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ON A CONJECTURE OF FEJES TOTH 

by 

V. CKV'ATAL (Montreal) 

F~.J~S T6TH [1] made the following conjecture, " I f  in a packing of trans- 
lates of a Square each square has a t  least si2~ neighbours then the density of 
the packing is at least 11/15." Here a "square" is, for instance, the square 
0 < x < ! ,  0 < y < 1, a "packing" i s a nonempty  family of pairwise disjoint 
sets and, finally, two sets are said r o b e  "neighbours" if their closures have 
a nonempty intersection. FEJ]~S T6TH has constructed a packing of density 
11/15 which satisfies his requirements (see Fig. l) and observed that  every 
packing satisfying his requirements has density at least 2/3. I t  is not difficult 
to show [2] that  in the investigation of this problem we can restrict ourselves 
to squares forming a grid, i.e., a se t  of squares joining along whole sides and 
filling the plane completely. For grids, ttA~AI~I improved the lower bound 
into 5/7 and restated the conjecture as follows. "In the planar square grid, 
color the squares blue and red, so that  (a) there is at least one blue square and 
(b) each blue square has at least six blue neighbours. Then the density Of the 
set of blue squares is at least 11/15." We shal! prove this conjecture. 

By the order of a square S we shall mean the number of the neighbours 
of S having the same color as S. By (b), there are no blue squares of order 
smaller than six. Moreover, there are no red squares of order greater than three. 
(This has been also observed by Hanani.) Le t  Bi (resp. Ri) be the set of all 
the blue (resp. red) squares of order i; let bt (resp. ri) be the density of Bi 
(resp. Ri).'Then evidently 

r o + r  1 ~ r~  + r a  +b~ +b7 +bs  ---- 1. 
J 

Moreover, counting the red-blue connections we obtain 

8r o + 7 r  1 +6r~ + 5 r  3 2b 6 + b  7. 

Now, Hanani's bound follows since 

7(b8 +b7 + b s ) > _ - - 3 r  o - 2 r  i - r  2 +7b6 + 6 b  7 + 5 b s :  

= 5(r o + r l  + r2  + r a  ~-b 6 + b  7 +bs)  -7 

- -  (8r 0 ZF7rl + 6 r  2 ~ 5 r  a - 2 b  6 - b ~ ) = 5 .  
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To prove  b e -t- b~ + b s ~ 11115, it will be enough to  show tha t  

(*) ra ~< 4r0 + 2rl -F 2b, -{- 4b s, 

for then  

15(be -4- b~ A- bs) > --r0 --  rl --  r2 -t- 15be ~- 15b~ ~ 15b, ---- 

= l l ( r0  -t-rl  -4-r~ -4-r3 A-b6 -1-b~ -4-bs) --  

- -  2(8r 0 + 7r 1 -~ 6r~ J r  5ra - -  2b6 - -  b~) -1- 

+ (4r o + 2rl - -  ra -{- 2b~ + 4b s) ~ 11 

as desired. 

To prove  (*), we first  observe  t ha t  the  red squares  of  order three  come in 
two  b y  two quadruples.  Le t  Q �9 the  set  of  these quadruples;  set  q ---- ra]4. 
I t  will suffice to  const ruct  a b ipar t i te  graph G together  wi th  disjoint  subsets  

S, T of  .R 1 such t ha t  
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(i) the bipartition of G consists o f  Q i n  one part  
13 B~ t3 B s in the other, 

and RoUSUTU 

(ii) each element of SUBT(JB s has degree at most one in G, each 
element of RoUT has degree at most two in G, 

(iii) if some A with A C Q is adjacent to ~0 elements of R 0, to a elements 
of S, to ~ elements o f  T, to/5~ elements of  B 7 and to/5 s elements of 
B s then 

1 1, 
" 4 ' - 

( i v )  if some A with A ~  Q is adjacent to w then w comes from the 8 • 8 
square centered at A. 

Suppose for the moment  tha t  we  have constructed G. Assign to each edge 
of G the weight 

1 if the edge has an endpoint in B s, 

1/2 if the edge has an endpoint  in Ro[JS[JB s, 
1/4 if the edge has an endpoint in T. 

Then, for every A with A E Q, the sum of the weights of edges incident with 
A is at  least one. The corresponding sum for each element of RoUB a is at  
most one and, for each element of RI(JB ~, the sum is at most 1/2. Counting 
now the weights of the edges of G, we obtain 

q ~ r o +  l r  + l b  -2 1  +b8 

and (*) follows. 

I t  remains to construct G. 

Step 1. I f  a quadruple is a part  of one of the five configurations in Figure 2 
(or its image under a rotation), join it (by an edge of G) to the element 
of B s indicated by the arrow. (Do this whenever applicable, then go 
on to the next step.) 

Step 2. Call a quadruple available if it is adjacent to no element of B s. I f  an 
available quadruple is a par t  of one of the three configurations in 
Figure 3 (or its image under a rotation), join it to the element of B~ 
indicated by the star. 

Step 3. I f  an available quadruple is  a part  of the configuration in Figure 4 
(or its image under a rotation), join it to the element of R 0 indicated 
by the star. 
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Step 4. I f  an available quadruple is a part of one of the three configurations 
in Figure 5 (or its image under a rotation), join it to the element o f / ~  
indicated by the star and put this element into 8 .  

Step 5. I f  an available quadruple is a part of one of the three configurations 
in Figure 6 (or its image under a rotation), join it to the two elements 
of R 1 indicated by the stars and put these two elements into T. 

I t  is a little messy, bu~ manageable, to show that the resulting graph 
has all of the required properties. The proof is finished. 

Note that (*) actually implies that  every optimal coloring has r 0 -- r 1 -- 
--  r~ = 0. Under this assumption, an argument similar to the above (but much 
simpler) yields r3 ~ 2b~ ~-bs.  Then 

15(b s -}- b~ -}- bs) - -  3b s - - - - -  15b~ ~ 15b~ -}- 12b s = 

---- l l ( r  s ~ b~ ~ b ~ - I - b s )  - -  2(5r3 - -  2b s - -  b 7) - -  (r3 2 b ~ -  bs) ~_ U .  
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Hence  eve ry  op t imal  coloring satisfies r o - -  r 1 = r2 ~ bs = 0, r3 ,~  4/15, 
b~ ---- 2/15 a nd  b 6 - -  9/15. Now, i t  follows t h a t  Fejes  TSth ' s  coloring is un ique  

in a sense. 
I t h a n k  Professor  H a i m  H a n a n i  for  s t imula t ing  conversa t ions ,  
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