ON AUTOMORPHISM GROUPS OF CAYLEY GRAPHS

by

W. IMRICH (Leoben) and M. E. WATKINS (Syracuse)

Abstract

Let $X_{G,H}$ denote the Cayley graph of a finite group G with respect to a subset H.
It is well-known that its automorphism group $A(X_{G,H})$ must contain the regular subgroup L_G corresponding to the set of left multiplications by elements of G. This paper is concerned with minimizing the index $[A(X_{G,H}):L_G]$ for given G, in particular when this index is always greater than 1. If G is abelian but not one of seven exceptional groups, then a Cayley graph of G exists for which this index is at most 2. Nearly complete results for the generalized dicyclic groups are also obtained.

l. Motivation

The symbol G will always denote a group assumed to be finite unless otherwise specified, e will denote its identity, and H will denote a subset of G subject to the conditions $e \in H$ and $H = \{h^{-1} : h \in H\}$. The symbol X will always denote a simple graph assumed to be finite unless otherwise specified. The symbols $V(X)$, $E(X)$, $A(X)$, and $A_{v}(X)$ will denote, respectively, its vertex set, edge set, automorphism group, and the subgroup of $A(X)$ which stabilizes the vertex $v \in V(X)$. For any set S, 1_S indicates the identity permutation on S. Let Z_n denote the cyclic group of order n.

To write $X = X_{G,H}$ means that $V(X) = G$ and $E(X) = \{[g, gh] : g \in G\}$; $h \in H$. This graph is called the *Cayley graph of G with respect to H.* Such a graph is connected if and only if H generates G . One readily observes that for each $g \in G$, the left multiplication $\lambda_g: G \to G$ given by $x \to gx$ belongs to $A(X_{G,H})$. Thus the set $L_G = \{\lambda_g : g \in G\}$ is a subgroup of $A(X_{G,H})$ for any H and, moreover, is a regular permutation group on $V(X_{G,H})$. Let us write

 $c(G, H) = [A(X_{GH}) : L_G] = |A(X_{GH})|/|G|$

AMS (MOS) subject classifications (1970). Primary 05C25; Secondary 20B25. Key words and phrases. Cayley graphs, automorphism groups.

which equals, of course, $|A_g(X_{G,H})|$ for any $g \in G$. We define the *Cayley index* of G to be

$$
c(G) = \min_{H} c(G, H).
$$

A Cayley graph $X_{G,H}$ for which $c(G, H) = 1$ is called a *graphical regular representation (GRR)* of G. It has been shown by NOWITZ and WATKINS [11] that all non-abelian groups of order coprime to 6 have a GRR. (For an exposition of the state of the "GRR-problem" see [16].) More recently IMRICH [6], using results from $[11]$ and some results of D. HETZEL $[2]$, has shown that except for the non-abelian group of order 27 and exponent 3, every nonabelian group of odd order admits a GRR. All GRR's are connected, with the unique exception of the GRR of Z_2 consisting of precisely two isolated vertices. (See [13] Lemma 1.)

Let the function $\alpha: G \to G$ be defined by $x \to x^{-1}$. If G is abelian, $g \in G$, and $h \in H$, then the action of α on $E(X_{G,H})$ satisfies

$$
\alpha[g, gh] = [g^{-1}, (gh)^{-1}] = [g^{-1}, g^{-1}h^{-1}].
$$

Since H is closed with respect to inverses and $\alpha^2 = 1_G$, α maps edges into edges. Thus ${I_G, \alpha} \leq A_e(X_{G,H})$ for all H, and as SABIDUSSI [14] and CHAO [1] observed,

1.1. If G is abelian but not an elementary abelian 2-group, then $c(G) \geq 2$.

In [3] this was complemented as follows:

1.2. $c(Z_2^n) \geq 2$ if and only if $n = 2, 3$ or 4.

The proof in [3] consists of a nonexistence proof for $n = 2, 3, 4$ and an existence proof for $n \geq 5$. However, it should be noted that the construction given in [3] is wrong for $n = 5$ and that several authors, including R. FRUCHT and M. H. MCANDREW have found constructions for $n \geq 6$. The error in [3] has been pointed out and corrected by B. ALSPACH, P. HELL, D. HETZEL and CHONG-KEANG LIM. For the sake of completeness we include a GRR of Z_2^5 due to HETZEL:

Let a_1, a_2, \ldots, a_5 generate \mathbb{Z}_2^5 and let H consist of these generators together *with* a_1a_2 *,* a_1a_3 *,* a_1a_5 *,* a_2a_4 *,* a_4a_5 *,* $a_1a_2a_3$ *and* $a_2a_3a_4$ *. Then the Cayley graph of* Z_2^5 *with respect to H is a GRR of* Z_2^5 .

One of the two main results of this paper is the following:

THEOREM 1. Let G be a finite abelian group. Then $c(G) \leq 2$ unless G is one *of the following seven groups:* Z_2^3 , Z_2^4 , $Z_4 \times Z_2$, $Z_4 \times Z_2^2$, Z_3^2 , Z_3^3 , and Z_4^2 .

As it is in most eases rather tedious to determine the Cayley index of the exceptional groups, we have investigated only the cases Z_2^3 , $Z_4 \times Z_2$, and Z_3^2 (see 2.4 and 2.7 below). The Cayley indices of the other exceptional groups have been determined by D. HETZEL [2] with the aid of a computer.

A non-abelian group G is *generalized dicyelic* if it is generated by an abelian group L and an element $b \notin L$ such that (i) $b^2 \in L \setminus \{e\}$; (ii) $b^4 = e$; and (iii) $b^{-1}xb = x^{-1}$ for all $x \in L$. When G is generalized dicyclic, we define the function $\beta : G \to G$ given by

$$
\beta(G)=\begin{cases}g,&\text{if}\quad g\in L\,;\\ g^{-1},&\text{if}\quad g\in G\diagdown L.\end{cases}
$$

It has been shown in [9] and [15] that in addition to being a group-automorphism of every generalized dicyclic group G , β is also a graph-automorphism of $X_{G,H}$ for every H. Since $\beta^2 = 1_G$, we have

1.3. *If G is a generalized dicyclic group, then c(G) is even.*

Letting Q denote the quaternion group, we state the second main result of this paper.

THEOREM 2. Let G be a finite generalized dicyclic group generated by L and *b as in the above definition.*

(a) If G is not of the form $Q \times Z_2^m$ for some $m \geq 0$ and L is not $Z_4^2, Z_4 \times Z_2$, *or* $Z_4 \times Z_2^2$, then (i) $c(G) = 2$ or 4; (ii) if $|G| > 96$, then $c(G) = 2$.

(b) If G is of the form $Q \times Z_2^m$, then $c(G) \leq 16$.

2. Preliminary results

For background on cartesian products of graphs, the reader is referred to [12]. The same reference contains the following result (Corollary 3.2), stated here for finite graphs.

2.1. If X_1 and X_2 are connected graphs which are relatively prime with *respect to cartesian multiplication, then*

$$
A(X_1 \times X_2) = A(X_1) \times A(X_2).
$$

(Note: in the left-hand member of this expression the symbol \times denotes cartesian multiplication of graphs, but in the right-hand member \times denotes the direct product of permutation groups.)

If X is a graph, then its complement is denoted by X' . The complete graph on *n* vertices is denoted by K_n . We require the following result [5, Theorem 1]:

2.2. *If X is any finite or infinite graph, then either X or X" is prime with respect to cartesian multiplication unless X is one of the following six graphs:* $K_2 \times K_2, K_2 \times K_2, K_2 \times K_2 \times K_2, K_3 \times K_3, K_4 \times K_4, K_5 \times K_5$ and $K_2 \times K_4^-$, where K_4^- is obtained from K_4 by deletion of an edge.

A Cayley graph $X_{G,H}$ with the property that $c(G,H) = c(G)$ is called *a most rigid representation (MRR)* of G. Clearly a GRR is always an MRR. Since $A(X) = A(X')$ for any graph X, every group admits a connected MRR. In addition, 2.2 implies that every group G admits an MRR which is relatively prime with respect to cartesian multiplication unless every MRR of G is one of the six "forbidden" graphs. In the interest of a smoother argument later on, let us first determine some MRR's for certain specific groups.

LEMMA 2.3. For each $m \geq 3$, $c(Z_m) = 2$ and the m-circuit C_m is an MRR *for* Z_m .

PROOF. Clearly C_m is a Cayley graph of Z_m . Moreover, $A(C_m)$ is the dihedral group D_m , and $|D_m| = 2 |Z_m|$. The conclusion follows from 1.1.

LEMMA 2.4 $c(Z_3^2) = 8$, and $K_3 \times K_3$ is an MRR of Z_3^2 .

PROOF. Let $X = X_{Z^*H}$ be a connected MRR of Z_3^2 . Since H is closed with respect to inverses and generates $Z_3 \times Z_3$, $|H| \geq 4$. If $|H| = 4$, then H has the form $\{a_1, a_1^{-1}, a_2, a_2^{-1}\}$, where $a_1^3 = a_2^3 = a_1 a_2 a_1^{-1} a_2^{-1} = e$. The automorphism φ of $Z_3 \times Z_3$ which interchanges a_1 and a_2 clearly belongs to $A_e(X)$ as does the automorphism ψ which fixes a_1 but interchanges a_2 with a_2^{-1} . Thus $A_e(X) =$ $=\langle \{\alpha,\varphi,\psi\}\rangle \simeq D_4$, and $c(Z_3^2) \leq 8$. In this case, $X \simeq K_3 \times K_3 \simeq X'.$ If $|H| > 4$, then $Z_3 \times Z_3 \setminus (H \cup \{e\})$ does not generate $Z_3 \times Z_3$ and so X' is not connected. Either X' consists of nine isolated vertices or $X' = K_3 \times K'_3$. Either way, $|A_e(X)| = |A_e(X')| > 8$.

LEMMA 2.5. $c(D_4) = 2$ and an MRR of D_4 is shown in Figure 1.

PROOF. Let X be the graph represented by Figure 1. Let e denote a vertex of that graph. We first show that $| A_e(X) | = 2$. Of the four edges incident

Fig. 1. MRR for D_4

with e , two of them lie on precisely one 3-circuit each, and two of them lie on precisely two 3-circuits each. One readily verifies that interchanging such a pair of edges lying on the same number of 3-circuits determines uniquely the only non-identity automorphism in $A_e(X)$.

Represent $D_4 = \langle a, b | a^4 = b^2 = (ba)^2 = e \rangle$. Let $H = \{a, a^{-1}, b, ba\}.$ Then $X_{D,H} \simeq X$. Since D_4 has no GRR (see [15, Theorem 2]), $c(D_4) = 2$.

D. HETZEL has observed to us that the 8-circuit is also an MRR of $D₄$, obtained quite simply by taking $H = \{b, ba\}$. This method also affords MRR's of D_3 and D_5 .

LEMMA 2.6. $c(Q) = 16$, and $(C_A \times K_2')$ is an MRR for Q.

PROOF. The group Q admits the representation $Q = \langle a, b | a^2 = b^2 = \rangle$ $=(ba)^2$. Let $X = X_{Q,H}$ be a connected MRR of Q. Then H contains at least two of the three pairs $a^{\pm 1}$, $b^{\pm 1}$ and $(ba)^{\pm 1}$. Since then $Q \setminus H$ does not generate Q , the graph X' cannot be connected. But since X' is vertex-transitive, it must be one of the following: K'_8 , $K_2 \times K'_4$, $K_4 \times K'_2$, or $C_4 \times K'_2$. Of these, $C_4 \times K'_2$ has the smallest permutation group, namely D_4 wreath Z_2 , which has order 128. Hence the stabilizer of a vertex of $K_4 \times K_2$ has order 16. It remains only to show that $(C_4 \times K_2)'$ is a Cayley graph of Q. This is immediate when one lets $H = \{a, a^{-1}, b, b^{-1}, a^2\}.$

LEMMA 2.7. *If* $G = Z_4 \times Z_2$ or Z_2^3 , then $c(G) = 6$ and the 3-cube $K_2 \times K_2 \times K_2$ *is an MRR of G.*

PROOF. We represent $Z_4 \times Z_2 = \langle a_1, a_2 | a_1^4 = a_2^2 = a_1 a_2 a_1^{-1} a_2 = e \rangle$ and $Z_2^3 = \langle b_1, b_2, b_3 | b_i^2 = (b_i b_j)^2 = e; i, j = 1, 2, 3 \rangle$. The 3-cube is clearly a Cayley graph of $Z_4 \times Z_2$ with respect to $\{a_1, a_1^{-1}, a_2\}$ and a Cayley graph of Z_2^3 with respect to $\{b_1, b_2, b_3\}$. Its automorphism-group is known to have order 48, and any vertex-stabilizer is isomorphic to the symmetric group of a 3-set. Thus if $G = Z_4 \times Z_2$ or Z_2^3 , then $c(G) \leq 6$. Let $X = X_{G,H}$ be a connected MRR of G. If $G = Z_2^3$, then clearly $|H| \geq 3$. If $G = Z_4 \times Z_2$, then H contains at least one pair of elements of order 4 together with some other element, and again $|H| \geq 3$. By the same argument as in the previous Lemma, X' must be connected, and so $G \setminus H$ also generates G. Hence $|H| \leq 4$. The proof that no other generating set H yields a Cayley graph with a smaller automorphism group is straightforward and is left to the reader.

LEMMA 2.8. Let G_1 and G_2 be groups having connected MRR's which are *relatively prime to each other with respect to cartesian multiplication. Then*

$$
c(G_1 \times G_2) \leq c(G_1)c(G_2).
$$

PROOF. Let us choose connected, relatively prime MRR's X_1 and X_2 of G_1 and G_2 , respectively. By 2.1, $A(X_1 \times X_2) = A(X_1) \times A(X_2)$. Hence

$$
|A(X_1 \times X_2)| = |A(X_1)| |A(X_2)| =
$$

= $c(G_1)|G_1|c(G_2)|G_2| =$
= $c(G_1)c(G_2)|G_1 \times G_2|$.

But $c(G_1 \times G_2) \leq |A(X_1 \times X_2)|/|G_1 \times G_2|$.

PROPOSITION 2.9. Let G be a group other than Z_2^2 , Z_2^3 , Z_4 , $Z_4 \times Z_2$, or Z_3^2 . *Then G admits a connected MRR which is prime with respect to cartesian multiplication.*

PROOF. Let X be a connected MRR of the group G. We first verify that X is not one of the exceptional graphs listed in 2.2. Since $|G| \neq 4$, the graphs $K_2 \times K_2$ and $K_2 \times K_2'$ are precluded. If X is $K_2 \times K_2 \times K_2$ or its complement $K_4 \times K_2$, then $|G|=8$ and $c(G)=6$ by 2.7. Since G is neither Z_2^3 nor $Z_4 \times Z_2$, this is impossible by 2.5 and 2.6. If $X = K_3 \times K_3$, then $c(G) = 8$ by 2.4. But $c(Z_9) = 2$ by 2.3. Since $K_2 \times K_4^-$ is not vertex transitive, it is not a Cayley graph. Hence by 2.2, either X or X' is prime (with respect to cartesian multiplication).

If X is prime, we are done, so suppose that X' is prime but not connected. Since X' is vertex transitive, it is the union of some $n \geq 2$ copies of some component Y. But then $X' \simeq Y \times K'_n$. Since X' is prime, $Y \simeq K_1$. Hence $X \simeq K_n$. But K_n is prime with respect to cartesian multiplication.

COROLLARY 2.10. Let G be an abelian group other than Z_4 or Z_2^m for some $m \geq 1$ *. If* $c(G) = 2$ *, then* $c(G \times Z_2) = 2$.

PROOF. By 1.1, $c(G \times Z_2) \geq 2$. Since K_2 is a GRR of Z_2 , the corollary will follow from 2.8 once it is established that G has a connected MRR X which is relatively prime to K_2 . This is an immediate consequence of the hypothesis, 2.9, and 2.7.

If $K \subseteq G$, then $\langle K \rangle$ denotes the subgroup of G generated by K and $\varphi|_K$ denotes the restriction of φ to the subset K. Let $K^{-1} = \{k^{-1} : k \in K\}.$ For any non-negative integer *i*, we define $K^0 = \{e\}$ and $K^{i+1} = KK^i$.

By [7, Corollary 1.2] the relation $\varphi(a) = b$ for all $\varphi \in A_e(X) \setminus \{1_G\}$ implies $\varphi(ca) = \varphi(c)\varphi(a)$ for all $c \in G$ and for all $\varphi \in A_e(X)$. If $\varphi|_K = 1|_K$ for all $\varphi \in A_e(X)$ we therefore have $e = \varphi(k^{-1} k) = \varphi(k^{-1}) k$ and $\varphi(k^{-1}) = k^{-1}$ for $k \in K$. By the same result, $\varphi(ka) = ka$ and $\varphi(k^{-1}a) = k^{-1}a$ if $\varphi(a) = a$ for all $\varphi \in A_{\epsilon}(X)$. Proceeding by induction we therefore obtain $\varphi|_{K^i}=1|_{K^i}$ for all integers i if $\varphi|_K = 1_{\mathcal{K}}$ for $\varphi \in A_e(X)$. Since $\langle K \rangle$ is the union of all K^i we have shown:

2.11. Let X be a Cayley graph of a group G and let $K \subseteq G$. If $\varphi|_K = 1_K$ *for all* $\varphi \in A_e(X)$ *, then* $\varphi|_{\langle K \rangle} = 1_{\langle K \rangle}$ *for all* $\varphi \in A_e(X)$ *.*

For finite groups this has been formulated in [7, Corollary 1.4]. (See also [10, Proposition 2.3].)

The next result generalizes [7, Proposition 1.8] and is very important for the proofs of the Theorems.

PROPOSITION 2.12. Let X be a Cayley graph of a finite or infinite abelian *group G, and let* $e \neq a \in K \subseteq G$. Suppose that for all $\varphi \in A_e(X)$:

(i) $\varphi(a) \in \{a, a^{-1}\}, \text{ and }$ (ii) $\varphi(a) = a \Rightarrow \varphi|_K = 1_K.$ *Then for all* $\varphi \in A_e(X)$:

(iii) $\varphi(a) = a \Rightarrow \varphi|_{\langle K \rangle} = 1_{\langle K \rangle}$, and (iv) $\varphi(a) = a^{-1} \Rightarrow \varphi|_{\langle K \rangle} = \alpha|_{\langle K \rangle}$.

PROOF. Suppose the conditions of the theorem are satisfied and that $\varphi \in A_{\epsilon}$. We note first that $\varphi(a) = a^{-1}$ implies $\varphi|_{K} = \alpha|_{K}$. For, let $\varphi(a) = a^{-1}$. Then $\alpha \varphi \in A_e(X) \cap A_a(X)$ and $\alpha \varphi|_K = 1|_K$. Replacing K by $\langle K \rangle$ we see that (iv) is a consequence of (iii). It therefore suffices to prove (iii). Assume $\varphi(a) = a$.

For $k \in K$ we have $\lambda_{k-1} \varphi \lambda_k \in A_e(X) \cap A_{k-1}(X)$, whence $\lambda_{k-1} \varphi \lambda_k|_K =$ $= 1_K$ or $\alpha|_K$. In the second case $k^{-1} = k$ and $\psi(k) = k$ for all $\psi \in A_{\ell}$. Hence: $\varphi(ak) = \varphi(a) \varphi(k) = k \varphi(a)$ by [7, Corollary 1.2]. Thus $\lambda_{k-1} \varphi \lambda_k(a) = \varphi(a) = a$ and $\lambda_{k-1}\varphi\lambda_k|_K = 1|_K$ by (ii). This implies $\varphi|_{kK} = 1|_{kK}$ for all $k \in K$, or equivalently, $\varphi|_{K^2}=1|_{K^2}$. By induction we obtain $\varphi|_{K^i}=1|_{K^i}$ for all positive integers i.

We have $\alpha \varphi \alpha \in A_e(X)$ and $\alpha \varphi \alpha (a^{-1}) = a^{-1}$. For $a = a^{-1}$ this is the same as $\alpha\varphi\alpha(a) = a$ and for $a \neq a^{-1}$ the relation $\alpha\varphi\alpha(a) = a$ follows by (i). Hence $\alpha\varphi\alpha|_{K^i} = 1|_{K^i}$ by what we have just shown, and therefore $\varphi|_{K^{-i}} = 1|_{K^{-i}}$ for all positive integers i. Now the observation that $\langle K \rangle$ is the union of all $K^{\pm i}$ completes the proof.

COROLLARY 2.13. *Assume the hypothesis of Proposition 2.12. If G is not an elementary abelian 2-group, and if* $\langle K \rangle = G$, then $c(G) = 2$ and X is an *MRR of G.*

If $X = X_{G,H}$, then X_e will denote the subgraph of X induced by the vertices adjacent to e, that is, the set H. It is clear that if $\varphi \in A_e(X)$, then its restriction to X_e belongs to $A(X_e)$. We shall see that, in particular if the set K of 2.11 is contained in H, consideration of the symmetries of X_e is very helpful in determining $A_e(X)$.

We shall require the following result which is a special case of [7, Theorem 3.1]:

2.14. Let G be an abelian group of odd order and Cayley index 2. Suppose X_{GH} is an MRR of G and m is a positive integer. If

$$
(i) \t\t\t m = 1 \t and \t |G| > 45,
$$

(ii) $m \geq 2$ and $|G| > |H| + 11$,

then

Or

 $c(G \times Z_{2m+1}) = 2.$

3. On the Cayley index of abelian groups

In the present section we presume G to be a finite abelian group. By the Fundamental Theorem of Abelian Groups, G may be expressed uniquely in the form $Z_{m_1} \times \ldots \times Z_{m_r}$ where $m_{i+1}|m_i$ for $i=1,\ldots,r$. Henceforth G will be identified with the r-tuple (m_1, \ldots, m_r) , and we shall adopt as standard the representation

$$
\langle a_1,\ldots,a_r : a_i^{m_i} = a_i a_j a_i^{-1} a_j^{-1} = e, \quad 1 \leq i \leq j \leq r \rangle
$$

for the group (m_1, \ldots, m_r) . Further, we will denote the order of $g \in G$ by $o(g)$. If $g_1, g_2 \in G$, we define

$$
C(g_1, g_2) = \{g_1, g_1^{-1}, g_2, g_2^{-1}, g_1 g_2, g_1^{-1} g_2^{-1}\}.
$$

\n
$$
C_2(g_1) = \{g_1^{\pm i} : i = 1, 2\}
$$

\n
$$
C_3(g_1) = \{g_1^{\pm i} : i = 1, 2, 3\}.
$$

The following includes a reformulation of some observations from [7, Section 4]. The proof is elementary and is omitted.

LEMMA 3.1. Let $X = X_{G,H}$. Let $g_1, g_2 \in G$ and suppose $g_1^i = g_2^i$ only if $g^{i}_{1} = e$. Also suppose $o(g_{1}) \geq o(g_{2}) \geq 3$.

a) If $C(g_1, g_2) \subseteq H$, then $C(g_1, g_2)$ induces the following subgraph in X_e : (i) the 6-circuit with vertices listed cyclically as $g_1, g_1g_2, g_2, g_1^{-1}, g_1^{-1}g_2^{-1}$, g_q^{-1} *if* $o(g_q) > 3$;

(ii) *the subgraph in* (i) *together with the edge* $[g_2, g_2^{-1}]$ *if* $o(g_1) > o(g_2) = 3$; (iii) the subgraph in (ii) together with edges $[g_1, g_1^{-1}]$ and $[g_1g_2, g_1^{-1}g_2^{-1}]$ if $o(q_1) = o(q_2) = 3.$

b) *If* $C_2(q_1) \subseteq H$, then $C_2(q_1)$ induces the following subgraph in X_e : (i) *a* 3-*circuit if* $o(q_1) = 4$;

(ii) *a complete graph on its 4 vertices if* $o(g_1) = 5$;

(iii) the 4-circuit $[g_1^{-2}, g_1^{-1}, g_1, g_2]$ if $o(g_1) = 6;$

(iv) the path $[g_2^{-2}, g_2^{-1}, g_1, g_2]$ if $o(g_1) \geq 7$.

c) *If* $C_3(q_1) \subseteq H$, then $C_3(q_1)$ induces the following subgraph X_e :

(i) the complete graph on its 5 vertices if $o(q_1) = 6$;

(ii) *the complete graph on its 6 vertices if* $o(q_1) = 7$;

(iii) *a subgraph with at least 9 edges in which* g_1 *and* g_1^{-1} *have valence at least* 4 if $o(g_1) \geq 8$.

The way has now been paved for the

PROOF of Theorem 1.

Let G be identified with (m_1, \ldots, m_r) . Due to Proposition 2.3, we may assume that $r \geq 2$.

We first dispose of two special cases. First let $G = (4, 2, 2, 2)$, and consider the neighborhood graph X_e induced by

 $Fig. 2. MRR for (4, 2, 2, 2)$

(see Figure 2). Let $\varphi \in A_e(X)$. Considering the restriction of φ to X_e , one sees that $\varphi(a_1) \in \{a_1, a_1^{-1}\}$ since these are the only 8-valent vertices of X_e . Suppose $\varphi(a_1) = a_1$. We note that $\varphi(a_2) = a_2$ since this is the only 6-valent vertex of X_e with no 4-valent neighbor. Similarly a_2a_3 is fixed by φ since it is the only 6-valent vertex of X_e with no 8-valent neighbor. Finally, φ fixes a_1a_4 since it is the only 2-valent neighbor of a_1 . With $K = \{a_1, a_2, a_2a_3, a_1a_4\}$, we may conclude by Corollary 2.13 that $c(G) = 2$.

Next let $G = (4, 4, 2)$, and consider its neighborhood graph X_e induced by

 $C(a_1, a_2) \cup C_2(a_1) \cup \{a_2, a_2a_3, a_2^{-1}a_2\}$

(see Figure 3). Since a_3 is the only vertex on two 3-circuits of X_e , it is fixed under $A(X_e)$. Its two 4-valent neighbors a_2, a_2^{-1} are thus either fixed or interchanged. Clearly, if a_2 is fixed, then so is a_1 , and by Corollary 2.13, $c(G) = 2$.

In the light of these two examples and Corollary 2.10, we may safely assume that $m_r > 2$. The remaining argument will fall into five cases according to the values of m_1 and m_r , but the basic argument in each case will be essentially the same as in the two foregoing examples: a set H is proposed and the neighborhood graph X_e of $X_{G,H}$ is considered in order to show that the hypothesis of 2.13 is satisfied. The valence in X_e will be denoted by ϱ . We mention that $\rho(h) = \rho(h^{-1})$ for all $h \in H$. Indeed, h is incident with an edge of X_e for each relation $h = h_1 h_2$ that holds for $h_1, h_2 \in H$. But then $h^{-1} = h_2^{-1} h_1^{-1}$. (This holds also when G is not abelian.)

Case 1: $m_1 \geq 6$ and $m_r > 3$. We let

$$
H=C_3(a_1)\cup\bigcup_{i=1}^{r-1}C(a_i,a_{i+1})\cup C_2(a_r).
$$

From Lemma 3.1 we compute:

$$
Q(a_1) \ge Q(a_1^j) + 2, \qquad j = \pm 2, \pm 3
$$

\n
$$
Q(a_1) = 6 \text{ or } 7,
$$

\n
$$
Q(a_i a_{i+1}) = 2, \qquad 1 \le i \le r - 1
$$

\n
$$
Q(a_i) = 4, \qquad 2 \le i \le r - 1
$$

\n
$$
Q(a_r) = 4 \text{ or } 5,
$$

\n
$$
Q(a_r^2) \le 3.
$$

If $\varphi \in A(X_e)$, then $\varphi(a_1) \in \{a_1, a_1^{-1}\}$. Suppose $\varphi(a_1) = a_1$. Proceeding inductively, we note that if $\varphi(a_j) = a_j$ for $j \leq i$, then $\varphi(a_{i+1}^{-1}) = a_{i+1}^{-1}$ since a_{i+1}^{-1} is the vertex of largest valence adjacent to a_i not already shown to be fixed by φ . By Proposition 2.12 we have $\varphi(a_{i+1}) = a_{i+1}$. Since $\langle a_1, \ldots, a_r \rangle = G$, the conclusion follows from Corollary 2.13.

Case 2: $m_1 \geq 6$ and $m_r = 3$. Let us suppose that $m_1 \geq \ldots \geq m_q \geq 6$ and $m_{q+1} = \ldots = m_r = 3$, where $1 \le q \le r-1$. (Recall that $m_{q+1} | m_q$.) We let

$$
H = C_3(a_1) \cup \bigcup_{i=1}^q C(a_i, a_{i+1}) \cup \bigcup_{j=0}^{r-q-1} C(a_q a_{q+1} \ldots a_{q+j}, a_{q+j+1}).
$$

From Lemma 3.1 we compute $\rho(a_1^j)$ as in Case 1, but now

$$
\begin{aligned} \varrho(a_i) &= 4 & 2 \leq i \leq q \\ \varrho(a_i) &= 3 & q+1 \leq i \leq r \\ \varrho(a_i a_{i+1}) &= 2 & 1 \leq i \leq q-1 \\ \varrho(a_q a_{q+1} \ldots a_{q+j}) &= 4 & 1 \leq j \leq r-q-1 \\ \varrho(a_q a_{q+1} \ldots a_r) &= 2. \end{aligned}
$$

An induction argument proceeds as in Case 1 up to $i = q$. We then observe that if an element of $A(X_e)$ fixes a_q it also fixes $a_q a_{q+1}$, and continue by induction on j to obtain that $a_q a_{q+1} \ldots a_{q+j}$ is also fixed for $j = 1, \ldots, q-r$. Clearly G is generated by $\{a_1, \ldots, a_q, a_q a_{q+1}, \ldots, a_q a_{q+1} \ldots a_r\}.$

Case 3: $m_1 = 5$. Thus $m_1 = \ldots = m_r = 5$. The proof proceeds by induction on r. We begin with $r = 2$ and represent

$$
Z_5^2=\langle a, b : a^5=b^5=aba^{-1}b^{-1}=e\rangle.
$$

Let H_2 consist of the six elements *a, ba, ba*², *ba*³, *ba*⁴, *b*²*a* together with their inverses. Let $Y_2 = X_{Z_3^*, H_2^*}$ and let $\varphi \in A_e(X_2)$. Considering the restriction of φ to (Y_2) _e (see Figure 4), one sees that $\varphi(ba^3) \in \{ba^3, b^4a^2\}$, since these are the

Fig. 4. MRR for (5, 5)

only 7-valent vertices of $(Y_2)_e$. Suppose $\varphi(ba^3) = ba^3$. Then $\varphi(ba^4) = ba^4$, since *ba*⁴ is the only 4-valent neighbor of *ba*³ in $(Y_2)_e$. With $K = \{ba^3, ba^4\}$, we conclude by Corollary 2.13 that $c(Z_5^2) = 2$ and Y_2 is an MRR of Z_5^2 .

Now let $r\geq2$, suppose that $c(Z_5')=2$, and let $Y_r=X_{Z_5,H_r}$ be an MRR of Z_5' . Without loss of generality it may be assumed that $|H_t| < 5'/2$. Since $5' > 5'/2 + 11$ for $r \geq 2$, we apply 2.14 to conclude that $c(Z_{\epsilon}^{r+1}) = 2$.

We remark that HETZEL [2] has independently determined all MRR's of Z_5^2 . Using other techniques, IMRICH [7, Theorem 4.5] showed that $c(Z_5^n) = 2$ for $n \geq 4$.

Case 4: $m_1 = 4$ and $r \geq 3$. Under our assumptions, $m_1 = \ldots = m_r = 4$. We let

$$
H = C_2(a_1) \cup C_2(a_1a_2) \cup \bigcup_{i=1}^{r-1} C(a_i, a_{i+1}) \cup C_2(a_r) \cup \{a_1^2a_r^2\}.
$$

Again, using Lemma 3.1, we compute:

$$
\varrho(a_i) = 4 \qquad 1 \leq i \leq r
$$

$$
\varrho(a_i a_{i+1}) = \begin{cases} 4, & i = 1 \\ 2, & 2 \leq i \leq r - 1 \end{cases}
$$

$$
\varrho(a_1^2) = \varrho(a_r^2) = 4
$$

$$
\varrho(a_1^2 a_2^2) = \varrho(a_1^2 a_r^2) = 2.
$$

The vertices a_1 and a_1^{-1} are the only 4-valent vertices all four of whose neighbors are each 4-valent. Hence $\varphi(a_1) \in \{a_1, a_1^{-1}\}$ for all $\varphi \in A(X_e)$. Suppose $\varphi(a_1) = a_1$. The only neighbor of a_1 lying on no 3-circuit is a_2^{-1} . We conclude that $\varphi|_{\langle K \rangle} = 1_{\langle K \rangle}$ where $K = \{a_1, a_2\}$. We now suppose that $\varphi(a_i) = a_i$ for all $j \leq i$, where $i \geq 2$, and continue inductively as in Case 1.

Case 5: $m_1 = 3$ and $r \geq 4$. Thus $m_1 = \ldots = m_r = 3$. Because of 2.14 (i), it suffices to demonstrate an MRR for Z_3^4 . To simplify notation, let $\{a,b,c,d\}$ be a generating set for $G_1 = Z_3^4$ instead of the standard $\{a_1, a_2, a_3, a_4\}$, and let $G = \langle a, b, c \rangle$. Define

$$
H = G \setminus \{a, c, a^2, c^2, e\},
$$

$$
H_1 = G \cup \{cd, d, ad, abd, abc^2d\}^{\pm 1}
$$

and set $X = X_{G,H}$, $Y = X_{G,H}$. By [4, Corollary 1] the cosets of G are blocks *of* $A(X_{G,H})$ *, i.e., every element of* $A_{e}(Y)$ *stabilizes G and maps dG into itself* or interchanges *dG* with *d2G.*

We note that any element of $A_e(X)$ fixes $\{a, a^2, c, c^2\}$ setwise and, moreover, either stabilizes the subsets $\{a, a^2\}$ and $\{c, c^2\}$ or interchanges them. The neigh-

bors of a in $dG \cap H_1$ and $d^2G \cap H_1$ are ad and d^2 , respectively, while a^2 has the neighbors d and a^2d^2 in $dG \cap H_1$ and $d^2G \cap H_1$, respectively. The neighbors of c lying in $dG \cap H_1$ are abd and cd; those in $d^2G \cap H_1$ are $a^2b^2d^2c$ and d^2 . Finally, c^2 has the neighbors $abdc^2$ and d in $dG \cap H_1$ and $a^2b^2d^2$, c^2d^2 in $d^2G \cap H_1$.

As c has more neighbors in $H_1 \setminus G$ than a does, the elements of $A_e(Y)$ fix ${a, a²}$ and ${c, c²}$ setwise. Since d and $d²$ are the only elements of $H₁\ G$ with two neighbors in $\{a, a^2, c, c^2\}$, it is clear that every $\varphi \in A_{\epsilon}(Y)$ stabilizes $\{d, d^2\}$. Suppose $\varphi(d) = d$. Since d has the neighbors a^2 , c^2 in $G\setminus H$, which cannot be interchanged, φ fixes each of a, a^2 , c, c^2 . As c^2 has only the neighbor abc^2d besides d in $dG \cap H_1$, the element abc^2d is also fixed. Now an application of 2.13 shows that Y is an MRR of G_1 .

REMARK. An MRR of Z_3^5 can be obtained from the one given in [7] for Z_3^6 by an application of [17, Lemma 2.7]. If X is the just-mentioned MRR for Z_3^6 we only have to set $N=\langle a_1 a_3^{-1} a_5^{-1} a_6 \rangle$ in order to obtain an MRR X/N of Z_3^5 . This method does not work for Z_3^4 .

4. On the Cayley index of generalized dieyclic groups

In [8] we defined a graph X to belong to the class $\mathcal{S}_{n,q}$ ($n \geq 2$; $q \geq 1$) if it is isovalent and if the set $V(X)$ admits a partition $\{V_1, V_2, \ldots, V_p\}$ with $2 \leq p \leq n$ such that every vertex in V_i is adjacent to at most q vertices in V_j for $j \neq i$. It was shown [8, Corollary 1B] that

4.1. If
$$
X \in \mathcal{S}_{n,q}
$$
 and $|V(X)| > qn(n+2)$, then $X' \notin \mathcal{S}_{n,q}$.

PROOF of Theorem 2. Let G be a generalized dicyclic group generated by the abelian group L and an element b as in the definition in $\S 1$ above, and let β denote the automorphism of G also given in § 1. Clearly, the subgroup L must have even order. Since G is non-abelian, L is not an elementary abelian 2-group.

To prove (a) let it be assumed that L is neither $(4,4)$ nor $(4,2)$ nor $(4,2,2)$. By Theorem 1, L admits an MRR $W = X_{L,J}$ such that $A_{\ell}(W) = \{1_L, \alpha\}.$ Let $H = J \cup \{b, b^{-1}\}\$ and let $X = X_{G,H}$. It will be shown that $A_e(X)$ can be embedded in \mathbb{Z}_2^2 . We first prove

(4.1)
$$
\varphi[L] = L \quad \text{for all} \quad \varphi \in A_e(X).
$$

Clearly, (4.1) is equivalent to the condition that $\varphi[bL] = bL$ for all $\varphi \in A_e(X)$.

If $|G| > 32$, then $|L| > 16$, and by 4.1, either W or W' is not in $\mathcal{S}_{2,2}$ and (4.1) follows immediately.

If $|G| \leq 32$, then $|L| \leq 16$. Under our assumptions, L is the cyclic group Z_{2m} $(3 \le m \le 8)$ or L is $(6,2)$ or $(8,2)$. If $L = \langle a \rangle$, let $J = \{a, a^{-1}\}\$ whence $W = C_{2m}$ (cf. Lemma 2.3). We compute that the edges $[e, a^{\pm 1}]$ each lie on precisely two 4-circuits. (For the edge $[e, a]$ these are defined by $\{a, e, ba^{-1}b\}$ and $\{e, a, b^{-1}a^{-1}, b^{-1}\}\$.) The edges $\{e, b^{\pm 1}\}$ each lie on precisely three 4-circuits. (For the edge $[e, b]$ these are defined by $\{e, a, ba^{-1}, b\}$, $\{e, a^{-1}, ba, b\}$ and $\{e,b^{-1},b^2,b\}.$

If L is (6,2) or (8,2), then b^2 is one of a_1^m , a_2 , and $a_1^m a_2$ where $o(a_1) = 2m$. If $b^2=a_1^m$, then $G=\langle a_1,b\rangle \times \langle a_2\rangle$. By Theorem 1, $c(\langle a_1,b\rangle)=2$, and so $c(G)=2$ by 2.9 and 2.8. Now suppose $b^2=a_2$. (The alternative $b^2=a_1^ma_2$ is equivalent under the automorphism $a_1 \rightarrow a_1, a_2 \rightarrow a_1^m a_2$ of the group L.) Let $J = \{a_1, a_1^{-1}, a_2\}$. Using 2.3 and 2.1, the reader can readily verify that $X_{L,I}$ is an MRR of L. This time, however, let W be the complement of $X_{L,I}$, and note that every edge with both vertices in L or both vertices in *bL* lies on a 3-circuit. No edge with one vertex in L and one vertex in *bL* has this property; for if [g, gb] were such an edge, then the other two edges on the 3circuit would have to be $[qb, qb^2]$ and $[q, gb^2]$ or $[qb^{-1}, g]$ and $[qb^{-1}, gb]$. But [g, gb²], $[gb^{-1}, gb] \notin E(X)$ since $b^2 = a_2 \notin H$. Since in every instance W is a connected graph, (4.1) follows.

Now let $\varphi \in A_e(X)$. By (4.1), either $\varphi|_L = 1_L$ or $\varphi|_L = \alpha$.

First suppose $\varphi|_L = 1_L$. Since $\varphi(b) \in \{b, b^{-1}\}\$, we begin by supposing $\varphi(b) = b$, i.e., $\varphi|_{bL}$ has a fixed-point, and so $\varphi|_{bL} = 1_{bL}$ or $\varphi|_{bL} = \lambda_b \alpha \lambda_{b-1}$. In the former case $\varphi = 1_G$; in the latter case $\varphi(bx) = bx^{-1}$ for all $x \in L$. By our assumptions on L, there exists an $x \in L$ such that $x^2 \neq e$, b^2 . In particular, if $L = Z_4 \times Z_2^m$ for some $m \geq 3$, then $b^2 \neq a_1^2$, or else G would be isomorphic to $Q \times Z_2^m$. Hence $x = a_1$. If $\varphi(bx) = bx^{-1}$, then the neighbors in L of bx, namely *bxb* and x^{-1} , must coincide with the neighbors in L of bx^{-1} , namely $bx^{-1}b$ and x. But clearly $x \neq x^{-1}$, while $x = bx^2$ implies $x^2 = (bx)^2 = b^2$, which is a contradiction. Now suppose that $\varphi(b)=b^{-1}$. Then $(\beta \varphi)|_L = 1_L$ and $\beta\varphi(b) = b$. It follows by what we have just shown that $\beta\varphi = 1_G$. Since $\beta^2 = 1_c$, we have $\varphi = \beta$.

On the other hand, suppose $\varphi|_L=\alpha$. Again $\varphi(b)\in\{b,b^{-1}\}\$, and we suppose first that $\varphi(b)=b$. Since $A_b(X\setminus W)$ is isomorphic as a permutation group to $\{1_L, \alpha\}$, there are at most two possibilities γ_1 and γ_2 for φ . Clearly, $\gamma_1^2=\gamma_2^2=1_G,~ (\gamma_2\gamma_1)|_L=1_L~\text{ and }~ \gamma_2\gamma_1(b)=b.$ Hence as before, $\gamma_2\gamma_1=1_G.$ Under the given assumptions, there exists at most one such automorphism, which, if it exists, we denote by γ . Finally, suppose $\varphi(b) = b^{-1}$. Then $(\beta \varphi)|_L = \alpha$ and $\beta\varphi(b) = b$. Hence $\beta\varphi = \gamma$ and so $\varphi = \beta\gamma$. Thus $\varphi \in A_e(X)$ if and only if $\gamma \in A_e(X)$. We have shown that $A_e(X) \leq \{1_G, \beta, \gamma, \beta\gamma\} \simeq Z_2^2$, completing the proof of (i) in part (a).

To prove (ii), suppose $|G| > 96$, in which case $|L| > 48$. Since, moreover, G is not of the form $Q \times Z_2^m$, one verifies by exhaustion that L must

contain some two distinct elements s_1 and s_2 subject to all the following condiitons for $i, j \in \{1, 2\}$ and $i \neq j$:

$$
(4.2) \t\t s_i^2 \neq e,
$$

$$
(4.3) \t\t s_i s_j \neq e,
$$

$$
(4.4) \t s_i^2 \neq b^2,
$$

$$
(4.5) \t\t s_i \neq s_j^2,
$$

$$
(4.6) \t\t s_i s_j \neq b^2,
$$

$$
(4.7) \t\t s_i \neq b^2 s_j^2.
$$

Let W be as before, but redefine

(4.8)
$$
H = J \cup \{b, b^{-1}, bs_1, b^{-1}s_1, bs_2, b^{-1}s_2\}
$$

and let $X = X_{G,H}$. Arbitrarily choose $\varphi \in A_e(X)$. We apply 4.1 again with $n = 2$ and $q = 6$. Since $|L| > 48$, we may assume that $W \notin \mathscr{S}_{2,8}$. Thus $\varphi[L] =$ $= L$ and $\varphi[bL] = bL$. If $\varphi(b) \notin \{b, b^{-1}\}\$, then we may assume without loss of generality that $\varphi(b) = bs_1$. There are precisely two possibilities for the action of φ on *bL*, namely $\lambda_{s,-1}$ and $\lambda_{bs} \alpha \lambda_{b-1}$; that is, either

(4.9)
$$
\varphi(bx) = bx s_1 \quad \text{for all} \quad x \in L
$$

or

(4.10) *~o(bx)=bx-lsl* for all *x~L,*

respectively.

If (4.9) holds, then $\varphi(bs_1) = bs_1^2$ must be one of the six neighbors of e in the right-hand member of (4.8). By (4.2), $bs_1^2 \neq b$ or $(bs_1)^{\pm 1}$, and by (4.4) $bs_1^2 \neq b^{-1}$. Further, by (4.5) $bs_1^2 \neq bs_2$ and by (4.7), $bs_1^2 \neq b^{-1}s_2$. On the other hand, if (4.10) were to hold, we would apply the same argument to $\varphi(bs_2)$ = $= b s_2^{-1} s_1$. Since $s_1 \neq s_2$, this image is not b, and by (4.3), it is not b^{-1} . By (4.2) we can eliminate $(bs_1)^{\pm 1}$, and by (4.5), $bs_2^{-1}s_1 \neq bs_2$. Finally, $bs_2^{-1}s_1 \neq b^{-1}s_2$ by (4.7). Hence $\varphi(b) \in \{b, b^{-1}\}.$

If $\varphi(b) = b$ and if $\varphi \neq 1_c$, then as before $\varphi(bx) = bx^{-1}$ for all $x \in L$. We now consider the image $\varphi(bs_1) = bs_1^{-1}$ which, since $\varphi^2 = 1_G$, cannot equal *b*. By (4.2) it is neither b^{-1} nor bs_1 . By (4.4), $bs_1^{-1} \neq b^{-1}s_1$, and by (4.2) one may eliminate bs₂. Finally, by (4.6), $bs_1^{-1} \neq b^{-1}s_2$.

We have thus shown that either $\varphi = 1_c$ or $\varphi(b) = b^{-1}$. (The reader should be certain to note that this time it was not necessary to consider two cases depending upon the behavior of φ on L.) To conclude, suppose $\varphi(b) = b^{-1}$. Then $\beta \varphi(b) = b$, and by what we have just shown, $\beta \varphi = 1_G$. Hence $\varphi = \beta$, and $A_e(X) = \{1_G, \beta\} \simeq Z_2.$

To prove (b), we let $G = Q \times Z_2^n$ and proceed by induction on n. When $n = 0$, $c(G) = 16$ by Lemma 2.6. If $c(Q \times Z_2^n) \leq 16$, then by 2.8 and 2.9, $c(Q \times Z_2^{n+1}) \leq c(Q \times Z_2^n) c(Z_2) \leq 16.$

REFERENCES

- [1] C.Y. CHAO, On a theorem of Sabidussi, *Proc. Amer. Math. Soc.* 15 (1964), 291--292 MR **28** $\#$ **2538**
- [2] D. HETZEL, private communication,
- [3] W. IMRICH, Graphs with transitive abelian automorphism groups, *Combinatorial Theory and its Applications* (Colloq. Math. Soc. J. Bolyai 4), Proc, Colloq. Balatonfüred, August $24-29$, 1969, edited by P. Erdős, A. Rényi and Vera T. Sós, North-Holland Publishing Co., Amsterdam--London, 1970, 651--656. (Vol. I: 390 pp.; $\text{Vol. II: IV} + \text{pp. } 395-799; \text{ Vol. III: III} + \text{pp. } 803-1201 \text{ } Zb\bar{b} \text{ } 206, \text{ } 262; \text{ } (\hat{M}\hat{R})$ $45 + 4981$
- [4] W. IMRICH, On graphs with regular groups, *J. Combinatorial Theory Ser. B* 19 (1975), .~[74--180. *Zbl 282.* 05107 (305. 05112)
- [5] W. IMRICH, On products of graphs and regular groups, *Israel J. Math.* 11 (1972), $258-264.$ *MR*^{2}47 $\#$ 3234
- [6] W. IMRICH, Graphical regular representations of groups of odd order, *Combinatories* (Colloq. Math. Soc. J. Bolyai 18), Proe. Colloq. Keszthely, 1976, North-Holland Publishing Co., Amsterdam--London (to appear).
- [7] W. IMRICH, On graphical regular representations of groups, *Infinite and Finite Sets* (Colloq. Math. Soc. J. Bolyai 10), Proe. Colloq. Keszthely, June 25--July 1, 1973, edited by A. Hajnal, R. Rado and Vera T. Sós, North-Holland Publishing **Co.,** Amsterdam--London, 1975, 905--925. (Vol. I: 604 pp; Vol. II: pp. 605--1080; $\text{Vol. III: pp. } 1081 - 1555$ (*MR* 50 $\text{\# } 12526$).
- [8] W. IMRICH and M. E. WATKINS, On graphical regular representations of cyclic extensions of groups, *Pacific J. Math.* 55 (1974), 461--477. *Zbl.* 279. 05114 (298. 05128)
- [9] L. A. NOWZTZ, On the non-existence of graphs with transitive generalized dicyelic groups, *J. Combinatorial Theory* 4 (1968), 49--51. *MR* 36 @ 1359
- $[10]$ L. A. Nowrrz and M. E. WATKINS, Graphical regular representations of non-abelian groups, I, *Canad. J. Math.* **24** (1972), 993-1008. MR 47 $\#$ 8345
- [11] L. A. NowITz and M. E. WATKINS, Graphical regular representations of non-abelian groups, II. *Canad. J. Math.* **24** (1972), 1009-1018. MR 47 $\#$ 8345
- $[12]$ G. SABIDUSSI, Graph multiplication, *Math. Z.* **72** (1959/60), 446–457. *MR* **35** $\#$ 80 [13] G. SABIDUSSL On a class of fixed-point-free graphs, *Proc. Amer. Math. Soe.* 9 (1958), $800-804$, MR 20 $\neq 3548$
- [14] G. SABIDUSSL Vertex-transitive graphs, *Monatsh. Math.* 68 (1964), 426--438. *MR* $31 + 91$
- [15] M. E. WATKINS, On the action of non-Abelian groups on graphs, *J. Combinatorial* $Theory\,$ *Ser.* B 11 (1971), 95-104. MR 43 $\#$ $\bar{6}136$
- [16] M. E. WATKINS, The state of the GRR problem, *Recent Advances in Graph Theory* (Proe. Second Czechoslovak Sympos. Prague, June 1974), edited by Miroslav Fiedler, Academia, Prague, 1975, $517-522$ (see MR 51 $\#$ 217).
- [17] M. E. WATKINS, Graphical regular representations of free products of groups, J. *Combinatorial Theory* 21 (1976), 47-56.

(Received May 5, 1975)

INSTITUT FÜR ANGEWANDTE MATHEMATIK MONTANUNIVERSITÄT LEOBEN $A-8700$ LEOBEN AUSTRIA DEPARTMENT OF MATHEMATICS SYRACUSE UNIVERSITY SYRACUSE, N'Y *13210*

U.S.A,