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GENERALIZED RAMANUJAN'S SUM 

by 

J. CI-IIDAMBARASWAMY (Toledo) 

I n t r o d u c t i o n  

t 
Let  Vt be the  set of  all o rdered  t-tuplcs of  integers X = {xi}~=l, called 

�9 �9 t 
in tegral  t -vectors or s imply t-vectors.  Two t-vectors X = { i}i=~ and  :Y -~- 

t {Yi}i=l are s~id to be congruent  modulo the  posi t ive integer  r i f  xi ~- Yi 
(rood r) for i ~-- 1, 2 , .  . . . .  t. Any  set of  r t t -vectors no two of  which are con- 
g ruen t  modulo  r is called a complete  residue sys tem of t -vectors  mor  r. A t-vec- 

x t for  X - ~  { i}i=~ is called /c-prime to r if  ((x~, x 2 , . . . ,  xt), r)k = 1; here  b y  
(a, b, . . . ,  e)k we mean the  l~rgest /cth power common divisor of  a, b . . . . .  e an d  
(a, b . . . . .  e)l = (a, b . . . . .  e) wi th  the  convent ion  (0, 0, . . . ,  0)k ---- 0. The  set  
of  all t -vectors  in a c o m p l e t e r e s i d u e  sys tem of  t-vectors mod  r which are 
/c-prime to  r is called ~ k-reduced residue sys tem of  t-vectors mod  r. 

Wi th  this  te rminology,  I~AMA~VSA~'S sum C(n, r) is (see [12]) 

(1.1) C(n, r) = ~ e(nx, r), e(a, b) = exp 2gai/b; 
X 

and  E.  Co~E~'s  generalized Ramanu j~n ' s  sum (see [3]) is 

(1.2) C(k)(n, r) : ~.~ e(nx, r ~) 
x 

where the  sum in (1.1) is ex tended  over  a 1-reduced residue sys tem of  1-vectors,  
i.e., a reduced  residue sys tem meal r, while the  sum in (1.2) is ex t ended  over  a 
k-reduced residue sys tem of  1-vectors rood r k. In  [7], he ob ta ined  ano the r  
general izat ion 

(1.3) Ck(n, r) = ~__~ e(n(x 1-~ x~ ~- . . .  + xk), r), 
X 
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the  sum now being ex tenedd  over  a 1-reduced residue sys tem of  k-vectors 
rood r. In  [14] M. SUGVNA~_MA fur ther  generalized (1.2) and (1.3), b y  combin- 
ing them, as 

(1.4) o~s~(~, r) = ~Y e@(zl + z~ + . . .  + zk), r 
x 

where the  sum is ex tended  over  a s-reduced residue sys tem of k-vectors mod r s. 

More recently,  C. S. VENKATAI~A_MAN and R.  SIYARAMAXRISHNAN [15]  

obta ined  an ent i rely different  extension of  (1.1) based  on a new generalization 
#u(r) of  the  MSbius funct ion #(r), defined as 

l 0  if  r is not  square  free 
(1.5) r  = e(w(r), 2u) if r is square  free, 

where w(r) is the  number  of  dist ict  pr ime factors  of  r. Clearly, pl(r) = r 
~nd their  ex tended  R a m a n u j a n ' s  sum is (with a slight change of symbolism) 

(1.6) C/~(n, r) = ~ ff~ [~} d. 
d I (n, r) 

The purpose  of  this paper  is to define and s tudy  a much  more general 
R a m a n u j a n ' s  sum which we denote  b y  C~,"[(n, r); here [ = f(x) is a polynomial  
of  posi t ive degree wi th  integer coefficients, ~ = ~?(r) is a mult ipl ieat ive function 
e f  r, and  k and t are posi t ive integres. This sum includes as special cases when 
[(x) = x and special values of  k and t and special choice of  ~(r) all the  generali- 
za t ions  of  R a m a n u j a n ' s  sum ment ioned before. As are the  special cases, 
C~'p(n, r) is mult ipl ieat ive in bo th  variables  n and r and also as a funct ion 
of  r. I t  is a ]c-even funct ion of  n (rood r) (see w 2) and the generalized HSlder  
iden t i ty  holds (Theorem 3.1). Also it can be expressed as a t r igonometr ic  
sum (Theorem 4.1). Specifically we ex tend  alI the  results  in [15] for CZ~(n, r) 
and  the identi t ies (3) through (13) and (16) of  [9] involving C(k)(n, r) which 
identi t ies are due to C. S. Venka ta raman  for ]c ~ 1, to C~,'2(n, r). For  the  
generalization of  g a m a n u j a n ' s  sum to  ordered s t ructures  we refer to the  work  
o f  SCHEID [13]  and MCDONALD [11]. 

w 1. Preliminaries 

We reealI tha t  an ar i thmet ical  funct ion a(r) is called mult ipl icat ive if  
a(rs) = a(r)a(s) whenever  (r, s) = 1, and is called complefely  mult ipl icat ive 
if  a(rs) = a(r) a(s) holds for all r and  s. Le t  2gz(r ) denote  the  number  of incon- 
gruent  solutions (mod r) of  

(l .7) [(x) ---- 0 (mod r). 
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I t  is well known that iVy(r) is ~ multiplicative function of r. We denote by 
l(r) the function I(r) = 1 for all r. Given the integer coefficient polynomial 
] = ](x) of positive degree, the multiplieative arithmetical function ~(r), and 

k, ~ [~\ the positive integers k and t, let the functions tilt  ~'l and q0~;~(r) be defined by 

(1.8) #~:7(r) = #(r) ~/(r) N}(rk), 

p I r pkt air 

where  N}(r )=  (Nl(r)) t. In  fact, ~ ; / ( r )  = q~(,k~(rk), where q~}~(r) is the general- 
ized totien~ function defined in [2] as the number  of vectors in a complete 
residue system of t-vectors rood r which are k-prime to r with respect to the 
polynomial f, a vector X = {xi}l_-I being called k-prime to r with respect 
to  the  polynomial f if ((](x~), f (x2) , . . . ,  t(x,)), r)k = 1. Clearly #~;7(r) and 
~'p(r)  are multiplicative functions of r . L e t  M(~(r) and M~,;'(r) be defined b y  

M'l~t(r)(k) / = 1, for r = l, 
(1.IO) 

= H N T ( p ' : ) ,  for r >  1; / 
p~Jlr 

and 

(1.]1) M 2(r) = V(,), 

where in (1.10) the symbol p~[ Ir means tha t  p= is the highest power of/)  divid- 
ing r. I t  is clear tha t  M},k~(r) is a multiplicative thnction of r and so is M~'7(r) 
since ~)(r) is. We need also the functions 

(1.12) n.(r) = u(r) u.(r) 

(1.13) @7(n,r) = ~ , ~  t, t f, t(d)k'n {.~_)k(t--1) 
d I (n, r~)~ 

air 
I t  is well known t h a t  

(1.15) 

dl(n,r) 

(ii) C(~)(n, r) -~ ~ . ~  # ( d i d  k, 

(iii) Ck(n, r) ~ . ~  ~ f r l  da, 
dj(n,r) 

W' ] (n, r*). 
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We shall also need ~0k(r) which is the number of  integers in a k-reduced residue 
system rood r k. I t  is well known that  

(1.16) r k , ~ f ( d )  r k / / l 1  - 1} 

As usual ak(r) and ~(r) denote respectively the sum of the kth powers of the 
divisors of  r and the number of divisors of  r. In the following the results referred 
to before the statement of a theorem are the special cases of  the earlier exten- 
sions mentioned before of C(n, r), of part  of or the whole of that  theorem. 

w  

We define the generalized Ramanujan ' s  sum by  

C~'t (n, r) = 2 . " - '  dkt#'],t"k , . 

a ~ I (n, r~)~ 

Clearly, by (1.15), (1.6), (1.12), (1.8) and (1.9) 

(2.~) 

and 

1, I (i) C~,l(n, r) = C(3, r), 

(ii) Okx:~(n, r) = C(k)(n, r), 

(iii) Clx;~(n, r) = Ck(3, r), 

(iv) s, I Cx, dn ,  r) = C(f)(n, r), 

1 ~u (V) Cx: 1 (n, r ) =  C"(n ,  r), 

k, and as in the special eases C~, t (3, r) is a k~even function of n mod r [I0]; i.e., 

k, t/ ,-) = r%,  r ) ,  (2.3) 

and 

(2.4) 

(2.5) 

cy,7(3, r) = ~" ~o.~, t(r), if n ~ 0 (mod rk), 

= ~j; ~(r). 

We recall tha t  an arithmetical function S(n,  r) of the variables n and r 
is called muItiplicative in both 3 and r [ I ]  if (31, 3 2 ) =  (r~_, r 2 ) =  (31, r 2) = 
= (n2, rl) : 1 implies that  S ( n l n  2, rlre) --~ S (n  1, r l ) S ( n  2, r2), and that  such a 
ftmction is completely determined by  the values S ( p  ~, p~), p a prime and 
~ > 0 , ~ > o .  
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then 

is 

L E ~ _ ~  2.1. I f  the arithmetical functions g(r) and h(r) are multiplicative, 

a s [ (n, r~)~ 

(i) multiplicative in both n and r, 

(ii) multiplicative as a /unct ion  o /r .  

PI~OO~. I f  (n 1, n2) = (q, re) = (n 1, r2) = (n2, rl) = 1, it is easily seen tha t  

(n~n~, ~l~r~)~ (nl, r~)~ (n~, = ~)k,  ( ( n .  r~)~, (n~, ~)~)~ = 1; 

a n d  SO~ 

I(n~n . . . .  )~ 

a~ I (nl, ~)k a2t (n,, ,)~ 

giving (i). 

Xf (rl, r2) = 1, (n, r~ r~z)k = (n, rkl)k (n, r~)tc, ( (n, r~)k, (n, r~)k) = 1; using the  
fac t  tha~ S(~)(n, r) is k-even rood r and  (i) of  this lemma, 

s(k)(n, rlr~) = s(k)((nl, r~)~ (n, r~)~, rlr2) = 

= L~(k)((n, rk)k, rl)(~.~(k)((n, ?'k2)k, r2) = S(k)(n,  r l )  S(~)(n, r~).  

L e m m a  2.1 ~nd (2.1) give 

T ~ n o g ~  2.1 (Theorem 1, [3]; Theorem 3, [14]; (3.2), (3.4) of  [15]). 
k~  (i) C~" t(n, r) is multiplicative in both n and r. 

(ii) C~'~(n, r) is multiplicative as a function o / r .  

T ~ o t ~ M  2.2 (Theorem 3, [a]). For the prime p 

= L # f i = 0 ,  
t k 

C},'7(pL pe) = p~kt _ p(~-~)kt V(P) N~f(P ), if  ~ ~ fik ~ ]c; 
p(g--i)kt N t k 

= - -  n(P) •  i!  0 < (fl-- 1 ) ~ < ~ : < i l k ;  

= o, i / o < ~ < ( f l -  1)k. 
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(2.6) 

P~oo~. Le t  (p~, pz~)~ ----- prz so t h a t  0 ~ 7 ~ ft. By  (2.1) and  (1.8), 

I f  fl = 0, ~ = 0 and the  r.h.s, of  (2.6) is t while if  fl ~ 1, ~ = /~ ,  ~ -- 1, or  
< f l  -- 2 according as ~ > fllc, (fi-- 1)k < :r < ilk, or a < (fl --  1)k and  the  
r.h.s, of  (2.6) is 

t k p(~_~)~t#(p) V(p) Ny(p ) + p~'#(1)v(XiN}(1),  

or 0 according as 7 = fi, fl -- 1, or < fi -- 2 and  Theorem 2.2 is clear. 

TI~EOI~EN 2.3 (Theorem 3, [14]; (3.5) of  [15]). 

(i) I f  ( n .  r~2) = 1, 

['~k, v l~  ?,) k,~ k, ~ ~, t (~2, t") = ,') C}, ,(ntn ~, C~,'~(1, r) ' J  f,  t k~l_, 

(ii) I f  (r 1, rz) = 1, 

t"fk'rl/~ ?'1) k,~ k ~7 k 
,,It, l~ ,v l ,  C~, t ( n 2 ,  .r2) = Cj"  ( n  l r 2  @ n2rl,k r l r 2  ) . 

P~ooF. Le t  r = ~pP be the  canonical decomposit ion of  r ~nd let S~ a n d  
S 2 denote respectively the set of all primes common to n 1 and  r and  n 2 and r 
and  R the remaining prime factors of r; i.e. pr ime f~etors of r which are nei ther  
in S 1 nor in S~. Since (n 1, n2) = 1, $1, S~ and  R are pairwise disjoint sets wi th  
union consisting of M1 prime factors of  r. B y  (i) of  Theorem 2.1, 

k, rl f'ck, V I a c2,,(~, ~) = { I I  w,, ,p , p')}{ H c~,'7(~, p S } { I I  C~;?(~, p~)} 
p ( S t  p ( S 2  p E R  
P~l in, 

and similarly, 

k,q C~, t (~2, r) 

~nd so 

- { H  c2;(r H c}:;(1, 
p~S~ p~S~ p E R  
p~iln2 

t~,V k,*7 k,~j = ,6 ..-*k,rjf ~= c~,, (~1, ~) ~),,(~, r) = { H c),, (p ,  p ) H ~ , , , ~ ,  p~)} • 
p 6  8x p6S2  
p=[ lm P=l In= 

p~ R ps 

giving (i) of  Theorem 2.3. 
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I f  (r .  r~) = 1, then (n~ r~ + n~r~, r~)~ = (n.  r~)~ and (n~r~ + n~r~, r~) ~= 
= (n2, r~)~; hence by  (ii) of  Theorem 2.1 and  (2.~) 

k,~ k,~ 

giv ing  (ii) of  Theorem 2.3. 

(2.7) 

T~EOI~V,M 2.4 ((4) and  (6) of  [9]; Theorems 5.3 and  5.4 of  [15]). 

/~?, t ~t(d); 
d[(n,r) d[(n,r) 

(2.8) "~C~'7(d~'r)~ ~ " ~ ' " { d ) ( d }  dkt /*f, t T . 
a[n dI(n,r) 

P~OOF. I t  is easy to See t h a t  both  sides of  (2.7) and  (2.8) are mult i-  
pl icat ive in both  n and  r and  so we need only verify them when n = p~, r = p~, 
:p a prime, x ~ 0, /~ ~ 0. We need to consider the cases ~ ~ fi, ~ =- fl --  l ,  
and  g ~ fl --  1. I f  ~ ~ fi, the 1.h.s. of  (2.7) is, by  Theorem 2.2, 

. ~  c~,~(p~-s) k, pf-J) = p~-s)~' - p(~-~-~)~ ~(p) N'flp~) + 1 = 
j=0  l j=0  

_- ~ p ~ -  ~(p)2r ~ p ~  = ~(p~) - ~(p) ~(p~) ~(p~-~),  
j=0  f=0  

a n d  the  r.h.s, of  (2.7) is 

. ~  t~;7(p ~-~) ~ ( p ~ ) =  ~(p~) -- a~t(p~-z) ~(p)N}(p ~) 
j=O 

which is the  same as the  1.h.s. of  (2.7); the  verif ication when ~ = fi -- 1 and  
~ fl -- 1 is done similarly and  (2.7) follows. 

Similarly, when n = p~, r = p~, the  1.h.s. of (2.8) ~s" ~ " ' ~ ' L  t (Pi~, p~) and  
this,  by  Theorem 2.2, is easily seen to be ]=o 

(~ - ~ + ~ ) p ~  - (~ - fl + 2) n(p) ~v}(p ~) p(~7 ~)~, - p(~-~)~ ~(p) N}(p ~) 

or  0 according as ~ ~ ~, ~ Jr 1 ----- fl, or ~ q- 1 ~ fl, and  the r.h;s, of  (2.8) is 

rain {~, fl} 

j=o 

which is 

~(p~-~) p~kt _ ~(p) N}(p~) ~(p~-~+~) p(~-l)~, _p(~-~)~t ~(p) ~V}(p~) 

or 0 according as a ~ fl, a -k 1 = fl or a -k 1 ~ fl and  (2.8) is clear. 
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T ~ o l ~ a  2.5 ((5) of  [9]): I/~?(r) is completely multipIicative, then 

(2.9) ~m, (d )M~, ,  = q 1. air O, r 

(~.~o) I {;} . ~  .~C), , (e  ,d)M~,t = 
dlr el n [d) O, if r~(n. 

Pl~oo~ ~. We  need only to verify (2.9) when r is a pr ime power  p=, since 
both  sides are mul 'dplicative functions of  r. I f  ~ = 0 both  sides are 1 and  i f  

~ 0, b y  (1.8), (1.10), and (1.11) we h~ve 

and (2.9) follows. 

Now, by  (2.8) the 1.h.s. of  (2.10) is 

a•l M~:7 . ~  ,m,~ e k' ekt 
e I (n, d) e I(n, r) D6 =r/e 

and this is b y  (2 .9 )~  (n} rkt or 0 according as rln e r r  { n and (2.10) follows. 

TI4~oI~nM 2.6 ((3) of [9]; (2.11) of  [14]). I] v(r) is completely multi- 
plicative, 

(2.11) Z '~L,r%~ td k, r ]  M],,~(d) 8~Tbare~ 

l 0  otherwise. dlr  

PROOF. The mul t ip l ica t iv i ty  of  Cy'7(n, r) in both  n and  r and tha t  o f  
My,'~(r) as a funct ion of  r imply the  mul~iplicativity of  the  l.h.s, of  (2.11) a nd  
clearly the  r.h.s, of  (2.11) is multiplicative.  We need to ver i fy  (2.11) on ly  
when r is a pr ime power  p~. I f  ~ = 0, bo th  sides are 1. Le t  ~ ~ 0. Then, b y  
Theorem 2.2, (1.10), and  (1.11), if ~ = 2u @ 1, u ~ 0, the  l.h.s, of  (2.11) is 

@~(pU~, p~+~) M~,,7(p~) + . ~  V~:7(pj~, p~-~) M~:?(pJ) + M~5,(p ~) = 
j = u + l  

= __ pUkt~i(pU+l) N~u+l)(p~) + 

+ _F (p(~-J~'~(pJ) Nj~(p ~) - p(~+~)'~(#+~) ~v2J+l)(p~)} + v(p~) Ny(pb = 0, 
j ~ u + l  
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while if a = 2u, u ) 0, it is 

r 
. ~  ck.,~l~Jk ,~-A M k'~t~h ~ M (~ 
j = u  

= - + 

j = u  

+ ~l(P ~) N}t(p ~) = put ty(p" ) N}t(p~), 

and  (2.11) follows. 

THEOREM 2.7 ((11) and  (12) of [9]; Theorems 5.8 and  5.9 of [15]). 

(a) I1 } 
r ~ 

(i) , ~  C];'](na, r) =- r k ~@7(r), 

(b) 

( i i )  . ~  C~,'I(na, r) = Icflk(r) cf~,7(r ) . 
(a, r~)k= 1 

.1 ~ a ~ r  k 
La, rl~)k ~ gl~ 

r "~ g. 

R E ~ X S .  

(i) A glance at the  suggestion of the  profs of (11) and (12) in [9] might  
t end  one to th ink tha t  (12) in [9] is t rue  wi thout  the  eonditionrk[n. Tha t  this  
is not  the  case is seen by  taking n : 3, r : 3, k : 2, since in this case, the  
1.h.s. of  (12) is 10 and  the  r.h.s, is --8.  

(ii) The g in Theorem 5.8 of  [15] can be any  divisor of r and  tha t  of  
Theorem 5.9 of [15] can be any  proper divisor of  r. 

Pl~oor. (i) and  (ii) of  (a) follow from (2.4) and  t h e  definit ion of  ~0k(r). 
a ~.k ~ Fk 

Since, 1 ~ a < r k, (a, rk)k = qk if  and  only if I < 2~ < ~ and  ( ~ ,  2-~) = 1, 
- g  ,g 

for a given divisor g o f r  there  are ~k numbers  1 ~ a _~ r ,  and  (a, ra)~ = g k  
/g !  

Hence,  by  (2.3), the  1.h.s. of  (i) of  (b) is 

Ck ,,ok r ) C k  nt.t~ {~) ~ '  ~ : t w ,  ----- 3";t~u , r )  ~ k  , 
1 ~ a < r  ~ 

(a, r %=gk 
giving (i) of  (b). 
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Similarly, 

2 
l ~ a ~ r  "~ 

(a, rO~= 1 

~k 
a = - - ~ k ( r ) ,  r > l .  

2 

This is well known for k = 1 and essentially the  same p r o o f  works for k > 1. 
Hence,  the  1.h.s. of  (ii) of  (b) is 

C ~''r"k r) gk a y, t ~  , , ~  - -  = the  r.h.s, o f  (ii) of  (b). 
1 ~ a ~ r  k ~]k 

(a[g~,rk/g*)e= ! 

w 

The following temma is due to A~DERSOSr and APOSTOL for k = 1 (Theo- 
rem 2, [ i ] ,  and  to  MCCARTHY for k > 1, (Theorem 5, [10]). 

LEM:~A 3.1 I f  g(r) is completely multiplicative, h(r) multiplicative, g(p) ~ 0, 
h(p) ~ g(p) for all primes p, 

u(n, r) = 

and U(r) = u(O, r), then 

where m k = 

u(n, ~) = 

a k ] (n, rk)~ 

U(r) ~(m) h(m) 

f(m) 

Taking g(r)-= r kt, h(r)-----V(r)N}(r k) in L e m m a  3.1, we have,  b y  (2.1), 
(1.8), ~nd (1.9) 

Tg~ORE~ 3.1 (Theorem 1, [5]; Theorem 2, [7] with Theorem 5, [6]; 
Theorem 2, [14] and Theorem 5.1, [15]). I f  V(p)Ntl(p ~) r p~ ]or all primes, p, 
then 

~k 
C~,?(n, r) = q)~,'~(r) #],,7(m) mk __ - - .  

�9 R V  m ~7;~( ) ' (n, r %  

T~EORE~ 3.2 (Corollary 2.1, [4]; Theorem 5.5, [15]). I] V(p)N}(p k) ~pk i  
for all primes p, then 

rk 

(a.1) ~ c~,7(a, r) = ~k x]:~(r) . 

PI~OOF. The numbers  Xd  k run through the  numbers  1 through r k as d 
runs through the  divisors of  r and for each d, X runs through the numbers  



CHIDAMBARASWAMY: GEN:EI~ALIZED RAMANUJAN'8 SUM 8~ 

~ and/c-prime to ~-.r~ Hence by (2.3), Theorem 3.1, (1.9), (1.16) and (1.14), 

the 1.h.s. of (3.1) is 

= C~:~(d~, r ) =  ~:,~,~( ) ~ - -  

~(P ~(P ) ] H Nt's(P~) = r ~ / / [ l _  ) N' k {1 ~(p) ~(P) 
p,r t - - '~  ] pir ~:~(p) } = 

= ~' 111 p~'-  € ~i (r  ] I I  [r € N i ( r 1 6 2  = 

= [ = ~ ' Z "  = r~A~;7(r) plr [ pn(t-~) ] r~t~7 d~(t--x) 

, ,5# ( k, p~ ~ TREORSM 3.3 ((7), (8), (9) of [9]; Theorem 5.2, [15]). I f  ~(p) I P ) ~= 
for all primes, p, ther~ 

(3.2) cf:~(~,r)~:~ = c~,q -~,  ~:7(~), a~l (,~,,~)~; 

(3.3) cf,7(~,  r) , ( (3 ,  r")~) = ~f.~(r) ~ ~ ,  
d l(n,r)~ 

qV: t 

d~] (n, rk)~ d I ( n , ) ~  

PRoos. We need only to prove (3.2) since the other two identities 
directly follow from it. Let (3, r~)k = D k. Then for every d S D, 

and so 

Hence, by Theorem 3.1, 

and (3.2) is clear. 

k 

r~/d k r~ r~ 
(n/d ~, rk/dk)k D k (3, rk)~ 

77; t qT; t 

6 Periodlca Ma~h. 1 (10) 
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T m ~ o a ~ u  3A ((2.8), [6]; (2.2.a), [15]). 

(3.5) 

(3.6) 

k,~7 k,~ k ~ ~, k ~, 

~;7(m) ~'" VS,,(n) ~:7((m, ~" = n)) ~ , , ( [ ~ ,  h i ) ,  

where in (3.6) fro, n] stands for the L.C.M. of m and n. 

1)l~OOr. We have by (1.9), denoting 

p~ 

by T(p), 

(3.7) k,, k,, ~/~(m~)~ , , ( (m,  n)) = mk'~(m,n)k~{HT(P)}{ 1-J T(p)}, 
p l m n  p l ( m , n )  

{ HT(P)}{ H T(p)}-- ( H T ( p ) ) { H T ( p ) } { H T ( p ) } { H T ( p ) }  = 
p i t o n  pl(rn,  n) p l m  p I m p l n p i m  

p i n  p + n  p + m  p i n  

(a.s) = { / / T ( p ) } { H T ( p )  }, 
P l m  P i n  

~md (3.5) is clear from (3.7) and (3.8). Now, by (3.5). 

~1:,(m) ~• = ~•  ~)) = 

k, rl k ~ k, Vll ~ k, rj = ~s,, ((,~, ~)tin, ~])~• n), [m, ,~])) = w , , ,  .... n) ~• ([,n, ,~])(m, ~)", 

and (3.6) is clear. 

T~EOI~E~ 3.5 ((16), [9]; Theorem 5.6, [15]). I f  ~(p)N~(p k) :#pkt for all 
primes p, 

Ck,'ln, r) = f , t ~  
k ~  D r 

(3.9) 

..r~ ~ - - ,  D k =  (n. rk)k; ----- t*ft ~f,;'(D) ~0~;~(s) 

r 
where s is the product of all the distinct prime factors common to D and - ~ .  

(a.10) ~k.,, k r),,,k.,, t, n) k., ~,, w, ,~ ,o ,  w , , ~ - ,  = ~s, ,((~, r)) c;,,,((n, r) ~, [n, r]). 
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t)l~ool~. By Theorems 3.1 and 3.4, 

~ 2 ( ~ ,  r) = 

~k,~ 

k ,  D r 

and (3.9) is clear in virtue of (1.9). Now, by (2.3), Theorem 3.1, and (8.6), 

k ~ k k~/ c~,,,(,~ , r) c~,, (~, ~) = c~:7((~, ~)~, r) c}:~((,~, r)~, ~) = 

q~7;~(( r))?~:'~([n,r]) tq;~ I (n,r) ] 

,t ~$1t 

" L ~ J  

=v~:p(.,r)v~q((n,r)~, [n.r]), 

giving (3.10). 

T H E O I ~  3.6 (Theorem 1, [6]). 

(~) I f  ~)(r) is completely multiplieative, theu 

(b) 

~ .  Vf2(d) if:p(O) = r ~' 
d6=r 

~z,,(d)M;,,(~)= 
~ r  / o, 

(d,d)=l 

i] r = 1 or every prime ]actor 
of r is repeated. 

otherwise. 

Pgoos.  We prove (g), the  proof of other part  being similar. I t  is enough 
to verify (a) when r is a prime power p~. I f  ~ > O, the 1.h.s. is, by (1.9) and 
(1.11) 

k,~l ] = M~:7(p ~) + _Y.~:,(p ) M~:7(F -1) = 
j=l 

= v (F)~vYlp  ~) + (p~ - ~(p) N}(p~)) _Y.p~'~)~'(n(p)~}(p~)F - j  = 
j = l  

= ~(F) ~(p~)  + p ~  - (~(p) N}(p~))" = F~'; 

and if e ~ O, both sides are 1 and the result follows. 

6* 



8 4  OHIDAMBARASWAMY: GENERALIZED ItA~IANUJAN'S SUM 

T ~ z o R s ~  3.7 ((~0), 03) ,  [9]). 

(3.n) ~, c~:7(~ ~, d)i~'7(~) = I/~'7(n)' 
d~=n [ O, (d, e)= i 

and i/~(r) is completely multiplicative, 

if n = 1 or every prime factor 
of n is repeated, 

otherwise; 

(3.12) "~k , , ( zk  (D I = Dkt, D ~ 
diD 

PROOF (3.11)follows from (2.3) &nd (b) of Theorem 3.6 and (3.12) follows 
from (2.4) &nd (&) of Theorem 3.6. 

From (1.8) &nd (1.14), we get 

TaEO~E~ 3.8 (Theorem 5.7, [15]). 

dIr 

where R 1 is the largest divisor of r such that (R~, n)k = 1. 

w  

The represent&tion of C~, t(n, r) &s u trigonometric sum depends on the 
following lemm& which is & generuliz~tion of & theorem (Theorem 4, [1]) of 
Anderson and Apostol. 

LE~WA 4.1 For any arithmetical functions g(r) and h(r) the function 

(4.1) S(k)(n , r )=  k , ~  g(d)h l  r )  
a 107, r )~ 

can be represented as 

(4.2) S(k)(n, r) = ~ ~ ~(m, r) e(nm, r~), 
m (rnod r ) 

where the sum in (4.2) is extended over a complete residue system mod r ~, and 

rk d ~ J (m, r~)z Ict ) 

Further, if g(r) is completely multiplicative, 

(4.4) ~(m' r) : lr ~ g  { D l  d,~Ddkh(d) g ( D} ' 

where (m, r e~k = D ~. 
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PROOF. Since m ~ m 1 (rood r k) implies (m, rk)k = (mr, rk)k, it is clear 
~hat the  sun on the  r.h.s, of  (4.2) is independent  of  the  residue system rood r k. 
I~Tow, 

2 :r r) e(nm, r k) = 2 r-k 
m=l [(m,r )~ 

?.k air  m=l, dklm 

,.k . ~  dkh(d) g . ~  e(nj, r~/dk), 
dlr j= l  

since the  inner sum above is rigid ~ or 0 according a~ n is or is not  divisible by  
rk/d k, the  ~bove sum is 

Thebt (4.3) can be expressed as (4.4) in case g(r) is completely multiplic~tive 
is obvious. 

T~king g(r) r kt, h(r) k,, = = #1,t(r) in L e m m a  4.1, we get  f rom (2.1) and  
(1.13) 

T~I~O~M 4.1 ((3), [1]; Theorem 4.1, [15]). 

k,t/ m~od 
C}, t (n, r) k'" = at, t (m, r) e(nm, r ~) 

m ( r 7~) 
k, rj where af, t (n  , r) i8 given by (lAg).  

Le t  us wri te  r k ( m ) =  ((m, rk)k) 1/~, SO Chat rl~(m)= 1 if and only i f  
(m, rk)k = 1. CleeMy, since ,u~,t(r) does not  depend on t, we have f rom 
(1.13), (1.8), and  (1.9) 

(4.5) ~,,~(,~, r) = ~ ~;~(d); 
d I rk(m) 

[ r }k(t-O 
a~:~(m, r ) =  I r - ~ )  q~x~:La(r~(m)), t > 1. (4.6) 

t tence ,  ;we have 

COROLLARY 4.1.1 

(4.7) k.~ ~ k'~(d)) e(nm, r"); C;, 1(~, r ) =  ( 2 ~f, 
m ( r~) a i r~(m) 

(4.8)  Gxk:~(n, r) = r k(t-1) ~j7 (Pxk~ ~-l((rk(m)) e/ngn r k) t > 1. 
m(m~oodr~) (rk(m))k(!  1) ' ' ' 
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I n  p~rf icul~r ,  s ince #x,t (r) ~ #(r),  

k, I 
(see (1.5)), ~ , t ( r ) = r  = 1 or  0 a c c o r d i n g  as r = 1 o r  r ~ 1, ~nd  

air 

~ p , ( d )  : (1 + e(] ,  2u)) w(~), 
dir 

we  ha, vo  

COrOLLArY 4.1.2. 

(4.9) C(~, r) = ~ e(n.~, r); 
re(rood r) 
(m, r) = 1 

(4.10) C(k)(n, r ) -~  m(m~odr~)e(nm, rk); 

(m,  rk)k = 1 

(4.11) Cl~(n, r) = rk-lm(m~odr) q�k-l((m'(m, r) k-lr)) e(nm, r) .  k ~ 1" 

(4.12) C~)(n, r) = r~( ~ - '  __~ ~(k_l)(r~(~n)) e(uu, r~), ~ > 1" 

m (meal r) 
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