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In this paper, the special place of Zipf's law and Pareto's law amongst other classical 
informetric laws (such as Bradford's graphical and verbal law, Weber-Fechner's or Brookes', 
Leimkuhler's and Mandelbrot's) is revealed and explained. Equivalencies amongst some of 
these laws are proved. We also determine the conditions under which Bradford's graphical law 
is a special case of Bradford's verbal law. 

I. Introduction and definitions 

In the sequel we will consider information production processes (IPP) (such as 

bibliographies, linguistical texts, ..., d.  Refs 7-9) that are continuous, i.e. in which we 
consider all the functions to be defined on intervals of the form [13, x], x > 0, as will 
be indicated below. We will use the terminology of sources "having" or "producing" 

items (such as bibliographies in which one considers journals having articles on a 
certain topic.) 

We suppose that the sources are arranged in decreasing order of the number of 
items they have (or, more exactly, consider the dual system as explained in Refs 7 
and 8). The source set is associated (because of the continuous setting) with the 
interval [0, 3"] and the items set with the interval [0, A]. We repeat the definitions of 
the classical laws we want to study here: the laws of Zipf or Pareto, Mandelbrot, 
Bradford (graphical and verbal, group dependent and group free), Brookes or 
Weber-Fechner and Leimkuhler. 
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I. L The verbal formulation of Bradford's law, group-dependent and group-free 

I. L L The group-dependent verbal form of Bradford's law 

This formulation is in fact the original one as given by Bradford. 2 

Given any IPP, we say that this IPP satisfies Bradford's verbal law with p groups 

(p E N fixed, but arbitrary), if we can divide the set I into q equal parts each 

containing 3t0 > 0 items such that, following the ordering on S, we have a 

corresponding number of sources equal to (respectively): 

r0, r0k, rok2,..., r0kp -1 

for a certain r0 > 0 and k > 1. 
The number k is called the Bradford factor (or multiplicator) and is, of course, 

dependent on p : k=k(p). 

1, L2. The group-free verbal form of Bradford's law 

This form was defined in Ref. 7 (see also Refs 8 and 9) as follows: Let 2(i) denote 

the cumulative number of sources up to the item coordinate i E [0, A] and suppose 

to be differentiable. Let er be defined as : 

O-=~' 

We say that the IPP satisfies the group-free verbal law of Bradford if, for every i E I, 

cx(i) =M.K i (1) 

where M > 0 and K > I are constants. 
Formula (1) is called the group-free Bradford function. 
The number K is called the group-free Bradford factor and, of course, is 

independent of p in the previous section (p does not exist here!). This definition 

allows us to recognise Bradford's law as a function just like the other informetric laws 

that will be def'med in the sequel. 
In Refs 7 and 9 it is shown that the formulations in 1.1.1. and 1.1.2. are 

mathematically equivalent when we allow any p E N in 1.1.1. This result is not needed 

in the sequel. 
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L2. The graphical formulation of  Bradford's law, groufl-dependent and group-free 

L2.1. The group-dependent graphical formulation of Bradford's law 

Due to an apparent mis-interpretation of Bradford's original definition 1.1.1., one 
can fred the following law in the literature. 16 

Fix p ~ N. We say that our IPP satisfies the graphical formulation of Bradford's 

law with p groups (p ~ N fixed but arbitrary) if we can divide the set [0, A] into p 

equal parts, each containing 3'o > 0 items, such that, following the order as defined 

above, we have, for the first Y0 items, the f'irst r~ > 0 sources, for the first 2 Y0 items, 

the fh'st rlkl sources (kl > 1), for the first 3 Y0 items, the first rlkl 2 sources, and so on 

until: for the first (p-l)  Y0 items, the first r,kt~2 sources and finally, the p y0=A items 
stand for r~k~p-~ =T  sources, 

L2.2. The group-free graphical formulation on Bradford's law 

In view of 1.2.1., one can define the following group-free analogue of 1.1.2. 

Let X be as in 1.1.2. Then : 

X(i) =M1K1 i 

where M 1 and K 1 > 1 are constants. 

(2) 

L3. Leimkuhler's law 

Let R(r)  denote the cumulative number of  items in the sources s e [0, r], for 
every r ~ [0, T]. Then 

R(r) = a log (1 + br) (3) 

where a and b are positive constants. R is the corresponding LeimkuMer function. 
This definition can be  found in Ref.12. 

L 4. Brookes" law or the law of Weber-Fechner 

Let R be as in 1.3. Then 

R(r)  =et log [[3(1+ r)], (4) 

where ot and [3 are positive constants. R is the corresponding Brookes (or Weber-  
Fechner) function. See Ref.3, for a reference. 

LS. Mandelbrot's law 

Let g(r) denote the density of  the numbers of  items in r ~ [0, T]. 
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Then, for every r E [0, T]13: 

g(r) =G/ ( I+Hr) ,  

where G and H are constants and r e [0, T]. 

(s) 

L6. Zipf's law or Pareto's law 

In the notation of 1.5., we have here : 

g(r) =F/(1 + r) (6) 

where F is a constant 17,Ls (we restrict our attention to the power 1 in the 
denominator of (6). g is called the Zipf (or Pareto) function. Classically Zipf's 
function is considered as defined only for discrete values of r while Pareto's is 

defined for continuous values of r, but the functions themselves are the same. 
Note that usually formula (6) is defined without the i in the denominator but then 

the ranks start in 1. Hence our approach (using 1 + r and r e [0, T]) is in fact the 

s a l n e .  

We start by the obvious remark that, if we take H = I  in (5), then we find (4); 
hence Zipf's law (Pareto's law) is a special case of Mandelbrot's law. In a less 

obvious context this has also been observed in Ref. 14. 
In Refs. 7 and 9 and partially in Refs. 14 and 1 the following theorem has been 

proved : 
77worem: The following assertions are equivalent for an IPP : 
(i) It satisfies Bradford's law (verbal), group-dependent, for every p E N. 
(ii) It satisfies Bradford's law (verbal), group-free. 
(iii) It satisfies Leimkuhler's law. 
(iv) It satisfies Mandelbrot's law. 
Furthermore, we could show the following relations : 

a = (y0)/(log k) = 1/(log K) (7) 

b = (k-1)/r0= (log K)/M (8) 

G=ab (9) 

H = b  (10) 

K=kp/A (11) 

It is our purpose to make a second "closed" circuit of equivalencies between Zipf's 
law, Bradford's (graphical) laws and Brookes' law. As defined above, such a closed 
circuit cannot be proved as will be explained in the next (second) section. In the third 
section we will remedy the problems and in the fourth section we will prove our 
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second dosed circuit of equivalent informetric laws, incorporating Zipf's law. Since 

Zipf's law is a special case of Mandelbrot's (H = 1, as explained above), this second 
circuit is hence a special case of the fh-st circuit. 

The results and proofs of this article are a more accurate version of the earlier 
attempts in Ref.6. There we dealt with the notion of "asymptotic equivalence" in 
order to get rid of some problems (to be mentioned in the next section). The solution 
presented in this paper is mathematically correct and yields more insight in Zipf's 
and Bradford's graphical law. 

II. Problems in classification 

The fact that Zipes law is equivalent with Brookes' law causes no problems. The 
reader can check the easy proof in the next section. In order, however, to show that 
Zipf's law is also equivalent to Bradford's graphical laws, we need, in view of the 
previous section that, if H = 1, Bradford's graphical laws are the same as Bradford's 
verbal laws (since the latter are equivalent with Mandelbrot's law and since Zipf's 
law is Mandelbrot's law if H = 1). 

As defined above (which is the classical way), Bradford's graphical laws cannot be 

considered the same as Bradford's verbal laws (and this is true for the group- 
dependent as well as the group-free versions). This will be shown now. 

Theorem ILl: Bradford's verbal law with p groups (p e N fixed but arbitrary) is 
never the same as Bradford's graphical law with p groups. 

Proof: 

The verbal Bradford law for p groups yields r0, k and y0=A/p such that 
(schematically) we have for every group: 

items 

sources 

YO YO YO . . . . . .  YO 
4, 4, ,1, + 

2 kP-I 
r 0 rok rok . . . . . .  r 0 

Situation I 
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Suppose this situation is also describable via the graphical law of Bradford with p 

groups in its classical formulation. Then each group still has Y0 items. We now have r~ 
and kl such that 

items Y 0 Y 0 Y 0 . . . . . .  Y 0 

kP-1 
sources, r 1 r l k  1 r 1 k 1 r l  �9 �9 �9 = �9 �9 1 

Situation II 

From this viewpoint, we never have the two situations occurring together. Indeed, 

to have both situations we need to have rl = r0 and rlkt = r0 + r0k; hence 

kl = 1 + k (12) 

But then the third group contains 

rik12=r0(l+k) 2 (13) 

sources; while in the first case this group has r0k2 sources. Since both groups must be 

equal (since they are made that way) we conclude : The above situations are never 

the same. 
Theorem I1.2 : Bradford's verbal group-free law is never the same as Bradford's 

graphical group-free law. 

Proof: 
The verbal group-free Bradford law gives the regularity (1) : 

~r(i) =MK i (1) 

for every i E [0, A]. Hence 
i 

X(i) = ~ cr(i') di' 

X(i) = [M/(log K)] Ki- i / ( l o g  K) (14) 

No values for M and K can be found in order that (14) should be the same as (2). 

IlL Remedy 

So, we cannot use the graphical form of Bradford's law, as defined in Section 1.2. 
However, in this section we will show that, if all the ranks in the definitions in 1.2. are 
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lowered with one, then we can considered Bradford's graphical laws as the same as 

Bradford's verbal laws, if and only if H =  1. Since this operation is such a minor 

deviation of the original definitions we keep the same names. Therefore we redefme. 

Definition III.1 : We  say that an IPP satisfies the graphical form of Bradford's law 

with p groups (p E N fixed but arbitrary) if we can divide the set [0, A] into p equal 

parts, each containing Y0 > 0 items such that we have, following the order as defined 

in section I, for the first Y0 items, the first rt-1 > 0 sources, for the first 2 Y0 items, the 
first rlk, -1 sources (k~ > 1), for the first 3 Y0 items, the first rak? -1 sources, and so 
on until: for the first (p-1)y0 items, the in'st raktp-2 -1 sources and finally, the p y0=A 

items stand for rtklp-t - I = T  sources. 
This situation is depicted as in Situation III :  

items 

s o u r c e s  

-~ YO _ YO 

rI~I rl Tk~ -I 

YO . . . . . .  YO 

-1  . . . . .  r l k ~ - I  - 1  

Situation HI 

Definition IIL2 : We say that an IPP satisfies the graphical form of Bradford's law, 
group-free, if (with ~ as in 1.1.2.): 

]~(i) = MxK~ - 1, (15)  

where M~ and K 1 > I are constants. 

We can now show that, if H = 1 (hence, in the ease that Zipf's and Mandelbrot 's 

law are the same), then Bradford's graphical and verbal laws are the same. 

Furthermore, surprisingly, also the converse is true : only if H - 1 ,  Bradford's 

graphical and verbal laws are the same. This is proved now. 

Theorem IIL3 : The following assertions are equivalent : 

(i) H = I .  

(ii) Bradford's graphical law for p groups (p ~ N fLxed but arbitrary) is the 
same as Bradford's verbal law for p groups. 

Proof: (i) ~ (ii) 
If H = 1 or, equivalently [by (10)] b = 1, then the following relations suffice : 

rx- 1= r0 (16) 

kl = k = 1 + r o (17) 
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[k = 1 + ro by (8)1. 
The reader can verify that, with these defmitious, both the graphical and the 

verbal formulations of Bradford's law are valid. We just check it for the first three 

groups : 

ro=ra - 1 
and 

I"o + rok=rlk1-1 

by the very definitions (16) and (17). 

But then also (for the third group) : 

ro + rok + rok2=rlkl 2 - 1 

since both sides equal 31"o + 3 ro 2 + ro 3. 

(ii) ~ (i) 

Here we have that, since necessarily p > 3 (otherwise there is no "law"), we must 

have : 

ro= r l -  1 (18) 

ro + rok=rlkl- 1 (19) 

ro + rok + rok 2= rlkl 2 " 1 (20) 

From (20) we fred: 

kx=(1 + ro + rok + rok2)/rlkx, 

which is, by (19), equal to : 

k1=(1+ 1"o + rok + rok2)/(1 + ro + rok) (21) 

Also, by (19), 

k1= (1 + ro + rok)/rx, 

which is, by (18), equal to : 

k ,=(1 + ro + rok)/(1 + ro) (22) 

(21) and (22) now yield : 

k=l+ ro 

Hence, using (8) and (10) gives b = H = 1. 

Remark that in the above case r~ = k~ neccssarily. 

Theorem ILL4: The following assertions are equivalent : 
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(i) H = I  

(ii) Bradford's graphical law (group-free) is the same as Bradford's verbal 

law (group-free). 

Proof: (i) * (ii) 
If H = 1, then, by (8) and (10) : 

M = log K (23) 

This relation guarantees that : 

or(i) = M K  i 

if and only if: 

X(i) =Ki - 1 (24) 

for every i e [0, A], which shows that both Bradford's graphical and verbal laws are 

valid (the former with M1 = 1). 

(ii) ~ (i) 

If we have 

and o-(i) = M K  i 
~(i) = M,Ki - 1 (25) 

for every i e [0, A], then, since also 

E(i) = ~ cr(i') di' 

E(i) = [M/(log K)] Ki- M/( log  K) (26) 

we find, from (25) and (26) that 

M1=1 
and 

M=log  K 

(8) and (10) then yield b = H = 1. 

The above regularities are very coincidental. But the results of the next section 
are even more surprising. In case H = 1, the graphical laws of  Bradford as defined in 
III.1. and 111.2. are the equivalents of Z ipfs  law. 
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IV. The equivalents of Zipf's law 

Theorem /TA.1 : For an IPP with continuous Z, the following assertions are 

equivalent : 

(i) The IPP satisfies the graphical formulation of Bradford's law group- 

dependent, for every p E N, but with the relation rl = kl. 

(ii) The IPP satisfies the graphical group-free Bradford function, with MI = 1. 

(iii) The IPP satisfies Brookes'  law with 13 = 1. 

(iv) The IPP satisfies Zipf's (or Pareto's) law. 

In this case, we have the following relations between the parameters: 

e~= 1/(log K:) = F (27) 

K:=k~ I^ (28) 

Yo (29) r l = K ,  =kl 

Proof: 

Proof of the equivalence of (i) and (ii) 

(a) (i) implies (ii) 

Let first i E [0, A] be  such that i= qA/p  where q _< p, q, p E N, q >_ 1. By (i) we 

have, with p groups: 

Z(i) = rlktq q -I 

for a certain r:, ks > 1, with rl = kl 

Z(i) = rlk1(pi/A) q 

Z(i) = (rl/kl) (k,p/^)i-1 

Z(i) = kl~-l, 
with 

K : =  klp/A. (30)  

Now kl is p dependent but  k:p is p-independent. This can be  seen as follows. Take 

two values p ~ p', p, p' E N. 
Let r l=kl  correspond with p and r'l =k'l correspond with p', according to (i). 

Hence: 

r:klp q - I = T  

r:klv'q - I = T  

Hence: 

klp - l=T=k~:p '- 1 
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Hence: 

kiP =k~lp'. 

Consequently, K~ as defined in (30) is independent on the particular choice of p 

N. So: 

Z(i) =KI i-  1 

is a fixed function of i in the set 

{qA/p  q _< p, q,p ~ N} 

which is dense in [0, A]. Since we suppose Z continuous and since the function 

i--* k l i -  1 

is already a continuous extension of Z on [0, A], we conclude that (cf. Ref. 18, where 

more  details on functions on dense sets can be  found) 

Z(i) =KI' - 1 

for every i ~ [0, A]. 

(b)(ii) implies(i) 

Let p ~ N be arbitrary. Let yo=Yo(p) = A / p  and r~ - l=r l (p )  - l=~(y0) =Kly o - 1. 
Then: 

Z(2yo) = K~% - 1 

= KIYo'KIYo - 1 

and more generally, for every i= 2,...,p : 

X(iyo) = K?yo - 1 

= (KIYo) (K'O)i-1-1 

Hence, putting 

rl  = KlYO = k l  

we have (i) for every p e N. 

Proof of the e~dvalence of (ii) and (iii) 

(a) (ii) implies (iii) 

Since 

X(i) =K~i- 1, 
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for every i e [0, A], we have, using i=R(r ) ,  and X(i) --r 

r = Kla(0 - 1 

Hence  
R(r)  = [1/(log K1)] log (r + 1), 

being Brookes '  law, for every r ~ [0, T], but with 13 = 1. 

Here  

= 1/( log K1) 

(b) (iii) implies (ii) 

Given 

R(r)  = a log (1+ r) 

for every r e [0, T], we have trivially : 

R-l(i) = r = el/a - 1 .  

Hence,  using E( i )=  r again 

E(i) =Kxi - 1 

for every i e [0, A]. Here  

K1 = e 1/a 

Proof of the equivalence of (iii) and (iv) 

This proof  is executed using the general formula (definition of  R and g) : 

R(r)  = g(r') dr'  

for every r e [0, T]. 

(a) (iii) implies (iv) 

Since from the previous formula one also has g(r)= R'(r),  we find, using 

R(r) = a log (1 + r), 

g(r) = R'(r)  = a/(1 + r), 

being Zipf 's law. 

(b) (iv) implies (iii) 

Now we have 
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T 
R(r) = ~ et/(1 + r') dr' 

R(r) = ot log (1+ r) 

Here we have the relation: a = F 

This completes the proof of the theorem. 

R e m a r k  

Although Zipf's law (hence also Pareto's law) is a special case of the classical 

informetric laws (such as Mandelbrot), it is clear that we only encounter Zipf's law in 

highly concentrated(el. Refs. 4, 10) cases. Indeed, from (8) and (10) it follows that if 
H = I ,  

k = l  + ro (31) 

From this we can draw the conclusion that we are dealing here with a highly 
concentrated situation in the sense that or  r0 is small, which is a way of saying that 

(take p = 3 to fix the ideas) the core group of highly produced sources is small, o r  r 0 is 

large but then, according to (31), k must be large and hence, the core group of r0 
sources is nevertheless small w.r.t, the other groups r0k, r0k2 and so on. 

We conclude that linguistics-el Zipfs law (or econometrics - cf Pareto's law) can 

be viewed as part of classical informetrics, but in practice there is a separation since 

1. In most informetric examples we have b = H < 1 and indeed b = H < < 1. 

2. In linguistics and econometrics one often finds b = 1. 

That b < < 1 in most informetric examples can be seen in Ref 5. I know of only 

one bibliography with b = 1: the ORSA bibliography (cf. Ref. 11. or see again Ref. 
5., where b has been calculated). 

A philosophical explanation why Zipf's law represents more concentrated 
situations can be found in Ref. 6. Practical evidence of this is included in Ref. 4. 

Conclusion 

Zipf's law nor Pareto's law fit in the classical definition of the graphical law of 

Bradford. If, however we lower the ranks in the latter law with one we found that: 

- Zipfs law (or Pareto's law) fits in the graphical law of Bradford as well as in 
the verbal law of Bradford; 

- and that the latter property is only valid if Zipfs law (or Pareto's law) is valid. 
This shows the unique and surprising place of Zipfs and Pareto's law. 
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