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Abstract

In this paper we introduce thres families of multivariate and matrix Iy-norm symmetric distribue
tions with location and scale parameters and discuss their maximum likelihood estimates and likelihood
ratio criteria. It is shown that under certain condition sthey have the same form as those for imdependent
exponential variates.

§ 1. Introduction

The exponential distribution is one of the most important distributions in
statistics and has been studied exiensively and thoroughly by many authors. There
are a number of ways to extend exponential distribution to multivariate distribu-
tion'), We have introduced and studied some families of multivariate symmetric
distributions related to exponential distribution. We may call the multivariate I~
norm symmetric distributions. In this paper we’ll study related families with location
and scale parameters.

Let W(u, o) denote the exponsential distribution with p.d.f.

o g @ BN m> 1.1
It is well-known that the maximum likelihood estimates (MLE's) of u and o are
A=min z
4
6=n"* 33 (2~ ) (1.2)
i=l

where x4, ---, @, are independent random variables, each having p.d.f. (1.1).

Furthermore, the hypothesis testing problems can be considered. For example

Sukhatme (see [3] p. 133) has studied the problem of testing equality of u; when
&

there are £ independent samples, x,f;(@'=1, 2, oo, by §=1,2, -, m; =N ), with =,
=1

drawn from W (u, o). More generally, we consider the following problems.
Let W= (W) be an nX p matrix, where wy~W (u;, a;), 4=1, *-+, n, j=1, -,
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9, are independent. Set
6“{(”’: A): I‘-“(,U':L; "ty lb»): A“dia'g(%'": G,)>0}

O1={(p, A) €O: gy =+ =ay}

Or={(p, A) €O: py=--e =y}

G;={(p, A) €O: py=---=p,, a3=+--=q,}

6,={(n, 4) €6: p=0}

O;={(p, A) €6: p=0, a1 =+--=a,}.
We want to test H,: (p, A) €6, versus K;: (p, A)EO—8;, j=1, «+, 5, and Hg:
(p, A) €63 versus Kg: (p, A) €64, It can be shown that the above likelihood ratio
criteria (LRO) are

(W)= g(ﬂw,ﬂ—nmgnw‘;) ., (1.8)
L-E; (Jwil —niin-w,,)}
To(W 7 ﬂwgﬁ-—-nm‘in'wq
a( )"5];[1 jw;} nné:inw;; (.4
- » [ fwi]— nm::n'wu 5
3( )“g ﬂwﬂ“'ﬂﬁ)n’gn'wu (1.)
» , |w;] —nminwy
W) =1 (——r—) (1.6)
» wyl — in
7o (W) =11 ( e u’;;?w’ ) @.7)
S inwy — min w; -1
TQ(W)_f_:npngmw; minw,)/(p—1) .8

313 (wy - minwy)/(np-p)
respectively, where ﬁWﬂ-g]qu, |w;] = gw;,.
Lot X = () with {z,) being iid. W (0, 1) variates. We can express W as
follows:
W= M+XA (1.9)

11!“(1: "ty 1)'J I“a(y’lx **, ”’9),} M""l,.[b’,
A”diag(“l: “*t, a’)

where

and ix denotes that the random variables on the two sides have the same distri-
bution. This suggests that certain classes of distributions can be defined by replacing
X with Z € Fxp(4), the matrix lh-norm symmetric distributions™.

In this paper, we’ll lay stress on discussing MLE’s and LRO of the parameters
under the generalized model.

First of all, a brief review for the multivariate and matrix L-norm symmetrio
distributions is required.
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Ry?={A=(ay) s 35>0, i=1, -+, n, g=1, =, o}

Rt =Rrx1

Bna{b=(bi: ) bn)’: bER’-‘H Hbﬁ =1}-
If y is uniformly distributed on B,, we write y~U,. If Y= (94, -+, ¥,) € B*?,
where s are i.i.d. and y4~U,, we write ¥Y~U,xy(1). If Vec Y= (yi, -, Yp) ~U,g,
we write ¥~U,xy(2). Let L(z) denote the distribution of z. In [1] and [2], the
families of multivariate and matrix l,—norm symmetric distributions are defined as
follows:

F,={L(2): z=ru, where r>0 is independent of u~U,.} (1.10)
Fog(D) ={L(Z): Z=UR, where U~U,x,(1),
R=diag(ry, --+, r,)>0, U and R are independent.} 1.1
Fox9(2) ={L(Z): Z =Ur, where U~U,xy(2), r=0, U and r are independent}.
(1.12)

It is evedent that Fai(2) =Fux1(1) =F, and it is shown that F.x,(2) is a proper
subset of F,xp(1) (p>1). Moreover, there is a one—to—one correspondence between
Foxo(1) and the set Ry={L((ry, *+-, r5)): 7:=0, 4=1, -+, p} and a one-to—one
correspondence between F,.,(2) and Ry. Specially, if z € R7*? is absolutely continu-
ous, then (1) ZEFp(1) and (|zsf, «--, [2p]) has p.d.f.g(-) iff Z has p.d.f.

F(Azal, -, 1zl). In this case, f(@) = (T ®)%9@) [1a7™5 (DZEFuep(2) and

|Z| bas p.d.f. g(+) iff Z hasp.d.f. f(|Z]). In this case f(z) =I'(np)g(z)z "*
Now we can, in the same way as (1.9), introduce parameters for the above three
families. Let

So={(Li(w): w=m+ Az, z€ F,, A=diag(ay, -~,a,)>0} (1.13)
Suxs () ={L(W): W=M+ZA, Z € F, (i), A=diag(ay, +*-, ay) >0}, ¢=1, 2.
(1.14)

Throughout the paper we assume that all random variables (vectors, matrices)
considered have p.d.f.s. Hence we write w=m+Azc8,(m, A, g) to mean that
L(w) €8, and |z| has p. d. f. g(+). The notation W=M+ZAECS.x,(4, M, A, g¢)
is adopted in the same way.

From papers [1] and [2], it is easy to obtain bagic properties of the above three
families, including distribution functions, probability density functions, characteri-
stic functions, marginal distributions, conditional distributions and characterizations
of exponential distributions. In this paper MLE’s and LRC are obtained. We’ll show
that under certain conditions the MLE of M is independent of g for WE S, (3, M,
A, ¢, =1, 2, the MLE of A4 is invariant except for a constant multiplier (depending
on ¢) when ¢=2, and the LROU and their null distributions are independent of g for
some tests.

In this paper, we use capital letters t0 express matricess, while corresponding
small letters with subscripts stand for their row vectors, column vectors and elements,
small lettersn for example Z = (2y, «++, Zy) =(Z(), ***, Zw) = (%;) axy and T = (T4, -,

wn):le-
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§ 2. MLE's and LRC of S» and S»xp(2)

In this section we investigate MLE’s for ‘location -and scale parameters of §,,
Suxs(2) and give some LRO and their null distributions. The following lemmas can
be proved similarly as those in [4].

Lemma 2.1. Suppose that (), defined on R%, is nonnegative and continuous
such that

(1) f(=x) is decreasing for each x; (sufficiently large);

@ L, £(x) }";11 ot dar < 0o,
Let
u(@) =f @1 a}. @2.1)

Then u(«x) has a maximum in R%— {0}.
Lemma 2.2. Suppose that (|24, +--, |2,]) is a density for Z € R}*” such that

E (g zn><oo and u(x) =f (a:).gz}‘ is uniformly continuous in R}, Then u(x) has

a maXimum in R% — {0}.

Lemma 2.3. Suppose that the conditions of Lemmas 2.1 and 2.2 hold. For any

fixed y € R%— {0}, let

v(z) =u(yz), z€RL. (2.2)
Then »(2) has a maximum in (0,0) as a function of z (note this maximum is depending
on ¢ when ¥ varies and we denote it by o).

Corollary 1. Suppose that f has partial derivatives of order one for' all its

variables. If u defined by (2.1) has a maximum at &, then i} satisfies the equations
nf(x) +a;fo,(®) =0, j=1, -, p. 2.3

If v defined by (2.2) has a maximum at y,, then it satisfies the equation

[nof @) +Raft@]| =0 2.9)

J=1 @5=1 /e

For WES.xe(é, M, A, ¢g), Lemmas 2.1, 2.2 ahd 2.3 give some sufficient
conditions for corresponding 4 and v, defined by (2.1) and (2.2) respectively, to
have maxima. The following theorems give MLE’s of (M, A) when » and » have
maxima. Since the structure of S,.,(2) is simpler than S,.,(1), we first solve the
problems of MLE and LRO of the former.

Theorem 2.1. Assume that © satisfies the condition that if (m, A) €O then
(m, cA) €6, Ye>0. Suppose that w=m+ Az S, (m, A, g) and u(z) =f(s)2" has a
maximum at 2, € (0, o). Suppose also that MLE (7, A) exists when z/'s are i.i.d.
W (0, 1) variates. Let the likelihood function of w be

L(m, A)=f(|A*(w—m)|) | 4]
Then the MLE of (m, A) is

(i, A) = (Fn", —:;-Z) (2.5)
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and the maximum of the likelihood function is
L, A) =f(z0) | 4|2 (2.6)
Proof. The proof is gsimilar to that in [4]. Let
B=[A|7A, = A (w-m) | = | A|"¥"| B (w-m)].
L(m, A)=f(z)a"[B~*(w—m)|™. (2.7)

If zjs are i.i.d. W(0, 1) variates, f(z) =¢™®. Honce the maximum of (2.7) is
attained at

Then

g=n, m—fii, B=B— |4 |4,
In general the maximum »f (2.7) is attained at
T =10, M~17, B-B.
Therefore
A-|A|B= (1B (w~)|/5) B = (| A |¥"n/00) B=(n/20) &.
Substitution of these values into (2.7) yields (2.6).

For WESw(2, M, A, g), if M=1,p', then w,€S,(n, 4, g), so W can be
regarded as a matrix of samples, each row of which is from S,(r, 4, g), but need
not be independent. In case there are two rows being independent, all are easily
shown to be independent with wi;~W (u;, a;o) for some o >0,

Theorem 2. 2. Let © and { ©,} be defined as in Section 1. Suppose that W=53
+ZAES(2, M, A, g) with M=1,u' and n>>1. Suppose also that u(x) =f(z)z"
has a maximum at #,E (0, oo) where f is the p. d. f. of Z. Let the l¥kelihood
function of W be

Lp, A)=f(|(W-M)A™]) (as-+ap) ™", (W— M)A~ €RY".
Then

(1) for(m, A) €O, O, and O, the MLE's of w and A are = (&, -, fiy) and

A =diag(ay, +-+, a,), where
m‘in wy, (p, A)EO

ﬁ’ﬁ = Ir:;n Wik, (I"‘: A) 6 @2 (2 '8)
and . ’
a;=(p/m) (Jw;| —njis) (2.9)
and the maximum of the likelihood function is
-~ 4 A b A ? A
L, &) =7(Z (w)l ~ni)/a)]11 &7 =f (eo) [T 45 (2.10)

with corresponding fi; and a;;
(2) for (n, A) €6, O, and O;, the MLE’s of u and A are f= (s, **+, fy) and
A =diag (@, -+, @), where
min ws’i: (au‘; A) 6 @1
4
b= min wy, (r, A)€E6; (2.11)

0) (l"’) A) e @5
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and
a=3X(1w0il ~niy) /20 2.12)
and the maximum of the likelihood ftnction is
2 ~ -~ o,
L, Ay =f (ZJw)| -ni) /&) & =F @)™ (2.13)
with corresponding £, and a.

Proof. Since
vec W'=Vec M'+ (I®A) Vec Z'€8,,(Vec M, IRA, g),
the result follows from Theorem 2. 1,
Let
Fis(D) ={L(Z) EFpis(1): P(}24] =0) =0, j=1, --, p},
Fxy(2) ={L(Z) €Fnxs(2): P(|Z|=0)=0}.

i d
We call a statistic #(Z) invariant in F,(3) if $(Z)=-#(W) for any Z, W&
F},(3), =1, 2. The following lemma is from [2].

Lemma 2.4. A statistic £(Z) is invariant in F},(2) iff ¢(aZ) - t(Z) for
any constant ¢>0 and Z € Fi,,(2).

Theorem 2.3. Suppose that the conditions of Theorem 2.2 hold. Let X=(z,;),
where z's are i. i. d. and 2,3 ~W (0, 1). Then the LRC for H; versus K is equivalent
to Ty(W), j=1, -+, 6 (see (1.8)—(1.8)).

Proof. The results are from Theorem 2.2 directly.

Theorem 2.4. Suppose’ that the conditions of Theorem 2.3 hold. Then under

d
Hb Ti(W)—“:TI(X): ]al, °*ty 6.

Proof.. Under H;, T,(VV)-:L-T,(Z). Then Lemma 2.4 leads to the desired

conclusion.
Theorem 2.5. Suppose that the conditions of Theorem 2,3 hold. Then

To(X) L yens (2.14)
T(X) = vyeen, (2.15)
To(X) = [1(3) (2.16)

where ¢ = (y1, ***, ¥p)'~Uy; 4, -+, v, are i.i.d. with v3~B(1, n—1); b=(b4, *-+, b,)
~D,(n,-+-, n) (Dirichlet distribution); v and b are independent. And
To(X)~F(2(p—-1), 2p(n—1)). 2.17)
Proof. Form [1] we have ;/| ;]| ~U,, so
P(rxtinm;,/ﬂa:,ﬂ>a,) =P(zy/|x;] >a, -, 2w/ |2,|>a)

= (1_m)n—1, ng<l..
Thus min ;;/ |a;| hasa p.d.f. n(n—1)(1—na)" 2, 0‘<w<§%. Let v;=1—nminz,/|x,].
$ - 4
Then v,~B(1, n—1). Since |a;j~I'(n; 1) and .is independent of @,/|a;|, ||
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and %, are independent. Thus |a;|v;~W (0,1). In view of the independence of
lac;|v;, j=1, -+, p, we have

(aalos, -, [2l0) /Slwlo, = y~U,
and then

Ti(X)i“' Y1 Yp.
(2.1B) can be shown similarly. We now prove (2.16). Let b= (|z4]/|x], -,
fa,l/l]). Then b~Dy(n, ---, n) and &1/ | 4|, +-+, %,/ | %,| and b are independent™,
Since 1 —nn‘n'n @y/ | x| =v;~B(1, n—1) as above,

To(X) =1l /@) (1- nminay/|&]) = [1bm).

For the last assertion (2.17), refer to [3] p. 133.

By making the transformation @y =2y, Ta=719a, ***, Tpy=7v1-+¥; we find that the
p. d. f. of z=w4---v, in Theorem 2.5 is

(=D} (n—1)?
(p—1)!

Finally, we give some examples to illustrate the lemmas and theorems.

Example 2.1. Let X be as in Theorem 2.8, Then X€ F,.,(2, g) (=S.xs(2, 0,
I, ¢)) with f(z) =¢™*. We have

zo=np, u(%) =6 "?(np)"?,
A “ ~ 2 A
a;=(1/n) (|w,] —ngay), aag(}}w,-ﬁ —ni;)/ (np).
Let WES,.,(2, M, A, g) in the following examples.
Example 2.2. Let g be the p.d.f. of I'(k, 1)(Gamma distribution). We have

T (k) :

2" 2(Jogz)?™1, O<az<l. (2.18)

:'Z?ogk, U($0> =

Specially, if k=np, id. Z 2 X (see Example 2.1), then zy=np.
Example 2.8. Let g be the p.d.f. of F(k, q) (F-distribution). We have
I'(np) B/ 2q2/?

B(k/2, ¢/2) (k+g) ¥ o

Example 2.4. Let g be the p.d.f. of B(%, ¢), >0, ¢>1. We have

k I (np) L (k+ @k (g— DT

BT BT Y T TR I g D

mo-*-'-l, u(wo) =

§ 3. MLE’s and LRC of Snxp(1)

In this section we come to the same problems as in the last section for S,.,(1).
The following theorems are derived from lemmas in Section 2. Note that in proving
Theorems 2.1 and 2.2 we use Lemmas 2.1 and 2,2 with p=1.and do not need Lemma
2.3, while we need Lemma 2.3 for (8.2) below.

Theorem 3.1. Let 6 and {8;} be defined as in section 1. Suppose that W=M
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+ZAES.x,(1, M, A, g) with M=1,p', n>1. Suppose also that u(x)=F (x)jfgm;
has a maximum at some ¢ € R% — {0}, where f(|24], ---, [2,]) is the p.d.f. of Z and
that for any fixed y € R — {0}, v(z) =u(yz), as a furiction of ® € B}, has a maximum
at ¥ € (0, o). Lot the likelihood function of W be
L{p, A) =f((Jwsl —nua) /as, =+, (|05] —nisy) /ap) (@12+ap) ™",

(W-—M) A€ R,

Then
(}) for (u, AYE B, 6, and 6,, the MLE’s of p and A are &, given in (2.8),

and A =diag(ay, *-, a,), Where

ay= (|w;| —niiy) /cs 3.1
and the maximum of the likelihood function is

L&, &) = £ (@[T (lwi] —na) ™ =u(e) [ (lt0:] ~ni) ™

with corresponding fi;and aj;
(2) for (u, A) €6y, O3 and 65, the MLE'’s of u and A are £, given in (2.11),
and A=diag(a, --+,a), where
a=ys* (3.2
when y;= | w;] —nfi; and the maximum of the likelihood function is
L(ji, &) =f ((|wal = ni)yo, -, (|ws] —niis)yo)¥s

=) [T —ni)™

with corresponding f, and a.

Theorem 3.2. Suppose that the conditions of Theorem 3.1 hold. Let X be as
in Theorem 2.3. Then the LRO for H; versus K;, j=1, -+, 6, are (or are equivalent
10) the following:

ey A1 (W) =v(yo) /u(c) (3.8)

where y;= | w;| —nminw; (see Lemma 2.3 for yo's definition);

@ To(W) = ((J0,] ~nminwy) /(foy] -nminw,)); (3.4

®) As(W) = (v(y0) fu(@) T (10, ~nminw,)/35)", 3.5)
where y,= [w,] —nmin w,;

@ T(W) =L1((l0,] —nmin ) /[0,]); (3.6)

®) 4(W) = (o(go) fu(@)) [T (0] ~nmin ) /3, 3.7
where y;= |w0];

®) Ao(W) = (o) /ulyo) ) T /1) 3.8)

where ;= |w;] —mr%’infw,,, ys=[w;] —-nntin'wg,.



No. 1 MLE AND LRC OF MULTIVARIATE EXPONENTIAL 21

Lemma 8.1. A statistic ¢(Z) is invariant in Fi,(1) iff t(ZA) == {(Z) for
any constant matrix A=diag(ay, +--, a,) >0 and Z€ F,(1) (see [2]).
Theorem 3.8. Suppose that the conditions of Theorem 3.2 hold. Then under

H, T(W) = T,X), j=2, 4.

We see that the expressions and null distributions of T and T’y are independent
of g, while those of 4;, ¢=1, 8, 5, 6, are depending on ¢ in general. Moreover, we
can obtain the null distribution of 7, by applying Theorem 2.5. Here are some
illustrative examples.

Example 8.1. Let X be as in Example 2.1. X can be considered in Fou,(1).
Then

f(@) =exp(—|x|), ¢;=n, u(c) =e"n™.
The same &, is obtained by using Theorem 3.1. For any fixed y (see Theorem 3.1),

4
Yo=np/[yl, v(yo) =™ (np)” [ yilw] ™™
3= 1yl/ (vp) =S ()] i)/ (np).
Let WE Suxp(1, M, A, g) in the following examples.
Example 3.2. Let g be the p.d.f. of Dy, (ky, -, ky; kppr) with £,>0, g=1,
oee, P, kgy3>1. Then
p+1 P p+1
o=k /(S b-1), vo=(F b/ 3 (k1))
i=((Z k1 /@)(Hw,ii—-nﬁ,-),

i=((2 k1) / Sk ) 2w -0,

and

w; -nmmfw,- ks
A1=Kn( | : >
=1

2 ([10] = nrninwi),

»  (|wy] "nm;l'n’wif)"

(qg AR nm‘jjn w,,)>-§*k"

As= <1 (Ilell‘mfjlmwﬁ)"“k’
and
r ([t —nminwy® -Zke
A5=Kg e (3 led) 7

where K =( Ek /ch

Example 3.8. Let p=2 and g be the joint p.d.f. of the two independent
F(1, 1) variates. Then

c=(1,1), u(c) “(R%%Y/‘L Yo=(y1y2) "4,
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o) =(gr L)' G
BA/2, 1/2) ) Gitgat2Guwa ™’
2
A A ~ A
ay=[w,] — njiy, a‘“'gl(ﬂw;l —ni)*A,
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