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ON AUTOMORPHISM GROUPS OF CAYLEY GRAPHS

by
W. IMRICH (Leoben) and M. E. WATKINS (Syracuse)

Abstract

Let Xy denote the Cayley graph of a finite group & with respect to a subset H.
It is well-known that its automorphism group 4(Xg ;) must contain the regular subgroup
Lg corresponding to the set of left multiplications by elements of G. This paper is con-
cerned with minimizing the index [4(Xgy):ZLg) for given G, in particular when this
index is always greater than 1. If G is abelisn but not one of seven exceptional groups,
then a Cayley graph of G exists for which this index is at most 2. Nearly complete results
for the generalized dicyelic groups are also obtained.

1. Motivation

The symbol G will always denote a group assumed to be finite unless
otherwise gpecified, ¢ will denote its identity, and H will denote a subset of G
subject to the conditions e¢H and H = {h-1:hcH}. The symbol X will
always denote a simple graph assumed to be finite unless otherwise specified.
The symbols V(X), B(X), 4(X), and 4,(X) will denote, respectively, its vertex
set, edge set, antomorphism group, and the subgroup of 4(X) which stabilizes
the vertex v € V(X). For any set S, 15 indicates the identity permutation on S.
Let Z, denote the cyclic group of order x.

To write X = Xy means that V(X) =@ and E(X) = {[g,gk]:9€6;
heH}. This graph is called the Cayley graph of G with respect to H. Such g
graph is connected if and only if H generates G. One readily observes that for
each g€G, the left multiplication 4, :6 — @ given by = — gz belongs to
A(Xg ). Thus the set Lg = {4,:9¢Q} is a subgroup of A(Xgy) for any
H and, moreover, is a regular permutation group on V(X 5). Let us write

(@, H) = [A(Xgn) : Lg] = |A(Xen)l[|G],
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which equals, of course, | A Xg )| for any geG. We define the Cayley
index of G' to be

¢(@) = min ¢(G, H).
H

A Cayley graph X 4 for which ¢(@, H) = 1 is called a graphical regular
representation (GRR) of G. It has been shown by Nowirz and WATkINs [11]
that all non-abelian groups of order coprime to 6 have a GRR. (For an exposi-
tion of the state of the “GRR-problem’ see [16].) More recently TmricH [6],
using results from [11] and some results of D. HeTzeL [2], has shown that
except for the non-abelian group of order 27 and exponent 3, every non-
abelian group of odd order admits a GRR. All GRR’s are connected, with the
unique exception of the GRR of Z, consisting of precisely two isolated ver-
tices. (See [13] Lemma 1.)

Let the function « : @ — G be defined by x — z~1. - If @ is abelian, ¢g¢€@,
and A€ H, then the action of « on £{(Xg,y) satisfies

alg, ghl=[g7% (gh) 1= [g~1, g~ h1].

Since H is closed with respect to inverses and o = 15, « maps edges into edges.
Thus {lg, o} < 4.(Xgpn) for all H, and as Sarmpusst [14] and Cmao [1]
observed,

1.1. If G is abelian but not an elementary abelian 2-group, then c¢(G) = 2.
In [3] this was complemented as follows:
1.2. ¢{Z3) > 2 if and only if n =2, 3 or 4.

The proof in [3] consists of a nonexistence proof for n = 2, 3, 4 and an
existence proof for n > 5. However, it should be noted that the construction
given in [3] is wrong for n = 5 and that several authors, including R. FRUCHT
and M. H. McANDREW have found constructions for » >> 6. The error in [3]
has been pointed out and corrected by B. ALsracs, P. Herr, D. HETzEL and
CroNg-KEaxce Liv. For the sake of completeness we include a GRR of Z3
due to HETZEL:

Let a, ay, . - . , as generate Z; and let H consist of these generators together
with 0,05, .03, G5, B0y, By05, G0y ond dyitat,. Then the Cayley graph of VA
with respect to H is a GRR of Z3.

One of the two main results of this paper is the following:

THEOREM 1. Let G be o finite abelian group. Then ¢(G) << 2 unless G 15 one
of the following seven groups: Z3, Zs, ZyXZy, Zyx Zs, By, Z3, and Zj.
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As it is in most cases rather tedious to determine the Cayley index of
the exceptional groups, we have investigated only the cases Z3, Z, X Z,,
and Z2 (see 2.4 and 2.7 below). The Cayley indices of the other exceptional
groups have been determined by D. HeTzeL [2] with the aid of a computer.

A non-abelian group G is generalized dicyclic if it is generated by an
abelian group L and an element b¢L such that (i) b2cL\{e}; (ii) b = ¢;
and (iii) b—1xb = 21 for all x¢L. When ( is generalized dicyclic, we define the
function g : G — G given by

g if geL;

P& = {g‘l, if geG\L.

It has been shown in [9] and [15] that in addition to being a group-automor-
phism of every generalized dicyclic group @, g is also a graph-automorphism
of Xy for every H. Since % = 1g, we have

1.3. If G is a generalized dicyclic group, then c¢(@) is even.

Letting ¢ denote the quaternion group, we state the second main result
of this paper.

TuEOREM 2. Let G be a finite generalized dicyclic group generated by L and
b as in the above definition.

(a) If @ isnot of the form @ X Zy for somem > 0 and L is not Z3, Z X Z,,
or Z, X Zy, then (i) ¢(G) = 2 or 4; (ii) if |G'| > 96, then, ¢(@) = 2.

(b) If G is of the form Q X Z3', then c¢(G) < 16.

2. Preliminary results

For background on cartesian products of graphs, the reader is referred
to [12]. The same reference contains the following result (Corollary 8.2),
stated here for finite graphs.

2.1. If X, and X, are connected graphs which are relatively prime with
respect to cartesian multiplication, then

A(Xl X Xz) = A(Xl) X A(Xz)-

{Note: in the left-hand member of this expression the symbol X denotes
cartesian multiplication of graphs, but in the right-hand member X denotes
the direct product of permutation groups.)

If X is a graph, then its complement is denoted by X’. The complete

graph on n vertices is denoted by K,. We require the following result [5,
Theorem 1]:
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2.2. If X is any finite or infinite graph, then either X or X’ is prime with
respect to cartesian multiplication unless X is one of the following six graphs:
K, X K,, K, X K3, K, X Ky X Ky, K; X K,, K; X K, and K, X K7, where
K is oblained from K, by deletion of an edge.

A CQayley graph Xgy with the property that ¢(@, H) = c(&) is called
a most rigid representation (M ER) of G. Clearly a GRR is always an MRR.
Since 4(X) = 4(X’) for any graph X, every group admits a connected MRR.
In addition, 2.2 implies that every group G admits an MRR which is relatively
prime with respect to cartesian multiplication unless every MRR of ¢ is one
of the six “forbidden” graphs. In the interest of a smoother argument later
on, let us first determine some MRR’s for certain specific groups.

Lemma 2.3. For each m > 3, ¢(Z,,) = 2 and the m-circuit C,, is an MRR
for Z,,. '

Proor. Clearly O, is a Cayley graph of Z,,. Moreover, 4(C,) is the
dihedral group D,,, and | D,,| = 2|Z,,|. The conclusion follows from 1.1.

LEMMA 2.4 o(Z2) = 8, and K, X K is an MRR of Z;.

Proor. Let X = X, ; be a connected MRR of Z2. Since H is closed with
respect to inverses and generates Zy X Zy, |H| > 4. If |H| = 4, then H has
the form {a,, a; %, ay, a5'}, where ai = a} = aya,0; 05" = ¢. The automorphism
@ of Zy X Z, which interchanges a, and a, clearly belongs to 4.(X) as does
the automorphism y which fixes @, but interchanges a, with ay’ L Thus 4.(X) =
= {a,p,9}) 2= D,, and c¢(Z3) < 8. In this case, X oz Ky X Ky~ X'
If |H| > 4, then Zy X Z,\ (HU {e}) does not generate Z; X Z, and so X’
is not connected. Either X’ consists of nine isolated vertices or X’ = K; X Kj.
Either way, | 4.(X)| = | 4.X")] > 8.

LemMA 2.5. ¢(D,) = 2 and an MRR of D, is shown in Figure 1.

Proor. Let X be the graph represented by Figure 1. Let ¢ denote a ver-
tex of that graph. We first show that | 4.(X)| = 2. Of the four edges incident

Fig. 1. MRR for D,
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with ¢, two of them lie on precisely one 3-circuit each, and two of them lie on
precisely two 3-circuits each. One readily verifies that interchanging such
a pair of edges lying on the same number of 3-circuits determines uniquely
the only non-identity automorphism in 4.(X).

Represent D, =<a,bla* =0 = (ba)> =e). Let H = {a,a-1,b,ba}.
Then Xp g o< X. Since D, has no GRR (see [15, Theorem 21), ¢(D,) = 2.

D. HerzEL has observed to us that the 8-circuit is also an MRR of D,,
obtained quite simply by taking H ={b, ba}. This method also affords MRR’s
of Dy and Dy,

Luemma 2.6. ¢(@) = 16, and (C, X K3) is an MRR for Q.

Proor. The group @ admits the representation @ = (a,b|a? = b? =
=(ba)?). Let X = Xq y be a connected MRR of @. Then H contains at least
two of the three pairs a®1,b*1 and (ba)*L. Since then Q\ H does not generate Q,
the graph X’ cannot be connected. But since X’ is vertex-transitive, it must be
one of the following: K3, K, X Kj, K, x K3, or C, x Kj. Of these, C, x K}
has the smallest permutation group, namely D, wreath Z,, which has order
128. Hence the stabilizer of a vertex of K, X K} has order 16. It remains
only to show that (U, x K3)’ is a Cayley graph of Q. This is immediate when
one lets H = {a,a=%,b,b-1, az}.

LevMa 2.7, If G=12, X Z, or Z% then c(@) =6 and the 3-cube
K, X K, x K, is an MER of Q.

Proor. We represent Z, X Z, = {a,a,|a} = a3 = a,a,a7 ', =€) and
73 =(b,,b,, b?,lbg:(b,-bj)2 =¢; 1,5 =1,2,8). The 3-cube is clearly a Cayley
graph of Z, x Z, with respect to {a,,a7",a,} and a Cayley graph of Z& with
respect to {b,, by, by} . Its automorphism-group is known to have order 48, and
any vertex-stabilizer is isomorphic to the symmetric group of a 3-set. Thus if
G =Z, X Zy or Z§, then ¢(@) < 6. Let X = Xy be a connected MRR of G.
If G = Z§, then clearly |H|>3. If @ =%, X Z,, then H contains at least
one pair of elements of order 4 together with some other element, and again
|H| > 3. By the same argument as in the previous Lemma, X’ must be
connected, and so G\H also generates G. Hence | H| < 4. The proof that no
other generating set I yields a Cayley graph with a smaller automorphism
group is strajghtforward and is left to the reader.

Lemma 2.8. Let Gy and G, be groups having connected MRR’s which are
relatively prime to each other with respect to cartesian multiplication. Then

c(Gy X G, < C(GI)C(GZ)'
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Proor. Let us choose connected, relatively prime MRR’s X, and X,
of Gy and G,, respectively. By 2.1, A(X; x X,) = A(X,) x 4(X,). Hence

| A(X; X Xy)| = | A(Xy)] | A(X,)| =
= (1)1 G4 1¢(@y)| Gy | =
= ¢(G1)e(Gy)| Gy X Gyl

But ¢(@; X G,) < [A(X; X X,)| /|Gy X Gyl

Prorosition 2.9. Let G be a group other than Z3, 73, Z,, Zy X Z,, or Z3.
Then G admits a connected M RE which is prime with respect to cartesian multipli-
cation.

Proo¥. Let X be a connected MRR of the group @. We first verify that X
is not one of the exceptional graphs listed in 2.2. Since |G| 5= 4, the graphs
K, X K, and K, X K; are precluded. If X is K, X K, X K, or its complement
K, x K, then |G| = 8 and ¢(G) = 6 by 2.7. Since G is neither Zi nor Z, X Z,,
this is impossible by 2.5 and 2.6. If X = K, X K,, then ¢(G) = 8 by 2.4.
But ¢(Z,) = 2 by 2.3. Since K, X K; is not vertex transitive, it is not a Cayley
graph. Hence by 2.2, either X or X’ is prime (with respect to cartesian mul-
tiplication).

Tf X is prime, we are done, so suppose that X’ is prime but not connected.
Since X’ is vertex transitive, it is the union of some n > 2 copies of some
component Y. But then X' =< ¥ x K. Since X’ is prime, Y o< K,. Hence
X =< K,. But K, is prime with respect to cartesian multiplication.

COROLLARY 2.10. Let G be an abelian group other than Z, or Zy for some
m > 1. If ¢(G) = 2, then (G X Zy) = 2.

Proor. By 1.1, ¢(G X Z,) > 2. Since K, is a GRR of Z,, the corollary
will follow from 2.8 once it is established that @ has a connected MRR X which
is relatively prime to K,. This is an immediate consequence of the hypothesis,
2.9, and 2.7.

If K € @, then (K> denotes the subgroup of G generated by K and
@|k denotes the restriction of ¢ to the subset K. Let K- = {k~':kcK}.
For any non-negative integer i, we define K° = {e} and K'*' = KK".

By [7, Corollary 1.2] the relation p(a) = b for all g€ 4.(X)\{1¢} implies
@(ca) = p(c)p(a) for all cc@ and for all @€ A4,(X). If ¢|x = 1|k for all
g€ A(X) we therefore have ¢ = @(k~1k) = (k=) k and ¢(k—1) = k-1 for
kcK. By the same result, p(ke) = ka and @(k—'a) = k~'a if ¢la) =a for
all peA.(X). Proceeding by induction we therefore obtain @)y = 1|y for



IMRICH, WATKIKS: AUTOMORTHISM GROUPS OF CAYLEY GRAPHS 249

all integers i if @|x = 1|k for p&A4,(X). Since (K) is the union of all K we
have shown:

2.11. Let X be a Cayley graph of a group G and let K & G. If plx = 1|k
for all p€ A(X), then @| gy = 1k, for all pc A.(X).

For finite groups this has been formulated in [7, Corollary 1.47. (See
also [10, Proposition 2.3].)

The next result generalizes [7, Proposition 1.8] and is very important
for the proofs of the Theorems.

Prorosition 2.12. Let X be a Cayley graph of a finite or infinite abelian
group G and let ¢ 5= ac K & G. Suppose that for all p€ A,(X):
ye{a,a=1}, and (ii) @la) =a¢ = plx = 1k.
Then for all pEA(X):
(iii) plo) = a = gl = Ly, and (iv) pla) = a=! = ¢l = ol k-

Proor. Suppose the conditions of the theorem are satisfied and that
p€A,. We note first that ¢(a) = a~1 implies ¢|x = a|x. For, let p(a) = a—1.
Then apeA.(X)N 4,(X) and ap|x = 1|x. Replacing K by (K> wesee that (iv)
is a consequence of (iii). It therefore suffices to prove (iii). Assume g(a) = a.

For kcK we have 4,9 €cd4.(X)N A4, (X), whence A,—¢l)\x =
= 1|k or «|x. In the second case k~* = k and (k) = k for all pcA4,. Hence
glak) = @la) p(k) = k pla) by [17, Corollary 1.2]. Thus A,.¢l.(a) = g@) =a
and 4,-.¢l|x = 1| by (ii). This implies ¢|,, = 1{,, for all k€K, or equiv-
alently, @|g. = 1/x.. By induction we obtain ¢|x: = 1|, for all positive
integers 1.

We have agac4.(X) and apa{a—!) = L. For a == a1 this is the same
as apx(a) = a and for @ 5= a~? the relation aga(a) = a follows by (i). Hence
apa| gi = 1| g by what we have just shown, and therefore g|,—: = 1|, for all
positive integers i. Now the observation that (K> is the union of all K*¢
completes the proof.

COROLLARY 2.13. Assume the hypothesis of Proposition 2.12. If G is not
an elementary abelion 2-group, and if (K> = @, then (@) = 2 and X is an
MRR of G.

If X = X 5, then X, will denote the subgraph of X induced by the.
vertices adjacent to e, that is, the set H. It is clear that if pEd(X), then its
restriction to X, belongs to A(X,). We shall see that, in particular if the set
K of 2.11 is contained in H, consideration of the symmetries of X, is very
helpful in determining A,(X).

We shall require the following result which is a special case of (7,
Theorem 3.17:
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2.14. Let @ be an abelian group of odd order and Cayley index 2. Suppose
Xg,u 18 an MRE of G and m is a positive integer. If

i) m =1 and |G| > 45,
or

(ii) m>2 and |G| > |H|+11,

(G X Zymyy) = 2.

3. On the Cayley index of abelian groups

In the present section we presume @ to be a finite abelian group. By the
Fundamental Theorem of Abelian Groups, ¢’ may be expressed uniquely in
the form Zy, X ...X Zn, where m; ,|m; for i =1,...,r. Henceforth
will be identified with the r-tuple (m,, . . . , m,), and we shall adopt as standard
the representation

(g, o @ aM=agale =e 1<iZj<r

for the group (m,,. . . ,m,). Further, we will denote the order of gc@@ by o(g)-
If g,, 9,€G, we define

Clgy, 95) = {90, 975 92 935 9190 97957}
Colgy) = {gi’:" 11=1,2}
Cylgy) = {9 :i=1,2,3).

The following includes a reformulation of some observations from [7, Sec-
tion 4]. The proof is elementary and is omitted.

Lemma 3.1. Let X = Xgp. Let g,, ,€G and suppose gt = gl only if
gi = e. Also suppose o(g;) = o(g,) = 3.

a) If Clg,, go) € H, then C(gy, g,) induces the following subgraph in X:
(i) the 6-circuit with vertices listed cyclically as gy, G, 0o 97 9797

g5+ if olgy) > 3;

(i) the subgraph in (i) together with the edge [gs, 951 if 0(gy) > o(g,) = 3;

(iii) the subgraph in (i) fogether with edges [¢y, 971 and [g,gs, g1 951 if
o(gy) = olgy) = 3.

b) If Cy(g:) S H, then Cy(g,) induces the following subgraph in X.:

(i) @& 8-circuit if o{gy) = 43

(ii) @ complete graph on ils 4 vertices if o(g,) = 5;

(iii) the 4-circuit [g72, 97", 91, 941 #f 0o(gy) = 6;

(iv) the path [g57, 957, g5 021 if olgy) 2 7.
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¢) If Cy(g) S H, then Cylg,) induces the following subgraph X,:

(i) the complete graph on its 5 vertices if o(g,) = 6;
(ii) the complete graph on its 6 vertices if o(g;) = 7;
(iii) o subgraph with at least 9 edges in which g, and g7 have valence at
least 4 if o{g,) > 8.

The way has now been paved for the
ProoF of Theorem 1.

Let G be identified with (my, . ..,m,). Due to Proposition 2.3, we may

assume that r > 2.
We first dispose of two special cases. First let G = (4, 2, 2, 2), and con-

sider the neighborhood graph X, induced by

2
{a!, ay, (“1“2):H7 1%y, A3, (al%)il’ Aoy, Qg (“1“4)i1}

6104 o4 ailay
9193 W oo
a; > aft
gz03
/ .
a,a; . ala,
\ ”

‘31z a;

Fig. 2. MRR for (4,2, 2, 2)

{(see Figure 2). Let pcA4.(X). Considering the restriction of p to X,, one sees
that @(a,)€{ay, 7'} since these are the only 8-valent vertices of X,. Suppose
@(a;) = a;. We note that ¢(a,) = a, since this is the only 6-valent vertex of
X, with no 4-valent neighbor. Similarly a.a, is fixed by ¢ since it is the only
6-valent vertex of X, with no 8-valent neighbor. Finally, ¢ fixes a,a, sinée it
1s the only 2-valent neighbor of ;. With K ={a,,ay, aya,,0,0,}, we may con-
clude by Corollary 2.13 that ¢(@) = 2.

Next let @ = (4, 4, 2), and consider its neighborhood graph X, induced by

Clay, @) U Chla) U {“3»“2“3)%—1“3}
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(see Figure 3). Since a, is the only vertex on two 3-circuits of X,, it is fixed
under 4(X,). Tts two 4-valent neighbors a,, a,; ! are thus either fixed or inter-
changed. Clearly, if a, is fixed, then so is a,, and by Corollary 2.13, ¢(G) = 2.

02“03

02 g 03

Fig. 3. MRR for (4, 4, 2)

In the light of these two examples and Corollary 2.10, we may safely
assume that m, > 2. The remaining argument will fall into five cases according
to the values of m, and m,, but the basic argument in each case will be essen-
tially the same as in the two foregoing examples: a set H is proposed and the
neighborhood graph X, of Xy is considered in order to show that the hypo-
thesis of 2.18 is satisfied. The valence in X, will be denoted by p. We mention
that o(h) = p(h~1) for all A€ H. Indeed, b is incident with an edge of X, for
each relation = h;h, that holds for %, h,c H. But then b= = hy 'k . (This
holds also when & is not abelian.)

Case 1: m; > 6 and m, > 3. We let
\ r—1
H = Cy(ay) U U Clay, a,41) U Cylar).
i=1

From Lemma 3.1 we compute:

olay) > elad) + 2, j= 42 +3
ola,) =6 or 7,

olaay,) = 2, 1<i<r—1
ela;) = 4, 2<i<r—1
ola;) =4 or 5,
o(a?) < 3.

If pc A(X,), then ¢(a;)€{a;, ai'}. Suppose p(a;) = a,. Proceeding inductively,
we note that if g(a) =¢a; for j < 4, then plar) = a;}l gince aij_ll is
the vertex of largest valence adjacent to a; not already shown to be fixed
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by ¢. By Proposition 2.12 we have ¢{a;,,) = a;,,. Since {a,...,a) =G,
the conclusion follows from Corollary 2.13. ’

Case 2: m; > 6 and m, = 3. Let us suppose that m; > ... >m, > 6

and my; =...=m, =3, where 1 <q <7 — 1. (Recall that m,,|m,)
We let
4 r—g-1
H = 03(0/1) U ’Ulo(ai, a:,-+1) U .UO O(Clqdq+l <o gy aq+j+1)'
= j=

From Lemma 3.1 we compute g(a{) as in Case 1, but now

ola;) = 4 2<i<¢q
ola;) =3 g +1silr

ol ) = 2 1<i<g—1
0@y - - - Ggyj) = 4 1<jigr—g—1
o2 Bgyy - - Or) = 2.

An induction argument proceeds as in Case 1 up to ¢ = ¢q. We then observe

that if an element of 4(X,) fixes a, it also fixes a,a,,,, and continue by induc-

tion on j to obtain that aa,, ...a,  is also fixed for j=1,...,9—7.
Clearly G is generated by {ay, ..., &, a, .y, .-+, @0, . .. 0},
Case 3: m; = 5. Thus m; = ...=m, = 5. The proof proceeds by

induction on 7. We begin with r = 2 and represent »
7 ={a,b:a’ = b5 = aba~1b~1 = ¢}.
Let H, consist of the six elements a, ba, ba?, ba®, bat, b% together with their

inverses. Let Y, = X, ,, and let p€A4,(X,). Considering the restriction of
@ to (¥,). (see Figure 4), one sees that ¢(ba®)€ {ba®, b%a?}, since these are the

Fig. 4. MRR for (5, 5)
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only 7-valent vertices of (Y,).. Suppose ¢(ba’) = bad. Then g¢(bat) = ba?,
since bat is the only 4-valent neighbor of ba® in (Y,),. With K = {ba3,bat}, we
conclude by Corollary 2.13 that ¢(Z3) = 2 and Y, is an MRR of ZZ

Now let r > 2, suppose that ¢(Zi) = 2, and let Y, = X, p, be an
MRR of Z;. Without loss of generality it may be assumed that |H,| < 57/2.
Since 5" > 5'/2 + 11 for r > 2, we apply 2.14 to conclude that ¢(Zi™) = 2.

We remark that HerzeL [2] has independently determined all MRR'’s
of Z;. Using other techniques, IMRICH [7, Theorem 4.5] showed that ¢(Z7) = 2
for » > 4.

Case 4: my = 4 and r > 3. Under our assumptions, m, = . . . = m, = 4.
We let

r—1

H = Cylay) U Cylaya,) U U Olay, ay1) U Cylay) U {ala?).

i=1
Again, using Lemma 3.1, we compute:

ola;) = 4 1<i<r

4, i=1

a0 =
Q(zl+1) {2’ 2g2’§,"_1

olad) = o(af) = 4
o(aia3) = olaial) = 2.

The vertices @, and a;* are the only 4-valent vertices all four of whose neigh-
bors are each 4-valent. Hence ¢(a,)€{a,, a;'} for all pcA(X,). Suppose
@(a;) = a;. The only neighbor of @, lying on no 3-circuit is a; . We conclude
that ¢fxy, = 1.k, Where K = {a;, a,}. We now suppose that ¢(a;) = a; for
all § < ¢, where ¢ > 2, and continue inductively as in Case 1.

Case 5: my = 3 and r > 4. Thus my = ... = m, = 3. Because of 2.14
(i), it suffices to demonstrate an MRR for Z3. To simplify notation, let {a,b,c,d}
be a generating set for G; = Z; instead of the standard {a,, a,, @, a,}, and let
G = {a,b,c>. Define
H=0{a,c,a% 3 e},

H, =G U {cd,d,ad, abd, abcd} ="

and set X = Xy, ¥ = X nu, By [4, Corollary 1] the cosets of & are blocks
of A(Xg p,), i-e., every element of 4.(Y) stabilizes G and maps d@ into itself
or interchanges d with d?G.

We note that any element of 4,(X) fixes {a,a? ¢,c?} setwise and, moreover,
either stabilizes the subsets {a, a®} and {c, ¢} or interchanges them. The neigh-
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bors of a in dG@ N H, and d*G N H, are ad and d?, respectively, while a® has the
neighbors d and a%d? in dG'NH, and d?G H,, respectively. The neighbors
of ¢ lying in d@N H; are abd and cd; those in d?G N H, are a*»’d% and d>.
Finally, ¢? has the neighbors abdc? and d in dG N H, and a?b?d?, ¢*d* in d*G' (1 H,.

As ¢ has more neighbors in 7,\ G than a does, the elements of 4.(Y) fix
{a,a?} and {c, ¢*} setwise. Since d and d? are the only elements of H,\G with
two neighbors in {@,a? ¢,c?}, it is clear that every pc 4.(Y) stabilizes {d,d?}.
Suppose ¢(d) = d. Since d has the neighbors a?, ¢ in G\ H, which cannot be
interchanged, ¢ fixes each of a,a? ¢, ®. As ¢® has only the neighbor abc’d
besides d in dG@ N H,, the element abc®d is also fixed. Now an application of
2.13 shows that Y is an MRR of G,.

REMARK. An MRR of Z5 can be obtained from the one given in [7]
for Z§ by an application of [17, Lemma 2.7]. If X is the just-mentioned MRR
for Z3 we only have to set N =<(a,a;'a;"a,) in order to obtain an MRR
X|N of Z3. This method does not work for Z.

4. On the Cayley index of generalized dicyclic groups

In [8] we defined a graph X to belong to the class g (M =>2,92>1)
if it is isovalent and if the set V(X) admits a partition {V;, V,, . . ., V,} with
2 < p < n such that every vertex in V; is adjacent to at most ¢ vertices in
V, for j 5= i. It was shown [8, Corollary 1B] that

4.1. If X€8,, and |V(X)| > quin-+ 2), then X'¢8, .

Proor of Theorem 2. Let G be a generalized dicyclic group generated
by the abelian group L and an element b as in the definition in § 1 above,
and let 8 denote the automorphism of @ also given in § 1. Clearly, the subgroup
L must have even order. Since @ is non-abelian, I is not an elementary abelian
2-group.

To prove (a) let it be assumed that L is neither (4,4) nor (4,2) nor (4,2,2).
By Theorem 1, L admits an MRR W = X, ; such that 4, (W)= {1,,4}.
Let H=J U{b,b-'} and let X = X . It will be shown that 4,(X) can be
embedded in Z;. We first prove

(4.1) plL1 =1L for all gcA. (X).

Clearly, (4.1) is equivalent to the condition that ¢[bL] = bL for all peA(X).

If |G| > 32, then |L| > 16, and by 4.1, either W or W’ is not in 80
and (4.1) follows immediately.
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If |G| <32, then |L| < 16. Under our assumptions, L is the cyeclic
group Z,, (3 <m < 8) or L is (6,2) or (8,2). If L = (a), let J ={a,a~1}
whence W = C,,, (cf. Lemma 2.3). We compute that the edges [e, a*'] each lie
on precisely two 4-cireuits. (For the edge [e,a] these are defined by {a, ¢, ba=1b}
and {e,a,b~1a=1,6-1}.) The edges [¢,b+" ] each lie on precisely three 4-circuits.
{For the edge [e, b] these are defined by {e, a,ba~1, b}, {¢,a~1, ba, b} and
{e,b=1,b%,b}.)

If L is (6,2) or (8,2), then b2 is one of a7, a,, and ay'a, where o(a,) = 2m.
If b2 = ay', then G = {a,,b> X <(a,>. By Theorem 1, c(<{a;, b)) = 2, and so
¢(@) =2 by 2.9 and 2.8. Now suppose 52 = a,. (The alternative b® = aj'a,
is equivalent under the automorphism a; — @, @, — ay'a, of the group L.)
Let J ={ay,a7",a,}. Using 2.3 and 2.1, the reader can readily verify that
X is an MRR of L. This time, however, let W be the complement of X, ,,
and note that every edge with both vertices in L or both vertices in bL lies
on a 3-circuit. No edge with one vertex in L and one vertex in bL has this
property; for if [g,gb] were such an edge, then the other two edges on the 3-
circuit would have to be [¢b,gb%] and [g,¢gb?] or [¢b—1,g] and [gb-1, gb]. But
[g9, gb%], [gb~1, gbl¢ E(X) since b = a,¢ H. Since in every instance W is a
connected graph, (4.1) follows.

Now let e 4.(X). By (4.1), either ¢|;, = 1, or @[ = a.

First suppose ¢|, = 1;. Since @(b)€{b, b-1}, we begin by supposing
@(d) = b, ie., g|p has a fixed-point, and so ¢l = 1oL O @lor = Axdp.
In the former case ¢ = 15; in the latter case p(bx) = ba—! for all x¢L. By
our assumptions on L, there exists an x¢L such that a?s<e¢, b2 In particular,
if L =Z,xZy for some m > 3, then b? 5= aj, or else G would be isomorphic
to @ XZy. Hence z = a,. If @(bz) = bz~1, then the neighbors in L of bz,
namely bxb and z-!, must coincide with the neighbors in L of bx~*, namely
b~ and x. But clearly x ¢ x-1, while x = bxb implies ? = (bx)? = b2,
which is a contradiction. Now suppose that ¢(b) = b-1. Then (f¢)|, = 1,
and Bp(b) = b. It follows by what we have just shown that fp = 1;. Since
B2 =1,, we have ¢ = 8.

On the other hand, suppose ¢|; = «. Again ¢(b)c{b, 7'}, and we
suppose first that @(b) =>b. Since 4,(X\W) is isomorphic as a permutation
group to {1,x}, there are at most two possibilities p; and yp, for . Clearly,
=17 =15 ()l =1, and yp(b) =b. Hence as before, yy, = lg.
Under the given assumptions, there exists at most one such automorphism,
which, if it exists, we denote by y. Finally, suppose ¢(b) = b~1. Then (8¢p)|, = «
and Bp(b) = b. Hence fp = y and so ¢ = fy. Thus g€A4.(X) if and only if
y€A(X). We have shown that 4.(X) < {lg,B.7, By} o< Z;, completing the
proof of (i) in part (a). '

To prove (ii), suppose |G| > 96, in which case |L| > 48. Since, more-
over, G is not of the form @ xXZ7, one verifies by exhaustion that L must
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contain some two distinct elements s; and s, subject to all the following condi-
itons for 4,j€{1, 2} and i == j:

(4.2) &< e,

(4.3) 8;8; e,

(4.4) ey

(4.5) 8; = &5,

(4.6) 5;8; 7= b?,

(4.7) s, 5 bt

Let W be as before, but redefine

(4.8) H=JU{b,b-2,bs;,b-1s,,bs,,b15,}

and let X = Xg . Arbitrarily choose pcd4,(X). We apply 4.1 again with
n = 2and g = 6. Since |L| > 48, we may assume that W¢8,,. Thus ¢[L] =
= L and ¢[bL] = bL. If p(b)¢{b, b—1}, then we may assume without loss of
generality that (b) == bs;. There are precisely two possibilities for the action
of ¢ on bL, namely A and Ay atdy-i; that is, either

(4.9) o(bx) = bxs, for all x¢L
or

(4.10) p(bx) = bx—%s; for all x¢Z,
respectively.

If (4.9) holds, then g(bs,) = bs; must be one of the six neighbors of e
in the right-hand member of (4.8). By (4.2), bs} 5= b or (bs,)*', and by (4.4)
bs} 5 b=L. Further, by (4.5) bs? == bs, and by (4.7), bs} 5= b~1s,. On the other
hand, if (4.10) were to hold, we would apply the same argument to ¢(bs,) =
= bs; 's,. Since s, 5= s,, this image is not b, and by (4.3), it is not b-1. By (4.2)
we can eliminate (bs;)*', and by (4.5), bs;'s; 5= bs,. Finally, bs;’s, = b-1s,
by (4.7). Hence p(b)c {b, b-1}. :

If ¢(b) = b and if ¢ = 1,, then as before p(bz) = bx—* for all z¢cL.
We now consider the image g(bs,) = bs;* which, since ¢? = 1, cannot equal
b. By (4.2) it is neither -2 nor bs,. By (4.4), bsy' == b—1s,, and by (4.2) one
may eliminate bs,. Finally, by (4.6), bsy " 5= b~1s,.

We have thus shown that either ¢ = 1, or p(b) = b-1. (The reader should
be certain to note that this time it was not necessary to consider two cases
depending upon the behavior of ¢ on L.) To conclude, suppose p(b) = b-1.
Then Bp(b) = b, and by what we have just shown, fp = 1. Hence ¢ = 8, and
Ao X) = {15,8} =< Z,.

5 Periodica Mat. 7(38—4)
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To prove (b), we let G = @ XZ} and proceed by induction on 7. When
n =0, ¢(@) = 16 by Lemma 2.6. If ¢(Q x Z}) <16, then by 2.8 and 2.9,
o(@xZ3"") < ¢(QX2Z5) c(Z,) < 16.
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