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ON AUTOMORPHISM GROUPS OF CAYLEY GRAPHS 

by 

W. IMRTCtt (Leoben) and M. E. WATKENS (Syracuse) 

Abstract 

Let X o H denote the Cayley graph of a finite group G with respect to a subset H. 
I t  is well-knot~n tha~ its automorphism group A(X o H) must contain the regular subgroup 
L G corresponding to the set of left multiplication~ by elements of G. This paper is con- 
cerned with minimizing the index [A(Xo, t / ) :L a] for given G, in particular when this 
index is always greater than 1. I f  G is a.beli~n but not one of seven exceptional groups, 
then a Cayley graph of G exists for which this index is at most 2. Nearly complete results 
for the generalized dicyclic groups are also obtained. 

l .  Motivation 

The  symbol  G will a lways deno te  a g roup  assumed to  be f ini te  unless 
otherwise  specified, e will deno te  its ident i ty ,  and  H will denote  a subse t  of  G 
subjec t  to  the  condit ions e~H and  H ~ { h - l : h ~ H } .  The  symbol  X will 
a lways deno te  a simple graph  assumed to be f inite unless o the rwise  specified. 
The  symbols  V(X), E(X), A(X),  and  A~(X) will denote ,  respect ively ,  its v e r t e x  
set, edge set, au tomorph i sm group,  and  the  subgroup of  A (X )  which stabilizes 
the  ve r t e x  v E V(X). F o r  any  set  S, l s  indicates  the  i den t i t y  pe rmu ta t i on  on S. 
L e t  Z n deno te  the  cyclic group of  order  n. 

To wri te  X = XG,H means  t h a t  V(X) = G and  E ( X )  = {[g, gh] : g~G; 
h~ H}. This g raph  is called the  Cayley graph o /G with respect to H, Such a 
g raph  is connec ted  if  and  onty  i f  H generates  G. One readi ly  observes ~hat f o r  
each gEG, t he  lef t  mul t ip l ica t ion ~ g : G - +  G given b y  x - + g x  belongs to 
A(Xa,H). Thus  the  set L~ = {Xe : gCG} is a subgroup of  A(X~,H) for  any  
H and,  moreover ,  is a regular  pe rmu ta t i on  group on V(Xo,n). L e t  us wr i te  

c(G, H ) =  [A(XG,.):L~] = I A ( X ~ , . ) I / I G I ,  

*4 

AMS (MOS) subject classifications (1970). :Primary 05C25; Secondary 20B25. 
_Key words and phrases. Cayley graph~b automorphism groups. 



2 ~ 4  i]tigictt,  WATKINS: .~UTO~0~Pt~IS~I GROUPS OF CAYLEY GRAPHS 

which  equals, of course, IAg(X6,H) I for any g~G. We define the Cayley 
index of G to be 

c(G) -~ rain c(G, H).  
H 

A Cayley graph XG,H for which c(G, H) ~ 1 is called a graphical regular 
representation (GRR) of G. I t  h~s been shown by NOWITZ and WATKINS [11] 
tha t  all non-abelian groups of order coprime to 6 have a GRR. (For an exposi- 
tion of the state of the "GRR-problem" see [16].) More recently ]~RIC~ [6], 
using results from [11] and some results of D. H]~zv.L [2], has shown tha t  
except for the non-abelian group of order 27 and exponent 3, every non- 
abelian group of odd order ~dmits a GRR. All GRR's  are connected, with the 
unique exception of the GI~t~ of Z~ consisting of precisely two isolated ver- 
tices. (See [13] Lemma 1.) 

Let  the function a : G -+ G be defined by x -~ x-~. �9 I f  G is ~belian, g~G, 
and h~t I ,  then the action of g on E(X~,H) satisfies 

a[g, gh] -~ [g-l,  (gh)-l] _ [g-l,  g- lh -1] .  

Since H is closed with respect to inverses and 2 = 16, ~ maps edges into edges. 
Thus {la, ~} ~ Ae(Xa,H) for all H, and as SABIDUSSI [14] and C~AO [1] 
observed, 

1.1. I f  G is abeIian but not an elementary abelian 2-group, then c(G) ~ 2. 

In [3] this was complemented as follows: 

1.2. c(Z~) ~ 2 i f  and only i f  n = 2, 3 or 4. 

The proof in [3] consists of a nonexistence proof for n ~-- 2, 3, 4 and an 
existence proof for n ~_ 5. However, it should be noted tha t  the construction 
given in [3] is wrong for n -= 5 and tha t  several authors, including R. Fa~cH~ 
and M. H. MCAND~W have found constructions for n ~ 6. The error in [3] 
has been pointed out and corrected by B. ALSPAC~, P. HELL, D. HETZEL and 
C~O~G-KEA~G L~M. For the sake of completeness we include a GRI~ of Z~ 
due to H~TZ~L: 

;Let al, a 2, . . . , a~ generate Z~ and let H consist of these generators together 
with ala 2, ala ~, ala 5, aea 4, ada ~, al%a ~ and a~%a 4. Then the Cayley graph of Z~ 

with respect to H is a GRR of Z~. 

One of the two m~in results of this paper  is the following: 

THEOREM 1. Let G be a finite abelian group. Then c(G) _~ 2 unless G is one 
of the following seven groups: Z ~ Z 4 Z d •  2, Z~• Z~, Z ~ and Z 2 2, 2~ 3, 4" 
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As it is in most eases rather tedious to determine the Cayley index of 
t h e  exceptional groups, we have investigated only the cases Z 32, Z4 • Z2, 
and Z~ (see 2.4 and 2.7 below). The Cayley indices of the other exceptional 
groups have been determined by  D. HETZEL [2] with the aid of a computer. 

A non-abelian group G is generalized dicyelic if it is generated by an 
abelian group L and an element b~L such that  (i) b2~L\{e};  (ii) b t = e; 
a n d  (iii) b -  lxb = x -  1 for all x EL. When G is generalized dicyclic, we define the 
function fl : G -~ G given by  

fl(G) = { g' if g E L ;  
g-t ,  if g E G \ L .  

I t  has been shown in [9] and [15] that  in addition to being a group-au~omor- 
phism of every generalized dicyclic group G, fl is also a graph-automorphism 
of X~,n for every H. Since fi2 = 1 6, we have 

1.3. I f  G is a generalized dicyclic group, then c(G) is even. 

Letting Q denote the quaternion group, we state the second main result 
of this paper. 

T ] ~ o ~ M  2. Let G be a finite generalized dicyclic group generated by L and 
b as in the above definition. 

Z m f o r s o m e m ~ O a n d L i s n o t  2 (a ) I fG  isnot  of theformQ • 2 ~ Z4,Z~• 
or Z 4 • Z 22, then (i) c(G)~-- 2 or 4; (ii) i[ I GI ~ 96, then;c(O)-= 2. 

(b) I / G  is of the form Q • Z~, then c(G) ~ 16. 

2. Preliminary results 

For background on cartesian products of graphs, the reader is referred 
to [12]. The same reference contains the following result (Corollary 3.2), 
s ta ted here for finite graphs. 

2.1. I /  X 1 and X 2 are connected graphs which are relatively prime with 
respect to cartesian multiplication, then 

A(X1 • X 2 ) =  A(X1) • A(X2). 

(Note: in the left-hand member of this expression the symbol • denotes 
cartesian multiplication of graphs, but  in the right-hand member > denotes 
the direct product  of  permutat ion groups.) 

I f  X is a graph, then its complement is denoted by X' .  The complete 
graph on n vertices is denoted by  K n. We require the following result [5, 
Theorem 1 ]: 
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2.2. I f  X is any finite or infinite graph, then either X or X"  is prime with 
respect to cartesian multiplication unless X is one of the following six graphs: 
K 2 X K ~ , K 2 X K '  e, K~ X K~ X K2, K4 X K~, K 3 X K s, and K s X K~-, where 
K ~  is obtained from K~ by deletion of an edge. 

A Cayley graph X~,u with the property tha t  c(G, H) ~ c(G) is called 
a most rigid representation (MRR)  of G. Clearly a GRR is always an MRI% 
Since A ( X )  : A ( X ' )  for any graph X, every group admits a connected MI~R. 
In addition, 2.2 implies tha t  every group G admits an MRR which is relatively 
prime with respect to cartesian multiplication unless every MI~R of G is one 
of the six "forbidden" graphs. In the interest of a smoother argument later 
on, let us first determine some MRR's for certain specific groups. 

Lv, M~A 2.3. For each m ~ 3, c(Zrn ) : 2 and the m-circuit C m is an M R R  

/or gin. 

P~oor.  Clearly Cm is a Cayley graph of Z m. Moreover, A(Cm) is the 
dihedral group D m , and 1Din I ~ 2 I Zm I. The conclusion follows from 1.1. 

L E ~  2.4 c(Z~) : 8, and K a • K a is an M R R  of Z~. 

P~oo~. Let  X ~ Xzg, H be a connected MRI~ of Z~. Since H is closed with 
respect to inverses and generates Z a X Za, I HI ~ 4. I f  ]H I 4, then H ha~ 

_ s a a ala~a~la~l e. The automorphism the form {a 1, ai -1, a~, a~-l}, where al -~ 2 --- -~ 
r of Z a • Z 3 which interchanges a 1 and a 2 clearly belongs to Ae(X)  as does 
the automorphism ~ which fixes q but interchanges a s with a i  1. Thus Ae(X) --~ 
= < { a ,  q0,~o}} ~ D a ,  and c ( Z ~ ) < 8 .  In this case, X ~ K  a X K 3 N X ' .  
I f  IH[ > 4 ,  t h e n Z  a • Z a \ ( H U { e  }) does not gene ra t eZ  a x Z a  and so X" 
is not connected. Ei ther  X" consists of nine isolated vertices or X '  = K a X K~. 

Either  way, I Ae(X)[ = ]Ae(X')J > 8. 

L ] ~ A  2.5. c(D 4) -~ 2 and an MR_R of D 4 is shown in Figure 1. 

PROOF. Let X be the graph represented by Figure 1. Let  e denote a ver- 
tex of tha t  graph. We first show tha t  [ Ae(X)  j ~ 2. Of the four edges incident 

Fig. 1. MRI~ for D4 
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with e, two of them lie on precisely one 3-circuit each, and two of them lie on 
precisely two 3-circuits each. One readily verifies tha t  interchanging such 
a pair of edges lying on the same number of 3-circuits determines uniquely 
the only non-identity automorphism in A~(X). 

Represent D 4 = ( a , b [ a  4 = b  2 =  (ba) 2-~e~. Let H = ( a , a  -1 ,b ,ba} .  
Then XD4,H ~--~ X .  Since Da has no GRR (see [15, Theorem 2]), c(Da) = 2. 

O. t t ~ Z E L  has observed to us tha t  the 8-circuit is also an MRR of D4, 
obtained quite simply by taking H ----(b, ba}. This method also affords MRR's 
of D 3 and D~. 

:L:E~:MA 2.6. c(Q) = 16, and (C a • K~) is an M R R  for Q. 

PROOF. The group Q admits the representation Q = <a, b t a 2 = b 2 = 
= (ba)2}. Let  X -= XQ,~ be a connected MRR of Q. Then H contains at least 
two of the three pairs a• !1 and (ba) • Since then Q \ H  does not generate Q, 
the graph X '  cannot be connected. But  since X '  is vertex-transitive, it must be 
one of the following: K~, K 2 • K~, K 4 • K~, or C 4 • K~. Of these, C 4 • K~ 
has the smallest permutation group, namely D 4 wreath Z~, which has order 
128. Hence the stabilizer of a vertex of K t • K~ has order 16. I t  remains 
only to show tha t  (C 4 • K~)" is a Cayley graph of Q. This is immediate when 
one lets H = {a, a -1, b, b-l ,  a2}. 

LElWlA 2.7. I f  G = Z ~  • Z 2 or Z~, then c(G)~--6 and the 3-cube 
K s • K 2 • K 2 is a n M R R  o]G. 

1)ROOF. We represent Z 4 • Zz ~- (al, a21 a~ = a 2~ = ala~a~ 1 a 2 -= e) and 
Za~-~(bl, b2, b31 b~-= (bibj) ~" = e; i , j  = 1,2,3~. The 3-cube is clearly a Cayley 
graph of Z 4 • Z 2 with respect to (oh, a~ -1, a2) and a Cayley graph of Z~ with 
respect to {bl, b2, b3}. Its automorphism-group is known to have order 48, and 
any vertex-stabilizer is isomorphic to the symmetric group of a 3-set. Thus if  
G = Z~ • Z 2 or Z~, then c(G) ~ 6, Let  X =- X~,H be a connected MRI~ of G. 
I f  G ---- Z~, then clearly [H] ~ 3. I f  G ---- Z a • Z2, then H contains at least 
one pair of elements of order 4 together with some other element, and again 
I H] ~ 3. By  the same argument as in the previous Lemma, X '  must be 
connected, and so G \ H  also generates G. Hence ]HI ~ 4. The proof that  no 
other generating set H yields a Cayley graph with a smaller automorphism 
group is straightforward ~nd is left to the reader. 

L~.~MA 2.8. Let G 1 and G 2 be groups having connected M R R ' s  which are 
relatively prime to each other with respect to cartesian multiplication. Then 

c(G1 • G2) ~ c(G1)c(G2). 
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PRoof' .  Le t  us choose connected, relat ively prime MI%R's X 1 and  X~ 
of  G~ and  Gz, respectively. B y  2.1, A ( X  1 X Xz) = A(X1) X A(Xz) .  Hence 

I - 4 ( x l  x x=)  I = I A ( X l )  I I A(X=)f  = 

= e(G1)I Gll  c(G~)i GpI = 

: C((~fl)C(I~!f2)Ia 1 X a21, 

]3utc(G~ x q ) ~  IA(x~ x X=) l / Iq  x q l .  

PI~OI'OSITIOlg 2.9. Let G be a group other than 2 a Z2, Zp, Z 4, Z ~ X Z2, or Z~. 
Then G admits a connected M R R  which is prime with respect to cartesian multipli- 
cation. 

PROOF. L e t  X be a connected MRI~ of the group G. We first  verify t h a t  X 
is no t  one of the  exceptional  graphs listed in 2.2. Since I G} # 4, the graphs 
K 2 X K 2 and  K2 X K'2 are precluded. I f X  is K s • Ks X K2 or its complement  
K t  X Kp, then  tGI----8 and  c ( G ) =  6 by  2.7. Since G is nei ther  Z~ nor Z 4 • Z 2, 
this  is impossible by  2.5 and  2.6. I f  X = K 3 • K s, then  c(G) ---- 8 by  2.4. 
B u t  c(Zg) = 2 by  2.3. Since K 2 X K j  is no t  ver tex transit ive,  it  is no t  a Cayley 
graph.  Hence by  2.2, ei ther  X or X '  is prime (with respect to cartesian mul- 
tiplication). 

I f X  is prime, we are done, so suppose t h a t  X '  is prime bu t  not  connected.  
Since X '  is 'vertex transi t ive,  i t  is the union of  some n ~ 2 copies of  some 
component  Y. Bu t  then  X '  ~ Y • K ' .  Since X '  is prime, Y ~ K 1. Hence  
X ~ K n. Bu t  Kn is prime with  respect to cartesian mult ipl icat ion.  

COROLLARY 2.10. Let G be an abelian group other than Z 4 or Z~ /or some 
m > 1. I /  c(G) = 2, then c(G X Z2) = 2. 

PROOF. B y  1.1, c(G • Zp) ____> 2. Since K 2 is a GRI~ of Z 2, the  corollary 
will follow from 2.8 once it is established t h a t  G has a connected M R R  X which 
is relat ively prime to Kp. This is an immediate  consequence of the  hypo$hesis, 
2.9, and  2.7. 

I f  K ~ G, then  {K)  denotes the subgroup of G genera ted by  K and  
~b< denotes the restrict ion of q~ to the subset K.  Le t  K -1 = {k -1 : k E K } .  
For  any  non-negative integer i, we define K ~ = {e} and  K i+~ = K K  i. 

B y  [7, Corollary 1.2] the  relation ~(a) = b for all ~pEA~(X)\{I~} implies 
el(ca) = ~v(c) q~(a) for all cEG and for all q~CAe(X). I f  ~JK = lj~: for all 
~vEA~(X) we therefore have e = ~o(k -1 k ) ~  ~0(k- 1) k and  q0(k -1) ----k -1 for 
k E K .  B y  the same result, qD(ka) = ka and r = k - l a  if  ~o(a) ~ a for 
all cfEA~(X). Proceeding by  induct ion we therefore obtain ~0jK,---- IIK~ for 
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all integers i i f  ~IK = IlK for rp~Ae(X). Since <K> is the  union of  all K ~" we 
have shown: 

2.11. Let X be a Cayley graph of a group G and let K c G. I f  ~fIK = IIK 
for all cpcAe(X), then TI<K> = l<K> for all q)~ Ae(X). 

For  finite groups this has been formula ted  in [7, Corollary 1.4]. (See 
also [10, Proposi t ion 2.3].) 

The next  result  generalizes [7, Proposit ion 1.8] and is very  impor t an t  
for the proofs of the Theorems. 

P~oPosl~IOS~ 2.12. Let X be a Cayley graph of a finite or infinite abelian 
group G, and let e ~= a E K  ~ G. Suppose that for all ~(Ae(X):  

(i) ~ (a )~{a , a -1} ,  and (ii) q 0 ( a ) = a ~ 0 [ K =  1 K. 
Then for all ~OE Ae(X): 

(iii) r = a ~ ~I<K> = I<K>, and (iv) ~(a) = a -1 ~ ~Ol<K> = ~I<K>- 

P~OOF. Suppose the conditions of  the theorem are satisfied and  t h a t  
~EAe. We note  first  t h a t  ~(a) = a -1 implies ~IK : ~lK- For,  let r = a -1. 
Then otq) E Ae(X) [) Aa(X) and ~ I K  : I lK. l~eplacing K by ( K )  we see t h a t  (iv} 
is a consequence of  (iii). I t  therefore suffices to prove (iii). Assume ~(a) = a .  

For  k E K  we have 2k-~cf)~kEAe(X ) i"IA~,(X),  whence )~k_~q)),klK= 
~--- IlK or (ZlK. In  the  second case k -1 = }c and  ~(]c) = k for all ~0EA~. Hence: 
ef(ak) = q)(a) q~(k) ------ k q)(a) by  [7, Corollary 1.2]. Thus tk_@J~k(a) = T(a) = 
and  2k_,~;~k/K = I [ K  by  (ii). This implies ~[kK = l[kK for all k c K ,  or equiv- 
alently,  91K,----IIK,. B y  induct ion we obtain ~IK~ = ltK~ for all positive: 
integers i. 

We have  o:q)e~Ae(X) and  0r -1)  = a -I .  For  a : a -~ this is the  same, 
as a~0~(a) = a and  for a r a -~ the relation g~a(a) = a follows by  (i). Hence  
a?~]K* ~ IlK* by  wha t  we have just  shown, ~nd therefore T]K_, = 1]~_, for all 
posit ive integers i. Now the  observation t h a t  (K} is the  union of all K ~i 
completes the  proof. 

CO~OLL.~:~- 2.13. Assume the hypothesis of Proposition 2.12. I] G is not 
an elementary abelian 2-group, and if {K)  ~ G, then e(G) = 2 and X is an 
M R R  of G. 

I f  X ~ X~,H, then  Xe will denote the  subgraph of X induced by  the: 
vertices ad jacent  to e, t h a t  is, the  set H.  I t  is clear t h a t  if  9)~Ae(X), then  i t s  
restrict ion to Xe belongs to A(X~). We shall see tha t ,  in part icular  if the  set 
K of  2.11 is contained in H,  consideration of  the  symmetr ies  of  X~ is v e r y  
helpful in determining Ae(X). 

We shall require the following result  which is a special case o f  [7,. 
Theorem 3.1 ]: 
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2.14. Let G be an abelian group o] odd order and Cayley index 2. Suppose 
X~,H is an M R R  o/ G and m is a positive integer. I /  

O r  

then 

(i) m :  1 and IG I > 45, 

(ii) m ~  2 and ]G] > I H ] +  i t ,  

c(G x Z~m+,) = 2. 

3. On the Cayley index of abelian groups 

In  the present section we presume G to be a finite abelian group. By the 
Fundamenta l  Theorem of Abelian Groups, G may be expressed uniquely in 
the form Zm,•  . . . •  where mi+llm i for i =  1 , . . . , r .  Henceforth G 
will be identified with the r-tuple (m 1 . . . . .  mr), and we shall adopt as s tandard 
the representation 

<al,. � 9  ar : am ~ = alaja~-laf I ~--- e, 1 ~ i ~ j ~ r> 

for the group ( m l , . . .  , mr). Further,  we will denote the order of gEG by o(g). 
I f  gl, geEG, we define 

c(g , ,  g~) = {gl, g~l,  g2, g;~, g~g~, g~'g;~} .  

The following includes a reformulation of some observations from [7, Sec- 
tion 4]. The proof is elementary and is omitted. 

LEMMA 3.1. Let X = X6,n. Let gl, ge( G and suppose g~ = g]2 only if 
g~ = e. Also suppose o(gl) ~ o(g2) ~ 3. 

a) I] C(g 1, ge) ~ H, then C(g 1, g2) induces the ]ollowing subgraph in Xe: 
(i) the 6-circuit with vertices listed cyclically as gl, gig2, ge, g~l, g~lg~l, 

g7 ~ i /o (g2)  > ~; 
(it) the subgraph in (i) together with the edge [g2, g~l] i/o(gl) ~ o(g~) ~ 3; 

(iii) the subgraph in (it) together with edges [gl, g[l] and [glge, g~-lg~l] i/ 
o(g~) = o(g~) = 3. 

b) I f  C2(gl) ~ H, then C2(gl) induces the/ollowing subgraph in Xe: 
(i) a 3-circuit if o(gl) : 4; 

(ii) a complete graph on its 4 vertices if o(gl) -~ 5; 
(iii) the 4-circuit [g~-~, g~-l, gl,  g2] i f  O(gl) ~-  6; 

(iv) the path -~ -~ 
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c) I f  Ca(g~) ~ H,  then Ca(g~) induces the following subgraph Xe : 

(i) the complete graph on its 5 vertices if o(gz) ~ 6; 
(ii) the complete graph on its 6 vertices i /o (g l )  z 7; 

(iii) a subgraph with at least 9 edges in which gl and g~l have valence at 
least 4 i f  o(gl) > 8. 

The way  has now been paved for the 

PROOf of Theorem 1. 

Let  G be identified with (roll . . . .  m~). Due to Proposition 2.3, we may 
assume that  r > 2. 

We first dispose of two special cases. First let G ~ (4, 2, 2, 2), and con- 
sider the neighborhood graph Xe induced by  

{a~ 1, a2, (ala2) +1 , a~a 2, aa, (alaa)• a2a a, a4, (ala4) ~1 } 

/•4 
04 01"I(]4 

al a]-1 

012 a~ 

Fig. 2. 3/[R1~ for (4, 2, 2, 2) 

(see Figure 2). Let  ~ A e ( X ) .  Considering the restriction of ~ to Xe, one sees 
tha t  ~(al) C {al, ai -1} since these are the only 8-valent vertices of Xe. Suppose 
~(al) ~ a 1. We note that  ~(a~) ~ a z since this is the only 6-valent vertex of 
Xe with no 4-valent neighbor. Similarly a2a ~ is fixed by  cp since it is the only 
6-valent vertex of Xe with no 8-valent neighbor. Finally, cp fixes ala ~ sin5e it 
is the only ~-valent neighbor of a 1. With K~{al ,a2,a2a~,ala4} , we may con- 
clude by  Corollary 2.13 that  c(G) ~- 2. 

Next  let G -~ (4, 4, 2), and consider its neighborhood graph X~ induced by  

C(a. a2) U C2(al) U {a3, a2a3, a;la3} 
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(see F igure  3). Since a 3 is the  only  ve r t ex  on two 3-circuits of  X~, i t  is f ixed 
unde r  A(Xe) .  I t s  two 4-valent  neighbors  a2, a~ 1 are thus  e i ther  f ixed or inter-  
changed.  Clearly, if  a 2 is f ixed,  t hen  so is a 1, and  b y  Corollary 2.13, c(G) = 2. 

02 -1 (32103 

0 1 ' 2 ~  03 
OICI 

02 02 O3 
Fig. 3. MI~I~ for (4, 4, 2) 

I n  the  l ight of  these two examples  and Corollary 2.10, we m a y  safely 
assume t h a t  mr > 2. The  remaining a rgumen t  will fall into f ive cases according 
to  the  values of  m s and  mr, hu t  the  basic a rgumen t  in each case will be essen- 
t ia l ly  the  same as in the  two foregoing examples :  a set H is proposed and t h e  
ne ighborhood  g raph  Xe of  Xa ,n  is considered in order  to show t h a t  the  hypo-  
thesis of  2.13 is satisfied. The  valence in Xe will be deno ted  b y  ~. We ment ion  
t h a t  ~(h) = ~(h -1) for all hEH.  Indeed ,  h is incident  wi th  an edge of  Xe for  
each re la t ion  h = hlh 2 t h a t  holds for  h 1, h2cH. B u t  then  h -s  = h ~ h ~  1. (This 
holds also when G is no t  ahelian.) 

Case 1: m s >_ 6 and  m, > 3. We let 

r--1 

H = C3(al) U U C(ai, ai+l) U G2(ar ). 
i=1 

l~rom L e m m a  3.1 we compute :  

~(as) > e(a~)+ 2, 

~(as) = 6 or 7, 

~(aiai+s) = 2, 

q(ai) = 4, 

q(ar) ~-~ 4 or 5, 

~(ah __< 3. 

j = + 2 ,  •  

L < i < r - - 1  

2 < i < r - - 1  

I f  ~EA(Xe),  t hen  ~(al)E {as, a~-l}. Suppose  ~(al) = a 1. Proceeding induct ive ly ,  
we note  t h a t  if ~(aj) = a] for  j ~ i, t hen  ~ (aT~ l )=  ai+ 1-~ since ai+l-1 is 
the  ve r t ex  of  largest  valence a d j a c e n t  to  ai no t  a l ready  shown to be f ixed  
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by  ~. B y  Propos i t ion  2.12 we have ~(at+l) ----- ai+ 1. Since (a  I . . . .  , ar} ---~ G, 

the  conclusion follows f rom Corollary 2.13. 

Case  2: m 1 ~ 6 and  m~ ---- 3. Le t  us suppose t h a t  m 1 ~ . . . ~ mq ~ 6 

and  mq+ 1 . . . . .  mr  ~ 3, where 1 ~ q ~ r - -  1. (Recall t h a t  m q + l l m q .  ) 

We let 
q r--q--1 

H : C3(al) U U C(a i ,  ai+l) [J (.J ~ ( a q a q + l .  �9 �9 aq+j,  aq~_j§ 
i=1 j=0 

:From L e m m a  3.1 we compute  ~(a j) as in Case 1, bu t  now 

q(ai) = 4 

~(a~) ---- 3 

q(aia~+t) : 2 

~ ( a q a q + l . . .  aq+j)~-- 4 

~(a qa q+ l . . .  at) --~ 2. 

2 ~ i ~ q  

q + l ~ i ~ r  

l < i ~ q - - 1  

l ~ j ~  r - - q - - 1  

An induct ion  a rgumen t  proceeds as in Case 1 up to i = q. We then  observe 

t h a t  if an element  of  A ( X e )  fixes aq it also fixes aqaq+l, and  cont inue b y  induc- 

t ion  on j to  obta in  t h a t  aqaq+ 1 . . . aq+ 1 is also f ixed for j ---- 1 . . . .  , q - - r .  

Clearly G is genera ted  by  {a 1, . . . , ar aqaq+l, . . . , aqaq+ 1 . . . ar} .  

Case  3: ml = 5. Thus m I . . . . .  mr = 5. The proof  proceeds by  
induct ion  on r. We begin with r = 2 and  represent  

Z~ --- <a, b : a 5 = b 5 = a b a - l b  - 1  = e} .  

:Let H 2 consist of  the  six elements a, ba, ba e, ba 3, ba ~, bPa toge ther  wi th  their  

inverses. L e t  Ye  = Xz~,g~ and  let q~EAe(X2): Considering the  restriction of  

to  (YP)e (see Figure  4), one sees t h a t  q~(ba 3)C {ha 3, b4aP}, since these are the  

Fig .  4. MRR for (5, 5) 
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only 7-valent vertices of  (Y2)e. Suppose q~(ba ~) = ba 3. Then q~(ba 4) = ba 4, 
since ba 4 is the only  4-valent neighbor of  ba ~ in (Y2)~-With K - - -  {ba3,ba4}, we 
conclude by  Corollary 2.13 t h a t  c(Z~) ~- 2 and  Y2 is an M R R  of Z~. 

Now let r ~ 2 ,  suppose t h a t  c ( Z ~ ) = 2 ,  and let Y ~ = X z ~ , H  " be an 
M R R  of Z~. Wi thou t  loss of  general i ty  it  m a y  be assumed tha t  I H~ I ~ 5r/2. 
Since 5 ~ ~ 5~/2 @ 11 for r ~ 2, we apply 2.14 to conclude t h a t  c(Zr~ +1) = 2. 

We remark  t h a t  H~TZ~L [2] has independent ly  de termined all M R R ' s  
of  Z~. Using other  techniques,  I~RZCH [7, Theorem 4.5] showed t h a t  c(Z~) = 2 
for n ~ 4 .  

Case 4: m 1 = 4 and r ~__ 3. Under  our assumptions,  m 1 . . . . .  mr --- 4. 
We let 

r--1 
2 2 H --= C2(al) U C2(ala~) U (J C(ai, ai+l) U C2(ar) U {alar}.  

i=1 

Again, using L e m m a  3.1, we compute:  

Q(ai) = 4  l ~ i ~ r  

4 ,  i = I 
~ ( a i a i + l )  / 2, 2 ~ i ~ r - - 1  

e(a ) = e(a ) = 4 

e(a a ) = ~(alar) = 2. 

The vertices a 1 and  a~ -~ are the  only 4-valent vertices all four of whose neigh- 
bors are each 4-valent. Hence cf(al)~{al,  a~ -1} for all q~EA(Xe).  Suppose 
~(al) = a 1. The only neighbor of a 1 lying on no 3-circuit is a~ ~. We conclude 
t h a t  ~]<K> = !<K> where K = {a 1, a2}. We now suppose t h a t  q~(a]) = a I for 
all j ~ i, where i ~ 2, and  continue induct ively  as in Case 1. 

Case 5: m 1 = 3 and  r ~ 4. Thus m 1 . . . . .  mr = 3. Because of 2.14 
(i), it  suffices to demonst ra te  an M R R  for Z~. To simplify nota t ion,  ]et {a,b,c,d} 
be a generat ing set for G 1 ----Z~ instead of the  s t andard  {a 1, ae, a ~, at},  and let  
G ---- <a, b, e}. Define 

H = G \ { a ,  c, a s, c e, e}, 

H 1 : G [J {cd, d, ad, abd, abc2d} • 

and set X = Xa ,H ,  Y = Xa,,H,. By [4, Corollary 1 ] the  cosets of  G are blocks 
o f  A(Xo ,H1) ,  i.e., every element  of A e ( Y )  stabilizes G and  maps dG into i tself  
or interchanges dG with  d2G. 

We note t h a t  any  element  of A e(X)  fixes { a, a e, c, e 2} setwise and,  moreover, 
e i ther  stabilizes the  subsets {a, a 2} and  {c, c 2} or interchanges them.  The neigh- 
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bors of a in dG f3 HI  and d2G N H 1 are ad and  d 2, respectively, while a ~ has the  
neighbors d and  ag'd 2 in dG 17 H 1 and  d~G f3 H 1, respectively. The neighbors 
of c lying in dG f'l H 1 are abd and cd; those in d2G f'l H 1 are a~b2d2c and dL 
Final ly,  c 2 has the  neighbors abdc 2 and d in dG f3 H 1 and a2b2d ~', c2d 2 in d2G f'l H 1. 

As c has more neighbors in H I \ G  t h a n  a does, the  elements of Ae(Y)  fix 
{a, a 2} and  {c, c 2} setwise. Since d and  d 2 are the  only elements of H I \ G  with 
two neighbors in {a, a 2, c, c~}, it  is clear t h a t  every ~CA~(Y) stabilizes {d,dP'}. 
Suppose ~(d) ---- d. Since d has the neighbors a 2, c ~ in G \ H ,  which cannot  be 
interchanged,  cp fixes each of  a, a 2, c, cL As c ~ has only  the  neighbor abced 
besides d in dG f'1111, the  element abc~d is also fixed. Now an application of  
2.13 shows t h a t  Y is an M R R  of G r 

REMA~X. An M R R  of Z~ can be obtained from the  one given in [7] 
for Z~ by  an application of [17, L e m m a  2.7]. I f  X is the  jus t -ment ioned M R R  
for Z~ we only have to set .N=(cha~la~-la6}  in order to obta in  an M R R  
X / N  of Zg. This me thod  does not  work for Z~. 

4. On the Cayley index of generalized dieyclic groups 

In  [8] we def ined a graph X to belong to the  class 3n,q (n ~ 2; q ~__ 1) 
if  i t  is isovalent  and  if  the  set V ( X )  admits  a par t i t ion  { V1, V2, �9 �9 Vp} with  
2 ~ p ~ n such t h a t  every ver tex  in V i is adjacent  to at  most  q vertices in 
V 1 for j ~ i. I t  was shown [8, Corollary 1B] t h a t  

4.1. I f  XE3n,q and ]V(X)I ~ qn(n-[- 2), then X 'C~n,  q. 

PROOF of Theorem 2. Le t  G be a generalized dicyclic group genera ted  
by the  abelian group L and  an element b as in the definit ion in w 1 above, 
and  let fi denote  the  au tomorphism of G also given in w 1. Clearly, the subgroup 
L mus t  have even order. Since G is non-abelian,  L is no t  an e lementary  abelian 
2-group. 

To prove (a) let it  be assumed t h a t  L is nei ther  (4,4) nor (4,2) nor (4,2,2). 
B y  Theorem 1, L admits  an M R R  W = XL, j  such tha t  A e ( W ) =  {1L,~}. 
L e t  H = J U {b, b -1} and  let X = Xc ,n .  I t  will be shown t h a t  Ae(X)  can be 
embedded  in Z~. We first  prove 

(4.1) cf[L]-----L for all q~CAe(X). 

Clearly, (4.1) is equivalent  to the  condit ion t h a t  q~[bL] = bL for all q ~ A e ( X ) .  

I f  [G[ ~ 32, then  ILl ~ 16, and  by  4.1, ei ther W or W' is no t  in 32. 2 
and  (4.1) follows immedia te ly .  
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I f  j GI __< 32, then  ILl ~ !6. Under  our assumptions,  L is the cyclic 
group Zero (3 ~ m < 8) or L is (6,2) or (8,2). I f  L ~-- (a}, let J -~ {a ,a  -1} 
whence W : C2m (cf. L e m m a  2.3). We compute  t h a t  the edges [e, a ~ ] each lie 
on  precisely two 4-circuits. (For the  edge [e, a] these are defined by  {a, e, ba- lb}  
a n d  {e,a, b - l a - l , b - 1 } . )  The edges [e,b ~1] each lie on precisely three 4-circuits. 
(For the edge [e, b] these are defined by  {e, a, ba -1, b}, {e, a -1, ba, b} and 
{e,b-l,b2,b}.) 

I l L  is (6,2) or (8,2), then  b e is one o f a ~ ,  a 2, and  a~a~ where o(al) ~ 2m. 
I f  b 2--aim, then  G---- (a  1,b~ • (a~>. B y  Theorem 1, c((al, b>) = 2, and  so 
c(G)----2 by  2.9 and  2.8. Now suppose b*-----a 2. (The al ternat ive  b ~ - -  a~a e 
is equivalent  under  the  au tomorphism a i --~ a i, a 2 --~ a~a 2 of the group L.) 
L e t  J ~-{ai ,  aEl, a~.}. Using 2.3 and  2.1, the reader  can readi ly verify t h a t  
XL, j is an M R R  of L. This t ime, however, let W be the  complement  of  XL, j ,  
and  note  t h a t  every edge wi th  bo th  vertices in L or bo th  vertices in bL lies 
on a 3-circuit. No edge wi th  one ver tex  in L and  one ver tex in bL has this  
proper ty ;  for if  [g, gb] were such an edge, then  the  other  two edges on the  3- 
circuit  would have to be [gb,gb 2] and [g, gb 2] or [qb-l ,g]  and  [gb - i ,  gb]. B u t  
[g, gb2], [gb -1, gb]~[E(X) since b 2 = azc[H. Since in every instance W is a 
connected graph, (4.1) follows. 

Now let ~vEAe(X). B y  (4.1), ei ther  r = IL or ~VIL ---- cr 
Firs$ suppose ~]L = 1L. Since q(b)~{b, b- l} ,  we begin by  supposing 

q0(b) = b, i.e., ~lbL has a fixed-point,  and  so ?]bL = lbL or qP]bL = ~b~b--~. 
In  the  former case ~ ---- 1G; in the  la t ter  case q~(bx) ~ bx -1 for all xEL.  B y  
our assumptions on L, there exists an x c L  such t h a t  x ~ #  e, b% In  part icular,  
if  L ---- Z , •  for some m ~ 3, then  b 2 ~= a~, or else G would be isomorphic 
to Q •  Hence x----a 1. I f  qg(bx)= bx -1, then  the  neighbors in L of bx, 
namely  bxb and  x -1, mus t  coincide wi th  the neighbors in L of bx -1, namely  
bx - lb  and  x. Bu t  clearly x ~= x -1, while x = bxb implies x 2 ~  (bx) 2 - -  b 2, 
which is a contradict ion.  Now suppose t h a t  q0(b)----b -1. Then (fiT)[L ~ 1L 
and  flq~(b) = b. I t  follows by  what  we have just  shown t h a t  fl~ = lz.  Since 

f12_~ 1~, we have ~ ~ ft. 
On the other  hand,  suppose ~]L----a. Again qJ(b)c(b,b-1}, and we 

suppose first  t h a t  ~(b)----b. Since A ~ ( X \ W )  is isomorphic as a pe rmuta t ion  
group to (1L,~), there are a t  most  two  possibilities ~ and  ~u for cf. Clearly, 
~----~----1(~,  (~eY~)lL----1~ and  ~2~1(b)----b. Hence as before, ? ~ - ~  !~" 
Under  the  given assumptions,  there exists at  most  one such automorphism,  
which, if  it  exists, we denote  by  ~. Final ly,  suppose ~(b) ---- b-1. Then (fi~)]L ~ 
and/~0(b) ---- b. Hence fl~ ~- ~ and  so ~ ~ fl~. Thus q~Ae(X)  i f  and  only  i f  
~,~Ae(X). We have shown t h a t  A e ( X ) ~  ~ {l~,f i ,~ , f i?} _ ~ Z 2 2, completing the  
p roof  of  (i) in pa r t  (a). 

To prov e (ii), suppose [G] > 96, in which ease 1L] > 48. Since, more- 
over, G is no t  of  the  form Q •  one verifies b y  exhaust ion  t h a t  L mus t  
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:contain some two dist inct  elements s~ 
i tons  for i, jC{1,  2} and  i :z~j: 

2 (4.2) si 

and s 2 subject to all the  following condi- 

e~ 

(4 .~)  SiS j =2 ~ e, 

(4.4) s~ :/: b~, 

(4.5) 8; s}, 

(4.6) SiS 1 =l = b 2, 

(4.7) s i =/= b2s}. 

Let  W be as before, bu t  redefine 

(4.8) H = J U {b, b -z,  bs l, b - l s l ,  b%b- l s~}  

and  let X = Xc ,n .  Arbi t rar i ly  choose q)EAe(X).  We apply 4.1 again wi th  
n = 2 and  q = 6. Since I L I > 48, we m a y  assume t h a t  W ~ ~2,8. Thus ~v[L] = 
= L and  cf[bL] = bL. I f  ~v(b)~{b, b- l} ,  then  we m a y  assume wi thout  loss of  
genera l i ty  t h a t  ~0(b) = bs r There are precisely two possibilities for the  action 
of  ~0 on bL, namely  Asc, and  Ab~ aAb-,; t ha t  is, either 

(4.9) q~(bx) = bxs 1 for all x ~ L  

o r  

(4.10) ~ o ( b x ) = b x - l s l  for all x ~ L ,  

respectively.  

I f  (4.9) holds, then  cf(bsl) = bs~ must  be one of the six neighbors of e 
in the  r igh t -hand  member  of  (4.8). By  (4.2), bs~ =/= b or (bsl) • and by (4.4) 
bs~ ~/= b -1. Fur the r ,  by  (4.5) bs~ :/= bs 2 and by  (4.7), bs~ :~ b-is2. On the other  
hand,  if  (4.10) were to hold, we would apply the same a rgument  to o2(bs2) = 
= bs~Zsl . Since s 1 =~- s 2 , this  image is no t  b, and  by  (4.3), i t  is no t  b -1. :By (4.2) 
we can el iminate (bs~) • and by  (4.5), bs~lsl :~ bs 2. Finally,  b82J81 =/= b-182 
b y  (4.7). Hence ~v(b)E {b, b- l} .  

I f  of(b) = b and  if  ~v r 1 c, then  as before ~(bx) = bx -1 for all xCL: 
We now consider the image cf(bsl) : bs[  1 which, since ~2 = 1~, cannot  equal 
b. B y  (4.2) it  is nei ther  b -x nor b81. By  (4:4), b8~ 1 =/= b-is1, and  by (4.2) one 
m a y  el iminate  bs 2. t~inally, by  (4.6), bs[ 1 =za b-is2. 

We have thus  shown t h a t  either cp = 1 c or ~(b) = b -1. (The reader should 
be certain to note  t h a t  this  t ime it was no t  necessary to consider two cases 
depending upon the  behavior of  ~0 on L.) To conclude,  suppose ~0(b) = b -1. 
Then  fief(b) = b, and by  wha t  we have jus t  shown, fl~o = 1G. Hence q0 = fl, and  
A~(X) = {I~,#} ~Z~. 

5 Periodiea Mat. 7(3-4)  
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To prove  (b), we let G ---- Q •  and proceed b y  induct ion on n. When  

n-----O, c(G)-~ 16 b y  L e m m a  2.6. I f  c ( Q •  then  by  2.8 and  2.9, 

c(Q •  +~) ~ c(Q • c(Z2) ~ 16. 
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