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Summary 

A class of numerical measures of informativity of observation channels 
or statistical experiments is defined by the aid of f-divergences introduced 
by the author as measures of difference of two probability distributions. For 
observation channels with given prior probabilities, the f- informativi ty meas- 
ures are generalizations of Shannon's mutual  information and include Gal!ager's 
function Eo(Q,Q ) appearing in the derivation of error exponent for noisy chan- 
nels, as well. For observation channels without prior probabilities, the suggested 
informativity measures have the geometric interpretation of a radius. 

The f-informativity defined for the Bayesian case shares several useful 
properties of the mutual  information, such as e. g. the "data  processing theo- 
rem".  Its maximum with respect to all possible prior distributions is shown 
by a minimax argument to be just the f-radius, thus the latter is a generaliza- 
tion of channel capacity. The f-informativity measures can also be used to 
characterize the statistical sufficiency of indirect observations. 

w 1. Introduction 

While Shannon's measure of the amount of information is a cornerstone 
of information theory, generalizations of Shannon's entropy function have 
also been suggested. This kind of research was initiated by A. l~s 
paper [17]. I-Ie introduced the concept of entropy of order ~ which shares several 
nice properties of Shannon's entropy. Examples of concrete problems leading 
to entropy of order ~ are also known, see e. g. [5], [11]. 

From Shannon's entropy one immediately gets a most useful measure 
of mutual  information of two random variables. No similar measures of some 
practical value seem to have been obtained from generalized entropies, in 

1 This work was done while the author was visiting professor at The Catholic LTni- 
versity of America, Washington, D.C., sponsored by National Science Foundation 
Grant No. GP-9396: 
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sp~te of the fact that  GMlager's function E0(~,Q), see e.g. [9], p. 138, playing 
~n important role in coding theory behaves in many respects like the mutual  
information. 

This fact was one main motivation of this paper. Apparently, when 
generalizing mutual information, one should start from generalized/-diver- 
gence rather than generalized entropy. A possible way of doing this was indicated 
by I. YAJ~)A [24]; here we adopt another approach. The class of informati- 
vity measures we are going to introduce includes both Shannon's mutu~l 
information and Gallager's function (the latter aside from a scale transforma- 
tion), eliminating the need of deriving their common properties--in particular 
those connected with their maximization for a given channel--separately. 

Another aim of the author was to apply to more general experiments 
the measures of difference of probability distributions called f-divergences, 
introduced in [7], which proved to be useful in the case of simple alternative 
hypotheses (see [7], [8] and also [16]). In this respect, R. SIBSO~'S paper [21] 
should be referred to; his "information radius of order ~"  defined by the 
aid of R ~ Y I ' S  "information gain of order ~" (see [17]) is--aside from a scale 
t ransformation--a  particular case of the informativity measures defined here. 
SI~SO~'s approach was motivated, however, by statistics only (he did not even 
point out that his information radius of order 1 is identical with Shannon's 
mutual information), and essentiMly on a ]~ayesian basis; sorts of "absolute" 
informativity measures (which are closer to the intuitive idea of a radius) 
were not considered by him. 

Finally, the author wants to m a k e  clear his point of view about  the 
value of generalizations of Shannon's information measure. In force of the 
coding theorems of information theory, Shannon's measure of the amount  
of information in the very concrete sense as described by these theorems canno t  
be challenged. In this respect, information theorists clMming that  this infor- 
mation measure is the only true one are right. There are, however, many prob- 
lems outside the scope of the mentioned theorems where one may wish to 
speM~ of "information" in a technical sense, as e .g .  the  characterization of 
informativity of statistical experiments or observation channels. In such cases 
Shannon's information measure may still be useful as shown by  D. V. LI~D- 
L~r [13] (further merits of this approach have been pointed out in A. l~xYI ' s  
paper [18] initiating an extensive research, cf. e .g.  [19], [23]) but  there is 
no reason to believe that  it is always the most suitable one. The distinguished 
role of Shannon's information measure, however, wilI be :honored in this paper 
by reserving the technical t e rm  "information" for it only, while the introduced 
generalizations will be referred to as "informativity".  
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w 2. Preliminaries. 
Definition and simple properties of f-informativity measures 

Throughout this paper, the terms "probabili ty distribution", "random 
variable" and "observation channel" will be abbreviated as PD, I~V and OC, 
respectively. "Almost every" or "almost everywhere" will be abbreviated as 
a. e. and "if  and only if" as iff. 

X, Y and Z will denote sets, Y and Z will be considered to be equipped 
with a-algebras ~2 and ~, respectively. The measurable spaces (Y,~$), (Z,~) 
and ( Y • Z, ~2 • ~) will be referred to simply as Y,Z and Y • Z, respectively; 
it will always be clear from the context, whether these symbols mean just  a 
set or, rather, a measurable space. In particular, a PD ~Y on Y is understood 
as a measure on N with ~(Y) = 1. 

DEFINITION 2.1. An experiment with parameter space X and sample 
space Y or an OC from X to Y is defined as a family H = { $ x } x c x  of PD's  
on Y. 

In recent literature the term experiment has been used also in a more 
general sense, see e. g. [10]. The term OC was introduced by A. PEREZ [15] 
who imposed the additional condition that  fix(B) be %measurable  for every 
B (a$ where ~ is a given a-algebra of subsets of X. 

As to the terminology, statisticians would probably prefer to speak of  
experiments while information theorists of OC's. In the sequel, the term OC 
will be used. 

DEFINITIO~ 2.2. Let f(u), u E (0, ~ )  be an arbitrary convex function 
which is strictly convex at u = 1. The f-divergence of two PD's  ff and Q on 
Y is defined as 

(2.1) If  ($' II Q) = Sq(Y)[ [ ~ ]  

where 2 is some (finite or a-finite) dominating measure and p(y) and q(y) are 
the  densities of $ and Q respectively, with respect to 2. 

Undefined terms in (2.1) are understood as 

(2.2) 

0 . [ ( O 1  =limuf(~)u,o = a l i m u [ (  1 ) u l 0  " , (a>O).  

This definition was introduced (with slightly different notations and 
without the assumption that  f is strictly convex at u = 1) in [7]. I t  is easy 

13 Periodica Mat.  2 ( 1 - 4 )  
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(2.5) 

and 

to show (see [7], [8]) that  the integral (2.1) is always well defined, its value 
does not depend on the choice of 2 and 

(2.3)  b (  $ II 6) ~ f ( 1 ) ,  equality iff g = a ;  

moreover, there exists a function ~(u) (depending on f) with lira ~(u) = 0 
such that  u ~, jr(l) 

(2.4) I~ - a I ~ ~(If (~ l[ 6)) 

where ] g -- ~ t denotes the total  variation of the signed measure g -- d ,  
called the variation distance of g and ~. 

The convexity off(u)  is equivalent to that  of 

(2.6) I~ (~ ]I a) = b ( a  II g) = S~(v) /I  q(y)] >-~} ~(du). 

From (2.1) and (2,6) obviously follows that  I /(g [1 Q) is a convex funct ion of 
both g and 6. 

One indication that  the integral (2.1) is a reasonable measure of how 
different g and 6 are consists in 2 (2.3), (2.4). Another such indication is the 
fact tha t  i i (3  [i 6) cannot be increased by indirect observations, i.e. if the 

PD's  g and ~ are changed to g and ~_ respectively, then 

(2.7) I• (g [] 6) _< b (g ]1 a) .  

I f f  is strictly convex and lf(g I[ 6) < ~ ,  the necessary and sufficient 
condition of the equality is the sufficiency (in the ttalmos-Savage sense) of the 
indirect observation with respect to t he  pair {g, 6}.  This result has been proved 
in [8] for the following types of indirect observations: 

(i) Reduction of the underlying a-algebra: g is the restriction of 
to some sub-a-algebra of e2. 

(ii) Using a statistic: T is a measurable mapping of Y into Z, g ---- g T - <  

(iii) T ---- {Ty( �9 )}yc 7 is an OC from Y to Z such that  Ty(C) is %measur- 
able for every C E ~; 

g(r = S T~(r g(dy) (r C ~). 

2 This i n t e rp r e t a t i on  could be m a d e  even  more  a t t r ac t i ve  by  res t r ic t ing  a t t en t i on  
to  func t ions  / vanish ing  a t  u = 1; t he  add i t ive  cons t an t  [(1) is, however ,  r a t h e r  ha rmless  
and  some calculat ions will be s impler  using a func t ion  / w i th  /(1) ~ 0 .  
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Here we shall need this result also for the following generalization of 
case (fii): 

(iv) ad o cad is a a-ideal and Ty(C) (y 6 Y, C E ~) is a function with 
values in [0, 1] such that  
(a) Ty(C) is ad-measurable for every C E Zo; 
(b) Ty(Z) = 1 for every y E Y and, for any fixed family of pairwise 

disjoint sets Ck E ~, the set {y: ~ "  Ty (Ck) =~= Ty (U Ck)} belongs 
t o  ado ; k k 

then for any PD ~ on Y such t h a t P D  3(B o)=0 for every 
BoEa2o and such that  there exists a PD ~* on Y X Z with 
~*(B X C) : S Ty(C) ~(dy) for B E ad, C E ~ (such PD's  ~ will 

B 

be called admissible) ~-is defined as the marginal of ~* on Z: 

(2.8) 9 (C) = STy (C) 3 (dy) (C6 ~). 

The proof of (2.7)and of the condition of equality for indirect observa- 
tions of type  (iv) is exactly the same as for those of type  (iii); here by suffi- 
ciency of an indirect observation of type  (iv) with respect to an arbitrary OC, 
H =  {$'x}.~ ~ x from X to Y (such that  the 3x's are admissible) we mean the exist- 
ence of a function Sz(B), ~-measurable for every B 6 65 and satisfying 
.[ Sz(B) ~x(dz) = ~x*(B X C) for every x 6 X, B E ad, C E #b. 

c 
R~MARK 2.1. The importance of considering statistical operations defined 

by functions Ty(C) with the properties (a) and (b) above has been revealed 
by the s tudy of N. MO~SE and M. SAOKSTEDTE~ [14] of the problem of statisti- 
cal isomorphism, see also [20]. 

When measuring the distance of two PD's  by their /-divergence, the 
"/-radius" of a set H = {$x}x( x of PD's  on Y i.e. inf sup If($x 11 Q) is a measure 

x E X  

of how different PD's  are contained in H; this may be considered as a measure 
of informativity (or, rather, of potential informativity) of H.  I f  a prior PD W 
is given on X (defined on a a-algebra of subsets of X with respect to which 
lf(~n II d) is measurable for each PD ~ on Y), one can consider inf ~ I1(ff~ f] Q) W(dx) 

as a measure of informativity of the 0C H, with prior PD W. 

In this paper, a t tent ion will be restricted to the ease that  X is a finite 
set, X = {1 . . . . .  m} say. Then a PD on X is given by W = {w~ . . . . .  win}. 
The author intends to return to the general ease in another paper. 

D~FINITIO~ 2.3. The f-informativity of  an OC H = {31 . . . . .  ~'~} from 
X = {1 . . . . .  m} to Y with prior P D  W = {w~ . . . . .  win} on x is defined as 

m 

(2.9) If(H, W) = i n f ~  wily(3~ 11 e)  
Q i = 1  

1 3 "  
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and  the  absolute f - i n fo rma t iv i ty  or f - radius  of  H is def ined as 

(2.10) 9:(H) = inf max  If($~ [I ~) 
c~ l <~i <_m 

where  the  in f imum is mean t  wi th  respect  to  all PD ' s  ~ on Y. 

F r o m  (2.3), (2.9) and (2.10) obviously  follows 

(2.11) f(1) ~ If(ll, W) ~ o:(II) 

where the  first  inequal i ty  is s t r ict  unless all ~i's with wi ~ 0 are identical,  
of. (2.4). 

Le t  pi(y) denote  the  densi ty  of  3i, i = 1 . . . . .  m, with respect  to  a com- 
mon  dominat ing  measure  2; write 

(2.12) Y+ = {y:  max  Pi(Y) ~ 0}; Y++ = {y: min Pi(Y) ~ 0}. 
l ~ i  ~_m ]_~i~rn 

Note  t ha t  ~f(H)is  always f inite i ff(0)  ~ oo ; in  fact,  t hen  If(~i I[ 6) ~ oo, 

i = 1 . . . . .  m e .  g. for ~ = 1 ($1 4-.  �9 . + Sin). I f  f(0) = oo, a necessary con- 
on  

dit ion of  ~I(H) < oo consists in 2(Y ++) > 0, see (2.12); this is sufficient,  too, 
if  ~(0) < oo because in t ha t  ease If($i  L] 6) < 0% i = 1 . . . . .  m e. g. for the  
P D  Q with 2-density q(y) = c min Pi(Y), where c is a proper  constant .  Finally,  

l ~ i ~ m  

i f  f(O) = f ( O )  = ~o, a necessary (but not  sufficient) condi t ion of  9f(H) ~ 
is 2(Y + \ Y +  +) = O, i.e. the  mutua l  equivalence of the  PD ' s  $i i = 1 . . . . .  m. 

LEM~A 2.1. Both in (2.9) and (2.10), the infimum may be restricted to 
Q < ~ I + . . .  +~m. 

PliOOF. For  any  ~ wi th  dens i ty  q(y) (having chosen 2 so t h a t  Q ~ 2), 

consider the  P D  Q1 with densi ty  ql(Y)=q(Y) + Q(Y\ \  Y+) P~(Y) if  y E Y+ and  
ql(Y) = 0 if y ~ Y+ (see (2.12)). Then  Q1 ~ ~1 4. �9 �9 �9 @ $~ and  as a par t icu la r  
case of  (2.7)--easi ly checked direct ly,  as wel l - -we  have  I /Fi  I] ~l) ~ If($i [[ 6) 
i = l  . . . .  , m .  

Our f - in fo rma t iv i ty  measures are compat ib le  wi th  the  classical concept  
of  in fo rmat iv i ty  of  exper iments .  

A finite exper iment  H = { ~ 1 , . . - ,  ~'m} is said to  be more informat ive  
t h a n  ano the r  H" = {$~ . . . . .  $~} iff  for any  loss function,  eve ry  loss vec tor  
a t ta inab le  by  some decision funct ion  in H ~ is also a t ta inab le  in H .  D. BLACK- 
WELL [2] a t t r ibu tes  this def ini t ion to  BOHNENBLUST, SI-IAt'LEu and  SHE~IASr 
(unpublished work).  BLACKWELL [3] has p roved  t h a t  H is more informat ive  
t h a n  H '  iff  a f t e r  reduc t ion  to  s t anda rd  exper iments  (as def ined by  him), 
H '  arises f r o m / / - - i n  our  t e r m i n o l o g y - - b y  an indirect  observat ion  of  t y p e  (iii). 
Since s t anda rd  reduct ion  is a sufficient indirect  observat ion  of  t y p e  (ii), 
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from ~BLACKWELL'S theorem and Proposition 2.1 below it follows that  if H is 
more informative than H '  in the classical sense, we have Ij(H, W) > If(H',  W) 
for any prior PD W and also ~f(H) ~ ~I(H'). 

P~O]~OSITION 2.1. Let H {$1,. �9 �9 Sin} be an OCfrom X ---- {1 . . . . .  m} 
to Y and consider an indirect observation from Y to Z (of any type (i)--(iv)) 

c~anging a to ~ = {~1 . . . . .  ?,,}. Tl~en for arbitrary convex / and any prior PD 
W o n  X 

(2.13) Ij(~,w)<1• o~(H)~o4!H). 

COROLLARY. I f  the indirect observation is sufficient with respect to H 
(2.13) holds with equalities. 

P~oo~'. For any PD Q ~ $1 -~ �9 - . ~- $~, we have from (2.7) If($i II Q) ~< 
~< If($i II &), i = 1 , . . .  ,m,  whence (2.13) follows by Definition 2.3 and 
Lemma 2.1. The role of the assumption Q <~ $1 + �9 - �9 @ ~3m is to ensure, in 
case of indirect observations of type  (iv), that  & be admissible for the indirect 
observation if the ~'i's are. 

The Corollary is immediate, since sufficiency implies that  / / ,  too,  is 

obtainable from H by an indirect observation (in general of type  (iv), see the 
paragraph after (2.8)). 

I f  ](u) = u log2u, Ii(~/l  &) reduces to KVLLBACK'S /-divergence (see 
e.g. [12]) 

(2.14) I(~ II a) = S p(y) l~ ~(dY) 
qiY) 

and If(l l ,  W) is just the Shannon mutual  information 

/7/ m 

(2.15) i(Lr, w) = ~yw,  I ( ~ H a * ) ,  a*  = ~.,~w,~'~- 
i=1 i = 1  

between the input and output  of the given OC; this follows from the easily 
checked identity of F. ToPsoE [22] 

m m 

(2.16) 2:~ wi ~(~i [[ a) = ~ w~ z(~  11 a * ) + i ( a *  II a). 
i = 1  i = 1  

DE~I~ITIO?r 2.4. Let ~ be a RV with values in a finite set, say 
X = {1 . . . . .  m}, and ~ a RV with values in Y. Then the f- informativi ty 
of ~] with respect to ~ is defined as 

(2.17) If  (~;V) = I] (IIv/~ , W~) 

where lI~={~3~}l<~Zm, $~(B)= P{~ ~ B / ~ =  i} (B ~ ~) and W~ ={wl  . . . . .  Wm}, 
w / =  P { ~ = i } ,  l < i < m .  
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From (2.11) follows that  f(1) ~ I:(~ ; V) with equality iff ~ and ~ are 
independent RV's, supporting the interpretation of I:(~ ;V) as a measure of 
inform~tivity (see footnote ~). 

Another useful property of I:(~ ;~) common with Shannon's mutual 
information I(~;~) is the validity of the so-called data  processing theorem. 

P~OPOSlTIOZ~ 2.2. Let the RV ' s  ~, ~, ~, ~ form a Markov chain (in t/~e 
indicated order) where �9 and ~ have a f inite number of possible values while 
the state spaces Y and Z of ~ and ~, respectively, are arbitrary. Then for any 
convex f 

(2.18) I: (~; ~) =< I: (~; ~). 

P~ooF. Consider the indirect observation of type  (iv) defined by ~0 
= {Bo :P{ , ?6Bo}  = 0 } ,  T y ( C ) =  P { r  From the Markov pro- 
per ty follows that  if we denote by g~ and ~i the conditional distribution given 

= i of ~/and ~, respectively, then g~ and ~ are connected by (2.8), i = 1 . . . . .  m 
(we assume, without any loss of generality, that  ~ takes on the values 1 . . . . .  m 
with probabilities w, > 0, i = 1 . . . . .  m). Thus in force of (2.17) and the 
first inequality in (2.13) we have 

(2.19) I: (~; ~) ~ I: (~; V). 

Now suppose that  ~ takes on the values, 1 . . . . .  I with probabilities P (v : h } -~ 
~ - - v h > 0 ,  h~-- 1 . . . . .  1. Set rm~-- P { ~ : i [  ~ = h }  and let $~ denote the 

m 

conditional distribution of ~ given ~ = h. Then 3~ ---- ~ ra~ ~z thus, by con- 
i = l  

vexity, 
m 

(2.20) b (~ II a) ~ ~ r~ ~: (~ 11 a). 
i = l  

Multiplying both sides of (2.20) by va and summing for 1 < h < l we obtain 

l m 

(2.21) .~ b ( ~ o l i a ) <  p w ~ b ( ~ l l a  ) �9 
h = l  i = 1  

this, in view of Definitions 2.3 and 2.4 implies 

(2.22) If(v, ~) ~ I:(~ ;~). 

completing the proof. 

EXAMPLE 2.1. An important special case is f (u)  = -- u s, 0 < o: < 1; 
in this case, we shall write I~ instead of If .  We obtain 

(2.23) L (~ II Q) = -- SPPY) q:-~ (Y) 2(dy) 
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and 

(2.24) 
m 

I~ (17, W) =- - - [~  ( , ~  w~p~ (y))~]~ 2(dy)] ~ 
i=1 

where Pi(Y) is the density of ~i with respect to some dominating measure 2. 
In fact, for the PD s with density 

m 

( 5  (y/) 
i = 1  (2.25) q*(Y) = m , 

m 

wiI~(3~ [[ ~*)is equal to the right hand side of (2.24) while for an a rb i t r a ry  
i = 1  

PD ~ on Y with density q(y) from (2.23) and (2.25) follows 

m m 

(2.26) I[ a) = [ S (a* ]I a); 
i = 1  i = l  

here the second factor of the right hand side is ~ -- 1, by (2.3). Note tha t  
(2.24) is equivalent with SIBsoN's formula for "information radius of order ~", 
see [21]. The identity (2.26) appears, essentially, also in [1]. Of Course, (2.24) 
can be interpreted also as the formula of I~(~ ;~)-- the ~-informativity of a 
RV ~ with respect to a RV ~ with values in a finite set. 

One obtains similar formulas also for f (u)  = u ~, ~ ~ 1 or ~ < 0. The 
case a = 2 might be expected to be the most interesting since I2(3 II Q) = 

= ~ ~ 2(dy) is just the z2-divergence of $ and Q, aside from the addi- 
qtY) 

t i re  constant f(1) ~-- 1. 
The ~-informativity (2.24) is in a one-to-one functional relationship 

with Gallager's funct ion Eo(Q,W ) (with a----1/1 ~-~, see e .g.  [9] p. 138 
and p. 322) which plays a fundamental  role in coding theory. 

In information theory, the maximization of Shannon's mutual informa- 
tion and of Gallager's function is an important task. The relevant theorems 
(see e. g. [9], theorems 4.5.1 and 5.6.5) may be given ~he equivalent formula- 
tions tha t  for f(u).---- u log2u and f(u) ---- -- u ~ (0 ~ a ~ 1), respectively 

(2.27) max I f  ([-[, W) = o~i ( I f ) ,  
W 

and for the maximizing prior PD W* = {w~ . . . . .  w*} we have Ij(g, [! a*) <= 
QI(//), 1 < i < m, with equality if w* > 0. In particular, forf(u) ~ u log~ u, 

oj(H) equals the capacity of the OC H. 

In  the next section we shall show tha t  these results carry ox~er to the 
general case almost completely, see Theorem 3.2 and its Corollary. 
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EXAMPLE 2.2. Le t  X ---- Y ~-- { 1 . . . . .  m} and  let the OC I f  be symmetr ic  
in the  sense t h a t  any  permuta t ion  of the rows of the  mat r ix  (Pik) (where 
~i = {Pil . . . . .  Pim}) is equivalent  to some permuta t ion  of  its columns and  
conversely. Then I:(II ,  W) is a symmetr ic  concave funct ion of  W, thus  i t  is 

maximized for W* = , . . . .  ; fur thermore,  . ~  w* I:(~i [1 Q) is a symmet-  
i=1 

ric convex funct ion ofc~ minimized for ~ ,  = { 1 ,  . . .  , 1 1 .  Thus in this par_ 
t ieular  ease 

m 
( 2 . 2 8 )  m a x f j  (If, W)  :- ~ f ( i f )  = f] (~i  l[ t~*) = 1 2 / ( ? n p i k ) .  

W Tit k=l 

In  information theory,  the  ent ropy of  ~ RV ~ is sometimes defined as 
the  mutua l  informat ion I (~;  ~). This suggests the  following 

DEH~ITION 2.5. The f -en t ropy  of a RV ~ with values in a finite set is 
defined us 

(2.29) H: (~) : 1: (~ ; ~) . 

Here we suppose t h a t  f(0) ~ ~ ,  because else H:(~) would be infinite 
for every non-tr ivial  RV ~. 

Ins tead  of the  f -en t ropy  of  a I~V, one can also speak of the  f -en t ropy  
of  a finite P D  W ~- { W l , . . . ,  Win}. L e t / / 0  denote the  OC { ~  . . . . .  Sin} from 
{ 1 . . . . .  m} to itself where ~i denotes the  PD concentra ted at  i. Then one 
m a y  write 

(2.30) H:(w)=b(ifo, W). 

Obviously, H : ( ~ ) =  H / ( W ~ ) ~ f ( 1 ) ;  the  inequal i ty is str ict  unless ~ is 
constant  with probabil i ty  1. 

PROPOSITION 2.3. _For any l~V's ~ and ~ with values i n f i n i t e  sets we have 

(2.31) I f  (~ ; ~) ~ 1t: (~), I f  (~ ; ~) ~ HI (~) ; 

moreover, the f i rs t  inequality holds for  an arbitrary I~V 7, as well. Furthermore, 
for  any W : {w 1 . . . .  ,win} 

P~OOF. (2.31) is an  immediate  consequence of Proposi t ion 2.2 and  
Definit ion 2.5, while (2.32) is just  the  par t icular  case H = H o of  (2.28), see 
(2.30). 
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EXAMPLE 2.3. In the case f (u)  = -- u ~ (0 < ~ < 1) we have, special- 
izing (2.24) to H = H 0, 

/71 

(2.33) H=(W) ~/= ~ = - . 

k = l  

I t  is interesting to note that  while our I :(~ II Q ) -  see (2.23)--corresponds to 
R ~ y I ' s  information gain of order ~, the associated entropy (2.33) corresponds 

to the entropy of order 1 in the sense of R ~ u  (cf. [17 ]); here correspondence 

means a one-to-one functional relationship. 

w 3. The main theorems 

We shall show that  in the definitions of f-informativity with prior PD 
and of absolute f-informativity,  see (2.9), (2.10), the inf can be replaced by 
rain; i f f  is strictly convex, the minimum is attained for a unique PD Q* on 
Y. Moreover, the absolute f-informativity of an OC equals its maximum f-  
informativity with prior PD, for all possible prior PD's  W. 

A heuristic application of the Lagrange multipliers method suggests tha t  

I q(Y)] (see (2.5), minimized =  (dy) (2:6))  is 
i = 1  i = 1  

for Q = @* if 

(3.1) ! 

I f  f is not everywhere differentiable, one may guess that  (3.1) should 
hold with < for the left and with ~ for the right derivatives. 

The following Lemma asserts, essentially, tha t  this condition can be 
fulfilled. 

LEM~A 3.1. Let g(u), u C (0, ~ )  be a non-decreasing left continuous func-  
tion (not identically constant) and let 

(3.2) g(u) =lira g(v) u E (0, ~ ) 
v 4 u  

denote its right continuous pair. Let 1I = {~1 . . . . .  $m} be an OC from 
X = { 1  . . . . .  m} to Y and W ={wa . . . . .  win} a PD on X .  Then--wi th  the 
notation (2.12)--there exists a PD Q* on Yi with density q*(y) satisfying (i) 
and (ii) below 3 provided in the case g ( ~ )  = ~ that 2(Y++) > 0: 

3 H e r e ,  as  wel l  as  in t h e  seque l ,  all dens i t i e s  a r e  u n d e r s t o o d  w i t h  r e s p e c t  t o  a com-  
m o n  d o m i n a t i n g  m e a s u r e  2. a n d  all s t a t e m e n t s  c o n c e r n i n g  dens i t i e s  a r e  m e a n t  ~-a.e. 
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(i) q*(y) is pos i t ive  on Y + +  and  vanishes  outside Y+; i f  g ( ~ )  = 

then q*(y) vanishes  outside Y + +  a n d  i f  g ( ~ )  ~ ~ ,  g(O) = - -  ~ then q*(y) 

is  posi t ive  on Y+ ; 

(ii) there exis ts  a ( f i n i t e )  constant  c such that 

m m 

( 3 . 3 )  2~g(q*(Y)t < c  < 2 ~i~/(Y)t  if q,(y)> 0 
i=1 [Pi (Y)] i=1  I ~ l  

and  i f  q*(y) = O, the left hand  side of  (3.3) is  ~ c whenever it does not contain  

in f in i t e  terms of  d i f ferent  signs. 

Here we unders tand  

(3.4)  

and 

(3.5) 

g(0) = ~(0) = lim g(u ) ,  g ( ~ )  = g ( ~ )  = lim g(u) 
u~O u'~ 

{o) g = ~ = g(oo) for every a_~ 0. 

P~OOF. Let  T denote the  set of all m-tuples of non-negative or positive 
numbers t 1 . . . . .  tm according as g ( ~ )  ~ ~ or g ( ~ )  = ~ ,  respectively. Con- 
sider the  functions of c E ( ~  ~ ,  g(c~)) 

(3.6) Z t ...... t~(c) = r a i n  u:  ~ w i g  >_c , ( t  1 . . . . .  t m ) ~ T  
i=1  

(in view of the  right cont inui ty  of  g, one may  write min rather  t h a n  inf). 
Then Zt,, . . .  ,tin is a non-negative,  finite valued, non-decreasing left  continuous 
funct ion o fc  E (--0% g(o~)) for any  fixed (t I . . . . .  tin) E T ,  and zti ' ... ,t,,(c) ~ 0 iff  

(3.7) c ~ lim ~ wig 
u,~O i=I  

{ . ~  wig(o) + .~Y ,~-g(~) i f g ( ~ ) <  
= i : t~>O i : t~=O 

g(0) i f g ( ~ )  = ~ .  

Le t  us denote the  limit in (3.7) by  at1 ,...,t.~. 

pair of ztl ,...,tin in the  sense of  (3.2) is given by 

Then the  right continuous 

(3.8) Zt ...... t~(c)--  
max u : ~ wi g ~ c - -  

i=1 

0 if  c ~ a t  ...... t.~. 

In  particular,  if  Z t ...... t~ ( c ) >  0 then  

(3.9) w i g  ...... ~<c=< w i ~ (  Zt~'-'~~ (c) �9 
=1 ti i=1  [ ti 
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Now define for (Pl(Y) . . . . .  Pro(Y)) E T and  c < g ( ~ )  

qc (y )  = Zpi(y ,  ..... p~o:~) (c) 
(3.10) 

qc (Y) = 2p1(~,) ..... p~(y) (c) 

while for (Pl(Y) . . . . .  p,,(y)) q T we set qc(y) =- ~(y) ---- O. 

Then, since . ~  wi g ~ g , the  first inequal i ty of (3.9) implies 
i = 1  

l _ < i ~ m  

(3.11) qc (Y) ~-~ K max  Pi (Y) 
l ~ i ~ m  

for some (finite) constant  K;  thus  qc(Y) and even more qc(Y) ~ qc(Y) are integr- 
able for all c ~ g ( ~ ) .  

By  domina ted  convergence follows tha t  ~ qc(Y) 2(dy) is a left continuous 
funct ion of c E ( - - ~ ,  g ( ~ ) )  and  ~qc(y)2(dy) i s  its r ight  continuous pair. 

Hence  follows, under  the  condit ion 

(3.12) ~ qc(Y) 2(dy) ~ 1 for some c < g ( ~ )  

the  existence of c~ 6 [g(0), g ( ~ ) )  (or c~ E (--  ~ ,  g ( ~ ) )  if  g(0) ---- -- ~ )  with 

(3.13) ~ q~(y) 2(dy) ~ 1 ~ S q~(Y) 2(dy). 

In  fact,  (3.7) and  (3.10) imply qg(o)(Y) -~ 0 for all y E Y if  g(0) ~ -- ~ while 
lira qc(Y) = 0 in all cases, see (3.6), (3,10). 

c~, - - ~  

From (3..13) one concludes t h a t  for some d E [0, 1] 

(3.14) q*(y) = dqc~(y ) + (1 -- d) qc,(Y) 

is the  densi ty  of  a PD on U. Since q~(y) ~ q*(y) <= ~t~,(y), q*(y) satisfies (3.3) 
with c = c~. I f  q*(y) ~ 0 t hen  qc~(Y) ~- O, i.e. either (p~(y) . . . . .  pro(y)) (~ T or 
else (3.7) does not  hold for c=c~,  t i=pi (y ) ,  i ~ 1  . . . . .  m. This just  means, 
in view of g ( ~ )  ~ c 1 and  the  convention (3.5) t h a t  the  second s ta tement  in 
(ii) of the  L e m m a  is also satisfied. 

Fur thermore ,  if  y ~ Y+ or g ( ~ )  ---- ~ and  yE  Y++ (see (2.12)) then  
(Pa(Y) . . . . .  Pro(Y)) q T thus  qc(Y) ---- 0 for all c ~ g ( ~ ) ,  while f rom (3.7) and 
(3.10) follows q c ( Y ) ~ 0  for all cE(g (O) ,g (c~) ) i f  yE  Y++ and  in the  case 
g ( ~ )  ~ ~ ,  g(0) ---- -- ~ also if y E Y+- This shows t h a t  q*(y) defined by 
(3.14) satisfies also the  s ta tements  (i) of the  L e m m a  except, conceivably, if 
c 1 (determined by (3.13)) equals g(0) ~ -- ~ .  The la t ter  case, however, can 
obta in  only  if  zt,.." ,t~(g(0)) > 0 for some (t~ . . . . .  tin), i.e. (see (3.8)) if  g(u) is con- 
s tan t  in some neighbourhood of  0; in t h a t  case, (3.8), (3.10) and  (2.12) imply 
qg(o)(Y) ~ 0 for all y E Y++,  thus,  on account  of  (3.14) q*(y) ~ 0 on Y+ + 
also if  c 1 = g(0). 



20~ CSISZAI%: ]{EASURES OF INFORI~&TIVITS~ 

To complete the  proof, the  fulf i l lment of condit ion (3.12) has to be 
examined.  I f  g(u) is not  constant  in any  neighbourhood of inf ini ty,  (3.6) implies 

lira zt,...,t,~(c) -~ ~ for all (t 1 . . . . .  tin) E T .  In  view of  (3.10), we thus  have 
c ~g(~) 

lira qc(Y)= ~ on Y++ and  in the  case g ( ~ ) ~  ~ also on Y+; therefore, by 
c f g ( ~ )  

monotone convergence, (3.12) holds (recall t h a t  in the  case g ( ~ )  = co we have 
assumed 2(Y+ +) ~ 0). I f  g(u) is constant  in some neighbourhood of infinity,  
set u 0 = inf  {u : g(u) = g(~)} .  Then (3.6) yields 

lim Zt ...... t,~(c) = m i n  u : ~ w i g  = g ( ~  = u  0. max t i 
c f g ( ~ )  i = 1  l ~ i < ~ m  

max Pi(Y) 2(dy). and we arrive at  l im 2 qc(Y) 2(dy) = % .  ~ l<i<_m 
c f g (~ )  

This limit may  happen  to be ~ 1, bu t  in t h a t  case one can choose d ~ u o 
such t h a t  the  integral  of q*(y) : d �9 m a x  Pi(Y) equals 1; then  this q*(y) trivi- 

l ~ i ~ m  

ally satisfies ( i ) and  (ii), with c ---- g (~ ) .  

THEOREM 3.1. For an arbitrary convex funct ion f (u) ,  0C H = {$1 . . . . .  Sin} 
f rom X = {1 . . . . .  m )  to Y with, 9I(H) < ~ and prior PD W ={w~ . . . .  , u,~} 

rrl 

ou X ,  there exists a PD ~* on Y min imiz ing  . ~  wi Iz(g I1 ~); i f  wi ~ O, i = 
i = 1  

= 1 . . . . .  m, such a minimiz ing  PD is any ~* with the properties (i), (ii) in 
Lemma 3.1, the left derivative of f playing the role of g. 

I f  the funct ion f (u )  is strictly convex, the min imiz ing  PD ~* is unique, 
moreover, there exists a funct ion ~v(u) (depending on f ,  I I  and W )  with 

lira ~0(u) = 0 such that for  any PD ~ on Y 
u ~ II(H, W )  

m 

(a.15) l a  - a*t__< II a ) ) .  
i = 1  

PROOF. I f  g(u) denotes the  left  derivat ive of the  convex funct ion f(u) 

= uf  (1 )  ' we  have  g ( ~ )  = lim f ( u !  = f(O)" T h u s ' i f  g ( ~ ) =  ~ '  the  u 

2(Y ++) ~ 0 of  L e m m a  3.1 is implied by the  assumpt ion 91(H) ~ ~ ,  c. f. the 
paragraph af ter  (2.12). 

Le t  ~ and ~* be two PD's  on Y where Q* satisfies (i) and  (ii) of L e m m a  
3.1 ~nd max I](3i ]1 ~) ~ ~ ;  then,  i f  f(0) = g ( ~ )  = ~ ,  bo th  q*(y) ~nd the  

l<_i<_m 

densi ty  q(y) of Q vanish outside Y+ + (see footnotea). 

Since ~ is convex, we have 

(3.16) .f(u) _>_f(u o) + O(u o) (u - -  Uo) (u, u o C (0, ~ ) )  

for any  funct ion d(u) with g(u) ~ d(u) ~ g(u); of course, d(u) = f ' ( u )  at  each 
point  u where f(u) is differentiable. 
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F r o m  (3.16) follows 

(3.17) r f  -~ ~ r f  r § ~ (s - -  t) 

for any  positive (finite) numbers r, s, t; using the conventions (2.2), (3.4) and 
(3.5), inequal i ty  (3.17) is easily checked to hold also if  one, two or all three 
of  the  numbers  r, s, t, are 0. 

Subst i tu t ing r = Pi(Y), s = q(y), t = q*(y), mult ip lying by w~ and  sum- 
ruing for i = 1, . . . .  m: 

(3.18) i=1 
m 

+ i__~lw i ~ [q*(Y)t ( q ( y )  - 

Since (3.17) is valid for any  version of ~ witt~in the  specified range, for 
different  y's differen~ versions may  be taken,  as indicated in (3.18). In  par- 
ticular,  in force of  (3.3), one may  choose ~y such t h a t  

q (Y (3.19) wigy  = c if  q*(y) > O. 
i = l  

Leg us remark tha t  the  r ight  hand  side of  (3.18) contains no te rm - - ~  
$ [q (y)l 

(see footnote a). In  fact,  YYlP~~Y)I = ~ for some 1 < i < m iff g ( ~ ) =  ~ ,  

y q Y++,  in which case, however, q*(y) = O; on the  other  hand,  Oy Iq*(Y)l = 
( \ 

' [Pi(Y)) 
= - -  ~ for some l < i < m  i f f g ( O ) =  -- ~ ,  q * ( y ) = O ,  yC Y+, possible 
only i f g ( ~ )  = ~ ,  y C Y+ Y++ (by L e m m a  3.1, (i)), in which case, however, 
q(y) = 0, too. 

I n  force of (3.19) and  the  second s ta tement  of L e m m a  3.1, (ii), the  integral  
of the  second sum on the  right hand  side of (3.18) is > 0, thus  from (3.18) 
and  (2.6) follows 

m /77 

(3.20) ~ wi I I (3i [l a) ~ _.~ w~ I I (3~-I] a*), 
i = l  i = 1  

for any  PD ~ on Y with max  Ii($i [] O) ~. ~ .  This proves, in part icular,  
l < ~ i ~ m  

m 

t h a t  in the  ease wi > 0, i = 1 . . . . .  m the PD ~* minimizes ~ wi If($i I I ~)-  
i = 1  

If, however, w i =  0 for some i C { 1  . . . . .  m}, the  $i's with w i =  0 may  be 
omi t ted  and  the  existence of  a minimizing •* still follows (al though this ~* 
need not  have the  properties s ta ted  in L e m m a  3.1 for the  original gi's). 
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I f f  is s tr ict ly convex so is f ,  too, and  

(3.21) %(%) = rain {f(u o + 6) --f(Uo) -- 6 ~(Uo), f~(Uo) 6 #(Uo) --)~(u o -- 6)} > 0 

fer every u 0 ~ b ~ 0. Since ~(u0) is a lower semi-continuous funct ion of u o 
(continuous at  the points w h e r e f i s  differentiable) we have for every K > ~ > 0 

1 
(3.22) %,K = - -  rain e~(u0) > 0. 

c3 o<=u~ 

From the  convexi ty o f f  follows t h a t  for fi ~ u 0 ~ K,  I u -- u 0 [ ~ 
the  t e rm e ~ , K l u -  Uol m a y  be added to the  r ight  hand  side of  (3.16). 
Thus instead of (3.20) one arrives at  

m m 

(3.23) i=a i=l 
m 

+ S I q(y) - I 
i=1 ,~m(y)~q*(y)gKp,(y) 

} q(y)-q*(y) l >~p~(y) 

Taking into account  t h a t  ~ I q(Y) --q*(Y) ] 2(dy) < ~ and denot- 
I q(Y)-q*(Y)[<0Pi(Y) 

ing by w 0 the  smallest w~ ~ 0, the  second sum on the r ight-hand side 
of (3.23) is bounded from above by 

(3.24) (1 -- 8) w o. s I q(Y) -- q*(Y) i2(dY)" 
6 rain pdy)<~q(y)~K max p~(y) 
l<_i~m lNi<_m 

:But since q*(y) satisfies (3.3) (the left  derivat ive off playing the  role 
of g), there exist 0 ~ b ~ K such t h a t  

6 rain Pi(Y) ~ q*(Y) ~ K m a x p i ( Y )  for a.e. y CY. 
l ~ i < m  l<~i<,~m 

Then the  integral  in (3.24) equals I & - - ~ * 1  and  thus  (3.23) and (3.24) give 
rise to 

( m t (3.25) i a - a * [ <  a . 
% K ( 1  - -  6) w o 1---=_-1 i=1  , 

This completes the  proof for the  ease wi > 0 i = 1 . . . . .  m, while in the  
opposite case the  ~i's wi th  wi = 0 m a y  be omi t ted  and the  s ta tement  still 
follows. 

I t  will be convenient  to  introduce the  nota t ion  
m 

(3126) I}(H,W) = inf  ~ w ~ I i ( ~  t lla) 
~E~I. ~'~-~I'= 

where ~ denotes the  class of PD's  & on Y with 

I]($'il I&) ~ ,:~, r = 1 , . . . , m .  
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LEMlU)~ 3.2. I}(H, W) is a continuous concave function of the PD W, for 
any convex function f and OC H ---- {$1 . . . . .  8m}, and I)(H, W) > I](H, W) 
with equality i f  wi ~ O, i = 1 . . . . .  m. Furthermore, either of the conditions 

(i) f(O) < 

(ii) ~(0) ~ ~ ;  the ~i's are mutually equivalent measures 

(iii) there exists a constant K such that 

max Pi(Y) ~ K rain Pi(q) 2 -- a. e. 
l ~ i ~ m  l ~ i ~ m  

implies 1)(H, W) = II(H, W) for all PD's  W = {w 1 . . . . .  win}. 

PgooF.  I'y(H,W) is the  inf imum of linear functions of W, hence it is a 
continuous concave function.  The second s ta tement  is obvious, while the  last 
one follows from the  possibility of subst i tu t ing any  PI)  ~ on Y sat isfying 
I~(~i I] a)  < ~ for some i C {1 . . . . .  m} by  a PD a l  so t h a t  IS(~ ~ [I G )  
< I 1 ( $ , ] I a ) +  e for each i E { 1  . . . . . .  m} with I f ( a ~ I l a ) < ~  (where e > 0  
is arbi t rary)  in such a way t h a t  ~1 have a densi ty  ql(Y) sat isfying ql(Y) 

K 1 max  Pi(Y) i f  f(0) ~ ~ and  ql(Y) ~ K2 min Pi(Y) or K 1 max  Pi(Y) 
l<_i<_m l ~ i ~ r n  l ~ i ~ m  

ql(Y) ~ K2 rain ~oi(y), respectively, if  f ( O ) =  ~ but  condition (ii) or (iii) 
l ~ i ~ r n  

is valid, 4 ensuring in all three cases, Q1 E glL 

TItEOREM 3.2. For an arbitrary convex function f and 0C H = {~1 . . . . .  Sm} 
from X = {1 . . . . .  m} to Y we have 

(3.27)   o+(Jq) = sup I+(H,W). 
w 

I f  Qj(II) ~ o~ and f is strictly convex, the necessary and sufficient condi- 
tion for a PD W* = {w* . . . . .  w*} on X to maximize II(II, W ) consists in 

(3.28) I1 @i[[a*) ~ K ,  i = 1 , . . . ,  m, 

with equality whenever w* ~ O, where ~* denotes the unique PD on Y maximizing 
172 

. ~  w* If(3~ I] ~) and K is a constant. Moreover, in that case K----- e~(H), and 
i = 1  

~* is the unique PD on Y minimizing max I:(~i [1 ~)" 

COrOlLarY. I f f  is s tr ict ly convex and  either of the conditions (i)--(iii) 
of L e m m a  3.2 is fulfilled, there exists a unique PD ~* on Y m i n i m i z i n g  
max  I~($, II a)  and  it  corresponds to a PD W* on X = { 1 , . . . ,  m} maximiz- 

ing II(H,W). 

a iN~ote that in this case Q must be absolutely continuous with respect to the 3t's. 
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I~EMAI~K 3.1. Since @:(H)= inf max I:($t iI ~) is interpreted as the 
l < i g r n  

"radius" of the set of PD's H =  {31 . . . . .  3m}, the above ~* may be given the 
geometric interpretation of the "centre" of the set H. By another method 
it is possible to show the existence of such a "centre" ~* even if there is no 
W* maximizing I f ( H , W )  but in that  case 6"  does not correspor~d to any PD 
W on X in the sense of Theorem 3.1 (see Example 3.1 below). The relevance 
of the "centre" of H for coding theory (for f(u) = -- u s, 0 ~ ~ ~ 1) is most 
clearly seen from [1]. 

P~ooF. Consider the zero-sum two-person game where the sets of pure 
strategies of the first and second player are X and gl[ respectively, where grc 
is the same as in (3.26), and the payoff function is I:(~ [[ ~). Since X is a 
finite set and the payoff function is convex, (3.27) follows from a variant of 
the minimax theorem. A direct proof, along the lines of [4], pp. 43--50 is as 

follows: 
Let S be the set of all points in m-space of form (I:($1 I I a ) , . . . ,  If($m t l a))  

with ~ (gFC. Let S* be the convex hull of S and let T denote the set of 
all POints (t 1 . . . . .  tin) with ti < of(H), i = 1, . �9 . ,  m.  Since I i (~  iI 6)  is 

convex in 6, we have 2k Ii(3; II Qk) 2 Ij($i [1 ~ 2k Qk), i = 1 . . . . .  m for 
k = l  f l = l  

n 

2k ~ 0, ]c = 1 . . . . .  n, ~ ,  2k = 1, thus S* A T # 0 would imply S [3 T r 0, a 
k = l  

contradiction (see (2.10)). S* and T, being disjoint convex sets in m-space, 
have a separating hyperplane (cf, e .g.  [4], p. 35). In view of the definition 
ofT,  the existence of a hyperplane separating S and T means just the existence 

/72 

of a PD W* = { w ~ , . . . ,  w*} on X such tha t  ~ w* I : ( ~  ll a)  ~ @: (H) for 

all ~C gg, i.e., see (3.26), i=1 

(3.29) I:(H, W*) ~_ ~: (H). 

But from Lemma 3.2 follows sup ' I I ( I I ,  W) = sup I I (H,  W) thus, on account 
W W 

of (2.11), from (3.29) one concludes 

(3.30) sup z:(Lr, w )  = 1:(IL w*) = ~:(H). 
W 

To prove the second statement of Theorem 3.2, note first tha t  (3.28) 
implies K ~ O:(H), see (2.10),while the additionM assumption I : ($  l] 6)  = K 
for w* ~ 0 and (2.11) imply K = I : (H,  W*) ~ q:(rI). Thus the sufficiency 
part  and K = @:(H) are proved. 

Suppose now tha t  W* = {w* . . . . .  w*} maximizes //(H, W); then by 
(3.27) I j (H ,  W*)=q:(II). Consider a sequence &i, ~2 . . . .  of PD's on Ysuch tha t  

(3.31) max If(3~ II an) -+ @:(H). 
l ~ i ~ m  
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Then 
m 

(3.32) lim ~ w* I:($ i [I an) = ~o:(//) ---- I:  (//, W*). 
n ~  i = 1  

I f  f is strictly convex, there exists a unique PD Q* on Y such that  

~ w * I : ( $  l[ a*)  =I:(H,W*) = e:(II), and (3.32) implies 
i = l  

(3.33) Jim 16, -- 6* I = 0 

according to Theorem 3.1. We claim that  (3.33) implies 

(3.34) lira l] 6 , )  _> 1+( i iI a , ) ,  i = 1 . . . . .  m. 
n ~ c ~  

In fact, let 2 be a common dominating measure of the considered PD's;  
then (3.33) means that  the density q*(y) of Gn converges to q*(y) in L1(2). 
;Now (3.34) follows from the Fatou lemma provided that  f is non-negative 

(note that  qn(Y) & q*(Y) implies qn(y)/ [ ~ I  

f(0) = ~ ,  since then q,(y) = 0 whenever Pi(Y) = 0, being Qf(H) < ~) .  But 
this can always be" achieved by adding a -4- bu to f(u), which amounts to 
adding the constant a - t - b  to I:($ [I 6) thus does not affect the validity 
of (3.34). 

(3.31) and (3.34) prove the necessity of (3.28) (with K----~:(H)) and 
n/ 

since .~w*I:(3i  [[ 6 * ) =  e:(H), in (3.28) the equality must hold whenever 
i = 1  

w* ~ 0. In particular, we have also shown that  if I:(II, W) is maximized for 
some PD W* on X ---- { 1 . . . . .  m}, the corresponding PD 6 "  on Y minimize 
max I:($i I I 6). The uniqueness of the minimizing 6"  follows from the strict 

1 ~ i ~ m  

convexity of I:(3i I I 6) in 6, implied by the strict convexity o f f .  
The Corollary follows from the fact that  under either of the conditions 

(i)-(i i i)  of Lemma 3.2, the function If(II, W) is continuous, thus it is maxi- 
mized for some W*. 

Note that  while there may exist several PD's  W* on X maximizing 

/ : (H,  W), our result implies that  for any of them, ~ w * / f ( 3 ~  lI 6 ) i s  mini- 
mized for the same 6*. i=1 

In order to strengthe n Proposition 2.1 to a characterization of sufficiency 
of indirect observations with respect to an OC H = {31 . . . . .  Sin} let us for- 
mulate two conditions, one for the function f and one for the OC and the 
indirect observation. 

(A) f(0) < ~ and lim(f(u) --  uf'(u)) = -- ~;  
U t ~  

14  Peri0dica Mat. 2 ( 1 - 4 )  
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(B) The PD's ~1 . . . . .  ~m on Z obtained by the indirect observation are 
mutually equivalent measures. 

THEOm~ 3.3 Let f(u) be a strictly convex function and let an indirect 
observationS from Y to Z change H = {~1 . . . .  ,3m} t o / I  = {~1 . . . .  , ~m}- Then, 
i f  I:(1~, W) < ~ and either of the conditions (A) and (B) is fulfilled, the indirect 
observation is sufficient with respect to the OC H i f f  for some prior PD W = 
= {w~ . . . . .  win} with wi > O, i = 1 . . . . .  m, 

(3.35) I f  (1I, W) = I:(11, W). 

Note that  I:(/~, W ) <  ~ is certainly true under (A), and also under 
(B) if f(0) < ~ ,  cf. the paragraph after (2.12). 

P~ooF. On account of the Corollary of Proposition 2.1, we have to prove 
only that  (3.35) implies sufficiency. 

Let ~* be the (unique) PD on Y with 

m 

<336) we/f< ;lI = i:(11, W), 
i = 1  

--existing by Theorem 3.1. 

From (3.35), (3.36) and Definition 2.4 follows that  the inequalities 
(see (2.7)) 

(3.37) 

hold with the equality sign (when considering an indirect observation of type  
(iv), it  should be noted that  a*  ~ ~1 -~ �9 �9 , -~ ~m is admissible if the ~ i ' s  
are). This means that  the indirect observation is sufficient with respect to 
each pair {~i, Q*}, i - - - - 1 , . . . ,  m, i.e., there exist Z-measurable functions 
S~(B), i = 1 . . . . .  m, satisfying 

(3.38) S S~z(B) ~(dz) = 3~*(B • C) ( B C ~ ,  CC~) 
C 

and 

(3.39) .[ S~ (B) ~*(dz) = ~** (B X C) (B E ~,  C E ~) 
c 

(for indirect observations of type  (i) or (ii), the right hand sides become 
$i(B AC) and ~*(B NC) or ~i(B N T - 1 C )  and ~*(B NT-1C) ,  respectively). 
Since (3.39)implies S~(B)----S{(B) ~* -- a .e .  for every i , j  E {1 . . . . .  m}, 

Of either type (i)--(iv) described in w 2, from (2.7) until (2.8). 
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the possibility of dropping the upper index i in (3.38) i.e. the sufficiency of 
the  indirect observation with respect to H follows if 

(3.40) $ i ~ * ,  i -~  l . . . .  , m .  

Note that  (3.35), (3.36) and (3.37)--the latter with equalit ies--imply 

that  &* minimizes ~ wi l f (~  if Q) (where Q ranges over the PD's on Z). Thus, 
i=1  

by Theorem 3.1, 6 "  is the (unique) PD corresponding to the ~ ' s  in the sense 
of Lemma 3.1, applied for Z instead of Y. Since condition (A) is equivalent 
to g ( ~ )  < ~ ,  g(0) ~-- -- ~ ,  where g(u) denotes the  left derivative o f f (u )  ~-- 

Lemma 3.1, (i). The proof is complete. 

R ~ K  3.2. I f  neither (A) nor (B) is fulfilled, (3.35) does not necessarily 
imply sufficiency. In  fact, if f(0) = ~ (as e. g. in Example 3.1 below) then 
I I (H,  IV) is determined by the restrictions of the densities Pi(Y) to Y+ +. Thus 
if T is a mapping of Y into itself with T y  = y for y ~ Y+ + and T y  = Yo q Y+ + 
for all y ~ Y+ +, the indirect observation of type (ii) defined by T satisfies (3.35) 
while it is obviously not sufficient provided that  there are at least two i's 
with ~i(Y+ +) < 1. 

EXAMPLE 3.1. For f (u )  = -- log2u, f ( u )  = u logsu we have Iy(~i II a ) - -  
m 

= I(Q II Fi), see (2.!4), thus I j ( I I ,  W) ~- i n f ~ w z I ( ~  11 ~i). By Theorem 3.1, 

there exists a unique minimizing PD ~* (provided tha t  2(Y+ +) > 0) with 
density q*(y) satisfying (3.1) for yE Y++ and vanishing for y ([ Y++, see 

�9 ~'/ m 

(2.12). S lnce f  (u) = log2u -{- log2e , (3.1) reduces t o ~  w~.log 2 q*(Y) cl whence 
i=l Pi(Y) 

l 'gl 

(3.41) q*(y) = c 2 i ~ I p ~ ,  (y).  
i ~ l  

m 

Substituting ~ =- ~* into ~ w ~ I ( Q  II ~i), we eventually obtain 
i=1  

m 

(3.4~) I+(~, w) . . . .  log~ f 1 1  P~' (Y) ~(dy). 
i = 1  

This can be interpreted also as a formula for I1(~;~), see Definition 2.5. As 
f(0) = ~ ,  the f - en t ropy  is not defined. 

The f-radius ~f(H) = inf max Ii($' i [] Q) = inf max I (~  lJ ~i) and the 
Q 1 g l U m  ~ l ~ i ' ~ m  

minimizing P D  Q* can be obtained in principle (see Theorem 3.2) by maximiz- 
ing (3.42) for W and substituting the resulting W* (provided that  it exists) 

1 4 "  
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in to  (3.41). Of  course,  expl ic i t  f o rmu la s  are  no t  t o  be h o p e d  for, excep t  in 

v e r y  special  cases. N o t e  t h a t  for  H = {31,~'2} we o b t a i n  

(3.43) sup {- ]og  (Y) ;(dy)} 
O~a~l 

i.e. t h e  C h e r n o f f  i n f o r m a t i o n  n u m b e r ,  see [6].  

I t  is i n t e res t ing  t o  n o t e  t h a t  in this  e x a m p l e  m a x  I f ( H ,  W )  need  no t  
W 

exis t ;  e. g. if  H ~ {~'t, ~2} where  3i is t he  u n i f o r m  d i s t r i bu t i on  on  t h e  i n t e rva l  

[0, i f ,  i ---- 1, 2, in  (3.43) t h e  sup  c a n n o t  be r ep laced  b y  max .  I n  t h a t  p a r t i c u l a r  

ease m a x  I f ($ i  [I ~)  is m i n i m i z e d  for  ~*  = ffl, b u t  t he re  exis t  no P D  W = 
1~i_<2 

2 
= {w~,w~} fo r  wh ich  .~ ,  w~/~($~ [[ Cz) is m i n i m i z e d  for  a *  = 3~. 

i=1 
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