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GENERALIZED RAMANUJAN’S SUM

by
J. CHIDAMBARASWAMY (Toledo)

Introduction

Let V: be the set of all ordered i-tuples of integers X = {;}j—y, called
integral t-vectors or simply ¢-vectors. Two #-vectors X = {a;}i=y and ¥ =
= {y;}/= are said to be congruent modulo the positive integer r if z; = y;
(mod r) for i=1,2,...,¢ Any set of 7' t-vectors no two of which are con-
gruent modulo 7 is called a complete residue system of ¢-vectors mor r. A i-vec-
tor X = {x’,-},-l:l is called k-prime to r if ((#y, @, - .., %), 7)x = 1; here by
(@,b,...,e); we mean the largest kth power common divisor of @,b,...,eand
(@, b,...,¢);=1(a,b,...,e) with the convention (0,0, ..., 0), = 0. The set
of all {-vectors in a complete residue system of i-vectors mod r which are
k-prime to r is called a k-reduced residue system of {-vectors mod .

With this terminology, RAMANUIAN’s sum C(n, r) is (see [12])

(1.1) Cln, r)y = X elnw, 1), ela, b) = exp 2maifb;

x

and E. CorEN’s generalized Ramanujan’s sum (see [3]) is

(1.2) Cn, r) = > e(na, ™)

x

where the sum in (1.1} is extended over a 1-reduced residue system of 1-vectors,
i.e., a reduced residue gystem mod r, while the sum in (1.2) is extended over a
k-reduced residue system of 1-vectors mod ¢*. In [7], he obtained another
generalization

(1.3) Ciln, r) = %’e(n(m1 4 @y o @) 7).
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the sum now being extenedd over a 1-reduced residue system of k-vectors
mod r. In [14] M. Sveunamma further generalized (1.2) and (1.3), by combin-
ing them, as

(1.4) S, r) = %* e(n(a, - @y + . . + @), 7°)

where the sum is extended over a s-reduced residue system of k-vectors mod r°.

More recently, C. S. VENEATARAMAN and R. SIVARAMAKRISENAN [15]
obtained an entirely different extension of (1.1} based on a new generalization
pulr) of the Mobius function u(r), defined as

10 if ris not square free
(1.5) Hulr) = e(w(r), 2u) if r is square free,

where w(r) is the number of distict prime factors of ». Clearly, u,(r) = u{r)
and their extended Ramanujan’s sum is (with a slight change of symbolism)

(1.6) On, r) = 3 u [L) d.

afmn \d

The purpose of this paper is to define and study a much more general
Ramanujan’s sum which we denote by Cf7(n, r); here f = f(x) is a polynomial
of positive degree with integer coefficients, # = 7(r) is a multiplicative function
of r, and & and ¢ are positive integres. This sum includes as special cases when
f(z) = x and special values of & and ¢ and special choice of %(r) all the generali-
zations of Ramanujan’s sum mentioned before. As are the special cases,
C¥ Mn, r) is multiplicative in both variables » and » and also as a function
of r. Tt is a k-even function of n (mod ) (see § 2) and the generalized Holder
identity holds (Theorem 3.1). Also it can be expressed as a trigonometric
sum (Theorem 4.1). Specifically we extend all the results in [15] for C"(n, r)
and the identities (3) through (13) and (16) of [9] involving C"(n, r) which
identities are due to C. S. Venkataraman for £ = 1, to Cﬁ,’f(n, 7). For the
generalization of Ramanujan’s sum to ordered structures we refer to the work
of Scmeip [13] and McDoxALDp [11].

§ 1. Preliminaries

We recall that an arithmetical function a(r) is called multiplicative if
a(rs) = a(r)a(s) whenever (r,s) = 1, and is called completely multiplicative
if a(rs) = a(r) a(s) holds for all » and s. Let N(r) denote the number of incon-
gruent solutions (mod ») of

(1.7) f(z) = 0 (mod r).
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It is well known that Ny{(r) is a multiplicative function of . We denote by
I(r) the function I(r) = 1 for all ». Given the integer coefficient polynomial
f = f(x) of positive degree, the multiplicative arithmetical function 7(r), and
the positive integers % and ¢, let the functions uf’/(r) and @} 7(r) be defined by

(1.8) uf iy = ulr) n(r) Név") ,
k,n I (p ) kt
(1.9) grofr) = JJ {1 — V(@) n(p) 2 ( ,
pir pH dir

where. N} Hr) =V f(r)) In fact, qo Iy = (’{)(r ), where @ m(r) is the general-
ized totient function defined in [2] as the number of vectors in a complete
residue system of f-vectors mod r which are k-prime to r with respect to the
polynomial f, a vector X = {a;}i—s being called k-prime to r With respect

to the polynomial f if ((f(z,), f(xy), - - - f(@), ) = 1. Clearly gf7(r) and

q)f '7{r) are multiplicative functions of 7. Let M (k)(r) and M; 2 °i'(r) be defined by
=1, for r=1,

(1.10) MU { JT N, for > 1;

ond i

(111) M 1) = MEYr) (o),

where in (1.10) the symbol P°||lr means that p” is the highest power of p divid-
ing r. Tt is clear that M{}(r) is a multiplicative function of r and so is M} 7i0r)
since n{r} is. We need also the functions

(1.12) Na{r) = plr) pal?)
. .  VKED)
(1.13) i) = 3 ubid) {—]
&% (n, oy d
: k(E—1)
L1y A5 = k10,1 = St [
It is well known that
. r
 Cwr = S (E}d’
d|(n,r)
@ Opn= 3 p (i &,
(1.15) e |4
@) Cdnr) = X |5,
dj(n,r) d
i) = 3 u l) o
L afmrm, \d
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We shall also need g, (r) which is the number of integers in a k-reduced residue
system mod r*. Tt is well known that

(1.16) tpk(r):rkz%l(—?: r"ﬂ{1~—1;}.

dlr pir P

As usual o,(r) and z(r) denote respectively the sum of the kth powers of the
divisors of 7 and the number of divisors of . In the following the results referred
to before the statement of a theorem are the special cases of the earlier exten-
sions mentioned before of C(n, r), of part of or the whole of that theorem.

§ 2.
We define the generalized Ramanujan’s sum by
(2.1 Chioun= S duit 7).
d*{(n, ™) d

Clearly, by (1.15), (1.6), (1.12), (1.8) and (1.9)
(i) Cxiln,r)=0(n,r),
(ii) O’,ﬁj{(n, r) = O(R)(n, ),
(2.2) (iii) C%im, r) = Ciln, 7),
(iv) Cxiln, r) = OP(n, 7),

and
V) ORi(n,r) = C"(n,r),

and ag in the special cases C}‘,’?(n, r) is a k-even function of » mod r {10]; i.e.,

(2.3) 0,}5,’1"(72,, r) = C‘;‘g’}’((n, rk)k, ry,

and

(2.4) C¥ T, r) = @ (r), if m =0 (mod ),
(2.5) ORI, 1) = upi(r).

We recall that an arithmetical function S(n, r) of the variables » and
is called multiplicative in both n and 7[1] if (ny, ny) = (ry, 79) = (B, 7)) =
= (ny, r;) = 1 implies that S(nyn,, ryr) = S(n,, 7,)S(n,, 75), and that such a
function is completely determined by the values S(p° %), p a prime and

«>0,8>0.
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Lemma 2.1. If the arithmetical functions g(r) and h(r) are multiplicative,

then
8®(n, r) = g(d) h (1]
dkf%ﬂm d
18
(1) multiplicative in both n and r,
(ii) multiplicative as a function of r.
ProoF. If (n,, ny) = (ry, 15) = {0y, 1) = (ns, ;) = 1, it is easily seen that
(ny 7y, Tllfrlzc)k = (ny, 7"]1{)k (75, lec)k: ((nl: r’{)k’ (ng, 7'§)k) =1
and so,
S®(nymy, 1y75) = g(d) b (ﬁ—rﬁ) =
T d"l(nmzz,r{‘rl‘)k d
r 7
= i@ o 7] 1) =
¥ (e, f';)lc;zt;é‘ | (e, B)e ' * d1z} dy
r T
= gmmkﬂ g@Mkﬂ:S@eran%
d’fttnzl,‘r’m S atme . e
giving (i).

If (7'1’ 72) =1, (n, 7'/1c rlzc)k = (7?:, rllf)k (7’/, lec)k’ ((n’ 7'11(),1;, (’)’L, Tg)k) =1 uSing the
fact that S®(n, r) is k-even mod r and (i) of this lemma,

& X K P
8¢ )(n, TTy) = S¢ )((nl, )k (1, 7o)k, 1475) =

= 89, 1) 12) SN, 131 1) = 8¥m, 1) 8O, 7).
Lemma 2.1 and (2.1) give

Tarorem 2.1 (Theorem 1, [3]; Theorem 3, [14]; (3.2), (3.4) of [15]).
(1) Oj{’?(n, 7) is multiplicative in both n and r.

(i) CF I(n, 1) is multiplicative as o function of r.

THEOREM 2.2 (Theorem 3, [3]). For the prime p

= 1,iff=0,
__ PRt (B—1)kt { . .

okt = P D DN, i > ek
= —p ™ y(p) Ni{p"), it 0< (B — 1)k < o< Ph;

=0, if 0<a<(f— 1k
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Proor. Let (p% p™); = p"* so that 0 <y < g. By (2.1) and (1.8),

< B( pr pﬁ pﬁk
(2.6) Crie" 1) = X d¥u ‘dJ [dJN(d"]

dip¥

K Bf=0,y=0and the rhs. of (26)is 1l whileif §>1,y=8,—1, or
< B — 2 according as o« > Bk, (8 — 1)k << x << Bk, or « < (8 — 1)k and the
r.h.s. of (2.6) is

PP w(p) n(p) Nop"y + ™ u(1) 5(1) Ny(1),
7 u(p) (p) Ni(p")

or 0 according as y =, § — 1, or <{ 8 — 2 and Theorem 2.2 is clear.

TrEOREM 2.3 (Theorem 3, [14]; (8.5) of [15]).
) If (g, my) = 1,
0}(:?(7”1’ T) 0}‘:?(7@2, T) = O}‘,’?(nlnm 7') 0}‘;’1{1(1: 7’) 1

(i) If (ryy ) = 1,

k, k, k, i K
Ot, ?(np "‘1) Gf, ?(nw '7'2) = Cf, ?(’"/172 -+ Ngfy, 717'2) .

Proor. Let r == pﬂ be the canonical decomposition of r and let §; and
8, denote respectively the set of all primes common to », and r and n, and r
and B the remaining prime factors of r; i.e. prime factors of r which are neither
in S, nor in S,. Since (n,, n,) = 1, 8, §; and & are pairwise disjoint sets with
union consisting of all prime factors of ». By (i) of Theorem 2.1,

Off”v")-‘{ﬂ (P p }{[[ (L, pf }{HOf,’"l )}

P“l 1”1
and similarly,

Cfny, 7) = {Il Crip®, Pﬁ)}{n (1, Z’ﬁ)}{ﬂ ")}

p“[]ng
and so ‘
OFftny, 1) CRHng, vy ={ [ CFUp™ p ]]%29m}
S1
i bim
x {JTcriqa, o }{ ]] CF 11 p°)} = CF Hnyny, 1) OFI(1, 1),
PER S,U8,UR

giving (i) of Theorem 2.3.
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If (r,, ) = 1, then (nlrg -+ ny’f, r’{)k = (ny, rl{)k and (nlr’;‘ + nzrf, rg) =
= (1, ra)x; hence by (i) of Theorem 2.1 and (2.3)
O}c’ (nﬂ‘z -+ n27’1> ) = C’f (1, 1)) Of, (g, 1),
giving (ii) of Theorem 2.3.

THEOREM 2.4 ((4) and (6) of [9]; Theorems 5.3 and 5.4 of [15]).

k \
2.7) > o5 5= 3 | e
di(n,r) d d dj(n,r) d
(2.8) S Cpudt, 1) 2 ko {— )
d|n di(n,

Proor. Tt is easy to see that both sides of (2.7) and (2.8) are multi-
plicative in both # and r and so we need only verify them when n = p* r = 2°,
p a prime, « > 0, § > 0. We need to consider the cases « > f, « =f — 1,
and &« << f — 1. If & > §, the Lh.s. of (2.7) is, by Theorem 2.2,

S CE (e, ) = { S p-Dk i) N;@")} t1-
=0 j=o0

= 2 ™ — q(p) Ni(p 2 M = a1(pf) — n(p) N{P") ow(p™Y)

Jj=0 Jj=0

and the r.h.s. of (2.7) is
Zﬂf t(Pﬂ‘j) O pY) = oy (%) — O'kt(Pﬁul) 7(p) N}(Z’k)
which is the same as the Lh.s. of (2.7); the verification when o == 8 — 1 and

o << B — 1 is done similarly and (2.7) follows.

Similarly, when » = p%, r = p’, the Lh.s. of (2.8) 152 1™, p*) and
this, by Theorem 2.2, is easily seen to be =

(x — B + D)™ — (x — B+ 2)n(p) Ni{p") p ", — ¥ y(p) Ni(p")

or 0 according as ¢ > f, -+ 1=, or « - 1 < fi, and the r.hs. of (2.8) is
min {«, £} . . N
pipf ) w(pf) p
j=0
which is

(") PP — n(p) Ny(p") 1(p*0+) p %, —p D y(p) Ni(p")

or 0 according as « > f, « + 1 = B or « + 1 < f and (2.8) is clear.
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TrrEorEM 2.5 ((5) of [9]). If n(r) is completely multiplicative, then

1, i r=1
2.9 P MEP | =1
29) w0 1120
Ty K iy 7 T ’ZL— i ring
(2.10) 3 S0, dy by H S LS b ;
dir ein d 0, if rin.

Proor. We need only to verify (2.9) when r is a prime power p*, since
both sides are multiplicative functions of r. If « = 0 both sides are 1 and if
o > 0, by (1.8), (1.10), and (1.11) we have :

> upid) Mp; (%} = N{(p") n(p*) — NHp") n(p) N&Dp") n(p*1) = 0
dip*
and (2.9) follows.

Now, by (2.8) the Lh.s. of (2.10) is

n
r(——) M = >
€ e|(n,r)

and this is by (2.9) = (ﬁ} " or 0 according as #|n or r{ » and (2.10) follows.
r

r d
M5 [E) 2> P‘}‘,’?(*

el(n,d) ¢

ﬁ] O iln(o) ME(D)

€ Dé=rje

dlr

TaeoreEM 2.6 ((3) of [9]; (2.11) of [14]). If x(r) is completely multi-
plicative,

211) 30k (dk, &) M ={(W>"’M}‘:?(V?), if 7 is a square,

ar 0 otherwise.

Proor. The multiplicativity of CFf(n, r) in both # and r and that of
MPFJ(r) as a function of r imply the multiplicativity of the Lh.s. of (2.11) and
clearly the r.h.s. of (2.11) is multiplicative. We need to verify (2.11) only
when r is a prime power p”. If « = 0, both sides are 1. Let & > 0. Then, by
Theorem 2.2, (1.10), and (1.11), if & = 20 + 1, » > 0, the Lh.s. of (2.11) is

(Zwl . :.
CHuP™, Py MBT(p) + 3 Opp(p™, ) Mpi(p)y + MpYp*) =

J=i+1
= — pUkty(putl) N+ (pk) 4

a—l . . . . » "
+ 3 {p" M n(p)) Nf(p¥) — peI-DKg(pith) NG (pA)} + n(p*) NF(p") = 0,
J=uH1
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while if & = 2u, # > 0, it is

a~1

2 CEip™, o) MEYP)) + MEUp™) =

= 2 {pt=Mq(pl) N¥(p¥) — p&I=DMn(pit2) NEHD ()} +

Jj=u
+ n(p*) N¥(p*) = p™ n(p*) N¥(p"),
and (2.11) follows.

TrEorEM 2.7 ((11) and (12) of [9]; Theorems 5.8 and 5.9 of [15]).
(a) If r*|m,

(i) > China,r) = r*gpi(r),

(ii) Cfiitna, r) = \gu(r) g 1(r) -

. r
(b) (i) Chtar) = CEng 1) H

1<a<r® g
(a, r*)p=gk

.. r .

@) 3 Chlana= 0k r)—qok {—] r>g.
1<a<r® g
(a, =g

REMARKS.

(i) A glance at the suggestion of the profs of (11) and (12) in [9] might
tend one to think that (12) in [9] is true without the condition #"|n. That this
is not the case is seen by taking n = 3, r = 3, k = 2, since in this case, the
Lhs. of (12) is 10 and the r.h.s. is —8.

(i1) The ¢ in Theorem 5.8 of [15] can be any divisor of r and tha‘n of
Theorem 5.9 of [15] can be any proper divisor of 7.

Proor. (i) and (ii) of (a) follow from (2.4) and the definition of g;(r).

7
for a given divisor g of  there are @y i} numbers 1 < a < 7%, and (a, ), = ¢".
g

Hence, by (2.3), the L.h.s. of (i} of (b) is
| S, Oen =g n e

I1<a<r®
(a,r*y=g"

k k
Since, 1 <a <", (@, )= g"if and only if 1 < % < %a,nd (a ?;J =1,
g g

giving (i) of (b).
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Similarly,

o
> a=—2—<pk(r), r > 1.

1<a<rk
(a, %=1

This is well known for £ = 1 and essentially the same proof works for £ > 1.
Hence, the 1.h.s. of (ii) of (b) is

Chlghr gt S = =the rhus. of (i) of (b).
1<ax gF
(algk,r¥{ghy=1
§ 3.

The following lemma is due to ANDERsON and Aposror for & = 1 (Theo-
rem 2, [1], and to McCarraY for £ > 1, (Theorem 5, [107).

Lemwma 3.1 If g(r) is completely multiplicative, h(r) multiplicative, g(p) =< 0,
k(p) == g(p) for all primes p,
r r
wn= 3 gdh [—] “ H ,
dki%fk)k d d
and U(r) = u(0, r), then
U(r) p(m) hfm)

un, r) = O(m)

7

where m* = .
(n, %),
Taking g(r) = ™, h{r) = g(r) Nr*) in Lemma 3.1, we have, by (2.1),
(1.8), and (1.9)

THEOREM 3.1 (Theorem 1, [5]; Theorem 2, {7] with Theorem 5, [6];
Theorem 2, [14] and Theorem 5.1,15]). If 7(p) N}(pk) s« p' for all primes, p,

then
4

L% k,n
Chrptn,r) = BICTELT) e T
(Pf,’;,(m) (n” r )k

TreoreM 3.2 (Corollary 2.1, [4]; Theorem 5.5, [180). If n(p) Nip"y == p
for all primes p, then
k
(3.1) é’ Ckia,r) =r* Apr).
a==1

Proo¥. The numbers Xd* run through the numbers 1 through 7* as d
runs through the divisors of r and for each d, X runs through the numbers
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K K
< gk— and &-prime to g—k— Hence by (2.3), Theorem 3.1, (1.9), (1.16) and (1.14),
the Lh.s. of (3.1) is

kl
Of HXd¥,r) = 2 Cf:?(d", ) = ohir) fﬂgh(zf;(d) -
— {1 n(p) Nf(p")} [1 n(p) NHp") %(p)} _
plir pir ?(2’)
o Ni(p") } {:p — n(p) N{p ")p}
' g{ pir —(p) N, (P )
)Nf( V) B _
- Tktg{ pk« ) } 2 é‘k(tt Sy = AR

TaroreM 3.3 ((7), (8), (9) of [9]; Theorem 5.2, [15]). If n(p)Ni(p") < p*

for all primes, p, then

r
(3.2)  ChbyYn,r) g7 b—] = Cf?

. ,
(3:3)  Opitn, ) v(n, M) = gplr) 2 ————

r
(3.4  Cbmr) 3 o H ~ gl > Ok
2k | (n, ¥y

d a*m

<’ d

Proor. We need only to prove (3.2) since the other two identities
directly follow from it. Let (n, rk)k — D", Then for every d | D,

n ) (D)
dk’dkk""(d’

and so
:rk / dk rk {r"

(nfd¥, rjde), DX (m, 1),

Hence, by Theorem 3.1,

iy (7 Gk,n(ﬂ_ ’_]
Chptm,r) _ (D AR
?’}‘ /(7) oo (1) e (1

Pfl¢ D @f'¢ d

and (3.2) is clear.

6 Periodica Math. 1 (10)
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TrEOREM 3.4 ((2.8), [6]; (2.2.3), [15]).
(3.5) or. 1 (mn) gf ] ((m, ) = g ?(m) g7 (n) (m, n)";
(3.6) o 1m) 9 I(n) = g I((m, n)) o H[m, n]),
where in (3.8) [m, n] stands for the L.C. M. of m and n.

Proor. We have by (1.9), denoting

;@) Nj(ph)

pkt
by T'(p),
(3.7)  gpilmn)gfi(im, n)) = m" n"(m, n "‘{ 1] T(p)} {p ;%; [,f )}
{pannT m}{ [1 T(p)}= {H T P>}{HT P)}{HT }{HT@)} =
PI” pin
(3.8) ={ p]lf[ T(p)}{ y T(p)},

and (3.5) is clear from (3.7) and (3.8). Now, by (3.5).

g 1(m) gf 1) (m, 1) = @ Hmn) pfi{(m, n)) =

kl

= g5 1((m, n) [m, n]) gFI(((m, n), [m, n])) = @f Am, n) gf {([m, n]) (m, n)"*

and (3.6) is clear.

TurEOREM 3.5 ((16), [9]; Theorem 5.6, [15]). If n(p p )= p™ for all
primes p,

O'};;’('n, r) = =

(3.9)

— ylor [ glon(Dy —2 D= (n. 1),
= W s ( ) ori(D) , (. Y
D P:7(s)

r
where s is the product of all the distinct prime factors common to D and D

(8.10) Chln®, 1) CRT(", n) = gf((n, 1)) CFH((n, 1", [, 7)).
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Proor. By Theorems 3.1 and 3.4,

K, r) K [T 7 Ak
‘P)lg,’?(r) s § —J 12 ‘P)l‘f,'t(D) D, —
" D D D

Chi(n,r)= =

wl o)

and (3.9) is clear in virtue of (1.9). Now, by (2.3), Theorem 3.1, and (3.6),
CF (%, 7) OFj(r*, n) = CF¥(n, ), 1) Chi((n, ), m) =

K, n k,n r k,n 3 n »7 3 %0 ™ )
PPr) ppi ‘(n, r)) @i i(n )Mf, (( nr )) _ ‘P’f‘,t(r)‘l”f,t(%) :“f,t( 1) _
L] r ‘ ky
& ((%, ?’)] wi [(n, 7) ot tn r)2J
ot ) it ) s |21
= - (P}{ (n: 7') ?((n’ r)k: [n' 7']) s
kﬂ7 [n, 7]] .
(n,r

giving (3.10).
THEOREM 3.6 (Theorem 1, [6]).
(a) If nlr) is completely multiplicative, then
> gfid) ME(0) =¥

dé=r

(b) ; pf Ay M 7(8) =
@i

of r is repeated.

MPUr), if r=1 or every prime facior
0, otherwise.

Proor. We prove (a), the proof of other part being similar. It is enough
to verify (a) when r is a prime power p* If « > 0, the Lh.s. is, by (1.9) and
(1.11)

= MPHp®) + 2 of 1)) MFUp™ ) =

J—
= n(p") N¥(p") + (8 — n(p) Ni{p") 2]' ¥ y(p) Niip*h)— =
= n(p*) N7(p*) + 9™ — (n(p) Ni(p")* = p™
and if &« = 0, both sides are 1 and the result follows.

6*
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TerOREM 3.7 ((10), (13), (9]).

MPn), if n=1 or every prime factor
3.11) 3 opNe, dy M§3(8) = of n 1s repeated,
$Hy 0, otherwise;
and if n(r) is completely multiplicative,

(3.12) Sopudt, dy My7 (BJ = D", D" = (n,r").
4D d

Proor (3.11) follows from (2.3) and (b) of Theorem 3.6 and (3.12) follows
from (2.4) and (a) of Theorem 3.6.

From (1.8) and (1.14), we get

THEOREM 3.8 (Theorem 5.7, [15]).
2 Ofin, d) = ARUR))
(d" n)zp—

where R, is the largest divisor of r such that (R}, n);, = 1.

§ 4.

The representation of C‘}‘,’?(n, r) as a trigonometric sum depends on the
following lemma which is a generalization of a theorem (Theorem 4, [17]) of
Anderson and Apostol.

LevMA 4.1 For any arithmetical functions g(r) and h(r) the function

(4.1) 8O, 1) = 3 gld)h (L
2,y d
can be represented as
{4.2) 8O, 1y = 3 aim,r)e(nm, ™y,
) m (mod r®)

where the sum in (4.2) is exiended over a complete residue system mod ™, and
4.3 ,7) = — d* n(
(43) )= 3 duayg| )
Further, if g(r) is completely multiplicative,
(4.4) a{m, 7) _ig( sz’% d)g( )
" d|D

where (m, ry, = D",



CHIDAMBARASWAMY: GENERALIZED RAMANUJAN'S SUM 85 -

Proor. Since m = m, (mod r") implies (m, ), = (m,, ")y, it is clear
that the sun on the r.h.s. of (4.2) is independent of the residue system mod r*.
Now,

e(nm, r¥) =

Samneam = 35 3 dndgl

m=1 1" d*|(m,r*y

= — 3dh(d)g (—) ‘§| e(nm, 1) =
i , m=1,d¥{m

,k/dk

] S efnj, 145 ;

=1

. . . X ¢ . . . s s .

since the inner sum above is 7*/d" or 0 according as = is or is not divisible by
k) gk .

r'{d", the above sum is

1 ok r
— dnadyal ) = dyh|—] = 88, r).
r,{f% “g(dek R {d] (1, 17)

@[
That (4.3) can be expressed as (4.4) in case g(r) is completely multiplicative

is obvious.

Taking g(r) = ", h(r) = M’};?(-r) in Lemma 4.1, we get from (2.1) and

(1.13)
TuEOREM 4.1 ((3), [1]; Theorem 4.1, [15]).

k, K,
Criln, r)= 3  agplm,r)e(nm, )
m(mod r¥)

where af H(n, r) is given by (1.13).
Let us write 7, (m) = ((m, rk)k)” ¥ so that rdm) =1 if and only if

(m, "), = 1. Clearly, since pﬁj?(r) does not depend on %, we have from
(1.13), (1.8), and (1.9)

(4.5) apiim,r)= 3 pbud);
d|ri(m)
) V)
(4.6) akfim, r) — { J Pl (rim), ¢ 1.
7i(m)

Hence, ;we have

COROLLARY 4.1.1

(4.7) Crimn= 3 (3 upld)elnm,ry;

m(modr¥) d|ry(m)

X 4
(4.8) Cletn, r) = KD &"“-—l(ﬁlf—(f@e(nm, ™y, t>1.
mmod rty (7i(m))t D
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In particular, since ,uij{(r) = p(r),
pet(r) = p2(r) palr) = palr)
(see (1.5)), o (1) = gulr), %‘u(d) = lor0 according as r = 1lor > 1, and
r

S eald) = (1 + e(1, 2u)™?,

dir
we have
COROLLARY 4.1.2.
(4.9) Om,r) = 2 elnm,r);
m(mod r)
(m,n=1
(4.10) B, )= 3 elnm, r);
m(mod r¥)
(m, r¥)p=1
(4.11) Ou(n, 1) = "1 "-”f——l(_(”%@ elwm, 7). k>1;
m(mod r) (m, 7) -1 ’
(4.12) 0P, r) =ty 3 Pl oy ey gy
(e ey (rs(m))s(ml)
(4.13) Cim, )y = 3 (1 + e(l, 2u))*™DVe(nm, 7).
m(modr)
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