G of length ~ 4. I f  not, there is a path P joining u and v with 
length ~ 4 and ( V ( P )  - -  u - -  v) r] L : ~. We may assume P is chordiess. But, 
then it translates into a dipath from u to v in 1) on the same points. L does 
not meet this dipath, which is a contradiction. 

In the construction of  the next section we will have ~ ~ or 

-t- 1. I t  is unknown to us where for a fixed n, the value of sup ~ lies 

3. A Construction 

We will construct a graph G(n, t) such tha t  given t ( ~  0), there is an n 
and a graph G(n, t) which has 2 distinct non-adjacent points u and v such 
tha t  A , ( u ,  v) ~ 1, but  V , ( u ,  v) : t -t- 1. Moreover, we will show in addition 
tha t  given any integer k ( ~  1), we can construct a G(n, t, k), which is k- 
connected. 

For the moment, suppose t is a given positive integer. Choose any 
n ~ t -t- 1 and fix it. Construct a path  L of length 8 ~ ~ -- t joining u and v. 
As is customary, we shall refer to paths having at  most their endpoints in 
common as openly  dis joint .  Now for each i, 2 ~ i ~ t ~- 1, take every pair 
of points a, b on L which are at a distance ---- i on L and at tach a path of length 
i -}- 1 at a and b which is openly disjoint from L. Such paths we shall call 
ears. (See Figure 4). 

Now let P be any u-v  path of  length ~ s ' ( <  n). P has at  least n -- t 
lines since L is a u-v  geodesic. 

Suppose P uses r ears. Since replacing an ear by the corresponding 
segment of L shortens the length by ~ 1, we have s ' ~  n -  t-}-r. Hence 

2 Periodlca ~ath .  9 (4) 
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IJ. 
a b 

* ~ �9 �9 C - O V -  

tong'oh (L) = s - -n - t  

F~g. 4 

r _~ t. Since each ear has ~ t + 1 interior points,  P has ~ r(t + 1) points 
no t  on L. So the  number  o f  points of  P on L is (not including u and  v) 

( s ' - -  1 ) - -  r(t + 1 ) ~ n - -  t + r - -  1 - -  r ( t +  1) = 

= n -  ( r +  ] ) t -  1 > n -  ( t +  ] ) t -  ]. 

1 (the number  of  inner points  of  L), then  any  two such I f  n - -  (t-+- 1 ) t - -  1 > ~ -  

pa ths  P must  have an interior point  in common. Note  t h a t  the  number  of  
inner points  of  L = • --  t --  1. Thus wha t  we need is t h a t  n --  (t + 1) t -- 1 

~_~1 (n --  t -- 1), i.e., n _) 2t ~ q- t q- 2. I f  n is given, the  best t sat isfying this 

inequal i ty  is ei ther [ V 2 ] - - 1  or [ V ~ ] .  Then wi th  such an n, any  two u-v 

pa ths  of  length ~ n mus t  have some inner point  o f  33 in common;  i.e., 
A.(u ,  v) = 1. 

We now proceed to  show t h a t  Vn(u, v) ~ t + 1. Suppose there is a set 
T of  t points  which cover an  u-v paths  of length ~ n .  We m a y  assume all 
points of T lie on L,  for otherwise move right  on the  "offending ear"  unt i l  
15 is reached and  use the  point  of  L thus  encountered in place of  the  original 
T-point.  I f  the  ear ends a t  v t ake  the  lef t -hand end point  on  L.  Note  also t ha t  
u, v are joined by  no one ear by  our  choice o f  n. 

L e t  us call the  sets of  points  of  T which are consecutive on L the  blocks 
of  T.  There axe no more t h a n  t such blocks. Recall t h a t  L contains n --  t -t- 1 
points  where n -- t + 1 = (n + 1) --  t ~ 3 and  hence n -- t ~ 2. Thus we can 
form a new u-v p a t h  Q by  jumping each block of  T wi th  an  ear. This new pa th  
Q then  misses T and  we have  added  exac t ly  one to  the  length o f  Z for each 
block jumped.  I t  follows t h a t  Q has length ~ s + t = n -- t + t ---- n. Hence,  
there is a u-v pa th  Q of  length ~ n which misses T contra~licting the  definit ion 
of  T. Thus V,(u, v) ~ t + 1. 



LOV)~SZ, NEUMANN-LARA, PLUiMIM.ER: PATHS OF BOUNDED LENGTH 275 

We know at this point tha t  G(n, t) is ~t least 2-connected. Let ]c be any 
integer ~ 2. We now proceed to modify the graph G(n, t) constructed above 
so tha t  the resulting graph G(n, t, lc) retains the properties tha t  An(u, v) ~ 1, 
Vn ~ t -~ 1 and in addition is It-connected. 

The idea is to construct a new graph H, loin it to G(n, t) by suitably 
chosen lines so tha t  the resulting graph is Z-connected, but also so tha t  no new 
"shor t"  u-v paths are introduced. 

Let  the points of G(n, t) be w 1, . . . ,  wN. Further, let M ~ k ~- n. Form 
a path of M N  points PIP2. �9 .PMN and then replace each Pi with a clique, K~, 
on k points where each point of K~ is joined to each point of K~ +~. Now join 
w 1 to exactly one point of each of K ~ , . . . ,  K~; w 2 to exactly one point of 
K~+X, . . . ,K~+k;  and, in general, w i to exactly one point of K(k j-~)M+~ . . . .  
. . . .  K(~ i-1)M+k for j = 1 . . . .  , ~ .  I t  is now easily seen that  no new path joining 
any wi and wj is of length ~ n -~ 1. I t  is clear tha t  A~ = 1 and V~ = t + 1 in 
this new graph for any path of length ~ n joining u and v must lie entirely 
within the original G(n, t) part of this new graph. I t  is equally clear that  the 
new graph G(n, t, k) is Z-connected. 

4. A different type of Mengerian result 

In this section we take a different approach. Recall tha t  Vn(u, v) ~ A~(u, v) 
and moreover, strict inequality can occur. One's intuition may indicate tha t  
even in this case, if the subscript on An is allowed to incre~e to some new 
value n '  one can always obtain Vn ~ An,. The next theorem says tha t  such 
a conjecture is not only appealing, but true. 

THEOreM 4. Let n and h be positive integers. Then there is a constant 
/(n, h) such that if Vn(u, v) ~ h, then A/(n,h) (u, v) ~___ h. 

In the proof we need the following result. 

T~t~oa~t  5 (Bo/~oBAs [2], KATONA [6], JAEO]~R--PAYAN [5]). Given any 
/amily of r-sets which needs at least t points to cover, then there exists a subfamily 

with ~ { r  + t - - l )  e l e m e n t s w h i c h s t i l l n e e d s t p ~ 1 7 6 1 7 6  

RE~_ARX. I t  is trivial to see that  instead of "r-sets" one can say "sets 
of size at  most r".  

P~OOF of Theorem 4. Consider sets of interior points of u-v paths of length 
n. By  the assumption we need ~ h points to cover the members of  this 

family. By the preceding theorem and the remaxk following it we can select 

n -- 1 paths of length ~ n such tha t  we still n ~ d  h points to cover these 

2* 
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paths. So let G 1 be the union of these paths and apply Menger's theorem to 
G i to see that  there are ~ h openly disjoint u-v paths. So how long can a 

longest path in G~ be ? W e h a v e (  n + h - - 2 )  p a t h s ~  _<n. 

So G 1 -- u -- v has < (n -- 1) points. Now among all sets of 
- -  n - - 1  

h openly disjoint u-v paths in G i, the longest path one could find would be 

of length ( ~ - - 1 ) (  n + h - 2 }  n -- 1 -- (h -- 1)+ 1. (This of course happens when one 

has h -- 1 paths of length 2 and a single long path of the above length.) 

Thusset / (n,h)  = (u -- 1) / n + h -- 2] " ( n - - 1  ] - -h+2andwehaveA$(~ 'h ) (u ' v )~h"  

REFERENCES 

[1] C: BEttGE, Graphs and hypergraphs, ~orth-I-Iolland, Amsterdam, 1973. MR 50 ~ 9640 
[2] B. BOLLOBIS, On generalized graphs, Acta Math. Acad. Sci. Hungar. 16 (1965), 

447--452. MR 32 ~# 1133 
[3] G. DIRIC, Short proof of Menger's graph theorem, Mathematika 13 (1966), 42--44. 

MR 33 4~ 3956 
[4] F. HiRAI~y, Graph theory, Addison-Wesley, Reading, 1969. MR 41 ~ 1566 
[5] F. JAEOE~ and C. PAYi~, Nombre maximal  d'arStes d 'un hypergraphe T-critique de 

rang h, C. R. Aead. Sci. Paris. S~r. A 273 (1971), 221--223. Zbl 234. 05119 
[6] G. KATOZ~A, Solution of a problem ofA.  Ehrenfeueht  and J .  Myeielski, J. Combinatorial 

Theory ,.%r. A 17 (197~), 265--266. MR 49 @ 8870 
[7] 0.  O~E, Theory of graphs, Amer. Math. Soe. Colloq. Publ., Providence, 1962. MR 

27 ~ 740 

(Received November 18, 1975) 

J(SZSE]~ ATTILA TUDOM-~NYEGYETEbi 
BOLYAI INT]~ZET 
~r--67Z0 SZEGED 
ARADI V]~RTAN~K TERE 1. 
HUNGARY 

INSTITUTO DE MATEM~TICAS 
UNIVERSIDAD NACIONAL AUTONOMA DE M]~XICO 
V I L ~  OBREG(~N 
CIUDAD UNIVERSITARIA 
M~XICO 20. D.F. 
M]EXICO 

D]~PARTI~ENT OF MATHEMATICS 
VANDERBILT UNIVERSITY 
NASHVILLE, TN 872~5 
U. S,A. 


