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Summary

A class of numerical measures of informativity of observation channels
or statistical experiments is defined by the aid of f-divergences introduced
by the author as measures of difference of two probability distributions. For
observation channels with given prior probabilities, the f-informativity meas-
ures are generalizations of Shannon’s mutual information and include Gallager’s
function £ (0,Q) appearing in the derivation of error exponent for noisy chan-
nels, as well. For observation channels without prior probabilities, the suggested
informativity measures have the geometric interpretation of a radius.

The f-informativity defined for the Bayesian case shares several useful
properties of the mutual information, such as e. g. the “data processing theo-
rem”. Its maximum with respect to all possible prior distributions is shown
by a minimax argument to be just the f-radius, thus the latter is a generaliza-
tion of channel capacity. The f-informativity measures can also be used to
characterize the statistical sufficiency of indirect observations.

§ 1. Intreduction

While Shannon’s measure of the amount of information is a cornerstone
of information theory, generalizations of Shannon’s entropy function have
also been suggested. This kind of research was initiated by A. RENYIs
paper {17]. He introduced the concept of entropy of order « which shares several
nice properties of Shannon’s entropy. Examples of concrete problems leading
to entropy of order « are also known, see e. g. [5], [11].

From Shannon’s entropy one immediately gets a most useful measure
of mutual information of two random variables. No similar measures of some
practical value seem to have been obtained from generalized entropies, in

1This work was done while the author was visiting professor at The Catholic Uni-
versity of America, Washington, D.C., sponsored by National Science Foundation
Grant No. GP-9396.
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spite of the fact that Gallager’s function F(0,Q), see e.g. [9], p. 138, playing
an important role in coding theory behaves in many respects like the mutual
information. '

This fact was one main motivation of this paper. Apparently, when
generalizing mutual information, one should start from generalized I-diver-
gence rather than generalized entropy. A possible way of doing this was indicated
by I. Vaspa [24]; here we adopt another approach. The class of informati-
vity measures we are going to introduce includes both Shannon’s mutual
information and Gallager’s function (the latter aside from a scale transforma-
tion), eliminating the need of deriving their common properties—in particular
those connected with their maximization for a given channel—separately.

Another aim of the author was to apply to more general experiments
the measures of difference of probability distributions called f-divergences,
introduced in [71, which proved to be useful in the case of simple alternative
hypotheses (see [7], [8] and also [16]). In this respect, R. SrBsoN’s paper [21]
should be referred to; his “information radius of order «” defined by the
aid of RiENv1’s “information gain of order o’ (see [17]) is—aside from a scale
transformation—a particular case of the informativity measures defined here.
SiBsoN’s approach was motivated, however, by statistics only (he did not even
point out that his information radius of order 1 is identical with Shannon’s
mutbual information), and essentially on a Bayesian basis; sorts of “absolute”
informativity measures (which are closer to the intuitive idea of a radius)
were not considered by him.

Finally, the author wants to make clear his point of view about the
value of generalizations of Shannon’s information measure. In force of the
coding theorems of information theory, Shannon’s measure of the amount
of information in the very concrete sense as described by these theorems cannot
be challenged. In this respect, information theorists claiming that this infor-
mation measure is the only true one are right. There are, however, many prob-
lems outside the scope of the mentioned theorems where one may wish to
speak of “information’” in a technical sense, as e. g. the characterization of
informativity of statistical experiments or observation channels. In such cases
Shannon’s information measure may still be useful as shown by D. V. Linp-
LEY [18] (further merits of this approach have been pointed out in A. RENYI's
paper [18] initiating an extensive research, cf. e.g. [19], [23]) but there is
no reason to believe that it is always the most suitable one. The distinguished -
role of Shannon’s information measure, however, will be honored in this paper
by reserving the technical term “information” for it only, while the introduced

6z

generalizations will be referred to as ‘“‘informativity”. .
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§ 2. Preliminaries.
Definition and simple properties of f-informativity measures

ka4 &<

Throughout this paper, the terms ‘“‘probability distribution”, “random
variable’” and “observation channel” will be abbreviated as PD, RV and OC,
respectively. “Almost every” or “almost everywhere” will be abbreviated as
a.e. and “if and only if” as iff.

X, Y and Z will denote sets, ¥ and Z will be considered to be equipped
with o-algebras Y and %, respectively. The measurable spaces (¥,%), (Z,%)
and (Y X Z, Y x %) will be referred to simply as Y,Z and ¥ X Z, respectively;
it will always be clear from the context, whether these symbols mean just a
set or, rather, a measurable space. In particular, a PD & on' Y is understood
as a measure on Y with §(¥V) = 1.

Derintrion 2.1. An experiment with parameter space X and sample
space ¥ or an OC from X to Y is defined as a family /7 ={&,}, . x of PD’s
on Y.

In recent literature the term experlment has been used also in a more
general sense, see e. g. [10]. The term OC was introduced by A. PErEez [15]
who imposed the additional condition that §.(B) be ¥-measurable for every
B¢ %Y where ¥ is a given o-algebra of subsets of X.

As to the terminology, statisticians would probably prefer to speak of
experiments while information theorists of OC’s. In the sequel, the term OC
will be used.

DerFINTTION 2.2. Let f(u), u € (0, o0) be an arbitrary convex function
which is strictly convex at # = 1. The f-divergence of two PD’s § and Q on
Y is defined as

(2.1) 1,89 = [ 9() [W)J (dy)

where 1 is some (finite or o-finite) dominating measure and p(y) and g(y) are
the densities of & and Q respectively, with respect to 1.

Undefined terms in (2.1) are understood as

f(0) = limfw); 0 - f (3} -
uio 0
(2.2)
0- f(-g—) — lim uf [_;‘E

ui0

= g lim uf (-1—) “a > 0).
%

ui0

This definition was introduced (with slightly different notations and
without the assumption that f is strictly convex at » = 1) in [7]. It is easy

13 periodica Mat. 2 (1—4)
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to show (see [7], [8]) that the integral (2.1) is always well defined, its value
does not depend on the choice of 1 and

(2.3) I8 ] Q) = f(1), equality iff § = Q;
moreover, there exists a function p(u) (depending on f) with lim ¢(u) = 0
such that ui fQ)

(2.4 15— <o(I;9]2)

where | § — Q| denotes the total variation of the signed measure § — Q,
called the variation distance of § and Q.

The convexity of f(u) is equivalent to that of

(25) flu) = uf {i)
U
and
(2.6) 1,8]9) = 1;@]9) = [ p(o) f (E’@] Ady).
p(y)

From (2.1) and (2.6) obviously follows that I4(§ || Q) is a convex function of
both & and Q.

One indication that the integral (2.1) is a reasonable measure of how
different & and & are consists in? (2.3), (2.4). Another such indication is the
fact that I«& || @) cannot be increased by indirect observations, i.e. if the

PD’s § and & are changed to & and Q, respectively, then
(2.7) L9 <L8]9).

If f is strictly convex and I4(& || Q) < oo, the necessary and sufficient
condition of the equality is the sufficiency (in the Halmos-Savage sense) of the
indirect observation with respect to the pair {§,Q}. This result has been proved
in [8] for the following types of indirect observations:

(i} Reduction of the underlying o-algebra: $ is the restriction of &
to some sub-o-algebra of Y.

(ii) Using a statistic: 7' is a measurable mapping of ¥ into Z, =T~ *.
(i) 7' = {Ty( * )}ycy is an OC from Y to Z such that 7'y(C) is ¥-measur-

able for every C ¢ %;
8(C) = [ T,(0)8(dy) (C€%).

2 This interpretation could be made even more attractive by restricting attention
to funetions f vanishing at v = 1; the additive constant f(1) is, however, rather harmless
and some calculations will be simpler using a function f with f(1) = 0.



CSISZAR: MEASURES OF INFORMATIVITY 195

Here we shall need this result also for the following generalization of
cage (iii):

(iv) Yy < Y is a o-ideal and Ty(C) (y€ Y, C€%) is a function with
values in [0, 1] such that

(a) T'y(C) is Y-measurable for every C € %;

(b) Ty(Z) = 1 for every y € ¥ and, for any fixed family of pairwise
disjoint sets Cy € %, the set {y: ZT C==T,( UOh} belongs
to Yy
then for any PD & on Y such that PD §(B,) = 0 for every
B,€ %Y, and such that there exists a PD §* on Y X Z with
G’*BXC’ jT §(dy) for B€Y, C€% (such PD’s § will

be called admlssﬂole) $ is defined as the marginal of §* on Z:
(2.8) §C)={T,(0)8(dy) (C€%).

The proof of (2.7) and of the condition of equality for indirect observa-
tions of type (iv) is exactly the same as for those of type (iii); here by suffi-
ciency of an indirect observation of type (iv) with respect to an arbitrary OC,
H={8,}, x from X to Y (such that the &, ’s are admissible) we mean the exist-
ence of a function S,(B), %-measurable for every B¢¥Y and satisfying

{ S,(B) §,(dz) = 8X(B x C) for every x € X, B€ %Y, C€ %.
¢
ReMARK 2.1, The importance of considering statistical operations defined

by functions 7,(C) with the properties (a) and (b) above has been revealed
by the study of N. MorsEe and M. SACKSTEDTER [14]of the problem of statisti-
cal isomorphism, see also [20].

When measuring the distance of two PD’s by their f-divergence, the

“f-radius” of a set IT = {F,}, . x of PD’s on Y i.e. inf sup I4(§y || Q) is a measure
8 xeX

of how different PD’s are contained in I7; this may be considered as a measure

of informativity (or, rather, of potential informativity) of 1. If a prior PD W

is given on X (defined on a c-algebra of subsets of X with respect to which

14(8, | Q) is measurable for each PD & on Y'), one can consider inf 5 148, || Q) W(dx)
: )

as a measure of informativity of the OC II, with prior PD W.

In this paper, attention will be restricted to the case that X is a finite
set, X = {1,...,m} say. Then a PD on X is given by W = {wy, ..., wp}.
The author intends to return to the general case in another paper.

DerintTioN 2.3. The f-informativity of an OC I = {&,, . .., &, } from
X ={1,...,m} to ¥ with prior PD W = {w,, ..., wn} on X is defined as
m
(2.9) T(IT, W) = inf X w,1;(8,]]Q)
e i=1

13%*
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and the absolute f-informativity or f-radius of I7 is defined as

(2.10) o,(I1) = inf max I;(§;]| Q)

aQ 1=ism
where the infimum is meant with respect to all PD’s & on Y.

From (2.3), (2.9) and (2.10) obviously follows

(2.11) T <L T W) < o,

where the first inequality is strict unless all &’s with w; > 0 are identical,
of. (2.4).

Let p,(y) dencte the density of §,,¢ =1, ..., m, with respect to a com-
mon dominating measure A; write

(212) YT ={y: max p(y) >0}; Y+t ={y: min pJy) > 0}.
1=i<m

1<i<m

Note that g,(I7) is always finite if f(0) < oo; in fact, then I4(&; || Q) <

1=1...,me.g. for@a%(os +...+8,). If f(0) = oo, a necessary con-

dition of g/(II) < oo 00n51sts in A(Y*%) > 0, see (2.12); this is sufficient, too,

if f(0) <~ oo because in that case Ii(8, ] Q) < oo, i=1,...,m e.g for the

PD @ with A-density ¢(y) = ¢ min p,(y), where cis a proper constant. Finally,
1<i<m

if f(0) = f(0) = oo, a necessary (but not sufficient) condition of gf(fI) < oo

is MY\ Y*7T) =0, i.e. the mutual equivalence of the PD’s §;i=1, ..., m.

Lemma 2.1. Both in (2.9) and (2.10), the infimum may be restricted to
Q<8 + ...+ 9

Proor. For any & with density ¢(y) (having chosen 2 so that Q < 1),
consider the PD Q, with density ¢,(y) =¢(y) + Q(Y\ Y ") p(y) if y € Y and
g(y) =0if y¢ Y (see (2.12)). Then @, < &, + ... 4 &, and as a particular
case of (2.7)—easily checked directly, as well —we have I«(&; || Q) < I{(9; || Q)
1=1,...,m.

Our f-informativity measures are compatible with the clasqcal concept
of informativity of experiments.

A finite experiment IT = {&,, ..., 8y} is said to be more informative
than another I7" = {§{, ..., &} iff for any loss function, every loss vector
attainable by some decision function in II” is also attainable in 7. D. Brack-
WELL [2] attributes this definition to BOENENBLUST, SHAPLEY and SHERMAN
(unpublished work). BrackweLL [3] has proved that I7 is more informative
than I7T’ iff after reduction to standard experiments (as defined by him),
I1” arises from /] —in our terminology — by an indirect observation of type (iii).
Since standard reduction is a sufficient indirect observation of type (ii),
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from BrLAcKwWELL’s theorem and Proposition 2.1 below it follows that if IT is
more informative than IT* in the classical sense, we have I(II, W) > I{(II’,W)
for any prior PD W and also of(IT) = oi(II").

PropositioN 2.1. Let IT = {8,, . . ., &} be an OC from X = {1, ..., m}
to Y and consider an indirect observation from Y to Z (of any type (i)—(iv))
changing Il to I = {8, . . ., 8,}. Then for arbitrary convex f and any prior PD
W oon X
(2.13) L (I, W) < Iy (IT, W); o (IT) < 0 (IT).

CororLLaRY. If the indirect observation is sufficient with respect to I
(2.13) holds with equalities.

Proor. Forany PD Q< &, + ...+ &, we have from (2.7) If(ogj’_,- I 5) <
< I8 1]Q), i=1,...,m, whence (2.13) follows by Definition 2.3 and
Lemma 2.1. The role of the assumption @ < &, + ...+ 8, is to ensure, in
case of indirect observations of type (iv), that & be admissible for the indirect
observation if the &;’s are.

The Corollary is immediate, since sufficiency implies that II, too, is
obtainable from IT by an indirect observation (in general of type (iv), see the
paragraph after (2.8)).

If flu) = wlogu, Ix8 || Q) reduces to KuLLBack’s I-divergence (see
e.g. [12])

(2.14) 18]|@) = | ply)log, =Y ©) ay)
7(¥)
and I(II,W) is just the Shannon mutual information
m m
i=1 i=1
between the input and output of the given OC; this follows from the easily
checked identity of F. Topsor [22]

(2.16) S 1(8,])Q) = Sw (8, 0%)+1@*]| Q).
i=1

i=1

DerFINITION 2.4. Let & be a RV with values in a finite set, say

X =1{1,...,m}, and n a RV with values in Y. Then the f-informativity

of 5 with respect to & is defined as

(2.17) I (&5m) = Iy (Iye» We)

*WhereH,f_—{éj}gé $(B)=P{n€ B/t=i} (BEY) and Wy={wy, . .., Wn},
w,=P{f=i}, 11 <m
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From (2.11) follows that f(1) << I¢(&;%) with equality iff & and # are
independent RV’s, supporting the interpretation of I4(&;7) as a measure of
informativity (see footnote 2).

Another useful property of If(&;n) common with Shannon’s mutual
information I{&;%) is the validity of the so-called data processing theorem.

Proposrrion 2.2. Let the RV’s v, &, 0, { form a Markov chain (in the
indicated order) where © and & have o finite number of possible values while
the state spaces Y and Z of 1 and {, respectively, are arbitrary. Then for any
convex f

(2.18) I(v; ) < I (&5

Proor. Consider the indirect observation of type (iv) defined by ¥, =
= {By:P{n€B,} =0}, Ty(C) =P{{€C | n=y}. From the Markov pro-
perty follows that if we denote by §; and §; the conditional distribution given
& =1 of nand {, respectively, then §; and g, are connected by (2.8),i=1,....m

(we assume, without any loss of generality, that £ takes on the values 1,...,m
with probabilities w; >0, ¢ = 1, ..., m). Thus in force of (2.17) and the
first inequality in (2.13) we have
(2.19) L& &)
Now suppose that 7 takes on the values, 1, . . . , [ with probabilities P{7 = #}=
= >0, h=1,...,0 Set rp; =P{E=4i| 7=~} and let §) denote the
m —
conditional distribution of { given v = k. Then &5 = >, §, thus, by con-
i=1

vexity,

m —
(2-20) Iy (&3 H Q< hi dy (& H Q).

i=1

Multiplying both sides of (2.20) by v, and summing for 1 << % <7 we obtain

! m _
h=1 i=1

this, in view of Definitions 2.3 and 2.4 implies

(2.22) Ty(z,8) < If(;0).

completing the proof.

ExamprLe 2.1. An important special case is flu) = — «”, 0 <o << 1;
in this case, we shall write I, instead of I;. We obtain

(2-23) 1,8)Q) = — {p*(¥) ¢~ () A(dy)
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and

(2.24) LT W) = — [ (S w0 (1) Ay I
i=1

where p,(y) is the density of §; with respect to some dominating measure 1.
In fact, for the PD Q* with density

(ﬁ w; P (y))**
(2.25) *y) = —5— ,
S(g1 w; v} (9)) 4 Mdy)

m
Dw; 1(9, || @*) is equal to the right hand side of (2.24) while for an arbitrary .
i=1
PD & on Y with density ¢(y) from (2.23) and (2.25) follows

(2.26) mei LS |@ =[] (ﬁ“ w; pf () Mdy) 1 - 1.(@* || Q);
i=1 i=1

here the second factor of the right hand side is > — 1, by (2.3). Note that
(2.24) is equivalent with S1Bson’s formula for “information radius of order «”’,
see [21]. The identity (2.26) appears, essentially, also in [1]. Of course, (2.24)
can be interpreted also as the formula of I,(&;7)—the x-informativity of a
RV 1 with respect to a RV & with values in a finite set.

One obtains similar formulas also for f(u) = %, « > 1 or « <Z 0. The
case @ = 2 might be expected to be the most interesting since I,(F || Q) =

2

= v( Z)—(Ly)) AMdy) is just the y2-divergence of § and Q, aside from the addi-
7y

tive constant f(1) = 1.

The «-informativity (2.24) is in a one-to-one functional relationship
with Gallager’s function E(o,W) (with & = 1/1 + o, see e.g. [9] p. 138
and p. 322) which plays a fundamental role in coding theory.

In information theory, the maximization of Shannon’s mutual informa-
tion and of Gallager’s function is an important task. The relevant theorems
(see e. g. [9], theorems 4.5.1 and 5.6.5) may be given the equivalent formula-

tions that for f(u) = »logu and f(u) = — «* (0 < « < 1), respectively
(2.27) max I (II, W) = o, (1),

w
and for the maximizing prior PD W* = {w¥, ..., w}} we have I8, || Q%) <

< oI}, 1 < @ < m, with equality if w] > 0. In particular, for f(u) =« log, «,
os(II) equals the capacity of the OC IT.

In the next section we shall show that these results cérry over to the
general case almost completely, see Theorem 3.2 and its Corollary.
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ExamrLE 2.2. Let X = ¥ = {1, ..., m} and let the OC IT be symmetric
in the sense that any permutation of the rows of the matrix (p;) (where
§: = {pun> .- ., Pim}) is equivalent to some permutation of its columns and
conversely. Then I;(II,W) is a symmetric concave function of W, thus it is

. 1 o .
maximized for W* = {— R ,—1—} ; furthermore, ¥ w} I4($; || @) is a symmet-
m m i=1

ric convex funetion of Q minimized for @* = {—1~ Y ,l

} . Thus in this par-
. m m
ticular case

(2.28) max I, (I, W) = o;(II) = I, (8[| Q%) = L 2mf(mm) ~
w m p=1

In information theory, the entropy of a RV & is sometimes defined as
the mutual information 1(&;£). This suggests the following

DEriNiTION 2.5. The f-entropy of a RV £ with values in a finite set is
defined as

Here we suppose that f(0) < oo, because else H(&) would be infinite
for every non-trivial RV &.

Instead of the f-entropy of a RV, one can also speak of the f-entropy
of a finite PD W = {w,, . .., wn}. Let 1T, denote the OC {&,, . . ., &y} from

{1,...,m} to itself where &; denotes the PD concentrated at i. Then one
may write
(2.30) Hp(W) = I;(IT,, W).

Obviously, H;(8) = H{W,) = f(1); the inequality is strict unless & is
constant with probability 1.

ProrosiTiON 2.3. For any RV’s & and n with values in finite sets we have
(2.31) LiEsm<Hi (8, LiE;n)<H(n);

moreover, the first inequality holds for an arbitrary RV 7, as well. Furthermore,
for any W = {wy, ..., wy}

(2.32) Hf(W)gﬂf(l,...,i] :if(m)—l—(l—i]f(O).

m m m

Proor. (2.31) is an immediate consequence of Proposition 2.2 and
Definition 2.5, while (2.32) is just the particular case [T = IT, of {2.28), see
(2.30).
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ExampLe 2.3. In the case f(u) = — «* (0 <« < 1) we have, special-
izing (2.24) to II = II,

(2.33) H W)= — (Zwll“

It is interesting to note that while our I (§ || Q) —see (2.23)— corresponds to
RExyr’s information gain of order «, the associated entropy (2.33) corresponds

to the entropy of order 1 in the sense of RENYI (cf. [17]); here correspondence
o

means a one-to-one functional relationship.

§ 3. The main theorems

We shall show that in the definitions of f-informativity with prior PD
and of absolute f-informativity, see (2.9), (2.10), the inf can be replaced by
min; if f is strietly convex, the minimum is attained for a unique PD Q* on
Y. Moreover, the absolute f-informativity of an OC equals its maximum f-
informativity with prior PD, for all possible prior PD’s W.

A heuristic applieation of the Lagrange multipliers method suggests that

Zwl 1 (8:]Q) = 2% jp [ ( ))J Mdy) (see (2.5),.(2.6)) is minimized
piY
for Q=Qa*if

(3.1) Z’” ’ (p (7/)]

()

If f is not everywhere differentiable, one may guess that (3.1) should
hold with < for the left and with > for the right derivatives.

The following Lemma asserts, essentially, that this condition can be
fulfilled.

Lemma 3.1, Let g(u), 4 € (0, o) be a non-decreasing left continuous func-
tion (not identically constant) and let

(3.2) g(u) =lim g(v) u € (0, o)

denote its right continuous pair. Let II = {8,,...,8,} be an OC from
X={1,...,m} toY and W ={wy, ..., wn} a PD on X. Then—with the
notation (2.12)—there exists a PD Q* on Y with density q*(y) satisfying (i)
and (ii) below® provided in the case g(oo) = oo that (Y 7)) > 0:

3 Here, as well as in the sequel, all densities are understood with respect to a com-
mon dommatmg measure . and all statements concerning densities are meant Ai-a.e.
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(i) g*(y) is positive on YT and vanishes outside Y7 ; if g(oo) = oo
then q*(y) vanishes outside Y+T and if g(oo) < oo, g(0) = — oo then ¢*(y)
is positive on Y7 ;

(ii) there exists a (finite) constant ¢ such that

m

(3.3) Sug

i=1

)|

if ¢*(y) >0
p:(Y)

ces ol

2:(y)

and if g*(y) = O, the left hand side of (3.3) is > c whenever it does not contain
infinite terms of different signs.

Here we understand

(3.4) g(0) = g(0) = ,llif]f)l glu), g(oo) = g(eo) = L],iﬁﬁ g(uw)
and
(3.5) g % =g & = g(oo) for every a>0.

Proor. Let T' denote the set of all m-tuples of non-negative or positive
numbers ¢, . . ., ¢, according as g(co) < oo oOr g(oo) = oo, respectively. Con-
sider the functions of ¢ € (— oo, g(eo))

(in view of the right continuity of g, one may write min rather than inf).
Then Z; . . is anon-negative, finite valued, non-decreasing left continuous
function of ¢ € (—oo, g(oo)) for any fixed (¢, ..., tn) €T, and 2, ., (c) > 0iff

I{\/

(3.6) Zi, ... tn{c) = min { 2 w; g}

c},(tl,...,tm)ET

mo_(u = w9(0) + S wig(eo) ifg(eo) oo
(3.7 c>lim >wg [—) =1i:4>0 i:4;=0
wiei=m ) {g(0) if g(o0) = oo.

Let us denote the limit in (3.7) by @, . , . Then the right continuous
pair of z, ., in the sense of (3.2) is given by

m (74
max {u.: w; _
() = { = (t,-

0 if C<at”_‘_,

7 <e if g, < €< g(o0)
(3.8)  Z =

.....

.....
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Now define for (p,(y), - - ., pm(y)) € T and ¢ < g(oo)

QC (y) = pr(l!;,..., Pin¥) (G)

(3.10) ) B

9 ) = Zpy...., puiw) (©)
while for (p(y), - - ., Pm(®)) 4 T we set g.(y) = g.(y) = 0.

Then, since g‘wi g E] =>q , the first inequality of (3.9) implies
im1 t; max {;
1<izm
(3.11) 7. (y) < K max p; (y)
1=ism

for some (finite) constant K; thus ¢.(y) and even more ¢.(y) < g.(y) are integr-
able for all ¢ < g (o0).

By dominated convergence follows that ch )A(dy) is a left continuous
function of ¢ € (— oo, g(c)) and ch yA{dy) is its right continuous pair.

Hence follows, under the condition

(3.12) jqc(y) Mdy) > 1 for some ¢ < g (o)
the existence of ¢, € [g(0), g(oo)) (or ¢; € (— oo, g(o0)) if g(0) = — =0} with
(3.13) § 4elo) Mdy) <1 < [ 7.,(9) Mdy)-

In fact, (3.7) and (3.10) imply g,q(y) = 0 for all y € ¥ if g(0) > — ~ while
lim ¢.(y) = 0 in all cases, see (3.6), (3.10).

c—eo

From (3.13) one concludes that for some d € [0, 1]

(3.14) ' 7*(y) = dq.(y) + (1 — d) g.(y)
is the density of a PD on Y. Since ¢, (y) < ¢*(y) < ?cl(y), g*(y) satisfies (3.3)
with ¢ = ¢;. If ¢%(y) = 0 then ¢, (y) = 0, i.e. either (p,(y), ..., pm(y)) ¢ T or

else (3.7) does not hold for c=¢;, {; =p,(y), i=1,...,m. This just means,
in view of g(eo) > ¢; and the convention (3.5) that the second statement in
(ii) of the Lemma is also satisfied.
Furthermore, if y ¢ Y* or g(oc) = oo and y € Y7 (see (2.12)) then
(p 1 Y)s -« o, Pm(y)) § T thus qy) = 0 for all ¢ < g(cc), while from (3.7) and
(3.10) follows g.(y) > 0 for all ¢ € (g(0), g(oo)) if y € ¥+ and in the case
g (c0) < o0, g(0) = — oo also if y € Y. This shows that ¢*(y) defined by
(3.14) satisfies also the statements (i) of the Lemma except, conceivably, if
¢, (determined by (3.13)) equals g(0) > — oo. The latter case, however, can
obtain only if z, . (g(0)) > Oforsome (fy,...,¢y), i.e. (see (3.8))if g(u) is con-
stant in some nelghbourhood of 0; in that case, (3.8), (3.10) and (2.12) imply
Zeoy) > 0 for all y¢ Y++ thus, on account of (3.14) ¢*(y) >0 on Y*7*
also if ¢, = ¢g(0).
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To complete the proof, the fulfillment of condition (3.12) has to be
examined. If g(%) is not constant in any neighbourhood of infinity, (3.6) implies

lim 2, ., (c)=oc forall (¢, ..., ¢m) €7T. In view of (3.10), we thus have
¢t g(ee)

lim g.(y) = oo on Y+ and in the case g(oo) < oo also on Y*; therefore, by
¢t glee)
monotone convergence, (3.12) holds (recall that in the case g{cc) = oo we have
assumed A(Y*+) > 0). If g(u) is constant in some neighbourhood of infinity,

set wuy = inf {u : g(u) = g(oo)}. Then (3.6) yields

lim Z;, .. () —mm{ Zw,g( ] g(oo )}:uo. max f;

¢t g(e0) 1gigm

and we arrive at lim f q:(y) Ady) = ;. j maX p,(y) Aldy).
ct g
This limit may happen to be < 1, but in that case one can choose d > u,
such that the integral of ¢*(y) = d - max p,(y) equals 1; then this ¢*(y) trivi-

1<i=m

ally satisfies (i) and (ii), with ¢ = g(ee).

TaroreM 3.1. For an arbitrary convex function f(u), OCII = {&,, ..., 8y}
from X = {1, ..., m} to Y with of(Il) < oo and prior PD W ={wy,. .., wn}

m
on X, there exists a PD Q* on Y minimizing > w; I,(§ || Q); if w; >0, 1=
=1
=1,...,m, such o minimizing PD is any Q% with the properties (i), (ii) in
Lemma 3.1, the left derivative of f playing the role of g.
If the function f(u) is strictly convex, the minimizing PD Q% is unigue,
moreover, there exists a function y(u) (depending on f, II and W) with

lim  y(u) = O such that for any PD Q on ¥
ud I(ILW)

(3.15) a—ar| < p(SulE(9).

Proor. If g(u) denotes the left derivative of the convex function f(u) =

= uf [—1—], we have g(co) = lim f = f(0). Thus, if g(cc) = oo, the condition
w uteo U
MY T¥) > 0 of Lemma 3.1 is implied by the assumption g4(II) < oo, c. f. the
paragraph after (2.12).
Let & and Q¥ be two PD’s on Y where QF satisfies (i) and (ii) of Lemma

3.1 and max I43; || @) < oo; then, if f(0) = g(oc) = oo, both ¢g*(y) and the
1<ig<m

density ¢(y) of @ vanish outside ¥+ (see footnote?).
Since f is convex, we have
(3.16) Flu) = fug) + flug) (u — u,) (4, 15 € (0, o))

for any function ¢(u) with g(u) < §(u) < g(u); of course, §(u) = f"(u) at each
point « where f(u) is differentiable.



CSISZAR: MEASURES OF INFORMATIVITY 205
From (3.16) follows

o et

for any positive (finite) numbers r, s, #; using the conventions (2.2), (3.4) and
(8.5), inequality (3.17) is easily checked to hold also if one, two or all three
of the numbers 7, s, ¢, are 0.

Substituting » = p{y), s = ¢(y), ¢ = ¢*(y), multiplying by w; and sum-
ming for ¢ =1,...,m:

Sunw (22 = w7

*) — ).
p,»(y)) (a() — a*®¥))

(3.18)

+ Zwi gy{
i=1

Since (3.17) is valid for any version of § within the specified range, for
different ¢’s different versions may be taken, as indicated in (3.18). In par-
ticular, in force of (3.3), one may choose ¢, such that

(3.19) ST 8) =it g >o.
=1 pi (¥)
Let us remark that the right hand side of (3.18) contains no term --oco

%
(see footnote?). In fact, gy(i%] = co for some 1 i< m iff g(oo)= oo,
rily

. * Ay
y ¢ Y**, in which case, however, ¢*(y) = 0; on the other hand, §, (q——éy—;J =
' Py
= — oo for some 1<Ci<m iff g(0) = — oo, ¢*(y) =0, y€ Y, possible
only if g(co) = oo,y € YT Y7 (by Lemma 3.1, (i)), in which case, however,

g(y) = 0, too.

In force of (3.19) and the second statement of Lemma 3.1, (ii}, the integral
of the second sum on the right hand side of (3.18) is > 0, thus from (3.18)
and (2.6) follows

(3.20) S L (8,]|0) = 3w, I (8,]]0%),
i=1 i=1

for any PD @ on Y with max I4(&; || Q) < co. This proves, in particular,

1<i<m
m
that in the case w; >0, i = 1, ..., m the PD @* minimizes > w; I(§, || Q).
f=1
If, however, w; = 0 for some i€ {1,...,m}, the §’s with w, = 0 may be

omitted and the existence of a minimizing @* still follows (although this &*
need not have the properties stated in Lemma 3.1 for the original &,’s).
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If f is strictly convex so is f, to0, and

~

(3.21)  ay(uy) = min { flu, =+ 6) — flag) — 89(uy), fltg) — 6 Glarg) — flatg— 8)} >0

for every u, > 6 > 0. Since os{u,) is a lower semi-continuous function of %,
(continuous at the points where f is differentiable) we have for every K > 8 > 0

(3.22) &g = 1 min ogg(u,) > 0.
’ 0 8<u=K

From the convexity of f follows that for 8 < uy<< K, |u — u,| > 6
the term & x| % — uy| may be added to the right hand side of (3.16).
Thus instead of (3.20) one arrives at

S (8= Suw L8] 0% +
i=1 i=1

(3.23)
m .
+ et Sw; { lq(y) — ¢*®) | 2(dy).
i=1  op(N=EMNSKpuly)
190 —g*(¥) | Zepy)
Taking into account that f | g(y) —a*(y) | Mdy) <6 and denot-

14— <opiy)
ing by w, the smallest w; > 0, the second sum on the right-hand side
of (3.23) is bounded from above by
(3.24) (1 — 8)w,. § l9(y) — ¢*(y) | Ady)-

Smin p(y)Zq(y)=K max p«(y)
1<i<m 1<ism

But since ¢*(y) satisfies (3.3) (the left derivative of f playing the role
of g), there exist 0 < § <C K such that

d min p,(y) < ¢*(y) < Kmax py) forae ycY.
m

1=i< 1<ism
Then the integral in (3.24) equals |Q — Q*| and thus (3.23) and (3.24) give
rise to
1

m m
(3.25) a—a¥| < N w, I8, (|Q) — Sw; I8, | Q*)|.
| ol — 8w\ 2 heieEn
This completes the proof for the case w; >0 ¢ =1, ..., m, while in the

opposite case the §’s with w;=0 may be omitted and the statement still
follows.
It will be convenient to introduce the notation

(3.20) I W) = inf S, 1(81]|)
i=1

where I denotes the class of PD’s Q on Y with
If(ng&) < o, 4 = 1,. Y /(2
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Lemma 3.2. I{II, W) is a continuous concave function of the PD W, for
any convex function f and OC IT= {8, ..., 8y}, and I}(H, W) = I{II, W)
with equality if w; >0, i =1,...,m. Furthermore, either of the conditions

(i) f(0) < oo
(ii) fl0) < oo; the 8s are mutually equivalent measures

(iii) there exists a constant K such that

max py) < K min p{g) 24— a.e.

i<ism 1<i<m
implies I{II,W) = I,(II, W) for all PD’s W = {wy, . .., Wn}-

Proor. I;(II,W) is the infimum of linear functions of W, hence it is a
continuous concave function. The second statement is obvious, while the last
one follows from the possibility of substituting any PD & on ¥ satisfying
I148; ] Q) < oo for some i€{l,...,m} by a PD &; so that I«&; || ) <
< I8 11 Q) + ¢ for each i€ {1,...,m} with Ix(; || Q) < oo (where ¢ >0
is arbitrary) in such a way that @, have a density ¢,(y) satisfying ¢;(y) >
= K, max p,(y) if f(0) << oo and ¢(y) < K, min p,(y) or K; max py) <

1<igm 1<i<m 1<i<m
< q,(y) < K, min p(y), respectively, if f(0) = oo but condition (ii) or (iii)
1<i<m .
is valid,® ensuring in all three cases, Q, € 9N.

TurorEM 3.2. For an arbitrary convex function f and OC IT= {8y, ..., 8,,}

from X = {1,...,m} to Y we have
(3.27) oAIT) = sup LUT,W).
w
If oi(II) < oo and f is strictly convex, the necessary and sufficient condi-
tion for o PD W* = {wf, . .., wh} on X to maximize I{II,W) consists in
(328) If(g‘,l‘k@*>§K’ ’l::l,...,m,

with equality whenever wi > 0, where &% denotes the unique PD on ¥ maximizing

Swile8: 1) Q) and K is a constant. Moreover, in that case K = of(II), and
i=1
Q* is the unigue PD on Y minimizing max I8, || Q).
1sigm
CororrLary. If f is strictly convex and either of the conditions (i) (iii)
of Lemma 3.2 is fulfilled, there exists a unique PD Q* on ¥ minimizing .
max I4&; || @) and it corresponds to a PD W* on X = {1, ..., m} maximiz-

1<i<m

ing I{(I1,W).

“ Note that in this case Q must be absolutely continuous with respect to the &;’s.
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ReMark 3.1. Since gf(/]) =inf max Ix(&, || Q) is interpreted as the

Q 1<=igm
“radius” of the set of PD’s II = {&,, . . ., &5}, the above @* may be given the
geometric interpretation of the “centre” of the set /1. By another method

it is possible to show the existence of such a “centre” &* even if there is no

W* maximizing I,(II,W) but in that case &* does not correspord to any PD
W on X in the sense of Theorem 3.1 (see Example 3.1 below). The relevance
of the “‘centre’” of II for coding theory (for f(u) = — »*, 0 <« < 1) is most
clearly seen from [1].

Proor. Consider the zero-sum two-person game where the sets of pure
strategies of the first and second player are X and Il respectively, where N
is the same as in (3.26), and the payoff function is I¢{&; || Q). Since X is a
finite set and the payoif function is convex, (3.27) follows from a variant of
the minimax theorem. A direct proof, along the lines of [4], pp. 4350 is as
follows: ‘

Let S be the set of all points in m-space of form (I8, 1Q), . . ., I{Sn || Q)
with Q€ 9. Let S* be the convex hull of § and let 7 denote the set of
all points (¢, ..., fn) with #; << ofll), i=1,...,m. Since Ix& || Q) is

H1 n
convex in @, we have > 4 Ix&@ || Q) = Ix(8: || 2 4 Q) i =1,...,m for
k=1 k=1
n
=0k=1,...,n, > X =1,thus S*NT = Fwould imply SNT = §, a
i1

contradiction (see (2.10)). S* and 7', being disjoint convex sets in m-space,
have a separating hyperplane (cf. e. g. [4], p. 35). In view of the definition
of T, the existence of a hyperplane separating S and 7' means just the existence

m
of a PD W* = {w],...,wh} on X such that > wfI;8;||&) = o;(/I) for
all Q¢ dl, ie., see (3.26), =1
(3.29) (I, W*) = o (IT) -

But from Lemma 3.2 follows sup I}(II, W) = sup I;(Il, W) thus, on account
w w
of (2.11), from (3.29) one concludes
{3.30) sup L{(II, W) = I;(II, W*) = o,(I).
w
To prove the second statement of Theorem 3.2, note first that (3.28)
implies K > g¢(IT), see (2.10),while the additional assumption 74§ [| Q) = K

for wf >0 and (2.11) imply K = I,(II, W*) < g#(IT). Thus the sufficiency
part and K = o/(IT) are proved.

Suppose now that W*={uf, ..., wn} maximizes [(II, W); then by
(8.27) I{II, W¥*)=p;{II). Consider a sequence Q;, Q,, ... of PD’son ¥ such that
(3.31) max I/8;| Q,) — o).

1=i<m
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Then

n—+oo

(3.32) lim S wf (8] @) = oIT) = I (IT, W),
i=1

If f is strictly convex, there exists a unique PD Q* on Y such that

S w8 || @*) = LUI,W*) = gIT), and (3.32) implies
i=1

(3.33) lim |Q, — @* =0

1> oo
according to Theorem 3.1. We claim that (3.33) implies
(3.34) li_I:l}If(gj’lH &n)Z_If(gylH@*)7 i: 1,...,m.

e

In fact, let 1 be a common dominating measure of the considered PD’s;
then (3.33) means that the density ¢*(y) of Q, converges to ¢*(y) in LY(A).
Now (3.34) follows from the Fatou lemma provided that f is non-negative
AR
7n(y) 7*(y) .
J(0) = oo, since then g,(y) = 0 whenever p,(y) = 0, being g/(/I) < o). But
this can always be achieved by adding @ + bu to f(u), which amounts to
adding the constant a + b to I4(§ || Q) thus does not affect the validity
of (3.34).

(3.31) and (3.34) prove the necessity of (3.28) (with K = g/(IT)) and

(note that ¢,(y) 2 ¢*(y) implies g,(y)f ( even in the case

m
since > w} IS || Q*) = gs(II), in (3.28) the equality must hold whenever
i=1

wf > 0. In particular, we have also shown that if 1 #(II, W) is maximized for
some PD W* on X = {1, ..., m}, the corresponding PD @* on ¥ minimize
max I¢(§; || Q). The uniqueness of the minimizing Q* follows from the strict
1=<ism
cangvexity of I4(8; || Q) in Q, implied by the strict convexity of f.

The Corollary follows from the fact that under either of the conditions
(i) —(iii) of Lemma 3.2, the function Iy, W) is continuous, thus it is maxi-
mized for some WH*.

Note that while there may exist several PD’s W* on X maximizing

Iy(IT, W), our result implies that for any of them, > w; I;(§; || Q) is mini-

mized for the same Q*. =1
In order to strengthen Proposition 2.1 to a characterization of sufficiency
of indirect observations with respect to an OC IT = {&,, ..., §,} let us for-

mulate two conditions, one for the function f and one for the OC and the
indirect observation.

(A) f(0) < oo and Lim(f(u) — uf'(u)) = — oo

Ut eo

14 Periodica Mat. 2 (1—4)
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(B) The PD’s §,, . . ., &, on Z obtained by the indirect observation are
mutually equivalent measures.

THEOREM 3.3 Let f(u) be a strictly convex function and let an indirect
observations from ¥ to Z change IT = {8,, ..., 8y} to 1 ={8,, . . ., 8} Then,
if I{I1, W) < oo and either of the conditions (A) and (B) is fulfilled, the indirect
observation is sufficient with respect to the OC Il iff for some prior PD W =
={wy, ..., wnt withw; >0,i=1,...,m,

(3.35) L(TL,W)=I(1,W).

Note that I f(ﬁ, W) < oo is certainly true under (A), and also under
(B) if f(0) < oo, cf. the paragraph after (2.12).

Proor. On-account of the Corollary of Proposition 2.1, we have to prove
only that (3.35) implies sufficiency.

Let @* be the (unique) PD on Y with
m
(3.36) Sw L8] &%) = I,(II, W),
i=1

~existing by Theorem 3.1.

From (3.35), (3.36) and Definition 2.4 follows that the inequalities
(see (2.7))

(3.37) I(8: | @) < I(9;]| Q%)

hold with the equality sign (when considering an indirect observation of type
(iv), it should be noted that Q* <&, -+ ...+ &, is admissible if the &;’s
are). This means that the indirect observation is sufficient with respect to
each pair {§;,Q*}, ¢t =1,...,m, i.e., there exist Z-measurable functions
Sé(B), i=1,...,m, satisfying

(3.38) { SL(B) 8(dz) = §*(BxC) (BEY, CE%)
C

and

(3.39) [ 8L (B)@*(dz) = @** (BX () (BEY,CE%)
[

(for indirect observations of type (i) or (ii), the right hand sides become
§(BNC) and @%(BNC) or §(BNT-1C) and Q¥(BNT~1C), respectively).
Since (3.39) implies S(B) = SiB) Q* — a.e. for every 4,5€{1,...,m},

5 Of either type (i)—(iv) described in § 2, from (2.7) until (2.8).
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the possibility of dropping the upper index i in (3.38) i.e. the sufficiency of
the indirect observation with respect to I7 follows if

(3.40) 9, <Q* i=1,..., m.
Note that (3.35), (3.36) and (3.37)—the latter with equalities—imply

that Q* minimizes S'w18; || Q) (where Q ranges over the PD’s on Z). Thus,
=1

by Theorem 3.1, @* is the (unique) PD corresponding to the §’s in the sense
of Lemma 3.1, applied for Z instead of Y. Since condition (A) is equivalent
to g{oo) < oo, g(0) = — oo, where g{u) denotes the left derivative of f(%) =

Lemma 3.1, (i). The proof is complete.

1 , both from this condition and from (B) follows (3.40), in force of
u

REMARK 3.2. If neither (A) nor (B) is fulfilled, (3.35) does not necessarily
imply sufficiency. In fact, if f(0) = oo (as e. g. in Example 3.1 below) then
1,11, W) is determined by the restrictions of the densities p,(y) to ¥ . Thus
if 7' is a mapping of Y into itself withTy = yfory e Y*+ and Ty =y, ¢ Y+~
forally ¢ Y+, the indirect observation of type (ii) defined by 7 satisfies (3.35)

while it is obviously not sufficient provided that there are at least two i’s
with §(Y+7) < 1.

Exampig 3.1. For f(u) = — log,u, flu) = u log,u we have I8, || Q)=
m

= 1(Q ] §;), see (2.14), thus I, (II,W) = inf 3w, I1(Q || §;). By Theorem 3.1,
e i=1

there exists a unique minimizing PD @* (provided that A(Y**) > 0) with
density ¢*(y) satisfying (3.1) for y € Y¥* and vanishing for y ¢ ¥, see

~ m =3
(2.12). Since f'(u) = log,u + log,e, (3.1) reduces to 3 w;log, 7 Ey; = ¢, whence
=1

1

(3.41) *(y) = [ p ().
Substituting & = Q% into >'w, I(Q || §;), we eventually obtain
i=1

(3.42) I(ILW) = —log, | ﬁ 1 (y) Mdy).
i=1

This can be interpreted also ag a formula for I4(&;7), see Definition 2.5. As
f(0) = oo, the f-entropy is not defined.
The f-radius g;(II) = inf max I4(%; | Q) = inf max I(Q || ;) and the

Q 1ZKitm Q@ 1<igm
minimizing PD @* can be obtained in principle (see Theorem 3.2) by maximiz-

ing (3.42) for W and substituting the resulting W* (provided that it exists)

14%
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into (3.41). Of course, explicit formulas are not to be hoped for, except in
very special cases. Note that for IT = {§,,8,} we obtain

(3.43) 0/19,,8,} = Oiugl{— log, { P% (9)p3~ (y) A(dy) }

i.e. the Chernoff information number, see {6].
It is interesting to note that in this example max I¢(II, W) need not
w

exist; e. g. if II = {§,, §,} where &; is the uniform distribution on the interval
[0,i], ¢ = 1, 2, in (3.43) the sup cannot be replaced by max. In that particular

case max Ix§; || Q) is minimized for Q* = &, but there exist no PD W =
1<i<2
2

— {wy,w,} for which 3w, I8, || @) is minimized for @* — .
=

REFERENCES

[1] U. Avcustin, Error estimates for low rate codes, Z. Wahrschewnlichkeitstheorie
und Verw. Gebiete 14 (1969), 61—88.

[2] D. BLa6gwELL, Comparison of experiments, Proc. 2nd Berkeley Sympos. Math.
Statist. and Probability, Vol. 1, Berkeley, 1951, 93—102.

[3] D. BrackwerL, Equivalent comparison of experiments, Ann. Math. Statist. 24
(1953), 2656—272,

[4] D. Brackwert and M. A. Girsuick, Theory of Games and Statistical Decisions,
New York, 1954. :

[5] L. L. CamPBELL, A coding theorem and Rényi’s entropy, Information and Control
8 (1965), 423—429. . : :

[6] H. CEERNOFF, A measure of asymptotic efficiency for tests of a hypothesis based
on a sum of observations, Ann. Math. Statist. 23 (1952), 493—507.

[7] I. CsiszAr, Eine Informationstheoretische Ungleichung und ihre Anwendung auf
den Beweis der Ergodizitéit von Markoffschen Ketten, Magyar. Tud. Akad. Mat.
Rutaté Int. Kiozl. 8 (1963), 85—108.

[8] I. Csiszir, Information-type measures of difference of probability distributions
and indirect observations, Studia Sci. Math. Hungar. 2 (1967), 209—318.

[91 R. G. GarraceRr, Information Theory and Reliable Communication, New York, 1968.

[10] H. Hever, Erschopftheit und Invarianz beim Vergleich von Experimenten, Z.
W ahrscheinlichkeitstheorie und Verw. Gebiete 12 (1969), 21-—-55.

[11] F. Jerinex, Buffer overflow in variable length coding of fixed rate sources, IEEF
Trans. Information Theory 14 (1968), 490—501.

[12] 8. Kutisack, Information Theory and Statistics, New York, 1959.

[13] D. V. LinpLEY, On a measure of information provided by an experiment, Ann.
Math. Statist. 27 (1956), 986—1005.

[14] N. MorsE and R. SACKSTEDTER, Statistical isomorphism, Ann. Math. Statist. 37
(1966), 203—214. .

[15] A. PerEz, Sur la théorie de Pinformation dans le cas d’un alphabet abstrait, Trans.
First Prague Confer. on Information Theory Statist. Decision Functions, Random
Process, Prague, 1957, 209—243.

[16] A. PErEz, Information-theoretic risk estimates in statistical decision, Kybernetika
(Prague) 3 (1967), 1—21.

[17] A. RENYT, On measures of entropy and information, Proc. 4th Berkeley Sympos.
Math. Statist. and Probability, Vol. 1, Berkeley, 1960, 547—561.

[18] A. Reinvr, On the amount of information concerning an unknown parameter in
a sequence of observations, Magyar Tud. Akad. Mat. Kutaté Int. Kézl. 9 (1964),
617—624.



CSISZAR: MEASURES OF INFORMATIVITY 213

[19] A. ReExvi, On some problems of statistics from the point of view of information
theory, Proc. Collog. on Information Theory, Debrecen, 1967, 343—347.

[20] R. SACKSTEDTER, A note on statistical equivalence, Ann. Math. Statist. 38 (1967),
787-—1794.

[21] R. SiBsoN, Information radius, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 14
(1969), 149—161. ’

[22] F. TorsoE, An information theoretical identity and a problem involving capacity,
Studia Sci. Math. Hungar. 2 (1967), 291-—292.

[23] 1. Vaspa, On the convergence of information contained in a sequence of observa-
tions, Proc. Collog. on Information Theory, Vol. 2, Debrecen, 1967, 489—501.

[24] I. Vaspa, A contribution to the informational analysis of pattern, Proc. Fourth
Hawaii Internat. Confer. on System Seci., Western Period. Co.

{ Received December £, 1970 )

MTA MATEMATIEKAI KUTATO INTEZETE,
BUDAPEST, V., REALTANODA U, 13-15.
HUNGARY



