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Abstract 

In fhls paper we introduce three families of multivariate and matrix ~-norm symmetric dis~ribu- 
~ons w~th location and scale parameters and discuss theL~ maximum likelihood estimates and likelihood 
ratio criteria. It is shown tha~ under certain condition sthey have the same form as those for  in~ependen~ 
exponential variates. 

§ 1. Introduction 

The exponential dis~Tibution is one of the most important distributions in 
statistics and has been studied extensively and ~horoughly by many authors. There 
are a number of ways to extend exponential distribution to multivariate distribu- 
tionCGJo V/e have introduced and studied some families of multivariate symmetric 
,!istributions related io exponential distribution. We may call the multivariate Zl- 
norm symmetric distributions. In this paper we'll study related families with location 
and scale parameters. 

Let W(~, (r) denote the exponential distribution with p.d.f. 

~-~0 -(~-~)/~, ~>~. (i.i) 

It is well-known that the maximum likelihood estimates (MLE's) of/~ and ~ are :5~ 

= rain x~ 

n 
~----~ ~] (x,- /2)  (1.2) 

where z~, ---, ~, are independent random variables, each having p .d . f .  (1.1).  
Furthermore,  %he hypothesis testing problems can be considered. For example 
Su~bainae (see [3] p. 133) has studied the problem of testing equality o f / ~  when 

there are/c independent samples, ~ ~=1, 2, --., )~; ] = 1 ,  2, -.., ~; ~ ~ = N  , with z~, 

drawn from ]zj/(/~, ~).  More generally~ we consider the following problems. 
Let W= (W~j) be an mx 2 matrix, where w~j~]~z(/~i, ~i), $=i, -.-, m, j=l, -.., 
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~, are imdependent Se~ 

e,.,,{(/~, X),/~,,= (/.t,.,, . . . , /~ ,) ,  X-d.iag(a:~.. . ,  a,)>O} 

e~=={(~, A) Ee: ,t,_ ..... ,~,,} 

e3=(O,, A)Eo: ~ . . . . .  ~ , ,  ~ . . . . .  ~,} 
e 4 = { ( ~ ,  A ) c o :  ~ - o }  

e~-{(~, A) 6 o :  ~ = o ,  ~ . . . . .  ~,}. 
We wan~ ~o ~ H,: (~,  A) C0,  versus E,: (~,  A)  E o - e j ,  j = l ,  ..., 5, and H6: 
(~, A) 608 versus Ke: (~, A) 6e~.  I~ can be shown Sha~ She above likelihoed ra~io 
criteria (I~R0) are 

P 

II  (flw, U - n m m ~ , , )  
T~ ( W )  =,  '-~ ' ( I .  s)  

I (a I'" w,l - mm ~o,D 

(1.5)  ,-~ ~ , , ' U - , ~ , ~ , , ,  

'~] n (miu w.  -- mjn wO') / ( .~- 1) 
~',(w) - ,- ,  , (~ .8 )  n p ..... • 

~1 J ~ l  '~ 

LoS X--  ($,) wish {~,) being i.i.d. W(0, 1) varia~os. We can express W r as 
follows: 

W,,, ,~ ~ +  X A  0..9) 
where 

- ( ~ ,  . . . ,  z)', ~ = ( ~ ,  . . . ,  ~ , ) ' ,  ~ = ~ ' ,  

X = diag (~x, "", ~,) 

and " ~ " denotes tha~ She random variables on She ~wo sides have the same gis~ri- 
bu%ion. This suggests Sha~ cerf~iu classes of distributions can be defined by replacing 
X wish Z ~ F,×~(~), She matrix/~-norm symmeSric das" %ribu$ions ~ .  

I n  ~ paper, we'll  lay stress on discussing MLE's and LRC of She parame%ers 
under She generalized model. 

Firs~ of all, a brief review for She mul~varia~e and matrix ~-norm symme~fo 
dis~ribu~ons is required. 
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/ ~ × ' - - { A =  (a,~).×~: a,~>0, ~=1,  ..., n, j= l ,  ..., ~} 
m+ =m+ 

..., b.)': b 6 m ,  Iibil 
I f  y is un i formly  distributed on B., we wries y,'-,U,,. I f  Y f ( Y l ,  "", Y~,)Et~+ xp, 
where y~s are i.i.d, and y l ~ U . ,  we write Y~U.×~(1) .  I f  Vec Y---(y~, ..., y'p)'NU,~,, 
we write Y,--U.×~(2). Let L (z )  denote the dis%ribution of z. In  [1] and [2], the 
families of mult ivariate  and matr ix  /a-norm symmetr ic  distributions are defined as 
follows: 

F . ~ { L ( Z ) :  z~q'u, where q'~0 is independent of UNU..} (1.10) 

F,×,(1) -- { Z ( Z ) :  I -  UR, where UNU.×~(1), 

R--diag(vx, ..., q'~) >~0, U and R are independent.} (1.11) 

F.x~ (2) = {L ( Z )  : Z - -  Ur, where U,..U.×~, (2), ~>~0, U and q" are independent}. 

I~ is evedent that  F.×~(2)=F.×~(1)=_~.  and it  is shown that /?.x~(2) is a proper 
subset of F , × ~ ( 1 ) ( p > l ) .  Moreover, there is a one-to-one correspondence between 
F,x~(1) and %he set R~={L((q'~, ..., q'~)): q',>~0, ~=1,  ..., p} and a one-To-one 
correspondence between F ,  xv (2) and P~. Specially, if  z ~/~+×~ is absolutely continu- 
ous, then (1) Z ~ S , × , ( 1 )  and (]z~tl, "", tim, l) has p . d . f . g ( - )  iff Z has p.d.f. 

p 

/(tlz [l, ". ,  Ilzd). this ease, ( r  ) "g (x) and 
t = : t  

IIZII has p.d.f, g ( . )  iff Z has p. d. f. f([[ZII ). In  this case f ( z )  .=I'(np)g(z)~ -''+~. 
Now we can, in the same way as (1 .9) ,  introduce parameters for %he above three 

families. Let 

S.= { (L(w) : w=m + Az, z 6 F., A=diag(a~,  ...,a~)>O} 

S,×~(~) = { L ( W ) :  Wff iM+ZA,  Z6A×~(~ , ) ,  A =diag(a~, ..., a~) >0} ,  ~=i, 2. 

(1.14) 
matrices) Throughout the paper we assume that all random variables (vectors, 

considered have p.d.f.s. Hence we write w----m+AzES.(m, A, g) Co mean that 
L (w)  E •  and ~z[[ has p. d. f. g ( . ) .  The notation W=M+ZAE&x~(~, ,  M, A, g) 
is adopted in the same way. 

From papers [1] and [2], i t  is easy to obtain basic proper%ies of the above three 
families, including distribution functions, probabil i ty density functions, characteri- 
stic functions, marginal  distributions, conditional distributions and characterizations 
of exponential distributions. In  this paper MLE's and LRC are obtained. V~e'll show 
that under  certain conditions the MLE o f / ~  is independent  of g for ~ r 6  S,×~ (~, M, 
A, g),  ~-- 1, 2, the MLE of A is invar ian t  except for a constant mul t ipl ier  (depending 
on g) when ~ = 2, and the LRG and their  nu l l  distributions are independen~ of g for 
some tes~. 

In  this paper, we use capital ~lellers Co express matricess, while corresponding 
small letters with subscripts stand for their  row vectors, column vectors and elements, 
small le t tersn  for example Z =- (z~,-.., z~) ~ (z(1), "-,  z(~))' ~ (z~).×~ and ~v ~ (~v~, -.-, 

? 
Xn) nX i- 
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§ 2. MLE's and LRC of S,, and S,,x~, (2) 

In  this section we investigate MLE's for "loca~ion'and scale parameters of ~.., 
~,×~(2) and give some LRO and their nu l l  distributions. The following lemmas can 
be proved similarly as those in [4]. 

L e m m a  2.1. Suppose tha~f (x ) ,  defined on R~+, is nonnegative and continuous 
such tha~ 

(1) f ( x )  is decreasing for each x~ (sufficiently large); 

Let 

Then ~(x)  has a maximum in 2t+_ {0}. 

(~..0 

L e m m a  2.2. Suppose that f(~zlII, ' " ,  ~zp~) is a density for ZE/~+ ×p such that 

E z ~ ) < ~  and u ( x ) ~ f ( x ) I ~ . 1 ~  is uniformly continuous in Re. Then u(x)  has 

a max2num m ~ - { 0 } .  
Lemma 2. S. Suppose that the conditions of Lemmas 2 .i and 2.2 hold. For any 

fixed y E 2P+- {0}, let 

• (z) =~(yz), zEB~. (2.2) 

Then ~(z) has a maximum in (0,oo) as a function of ~ (note this maximuni is depending 

on y when Z/varies and we denote i~ by Yo). 
Corol la ry  1. Suppose that f has partial derivatives of order one for  all its 

variables. If  ~ defined ~y (2.1) has a maximum a~ x,  then it satisfies the equations 

,~f(~,) +,~, ¢'~(~,) ffi o, j r 1 ,  ,.., ~. (2 .s )  
If  • defined by (2.2) has a maximum a~ Yo, then it satisfies the equation 

For WE S,×,(~, ~ A, g), Lemmas 2.1, "2.2 ahd 2.3 give some sufficien~ 
condi$ions for corresponding u and v, defined by (2.1) and (2.2) respectively, ~o 
have maxima. The following theorems give MLE's of (M, A) when u and v have 
maxima. Since the structure of S,×, (2) is simpler than ~,×~ (1), we first solve the 
problems of MLE and LRC of the former. 

T h e o r e m  2.1. Assume that O satisfies the condition tha~ ff (m, A ) E O  then 
(m, cA) EO, Vc>O. Suppose tha~ w-m÷AzES~(m ,  A, g) and u(x) ~-f(~)~" has a 
maximum a~ ~o~ (0, ~o). Suppose also tha~ MLE ( ~ ,  ~ )  exists when z/s are L l .d .  
W(O, 1) variants. Lo~ the likelihood function of w be 

/. ,(n,, .,4) =.f (tlA-" ( w - m )  ll) IAI-~ 
Then the MLE of (m, A) is 

(n~,.~) ffi ( ~ ,  ~ W ) 
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and the maximum of the likelihood function is 

L(.% I) =/(~o) Ill -I. (2.6) 
P~oof. The proof is similar to that in [4]. Let 

S =  I A I - " A ,  ~-- [[ A - ~ ( w - m )  [[ = [ A I-'"il B - ~ ( w - m )  ~. 
Then 

L(m,  A)  =f(oo)x" [[B-t(w - m)  [I-% (2.7) 
I f  z~/s are i . i .d .  W(0, 1) variates, f ( z ) = e - ' .  ~ e n c e  the maximum of (2.7) is 
at tained at 

I n  general  the maximum of (2.7) is attained at 

~=~o, ,~-=~, ~=~. 
Therefore 

I AI ~/"B = (II B - ~ ( w -  m) II/& E = ( I ~ t  =z.~/~) ~I <~Io:o) ~. 
Substitution of these values into (2.7) yields (2.6) .  

For WES,×, (2 .  M, A,  g), if M = l . p ' ,  then  w(oES~(Iz,  A ,  g), so W can be 
regarded as a matr ix  of samples, each row of which is from S,(l~ , A ,  g), but need 
not  be independent.  In  case there are two row8 being independent, all are easily 
shown to be independent with w~j~W(/~j, a~o-) for some or>0 E~. 

T h e o r e m  2. 2. Le~ O and { 0~} be defi~ed as in Section 1. Suppose that  W=/P[  
+ Z A E S . × ~ ( 2 ,  1tl, A ,  g) with M- -1 .~  ~ and n:>l .  Suppose also that u ( x ) - - f ( x ) x  ~" 
has a maximum at zoE (0, oo) where f is the p. d. f. of Z .  Le~ the t~kelihood 
function of W be 

L ( p ,  A)  = f (  tl ( W -  M )  A-~I1 ) (a~-..a,) -% ( W -  M)  A-  E R~J ' .  

Then 
(1) for(/~, A)  EO, O~ and 04, the MLE's of p and A are ~-~ ( ~ ,  -.-, ~ ,)  and 

" ~  A A 

A = diag (a:t, "'., a~), where 

[ m~n ~%, (/z, A)  E O 

/~t = ira in w,~, (/z, A)  E O~ (2.8) 
I 
to,- 0-, A) E O~ 

and 
~t~--- (p/Xo) (it w~ It - nf,~) (2.9) 

and ~he maximum of %he likelihood function is 

" a7" =f (O:o) 1-I a'/'~ (2.10) 

with corresponding/2~ and a~; 
(2) for (/,, A)  E 0~, 03 and O~, the MLE's of p and A are fi == (/2~, -..,/2,) and 

~ = d i a g ( a ,  -.., ~), where 

(,,, A) e 
I 

a ,=  l~, ~ ~,~, (~, A) E O, (e.11) 
i 
to, (~,, A) E O,, 
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and 

~ = ~ (  IIw,~ -n~,)/xo (2. :9) 
$-1 

and the maximum of the likelihood lane%ion is 

(,.:8) 

with corresponding ~ and ~. 
Proof. Since 

vec W' = Vec M' + ( I®A)  Veo Z '  6 S~, (Vec M', I ® A ,  g), 
the result follows from Theorem 2. 1. 

Let 
~:,(:) --{T,(Z) e~.x.(:): P(nz, H -0) =0, ]=1, .-., ~}, 
g:~, (2) - {L(Z) 6F.~,(2): P(IIZ~ =0) =0}. 

We call a statistic ~(Z) invariant  in  F+×,(~) if ~ ( Z ) d ~ ,  ~(~r) for any Z ,  W'E 
F+x,(~), ~=1, 2. The following lemma is from [2]. 

L e m m a  2.4. i statistic t (Z)  is invar iant  in  F:×,(2) iff ~(aZ)= a=~=- ~(Z) for 
any constant a > 0  and Z 6 ~+xe(2). 

T h e o r e m  2.3. Suppose that the conditions of Theorem 2.2 hold. Let X =  (s~), 
where so's are i. i. d. and sn N W(0 ,  1). Then  the LRC for H~ versus K'~ is equivalent 
to T~(W), ] - 1 ,  ..., 6 (see (1 .3 ) - - (1 .8 ) ) .  

Proof. The results are from Theorem 2.2  directly. 
T h e o r e m  2.4. Suppose: that the conditions of Theorem 2.3 hold. Then under  

H,, T~(I]r)-a--~ T,(X), j = l ,  ..., 6. 

P~'oof., Under H~, T ~ ( W ' ) a T ~ ( Z ) .  Then Lemr-a 2.4 leads to the desired 
conclusion. 

Theorem 2.5. Suppose that the conditions of Theorem 2.3 hold. Then 
d 

r ~ ( X )  ~ y r . . y ,  (2. :4)  
d 

T~(X)  ~ ~ . . .~ ,  (2.15) 

T,(X) a=~ ~ (b,+,) (2.16) 

where U = ( m ,  "", ~],)'NU,; %, ..., v, are i.i.d, with %NB(1,  n - - l ) ;  b=(bl, ..., b,) 
NDp(n,-.., n) (Dirichle~ distribution); v and b are independent. And 

T, (.X) N.F (2 (p-- 1), 2p ( n -  1)) .  (2.17) 

-Proof. Form [i] we have X,/~X,~ ",U., SO 

= (1 -~) . -~ ,  ~ < 1 .  

Thus rain z,~/II xj II h ~  a p.d.f, n ( n -  1) (1 -na )" r ' .  0'< ~. 1 .  Le~ vj = 1 - n min  zu/~ xj 

Then v, NB(1, n - - l ) .  Since [x ,e~ /1(n ,  ~ 1) and-2s independent of x,/~x,A, ~z,~ 
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and % are independent. Thus Ilxjt lv~W(0,1).  In  view of the independence of 
I] X~ II v~, j - -  1, ..., ID, we have 

(tt x~il ~ ,  "", li x ,  II ~,)' " tt xjll ~, ~ o ~ U ,  

and %hen 

T ~ ( X )  d v~'"v, .  

(2.15) can be shown similarly. We now prove (2.16). Let b = (tl xlll /l] x tl, --', 
~x~ll/llxll). Then b,,,D~(n, ..., n) and xx/llx~ll, ..., x,/l[x~l I and b are independent% 
Since 1 - n m i n x J I ] x ~ l  I =%-~B(1, n -  1) as above, 

p 

T ~ ( X ) = I I ( l l x ,  l l / l l ,~ l l ) (~-nmin~Jl l~Hl)  a , 

For the ]ast assertion (2.17), refer ~o [3] p. 133. 

By making the transformation x~=~, z~=~, ..., z,=qA"-% we find that %he 

p. d. f. of z = qA'"% in Theorem 2.5 is 

( - : L ) , - ~ ( n - : t ) ,  ~,"-~(log~)'-5 0<~ ,<1 .  (2.18) 
( p -  :[) 

Finally,  we give some examples ¢o illustra¢~ %he lemmas and theorems. 
E x a m p l e  ~. 1. Leg X be as in Theorem 2.3. Then X ~  F.×~(2, g) (=S,×~(2, 0, 

I ,  g)) with f (x )  =e-'. We have 

,~ = ( z / n )  (1I w~Ii - ~P,D, ~, = IS (II w~II - n~,~) / (no) .  
1=1 

Let WE S~,,(2, M, A, g) ia 
E x a m p l e  2. 2. Lel g be the 

IT 0 ~ ~ 

Specially, ff k=np, i.d. Z ~ X 

E x a m p l e  2.3. Lee g be the 

Xo = i, u @o) 

%he following examples. 

p.d.f, of /~ (k, 1) (-Gamma distribution).  We have 

U(~o) - r ( k )  

(see Example 2.1) ,  %hen xo=np. 
p.d.f, of F(k, g) (F-distribution). We have 

I" (rip) ]~k/2qq/~ 
- B(k/2,  g/2) (]c+g)(~+q)/~" 

l~.xampIe 2.4. L e t g  be %hep.d.f. of B@, g), k > 0 ,  q > l .  We have 

_r' (n~) r 6~ +q) lc~(q - :t )~ -,~ 
• o -  k + ~ - f '  u(~0) = r ( k ) r ( g )  ( k + g - 1 )  ~*~-~ " 

§ 3. MLE's  a n d  L R C  of  &, × ~ (1) 

In  %his section we come %o the same problems as in the tasf section for S.×, 0D. 
The following theorems are derived from lemmas in Section 2. No~e that in proving 
Theorems 2.1 and 2.2 we use Lemmas 2 . t  and 2~2 ,with T = l a n d  do nob need Lemma 
2.3, while we need Lemma 2.3 for (3.2) below. 

T h e o r e m  3. I. Le~ 0 and {Ot} be' defined as in section 1. Suppose %hat W=$~ r 



20 ACrgA MATHEMATICAE APPLIOATAE SINICA Vol. 4 

(4) 

(5) 

where V~- ~w,~; 

+Z-4ES.×~(1, M, -4, g) with M=l.l.t ' ,  n > L  Suppose also tha~ ~ ( m ) = f ( x ) ~ l ~  ~ 

has a maximum a~ some cERP+ - {0}, where f ( [ z ~ ,  -.., ~z,]) is the p.d.f, of Z and 
that for any fixed U E R ~ -  {0}, ~(~) "~ (Uz) ,  as a ftmo~ton of x E RI+, has a maximum 
at YoE (0, co). Lo~ the likelihood function of W b e  

LO,, A) =/((nu,~B - , ~ ) / ~ ,  --', (~w,I - n ~ , ) / ~ , )  (~.. . ,~,)- ' ,  
( W -  M)A-1E ~+ ×'. 

Then 
(1) for (P, A)E@, O~ and 04, the MLE's of p and .4 are /I, given in (2.8),  

and ~ = diag (~,  ..., ~ ) ,  where 

,% = (n w,n - ,¢, j)  / o  (3.1) 
and the maximum of the Likelihood function is 

9 '  P 

7",(p, 1)  =j'(c) [ I  c;(llw, II -',;,~)-" = '~(c)  II (~wA -,~;,j)-" 
J-I J-i 

with corresponding/~l and ~; 
(2) for (p, .4) E@I, @s and @~, the MLE's of p and .4 are ~, given in (2.11), 

and .4 = diag (~, -.., ~), where 

~=v~ (3.2) 
When U~= ~w~lt- n ~  and ~he maximum of the likel~ood function is 

L (/~, ~)  = f  ( (ll w:t ]l - n / ~ )  ~/o, --. ,  (]I top ]] - n/~,)//o) yo 
p 

-~(Vo) H(~w, ll-%a,)-- 

with corresponding #~ and ~. 
T h e o r e m  3.2. Suppose that the conditions of Theorem 3.1 hold. Le~ X be as 

in Theorem 2.3. Then the LRO for ~/# versus K~, j = l ,  ..., 6, are (or are equivalent 
~o) the following: 

(1) & ( W )  = • ( re) /~(c)  (3 .s )  

where ~/~ffi-~w~-~min~,~ (see Lemma 2.3 for ~/o'S definition); 

p 

I-I ~ q 

P 

(3) A~ (W)  = (~, (re)/~ Co) ) H ( ( g w~ II - '* m~n ~o,,)/W)', (~. 5) 

T, (W) -" II ( (II w,~ - n rain ~o,,) / [ w,~); (3.6) 
I--1 

P 

A ~ ( W ' )  = ( ~ , ( V o ) / ~ ( c ) ) I I ( ( ~ w , ~  - ,~ ,',, i n  ,,o,,) / W )  ; (S .7 )  
~-1 

P 

(~) A,( W) *. (,~(=~o) /,,(VVo) ) ~  (vJ/o~,); 

where ~j= ~wj~ - nmin~o,j, yj:: [Wt~ -nmin~o , .  
61 6 

(3.8) 
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L e m m a  8.1. A sf~istic ~(Z) is invar ian l  in  F~+x~(1) iff t (ZA) --~d t(Z) for 
any eons~an~ matr ix A ~diag(al,  ..., av) ~>0 and Z E  F+×;(1) (see [2] ). 

Theorem 8.8. Suppose that the conditions of Theorem 3.2 hold. Then under 

/~, r j ( W )  ~ ~ j ( x ) ,  j = 2 ,  4. 
We see tha¢ the expressions and nu l l  distributions of T~ and T4 are independen~ 

of g, while those of A~, ~= 1, 3, 5, 6, are depending on g in general. Moreover, we 
can obtain the nul l  distribution of T4 by applying Theorem 2.5. Here are some 
illustrative examples. 

E x a m p l e  8. 1. Let X be as in Example 2.1. X can be considered in F,×p(1). 
Then 

f ( ~ )  = e x p ( - I I ~ l l ) ,  o ,=n,  ~ ( e ) = ~ - ' w ~ .  
The same ~ is obtained by using Theorem 8.1. For any fixed y (see Theorem 8.1) ,  

p 

and 
~, = II y II/(:n:o) = 2 ]  (ll w, ll - ~ , ; )  / (~ ) .  

i 

Le~ WE ~q.×~ (1, M, A, g) in the following examples. 
E x a m p l e  8.2. Let g be the p.d.f, of D~+.t(kz, ..., k~,; k~+x) with k~>O, g- . t ,  

" " ,  .T', k~+: t> ' l .  Then 

and 

I ,  / [ P + I  

~ = t [ ~  & - *  4 (ilw, ll-~.a,), 

" \ :~  (I1 w,  11 - ~ rain w,,) / 

( l lwA - n m i n  w,,)" . . \ -~ , * .  

_ _  , ( o ~  m,=KH ( 17u7,11 -- ~ , , ,  ( l l w A - , , ~ n w , , ) )  
# 

p 

v ,,, ~ ,~q / v 

E x a m p l e  3. 8. Let ~ 2  
Y(1, 1) variat~es. Then 

t - ( l ,  1) ,  ~z(c) / z ' ( ~ )  , , , ' f / . ,  "=',B(:t/2, 1 / 2 ) / / - '  ~o=  (y:w,) 

and g be the join~ p. d.f. of ~he ~wo Ludependen~ 

J 
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